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ABSTRACT: Reduction of the size of a particle down to a few 

tens of nanometer or below may drastically affect its physical 

properties. That is well known for quantum dots. Conversely, 

many works consider the chemical composition of nanoparticles 

as invariant when reducing their dimension. Here we demonstrate 

that the chemical composition of a transition metal oxide, namely 

nickel oxide, is drastically affected by its nanostructuration. 

Nickel oxide is a well-known, strategic material that gives rise 

to many applications. Hence it is used in domains as diverse as 

solid oxide fuel cells,1-3 lithium batteries,4-6 electrochromic devic-

es,7-9 gas sensors,10-12 (photo)catalysis,13-15 and solar cells.16-18 

More recently, this material has been envisioned for potential 

memory devices due to its reversible resistance switching capabil-

ity.19-21 Finally NiO nanoparticles are also investigated for their 

interesting magnetic properties that are still under debate.22-24  

NiO crystallizes in the rock salt structure. In its 1:1 stoichio-

metric bulky form, the material is antiferromagnetic below 523K, 

and exhibits a pale green color with a low electrical conductivi-

ty.25-27 Simultaneously, NiO in the form of nanoparticles is regu-

larly reported with different physical characteristics. Namely, a p-

type semi-conductivity, a black color, or ferromagnetism are often 

observed.22-24,28-32 In that context, we have embarked on the syn-

thesis of NiO nanoparticles and their (micro)structure characteri-

zation to shed light on the impact of the nanostructuration on the 

Ni:O atomic ratio.  

NiO materials were synthesized by thermal decomposition of 

Ni3O2(OH)4 as prepared by Polteau et al.33 Hereafter samples

labelled NiO-T will refer as to materials prepared at the synthesis 

temperature T (°C). For T in the 250-500°C and 500-800°C rang-

es, materials exhibited a black and grey color, respectively. Above 

800°C, NiO was greenish (see details in SI and Figures S1-S2). 

Rietveld refinements were carried out on patterns collected at 

room temperature (RT) on each NiO-T sample. Hereafter, the 

"NiO" notation will stand for samples with diffraction peaks that 

can be fully indexed on the basis of the crystal structure of NiO 

even if the chemical formulae may significantly differ from the 

exact 1:1 atomic ratio. Refinements clearly evidenced a strong 

enlargement of coherent diffracting domains (i.e. CS) from 2 to 3, 

4, 7, 14, 22, 32, 66 and 193nm for synthesis temperatures of 250, 

300, 350, 400, 450, 500, 600, 700 and 800°C, respectively (Fig-

ure 1 and Table S1). This evolution was fully asserted by trans-

mission electron microscopy investigations (Figures S3-S4) that 

revealed well crystallized materials with a low distribution of 

particle size. The average particle sizes found from the examina-

tion of micrographs is almost identical to CS determined by XRD 

(Table S1). Consequently, nanoparticles can be viewed as single 

crystals, and not as an assembly of crystallites, i.e. grains. 

Figure 1. Crystallite size (CS) (black dots) and specific surface 

area (red dots) of "NiO" samples prepared from Ni3O2(OH)4 at 

temperatures ranging from 250°C to 800°C. 

This reduction of the nanoparticule size with increasing tem-

perature goes along with a strong diminution of the specific sur-

face areas (SSA) of NiO-T samples that were determined by the 

Brunauer-Emmett-Teller method. Figure 1 displays the evolution 

of SSA vs. T and evidences a continuous decrease from 240m2/g 

to 3m2/g for NiO-250 and NiO-800 samples, respectively. All 

nanoparticles prepared from decomposition of the precursor above 

200°C crystallize therefore with the rock salt structure but exhibit 

different particle sizes. 

To get insight on the impact of the particle size on the chemical 

composition of the nanoparticles we have performed chemical 

analyses and density measurements (exp) on NiO-T samples. The 

exp vs. T curve is displayed in Figure 2 (see also Table S2). 

Clearly, samples prepared at temperature higher than 600°C (with 

CS higher than 30 nm) exhibit a density quite similar to the theo-

retical one (theo=6.81 g/cm3). At the opposite, density for samples

prepared below 600°C is lower than theo and can reach value as 

low as 5.14g/cm3 for T equal to 250°C (CS of 2.3nm). At this 

stage, the weight oxygen content (O wt%) of each samples was 

determined by the inert gas fusion method (Figure S5 and Table 

S2). Samples prepared at low temperatures clearly evidenced an 

oxygen concentration much higher (e.g. 26.8 wt% for NiO-250) 

than the expected one for 1:1 Ni:O stoichiometric materials (i.e. 

21.41%). However, when synthesis temperature increases, the 

oxygen weight percentage tends to decrease to reach the theoreti-

cal value expected for a 1 by 1 stoichiometry. Thus, the discrep-

ancy in the density measurements at low T can be assigned to a 

nickel off-stoichiometry (Ni1-xO), the refined cell volumes re-
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maining quite similar for all samples (Table S2). For "NiO" 

nanoparticles with spherical shape and hypothetical Ni1-xO chemi-

cal composition, the density can be written 

(exp)=(Z×M)/(NA×Vcell) where Z, M, NA and Vcell are the number 

of formula unit per unit cell, the molar mass of Ni1-xO, the Avo-

gadro number and the volume of the unit cell. Subsequently, the 

nickel deficiency in Ni1-xO can be calculated from the density 

measured experimentally and the cell volume determined by 

Rietveld refinement. Figure 2 displays the calculated x value of 

the Ni1-xO samples versus T. Clearly amazing x values as high as 

0.30, 0.23 and 0.18 are calculated for NiO-250, NiO-300 and 

NiO-350 samples. When synthesis temperatures increase, x values 

progressively decrease to reach more reasonable values at ca. 

450°C, and finally tend to zero for T higher than 600°C.  

Consequently, our study clearly confirms that the stoichiometry 

of the nanoparticle (i.e. the Ni:O ratio) is strongly correlated to the 

particle size. Two models can be envisioned to explain the origin 

of such high Ni vacancy rates. Either nickel vacancies are homo-

geneously distributed over the whole material or nickel vacancies 

are segregated at the surface of nanoparticles. The former hypoth-

esis  

 

Figure 2. Evolution of the density and the Ni off-stoichiometry 

of NiO-T samples versus their synthesis temperature. The dashed 

line has to be regarded as a guide to the eyes. Calculated crystal-

lite sizes (in nanometers) are indicated within brackets.  

may be discarded as it would imply an incredible stability of the 

crystal structure type to accept such high concentrations of de-

fects. Moreover, the segregation of metal vacancies at the surface 

of the nanoparticles was already observed for Zn1-xO nanoparti-

cles synthesized by thermal decomposition of ZnO2.
34-35 The 

density vs. particle size curve was then successfully explained by 

a core-shell model involving the segregation of metal vacancies at 

the surface. This model is extended here to NiO nanoparticles by 

considering a core consisting of NiO bulk (i.e. a stoichiometric 

NiO) and a shell of an oxygen rich (Ni poor) material. Under 

oxidizing conditions (decomposition of the Ni3O2(OH)4 oxygen-

rich precursor in air), it is reasonable to anticipate that the surface 

of the synthesized "NiO" samples would be likely composed of a 

layer of oxygen atoms or hydroxyl groups. To some extent, the 

shell could be viewed as a passivating layer that might contain 

altogether species as O2-, OH-, CO3
2- or H2O. In this core-shell 

model, the ratio of the top-layer thickness (e) over the total parti-

cle radius (R) will be large for a nanoparticle but will decrease 

when the particle grows up as detailed in Figure S6a. Namely, 

based on a simple mathematical treatment with successive itera-

tions on the e value (Model 1, see SI for methodology), the thick-

ness of the top-layer can be estimated between 1.3Å and 2.5Å 

depending on whether the density evolution is fitted versus the 

crystallite size (Figure S6b) or the specific surface area (Figure 

S6c). This thickness value is completely consistent with a top-

layer made of a single atomic layer passivating naturally the 

surface of the nanoparticles and consisting of oxygen or hydroxyl 

species with Ni-O interatomic distances of ca. 1.8Å.  

This core-shell model was subsequently refined starting from 

the rock salt structure type of NiO built upon [NiO6] octahedra 

sharing edges to form a tridimensional edifice. The crystal growth 

of NiO was then considered starting from a regular [NiO6] poly-

hedron as a seed. At the very first stage of the growth, this octa-

hedron will be surrounded by 18 nickel atoms that will complete 

their coordination sphere via the addition of 38 oxygen atoms to 

be six-fold coordinated. This growth process will pursue as shown 

in Figure 3a. The particle will maintain its overall octahedral 

shape throughout its growth as long as oxygen atoms will cover 

the external surfaces. Namely, the crystal growth procedure will 

follow a mathematical series called octahedral number (On) de-

fined as On=n×(2n2+1)/3; On enumerates the total quantity of Ni 

and O atoms within the octahedral particle for odd and even n 

number, respectively. Hence, the second, third, fourth, fifth and 

sixth coordination spheres of Ni will contain 6 O atoms (n=2, 

On=6), 18 Ni atoms (n=3, On=19), 38 O atoms (n=4, On=44), 66 

Ni atoms (n=5, On=85), and 102 O atoms (n=6, On=146), etc. 

Consequently, at each stage of the growth process, the total num-

ber of atoms of nickel and oxygen can be determined, as well as 

the exact stoichiometry of the nanoparticles and their theoretical 

density. Table S3 sums up for even n values (i.e. oxygen termi-

nated nanoparticles) salient values, namely the number of Ni and 

O atoms, the deviation to the 1:1 stoichiometry, the octahedron 

diagonal, the particle diameter assimilated to the isovolumic 

sphere diameter as depicted in Figure 3b inset, and the calculated 

density. Data are given for octahedral particles with apical dis-

tances lower than 6nm (n from 2 to 14), and at ca. 100nm (n=242) 

and 400nm (n=960).  

 

Figure 3. (a) Schematic representation of the crystal growth of 

NiO from a [NiO6] seed as described in the text. (b) Evolution of 

the measured density (black dots) and the calculated Ni off-

stoichiometry (red dots) in "NiO" vs. crystal size, and comparison 

with models (dotted lines) where crystal size is assimilated to the 

isovolumic sphere diameter (sphere). 

As illustrated in Figure 3b, a gradual increase of the density vs. 

the isovolumic sphere diameter sphere is observed up to tend 

towards the measured bulk density of 6.81g/cm3 for CS larger 

than 100nm. This goes along with a decrease of the Ni off-

stoichiometry that shifts from the experimental high value of 
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about 30% for particles size of 2.5nm to value almost null for 

particles larger than 100nm (≤ 1.2%) and 400nm (0.3%). A very 

good correlation between theory and experiment is witnessed. 

This clearly proves that our core-shell model describes very well 

for the “NiO” nanoparticle. The core can be regarded as NiO bulk, 

and the shell as an oxygen single layer that naturally passivates 

the metallic surface. According to this model, it is possible to 

adjust the stoichiometry of "Ni1-xO" materials via a fine control of 

the particle size. 

At the nanoscale, the contribution of the surface passivation is 

such that it drastically modifies the chemical composition of the 

“NiO” particles, and potentially its physical properties. For this 

reason, we have measured the magnetic properties of the “NiO” 

nanoparticles. Many works have indeed reported the appearance 

of ferromagnetism in NiO nanoparticle.36-39 Figure 4a displays 

the RT magnetization (M) of NiO-250 and NiO-800 samples vs. 

magnetic field. Nickel oxide grown at 800 °C with almost no Ni 

vacancies (largest particle size) exhibits no trace of ferromag-

netism, which agrees with the commonly reported antiferromag-

netic properties of bulk NiO. Conversely, the magnetization of the 

smallest nickel oxide nanoparticles (NiO-250) with a large Ni off-

stoichiometry displays a clear RT ferromagnetic contribution. 

Figure 4b shows the saturation magnetization at 0.5 Tesla and RT 

for nanoparticles synthesized in the 250-800°C range. A clear 

trend is observed: the lower the particle size, the higher the ferro-

magnetic contribution. Our observation clearly suggests that the 

presence of Ni vacancies at the vicinity of the surface is at the 

origin of this ferromagnetic behavior. It is therefore in direct line 

with previous reports that also points out the prominent role of Ni 

vacancies in the vicinity of the surface of nanoparticles in the 

appearance of this ferromagnetic contribution.36-39   

 

Figure 4. (a) M-H curves measured at 300K for NiO-250 and 

NiO-800. (b) Evolution of magnetization at 300K per Ni mol vs. 

particle size for NiO-T samples. 

In summary, the attempts to synthesize nickel oxide via the 

thermal decomposition of Ni3O2(OH)4 at low temperature leads to 

nanoparticles with a chemical composition exceptionally far away 

from the expected one (i.e. 1:1), with a metal deficiency up to 

30%. Our work shows that besides the quantum size effect a 

chemical size effect has often to be taken into account to under-

stand the behavior of transition metal oxide nanoparticles and 

explain the change of their physical properties with decreasing the 

particle size.  
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