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Abstract

Two Krylov subspace methods, the GMRES and the BiCGSTAB, are ana-
lyzed for solving the linear systems arising from the mixed finite element dis-
cretization of the discrete ordinates radiative transfer equation. To increase
their convergence rate and stability, the Jacobi and block Jacobi methods are
used as preconditioners for both Krylov subspace methods. Numerical ex-
periments, designed to test the effectiveness of the (preconditioned) GMRES
and the BiCGSTAB, are performed on various radiative transfer problems:
(i) transparent, (ii) absorption dominant, (iii) scattering dominant, and (iv)
with specular reflection. It is observed that the BiCGSTAB is superior to
the GMRES, with lower iteration counts, solving times, and memory con-
sumption. In particular, the BiCGSTAB preconditioned by the block Jacobi
method performed best amongst the set of other solvers. To better under-
stand the discrete systems for radiative problems (i) to (iv), an eigenvalue
spectrum analysis has also been performed. It revealed that the linear sys-
tem conditioning deteriorates for scattering media problems in comparison
to absorbing or transparent media problems. This conditioning further de-
teriorates when reflection is involved.
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1. Introduction

Radiative transfer problems are often solved by discretizing the radiative
transfer equation (RTE), an equation that is integro-differential by nature [1].
As a consequence, one solves a large linear system AI = b, where A is a
real matrix, and I and b are vectors. Depending on the chosen discretiza-
tion, A can be symmetric, nonsymmetric, sparse or dense. For example,
the spherical harmonics method (P1 method) coupled to the finite volume
method yields a symmetric system, cf. [2]. Other discretizations generating
symmetric systems include the discrete ordinates method (DOM) coupled to
the least square finite element method [3] or the simplified spherical harmon-
ics method (SPN method) coupled to the finite element method is used [4].
However, when the DOM is coupled to the finite volume method [5], or to the
discontinuous Galerkin finite element method [6], then the obtained systems
are nonsymmetric. In this article we employ the discrete ordinates method
[7] coupled with the stabilized mixed finite element method [8] (DOM-FEM)
for assembling the coefficient matrix A as well as the right-hand side vector b.
These discretizations yield a sparse and nonsymmetric linear system.

The chosen DOM-FEM discretization, at present, is one of the widely
used discretization techniques for radiative transfer problems. It provides
accurate results for a vast range of radiation problems at moderate compu-
tational requirements. Complex geometries [9], heterogeneous media [10],
reflections [11], anisotropic scattering [12], etc., can be easily handled by the
DOM-FEM method, making it a versatile RTE discretization technique. To
summarize how the DOM-FEM discretization for the RTE works, the DOM
firstly transforms the integro-differential RTE into a set of coupled partial dif-
ferential equations (PDEs). Then, the stabilized mixed FEM is applied over
all partial differential equations. Finally, we derive AI = b. More details may
be found in [13, 14]. For radiative transfer, solution strategies of such linear
systems have been developed using the operator-split strategy which reduces
the coupled system problem to the solution of a series of linear problems.
This method is more commonly known as the source-iteration method [15].
However, when one considers radiative transfer problems with dominant scat-
tering, reflection, and heterogeneities, such a solution technique leads to un-
acceptably slow convergence rates, or may even fail to converge [16]. As a
remedy to the slow convergence rates for the scattering dominant problems,
the diffusion synthetic acceleration method may be used, cf. [17]. Such a
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method can be seen as a preconditioned source-iteration method, and helps
in accelerating the convergence rate for most highly scattering problems.

In the recent years, many researches have used Krylov subspace meth-
ods [18] as an alternative to the traditional source-iteration method or to
the diffusion synthetic acceleration method. These Krylov subspace meth-
ods guarantee fast convergence for the non-trivial radiative transfer prob-
lems (some of which were mentioned in the preceding paragraph), without
any need for deriving sophisticated acceleration techniques [19, 20, 21, 5,
22]. Furthermore, recent advancements in parallelism of the Krylov sub-
space methods have provided the computational community with open-source
mathematical libraries that scale well, and can handle large linear systems,
cf. [23, 24]. Such tools provide easy access to a collection of Krylov subspace
solvers and preconditioners that can be suitably selected depending on the
system to be solved. In this article, we use such an open-source mathematical
library, PETSc [23], to solve the linear systems that arise in the DOM-FEM
discretization of the RTE.

In this study, we used two Krylov subspace methods, the BiCGSTAB [25]
and the GMRES [26], with and without preconditioning, for radiative trans-
fer problems with specular reflection at the boundaries. To argue in favor
of Krylov subspace solvers for solving such radiative problems, an eigen-
value spectrum analysis (based on the Arnoldi iteration algorithm [27]) has
been performed for different transparent, absorbing, scattering, and reflect-
ing radiation problems. By computing the condition number based on this
eigenvalue analysis, we show its degradation when reflection phenomena are
involved.

To sum up the remainder of this article, the upcoming section 2 intro-
duces the discrete ordinates RTE with different boundary conditions. Next,
section 3 discusses the linear system that arises from the DOM-FEM dis-
cretization of the RTE. Section 3 also provides a quick overview of solution
methodologies for solving such systems. Section 4 then presents the numeri-
cal results along with discussions based on eigenspectra for various radiation
problems. Section 4 further presents a comparative performance analysis of
the GMRES and the BiCGSTAB, for solving some complex radiative transfer
problems. We draw a quick conclusion in section 5.
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2. Problem formulation

In this article, we consider the discrete form of the monochromatic steady-
state RTE [7], stated on a bounded domain D ⊂ R

3. After applying the
DOM, the radiative transfer model contains a set of Nd coupled partial dif-
ferential equations, for which the mth equation reads,

Rm = (sm · ∇+ β) Im(x)− σs
Nd∑
n=1

ωnIn(x)Φ(sm, sn)− κIb(x) = 0. (1)

The equation (1), written for all m = 1, . . . , Nd, forms a set that statistically
describes the interaction of radiation using discrete radiative intensities Im,
each Im propagating towards its own direction sm. For eachRm, there occurs:
radiation loss due to extinction βIm(x), radiation gain due to in-scattering
σs
∑Nd

n=1 ωnIn(x), and radiation gain due to black-body emission κIb(x). The
remaining symbols present within (1) are, the extinction coefficient β =
κ+σs, the absorption coefficient κ, the scattering coefficient σs, the scattering
phase function Φ(sm, sn), and the Planck black-body function Ib, which in
turn depends on the spatial temperature distribution T within the medium.
Lastly, Nd and ω are the total number of angular directions and the weights
associated to these directions, respectively.

To complete the problem definition, boundary conditions containing ex-
ternal sources and reflections at the domain boundary ∂D ∩ (sm · n < 0)
(with n being the outward unit normal vector), are given by,

Im(x) = Îm(x) + (1− α)I]m(x) + αIYm(x) ∀x ∈ ∂D. (2)

Here, Îm(x) is the Dirichlet contribution due to external sources or diffused
loading, I]m(x) quantifies the diffused contribution of reflection, IYm(x) is the
specular contribution of the reflection, and α ∈ [0, 1] is a coefficient weighting
the two reflection contributions. The diffused and the specular reflections are
further expanded as,

I]m(x) =
ρd
π

∑
sj ·n>0

ωjIj(x)sj ·n and IYm(x) = ρs(sm,n)
∑

sj ·n>0

δm,j(n)Ij(x).

The symbols ρs and ρd are the specular and the diffuse reflectivity coeffi-
cients, respectively, and δm,j, for all (m, j) ∈ J1;NdK2, are the partition-ratio
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coefficients. The way these coefficients are calculated in a very accurate
manner for specular reflection is presented for two- and three-dimensional
problems in [6] and [11], respectively . In particular, δm,j is calculated using
the so-called “partitioning method” [11]. Note that the weighting coefficient
α is assumed to be equal to 1 in this study, i.e., only specular reflection is
considered.

(a) Nd = 20. (b) Nd = 80. (c) Nd = 320.

Figure 1: Discretized angular space with the icosahedron refinements. (a) icosahedron,
(b) first refinement icosahedron, and (c) second refinement icosahedron.

Recently, we introduced the mixed finite element method (with the SUPG
stabilization) for solving the discrete ordinates RTE (1) [13, 14]. The solver
was parallelized using either domain decomposition or angular decomposi-
tion. In these previous studies, the reflection phenomena were not integrated
in the solver. However for the current study here, the equation set (1) is
solved using this (parallel) mixed finite element based solver, with the added
capabilities of modeling specular reflection using the partitioning method.
To detail the solver further, it is interfaced with the open-source mathemat-
ical library PETSc, which offers a suite of Krylov subspace methods along
with preconditioners, for solving the consequent linear systems in parallel,
using distributed-memory parallelism through the Message Passing Inter-
face (MPI). The discretization kernel uses unstructured (tetrahedral) meshes
for space x, and the refined icosahedron sphere discretization for directions s.
Figure 1 shows the icosahedron, the first refinement icosahedron, and the
second refinement icosahedron, these correspond to Nd = 20, 80, and 320,
respectively.
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3. The finite element linear system

3.1. Assembling the linear system

As mentioned earlier, the linear system arising from the finite element
discretization of the discrete ordinates RTE is sparse and nonsymmetric by
nature. It has the form:

AI = b, (3)

with the matrix A ∈ Rm×m and the vectors I ∈ Rm and b ∈ Rm. The symbol
m = Nd×Nv, Nv being the number of degrees of freedom associated with the
spatial discretization. To analyze thoroughly the linear system, we derive the
following block matrix splitting using the angular approach presented in [14],
for the linear system (3).

AI ,
[
AT + AE + AS + AR

]
I = b, (4)

with, AT , AE, AS, and AR representing, respectively, the contributions from
transport, extinction, scattering, and reflection processes embedded within
the RTE (1). These are further expanded as,

AT =

A
T
1 0 0

0
. . . 0

0 0 ATNd

 , AE =

A
E
1 0 0

0
. . . 0

0 0 AENd

 , (5)

AS =

 AS1,1 · · · AS1,Nd
...

. . .
...

ASNd,1 · · · ASNd,Nd

 , and AR =


0 AR1,2 · · · AR2,Nd
AR2,1 0 · · · AR1,Nd

...
...

. . .
...

ARNd,1 ARNd,2 · · · 0

 . (6)

Similarly, the vector b expands to b = [b1 · · · bNd ]. The mth block of
rows of the linear system is related to the finite element discretization of a
single Rm. It also includes, due to the integration by parts, the boundary
condition terms. The entries of these matrices and the vector b are defined
by,[
ATm
]
k,l

= −
∫

Ω

sm · ∇ϕk(ϕl − γsm · ∇ϕl) dx +

∫
∂Ω

sm·n>0

sm · n ϕkϕl dx, (7)
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[
AEm
]
k,l

=

∫
Ω

βϕl(ϕk + γsm · ∇ϕk) dx, (8)

[
ASm,n

]
k,l

= −
∫

Ω

σsωnΦ(sm, sn)ϕl(ϕk + γsm · ∇ϕk) dx, (9)

[
ARm,n

]
k,l

=

∫
∂Ω

sn·n<0∩sm·n>0

ρs(sm,n)δm,n(n)ϕlϕksm · n dx, (10)

[bm]k = −
∫
∂Ω

sm·n<0

Îmϕksm · n dx +

∫
Ω

κIb(ϕk + γsm · ∇ϕk) dx. (11)

In this paper, the finite element basis functions ϕk, k = 1, . . . , Nv are
the first-order Lagrange polynomials, and the SUPG coefficient γ is chosen
following [28]. Equations (7) to (11) combined together, correspond to the
discrete formulation of equation (1) solved with the boundary conditions
(2). More detailed derivations of the variational formulation may be found
in [11, 14].

3.2. Solution methods for the linear system

The most common iterative solving techniques for the discrete ordinates
RTE linear system (3), belong to the fixed-point iteration schemes given by,

Ik+1 = Ik + C−1(b− AIk), (12)

where the subscript k stands for the iteration index, and C−1 is the precondi-
tioner. The source-iteration method, which is the most widely used method
for solving the linear systems that arise from the discrete ordinates RTE,
uses C−1 = (AT +AE)−1. In fact, the source-iteration scheme can be seen as
a Richardson method with “nearly” block Jacobi preconditioning (because
the diagonal blocks from AS are not used in C−1). For absorption-dominant,
or purely absorbing radiative transfer problems, this preconditioner forms a
good approximation of A−1, thereby the linear system (3) solved iteratively
with the source-iteration method undoubtedly performs well. In other situ-
ations, for example if the radiative transfer problem is scattering-dominant,
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or if it involves reflection, the source-iteration, or other fixed-point methods
do not perform well.

Since the source-iteration method is a fixed-point iteration scheme, its
convergence rate heavily relies on the spectral radius of the matrix C−1A.
In 1971, Reed [29] carried out the Fourier analysis for the source-iteration
method, and proved that the spectral radius cs of C−1A is independent of the
spatial mesh and is equal to the ratio σs

κ
. Hence, when σs � κ, the source-

iteration method exhibits slow convergence. In Reed’s paper it was also
proved that, for the improved source-iteration scheme, namely the diffusion
synthetic acceleration method, the spectral radius of C−1A was dependent
on the spatial mesh size, which was characterized by the size h of the mesh
elements. It was seen that meshes with h greater than the mean free path
lead to divergence of such solvers.

Krylov subspace solvers, as alternatives to fixed-point methods, usually
have better convergence rates. In practice, a Krylov subspace solver, from
a guess I0 and an initial residual r0 = b − AI0, computes a more accurate
approximation of the solution vector Ik by using the Krylov subspace Kk
given by:

Kk(A, r0) = span{r0, Ar0, A
2r0, . . . , A

k−1r0}.

In other words, Krylov subspace methods solve AI = b by repeatedly
performing matrix–vector multiplications.

The GMRES and the BiCGSTAB are two different Krylov methods that
may be used for solving the linear system AI = b arising from the DOM-FEM
discretization of the discrete ordinates RTE. These two methods can be dif-
ferentiated based on how they use the Krylov space Kk(A, r0) to generate the
solution vector Ik. On the one hand, the GMRES chooses Ik by minimizing
the Euclidean norm of the residual rk = b−Axk for xk in Kk(A, r0). It does
so in two steps: at first, an orthogonal basis is generated by the Arnoldi pro-
cedure, and as a second step, a least squares problem is solved to compute
Ik. The BiCGSTAB, on the other hand, tries to reach convergence by follow-
ing the mutual orthogonalization of two sequences using the nonsymmetric
Lanczos procedure. More details may be found in [30].
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Concerning the stopping criterion, usually, convergence is assumed to be
reached when the norm ‖rk‖2 = ‖b− Axk‖2 is sufficiently small. Generally,
the total number of iterations needed to reach convergence, kc, is much lower
than m, the order of A. How few iterations are required depends on the
eigenspectrum of A, and the nature of this dependence is crucial for under-
standing Krylov subspace methods [18].

4. Results and discussions

In this section, results and discussions for different numerical tests are
provided. The convergence for the Krylov subspace solvers is reached when
the norm of the relative unpreconditioned residual ‖rk‖2

/
‖r0‖2 is lower than

10−6.

The numerical experiments presented in the subsection 4.1 were per-
formed on an ordinary laptop (Intel Core i7 with 16 GB of RAM) using
8 MPI processes in parallel, while the numerical experiments presented in
the next subsection 4.2 were performed using 320 MPI processes on the su-
percomputer LIGER, at ICI supercomputing facility (6,048 cores Intel Xeon
cluster) hosted by Central Nantes, France. In [14], we reported near-linear
scaling for our parallel solvers. Hence, solver performances derived using
a specific number of MPI processes (320 in this case), should have similar
trends at other MPI counts as well because of the optimal scaling. Before
advancing further, it is to be notified that the solvers used for the upcoming
tests have been verified thoroughly using standard benchmarking procedures,
see [14, 11]. Note also that, among the previously developed angular decom-
position and domain decomposition parallel solvers [14], the former is used
as the standard solver throughout this study.

4.1. Eigenspectrum analysis

The numerical experiments performed in this subsection are designed
to study the eigenspectrum of different radiation problems. The Arnoldi
iteration algorithm [27] is applied for calculating the eigenspectrum of the
matrices. Note that, though a total of m eigenvalues exist for a matrix of size
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m, the Arnoldi iteration algorithm only provides us with the Neigen dominant
eigenvalues, out of all eigenvalues. This incomplete spectrum cannot be used
for complete eigenvalue analysis, however it is intended here only for assisting
in understanding the convergence of the Krylov subspace solvers, and for
approximating the matrix condition numbers.

(a) Tests in section 4.1. (b) Tests in section 4.2.

Figure 2: Dirichlet boundary conditions and the geometry used for the tests in section 4.
External radiation source is shown impinging the different media.

For the numerical tests in this subsection, we used a 1 cm3 cubic-shaped
participating medium impinged with a top hat-type collimated external ra-
diative source on its left face:

Î(x, s) = I01[(y−y0)2+(z−z0)2<r2b , x=0, and s=sin], (13)

where I0 = 100 W cm−2, y0 = 0.5 cm, z0 = 0.5 cm, and rb = 0.2 cm represent
the strength of the source, the center coordinates, and the impinging radius,
respectively. 1 is the Heaviside step function such that 1[condition] = 1 if the
condition is true, and 1[condition] = 0 otherwise. The impinging direction of

this source is sin =
[
−1√

2
−1√

2
0
]T

. A schematic representation of this Dirichlet

boundary condition is shown in figure 2a. Further, a 10,000 nodes tetra-
hedral mesh and a 80 directions refined icosahedron (figure 1b) were used
for the spatial and the angular meshes, respectively. The media are con-
sidered homogenized with Φ(sm, sn) modeled using the Henyey–Greenstein
phase function [31], with the anisotropy factor g = 0.5. Based on this geom-
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etry and boundary condition, eight tests (1A to 1H) are formulated with the
different radiation parameters summarized in table 1.

Test κ σs n Comments
1A ε ε 1 Transparent medium without reflection
1B 5 ε 1 Highly absorbing medium without reflection
1C 1 1 1 Semi-transparent medium without reflection
1D ε 5 1 Highly scattering medium without reflection
1E ε ε 2.5 Transparent medium with reflection
1F 5 ε 2.5 Highly absorbing medium with reflection
1G 1 1 2.5 Semi-transparent medium with reflection
1H ε 5 2.5 Highly scattering medium with reflection

Table 1: Radiative properties for tests 1A to 1H used in section 4.1: absorption coefficient
κ (in cm−1), scattering coefficient σs (in cm−1), and index of refraction n of the medium.
The small value ε is set to 10−6.

Figure 3a presents the eigenspectrum for test 1A, which considers a non-
reflecting transparent medium. The linear system conditioning in this case
is dominated by the transport matrix AT , as AS ≈ 0, AE ≈ 0, and AR = 0.
As such, the linear system is diagonally dominant. Based on the highest
and the lowest eigenvalues (marked with filled black and blue circles in the
plot of figure 3a, respectively), we get an approximate condition number
cond2(A) = max |λ(A)|

/
min |λ(A)| ≈ 921.

Figure 3b presents the eigenspectrum for test 1B, which considers a non-
reflecting optically thick medium (strong absorption). The linear system
conditioning in this case is dominated by both the transport AT and the
extinction AE, as AS ≈ 0 and AR = 0. As weights are added to the diagonal
matrices, we expect a better conditioning than for the transparent test 1A.
This is proved by a reduction of the condition number cond2(A) ≈ 695.
Comparing to test 1A, there is a 30% smaller value. The Krylov subspace
methods may be expected to converge in fewer iterations.

Next, for tests 1C and 1D, cases that involve scattering, the eigenspectra
are presented in figures 3c and 3d, respectively. Notice the drift of minimal
eigenvalues towards the origin, in comparison to the transparent and absorp-
tion test cases. min |λ| are observed to be approximately four times smaller
compared to the previous tests. The highest eigenvalues max |λ| are also
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(a) Transparent medium, test 1A.
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(b) Highly absorbing medium, test 1B.
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(c) Semi-transparent medium, test 1C.

10−5 10−4 10−3 10−2 10−1 100

−5

0

5

·10−4

Real part λr

C
om

p
le

x
p
ar

t
λ
i

λ = 6.73 × 10−5 + 0i λ = 0.35 + 0i

10−5 10−4 10−3 10−2 10−1 100

−5

0

5

·10−4

Real part λr

C
om

p
le

x
p
ar

t
λ
i

λ = 6.73 × 10−5 + 0i λ = 0.35 + 0i

10−5 10−4 10−3 10−2 10−1 100

−5

0

5

·10−4

Real part λr

C
om

p
le

x
p
ar

t
λ
i

λ = 6.73 × 10−5 + 0i λ = 0.35 + 0i

(d) Highly scattering medium, test 1D.

Figure 3: Eigenspectra for the transparent (pure transport) medium (test 1A), for the
highly absorbing (optically thick) medium (test 1B), for the semi-transparent medium
(test 1C), and for the highly scattering medium (test 1D). For this whole set of tests, the
refractive index n was set to 1 (non-reflecting media).
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observed to increase in magnitude, however by a factor two only. Overall,
these drifts of eigenvalues result in increasing the condition numbers. We
determined cond2(A) ≈ 5,155 for test 1C and cond2(A) ≈ 5,197 for test 1D.
Hence, it is likely that a larger Krylov subspace (in dimension) would be
needed for solving the scattering media problems.

Another perspective to understand the increase in cond2(A) for tests 1C
and 1D is that, due to the presence of the scattering phenomenon (σs ≥ 0),
theNd discrete PDEs in (1) become strongly coupled, hence the global system
is more difficult to solve. More specifically, now the solver has to deal with
A = AT +AE +AS. Unlike matrices AT and AE, which just contain diagonal
blocks, the scattering matrix AS contains both diagonal and off-diagonal
blocks, cf. equations (5) and (6). Indeed, it is the presence of AS which
causes the strong coupling and the increase of the condition number.

Tests 1E, 1F, 1G, and 1H are similar to tests 1A, 1B, 1C, and 1D, re-
spectively, except that for these tests, specular reflection is allowed at the
boundaries. The corresponding spectra for the tests 1E to 1H are presented
in figures 4a to 4d, respectively. Observe that the eigenspectrum for test 1F
(figure 4b) is almost similar to its corresponding non-reflecting test 1B (fig-
ure 3b). More precisely, we report that cond2(A) ≈ 699 for test 1F, which
is almost similar to what was reported for test 1B, where cond2(A) ≈ 695.
Due to such a similarity between the systems, ideally both tests 1B and 1F
should converge almost with similar rates. The reason for this similarity is
that, due to the strong absorption coefficient for test 1F, the impinging radi-
ation is not able to reach any other boundary of the medium. The impinging
radiation, in fact, would be absorbed as soon as it enters the medium, hence
not allowing for reflection physics to occur. Thereby, we could say that, even
though the physics of reflection is present in test 1F, its eigenspectrum is still
mostly controlled by the transport AT and the extinction AE.

From the eigenspectrum of test 1E, which considers a transparent medium
with reflection at boundaries, it is seen that adding reflection alone to the
transport can lead to a change of the matrix condition number. In particular,
the greatest eigenvalue was observed to increase (by a factor of two in com-
parison to the pure transport case), while the smaller eigenvalue remained
stable. Overall, cond2(A) ≈ 1,598, which is 1.7 times greater than that of
the non-reflecting transparent medium case (test 1A).
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(a) Transparent medium, test 1E.
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(b) Highly absorbing medium, test 1F.
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(c) Semi-transparent medium, test 1G.
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(d) Highly scattering medium, test 1H.

Figure 4: Eigenspectra for the transparent (pure transport) medium (test 1E), for the
highly absorbing (optically thick) medium (test 1F), for the semi-transparent medium
(test 1G), and for the highly scattering medium (test 1H). For this whole set of tests, the
refractive index n was set to 2.5 (highly reflective borders).
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Coming to the scattering tests with reflection, tests 1G and 1H, we ob-
serve a drift of low eigenvalues towards the origin when compared to their
counterpart tests 1C and 1D. In particular, the smallest eigenvalue was 1.6
and 6 times smaller for tests 1G and 1H, respectively, than what was ob-
served for scattering tests without reflection. However the highest eigenvalue
remains stable, indicating that it is not influenced by the presence of re-
flection. Overall, the cond2(A) ≈ 8,046 and 30,973 for tests 1G and 1H,
respectively. Comparing to other problems in this subsection, the condition
number observed for the highly scattering problem involving reflection (test
1H) is the highest in magnitude. Hence, it is likely that a larger Krylov
subspace (in dimension) would be needed for solving this problem.

To explain in more details the reflecting tests, physically dealing with
specular reflection can be tricky because, at the reflecting border, the energy
carried by the impinging direction i is assigned to the reflecting direction(s) j.
The reflecting direction(s) j depends both on the surface normal n and on
the direction of incidence. For geometries with complex boundaries (many
distinct normals) the probability of i getting reflected to many arbitrary
directions j is high. Owing to this physics, the reflecting matrix AR contains
an arbitrary weighted structure which is contrary to the uniform weighted
structure of other matrices present in expression (4). In other words, the
coupling between the Nd PDEs (1) becomes less structured, hence more
difficult to handle.

4.2. Krylov solver analysis for different radiation problems

Based on the eigenspectrum analysis carried out in the previous subsec-
tion, it was revealed that the absorbing media problems are well-conditioned,
the condition number increases when scattering is involved, and becomes even
worse when the medium is both scattering and reflecting. For this reason,
in this subsection, we analyze five different problems, tests 2A to 2E, solved
with the GMRES and the BiCGSTAB, with and without preconditioning.
In particular, two classic preconditioners, the standard Jacobi and the block
Jacobi (with incomplete LU factorizations with zero level of fill-in as block
solvers) applied on the right, are used to enhance the efficiency of the two
Krylov subspace methods.
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For the tests of this subsection, a berlingot-shaped medium (see figure 2b)
is used as the standard geometry. The non-convex geometry resembles a
tetrahedron which is used to assimilate the cross-section between two struts
of an open-cell foam, as used in concentrated solar power applications [11].
The surface topology ∂D(u, v) of the berlingot is parameterized by the fol-
lowing [32],

∂D(u, v) =


x = ab(1 + u) cos v

y = ab(1− u) sin v a, b ∈ R, u ∈ [−1, 1] , and v ∈ [0, 2π[ ,

z = au

in which a and b define the height and the width of the geometry, respectively.
We have chosen a = b = 1, this corresponds to a berlingot-shaped medium
which is 4 cm × 4 cm × 2 cm in dimensions.

Much like the boundary conditions used in the previous subsection, in
this subsection the collimated top hat-type radiative source follows the same
equation (13), but with the following parameters: I0 = 1 W cm−2, y0 =
0.0 cm, z0 = 0.0 cm, rb = 0.2 cm, and sin = [0 1 0]T , i.e., the source enters
the geometry with its direction parallel to the y-axis. Figure 2b presents
an isometric view of the berlingot-shaped medium and its corresponding
Dirichlet boundary condition. The figure also contains internal cross-sections
of the geometry in order to detail the berlingot’s complex shape.

Further, a 57,000 nodes tetrahedral mesh and the 320 directions refined
icosahedron (figure 1c) were used as the spatial and angular meshes, re-
spectively. In this subsection, we would be dealing with problems involving
reflection, to capture the physics more accurately such high count of direc-
tions (Nd = 320) was used, as recommended in [9]. Just like the tests in the
previous subsection, the media are considered homogenized with Φ(sm, sn)
modeled using the Henyey–Greenstein phase function, with the anisotropy
factor g = 0.5. The five tests in this subsection, tests 2A to 2E, are formu-
lated with the different radiation parameters summarized in table 2.

Figures 5 shows two cross-sections (xy-plane at z = 0 and yz-plane at x =
0) of the photon density fields, G(x) =

∑Nd
m=1 I(x)mωm, within the berlingot-

shaped medium of the tests 2A to 2E. Adhering to the physics we can clearly
notice, in the provided cross-sections, pure transport, absorption dominance,
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(a) Test 2A, transparent medium without reflection.

(b) Test 2B, highly absorbing medium without reflection.

(c) Test 2C, highly scattering medium without reflection.

(d) Test 2D, transparent medium with reflection.

(e) Test 2E, highly scattering medium with reflection.

Figure 5: Radiation density cross-sections for the berlingot-shaped medium tests.

17



Test κ σs n Comments
2A ε ε 1 Transparent medium without reflection
2B 5 ε 1 Highly absorbing medium without reflection
2C ε 5 1 Highly scattering without reflection
2D ε ε 2.5 Transparent medium with reflection
2E ε 5 2.5 Highly scattering with reflection

Table 2: Radiative properties for tests 2A to 2C used in section 4.2: the absorption
coefficient κ (in cm−1), the scattering coefficient σs (in cm−1), and the index of refraction
n of the medium. The small value ε is set to 10−6.

scattering dominance, and reflection dominance, for the respective tests.

Figures 6 to 10 present the convergence history of the GMRES and the
BiCGSTAB used for solving tests 2A to 2E. For each case we have used the
Krylov subspace solvers with and without preconditioners. From all these fig-
ures one can clearly draw a conclusion that the BiCGSTAB outperforms the
GMRES in all cases. However, the BiCGSTAB is observed to show erratic
behaviors of convergence (‖rk‖2 grows several order in magnitude) which is
classic to this method. Axelsson [33] claims that Lanczos-based methods,
such as the BiCGSTAB, being not based on minimization principles, are
susceptible to erratic convergence behaviors. Such erratic behaviors were
also reported in [34, 35]. These convergence outbursts are in fact caused by
the near failure of the mutual orthogonalization process of the BiCGSTAB.
We further show that these outbursts have less inpact (almost negligent)
for absorbing medium problems due to their lower condition numbers, while
these are frequently present in other problems that are not absorption domi-
nant. The outbursts in problems involving reflections are highest in number
due to their weak conditioning. As it may occur, the BiCGSTAB may fail
once in a while due to its delicate orthogonalization, hence its chances of
failure for problems involving reflections is higher than for other problems.
On the contrary, the GMRES smoothly converges to the desired solutions,
however with slower rates of convergence than the BiCGSTAB. Apart from
the faster convergence rates of the BiCGSTAB, it should also be noted that,
the BiCGSTAB uses less memory than the GMRES. This is because 30 ad-
ditional auxiliary vectors (the maximum dimension of the Krylov subspace
generated by the Arnoldi procedure before a restart occurs) need to be stored
for the GMRES compared to the BiCGSTAB which uses a short recurrence
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and only requires 8 auxiliary vectors.
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Figure 6: Logarithmic convergence history for the GMRES and the BiCGSTAB methods
used for solving the transparent medium problem without reflection, test 2A. Block Jacobi
is abbreviated as BJacobi.

In all convergence history plots, it is clear that both Jacobi and block
Jacobi preconditioners reduce the total iteration counts for both Krylov
subspace methods. It can also be observed that preconditioning in case of
the BiCGSTAB not only leads to faster convergences but also stabilizes the
method.

In table 3 we provide the total number of iterations to converge kc and
the respective times to solution ts for tests 2A to 2E. The reported times ts
correspond to the time spent in setting up the preconditioner plus for reaching
convergence. The table displays that much more work is required for solving
the problems involving reflection. All expect one result are adhering to the
eigenvalue analysis carried out in the previous section. The result that does
not agree with the previous eigenvalue analysis is the transparent case with
reflection, test 2D. The higher iteration count (compared to other tests in this
subsection), may mean that this test has a worst eigenspectrum distribution
than the others. While this was not the case for the cubic-shaped test case.
We observed such a behavior because, unlike the cubic-shaped media that has
six unique normals, the berlingot-shaped media has 455 unique normals at
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Figure 7: Logarithmic convergence history for the GMRES and the BiCGSTAB methods
used for solving the absorbing medium problem without reflection, test 2B. Block Jacobi
is abbreviated as BJacobi.
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Figure 8: Logarithmic convergence history for the GMRES and the BiCGSTAB methods
used for solving the scattering medium problem without reflection, test 2C. Block Jacobi
is abbreviated as BJacobi.
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Figure 9: Logarithmic convergence history for the GMRES and the BiCGSTAB methods
used for solving the Transport problem with reflection, test 2D. Block Jacobi is abbreviated
as BJacobi.
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Figure 10: Logarithmic convergence history for the GMRES and the BiCGSTAB methods
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abbreviated as BJacobi.
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the boundary (mesh dependent). Because of the transparency, no resistance
is offered to the incoming radiation (κ = σs ≈ 0), this radiation will remain
trapped in the medium for a longer period and each time it hits any surface
different angles get coupled with each other. Hence, the coupling is arbitrary
and much more complex compared to the cubic-shaped reflection cases.

Test
GMRES BiCGSTAB

None Jacobi BJacobi None Jacobi BJacobi
kc ts kc ts kc ts kc ts kc ts kc ts

2A 147 88.1 147 84.17 15 9.2 50 56.5 37 41.6 8 9.8

2B 48 34.5 19 10.9 5 4.0 25 27.3 11 6.0 3 2.0

2C 126 70.8 74 60.1 14 8.1 61 50.7 41 44.9 9 4.0

2D 849 496.10 596 366.47 79 45.1 481 369.7 349 260.4 48 41.01

2E 770 445.6 517 292.2 66 57.1 368 310.4 255 200.8 35 34.01

Table 3: Performance in terms of iterations to converge (kc) and solving time (ts, in
seconds), for the GMRES and the BiCGSTAB with/without preconditioners.

Overall, in this subsection, the BiCGSTAB was seen to outrun the GM-
RES, for solving different problems of radiation, in terms of convergence
rates, total solving times, and memory requirements.

5. Conclusion

This article was dedicated to the analysis of Krylov subspace methods
for solving different multi-dimensional radiative transfer problems. The ra-
diative transfer phenomena in these problems is modeled using the discrete
ordinates radiative transfer equation. The linear systems for theses different
multi-dimensional radiative transfer problems were built following the angu-
lar decomposition (with mixed finite elements) discretization of the discrete
ordinates radiative transfer equation.
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Based on the physics, radiation in transparent, absorbing, scattering, and
reflecting media were analyzed. An eigenspectrum analysis was set up on
these different problems in order to study the effect of each physics on the con-
dition number of the problem. It was concluded that: absorbing/transparent
media problems are well conditioned, including scattering decreases the con-
dition number of the discretized system, condition numbers for absorbing
and reflecting media do not change, and conditioning deteriorates heavily
when reflection is involved in transparent/scattering medium problems.

Two Krylov subspace solvers, the GMRES and the BiCGSTAB, with
and without preconditioning, were investigated for solving the above men-
tioned radiative transfer problems. In conclusion, the BiCGSTAB outran the
GMRES for all cases, with lower iteration count, solving times, and mem-
ory requirements. However, typical to the BiCGSTAB, erratic convergences
were sometimes observed in comparison to the smooth convergence curves
for the GMRES. These erratic behaviors were more prominent for the cases
with reflecting media. Concerning preconditioners, as expected, it was es-
tablished that preconditioning systems with the block Jacobi method (with
incomplete LU factorizations with zero level of fill-in as block solvers) leads
to faster convergence. Moreover, preconditioning also reduced drastically the
outbursts of the BiCGSTAB.
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