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Two Krylov subspace methods, the GMRES and the BiCGSTAB, are analyzed for solving the linear systems arising from the mixed finite element discretization of the discrete ordinates radiative transfer equation. To increase their convergence rate and stability, the Jacobi and block Jacobi methods are used as preconditioners for both Krylov subspace methods. Numerical experiments, designed to test the effectiveness of the (preconditioned) GMRES and the BiCGSTAB, are performed on various radiative transfer problems: (i) transparent, (ii) absorption dominant, (iii) scattering dominant, and (iv) with specular reflection. It is observed that the BiCGSTAB is superior to the GMRES, with lower iteration counts, solving times, and memory consumption. In particular, the BiCGSTAB preconditioned by the block Jacobi method performed best amongst the set of other solvers. To better understand the discrete systems for radiative problems (i) to (iv), an eigenvalue spectrum analysis has also been performed. It revealed that the linear system conditioning deteriorates for scattering media problems in comparison to absorbing or transparent media problems. This conditioning further deteriorates when reflection is involved.

Introduction

Radiative transfer problems are often solved by discretizing the radiative transfer equation (RTE), an equation that is integro-differential by nature [START_REF] Modest | Radiative heat transfer[END_REF]. As a consequence, one solves a large linear system AI = b, where A is a real matrix, and I and b are vectors. Depending on the chosen discretization, A can be symmetric, nonsymmetric, sparse or dense. For example, the spherical harmonics method (P 1 method) coupled to the finite volume method yields a symmetric system, cf. [START_REF] Krishnamoorthy | Parallelization of the p 1 radiation model[END_REF]. Other discretizations generating symmetric systems include the discrete ordinates method (DOM) coupled to the least square finite element method [START_REF] Ruan | Least-squares finite-element method of multidimensional radiative heat transfer in absorbing and scattering media[END_REF] or the simplified spherical harmonics method (SP N method) coupled to the finite element method is used [START_REF] Lu | A parallel adaptive finite element method for the simulation of photon migration with the radiative-transfer-based model[END_REF]. However, when the DOM is coupled to the finite volume method [START_REF] Balsara | Fast and accurate discrete ordinates methods for multidimensional radiative transfer. Part I, basic methods[END_REF], or to the discontinuous Galerkin finite element method [START_REF] Hardy | Solution of the 2-D steadystate radiative transfer equation in participating media with specular reflections using SUPG and DG finite elements[END_REF], then the obtained systems are nonsymmetric. In this article we employ the discrete ordinates method [START_REF] Fiveland | Discrete-ordinates solutions of the radiative transport equation for rectangular enclosures[END_REF] coupled with the stabilized mixed finite element method [START_REF] Boffi | Mixed finite element methods and applications[END_REF] (DOM-FEM) for assembling the coefficient matrix A as well as the right-hand side vector b. These discretizations yield a sparse and nonsymmetric linear system.

The chosen DOM-FEM discretization, at present, is one of the widely used discretization techniques for radiative transfer problems. It provides accurate results for a vast range of radiation problems at moderate computational requirements. Complex geometries [START_REF] Hardy | 3D numerical modelling of the propagation of radiative intensity through a X-ray tomographied ligament[END_REF], heterogeneous media [START_REF] Lehtikangas | Finite element approximation of the radiative transport equation in a medium with piecewise constant refractive index[END_REF], reflections [START_REF] Hardy | Specular reflection treatment for the 3D radiative transfer equation solved with the discrete ordinates method[END_REF], anisotropic scattering [START_REF] An | Finite element method for radiative heat transfer in absorbing and anisotropic scattering media[END_REF], etc., can be easily handled by the DOM-FEM method, making it a versatile RTE discretization technique. To summarize how the DOM-FEM discretization for the RTE works, the DOM firstly transforms the integro-differential RTE into a set of coupled partial differential equations (PDEs). Then, the stabilized mixed FEM is applied over all partial differential equations. Finally, we derive AI = b. More details may be found in [START_REF] Badri | Vectorial finite elements for solving the radiative transfer equation[END_REF][START_REF] Badri | High performance computation of radiative transfer equation using the finite element method[END_REF]. For radiative transfer, solution strategies of such linear systems have been developed using the operator-split strategy which reduces the coupled system problem to the solution of a series of linear problems. This method is more commonly known as the source-iteration method [START_REF] Mihalas | Stellar atmospheres[END_REF]. However, when one considers radiative transfer problems with dominant scattering, reflection, and heterogeneities, such a solution technique leads to unacceptably slow convergence rates, or may even fail to converge [START_REF] Adams | Fast iterative methods for discreteordinates particle transport calculations[END_REF]. As a remedy to the slow convergence rates for the scattering dominant problems, the diffusion synthetic acceleration method may be used, cf. [START_REF] Larsen | Transport acceleration methods as two-level multigrid algorithms[END_REF]. Such a method can be seen as a preconditioned source-iteration method, and helps in accelerating the convergence rate for most highly scattering problems.

In the recent years, many researches have used Krylov subspace methods [START_REF] Ipsen | The idea behind Krylov methods[END_REF] as an alternative to the traditional source-iteration method or to the diffusion synthetic acceleration method. These Krylov subspace methods guarantee fast convergence for the non-trivial radiative transfer problems (some of which were mentioned in the preceding paragraph), without any need for deriving sophisticated acceleration techniques [START_REF] Turek | A generalized mean intensity approach for the numerical solution of the radiative transfer equation[END_REF][START_REF] Seaıd | Efficient numerical methods for radiation in gas turbines[END_REF][START_REF] Patton | Application of preconditioned GMRES to the numerical solution of the neutron transport equation[END_REF][START_REF] Balsara | Fast and accurate discrete ordinates methods for multidimensional radiative transfer. Part I, basic methods[END_REF][START_REF] Godoy | On the use of flux limiters in the discrete ordinates method for 3D radiation calculations in absorbing and scattering media[END_REF]. Furthermore, recent advancements in parallelism of the Krylov subspace methods have provided the computational community with open-source mathematical libraries that scale well, and can handle large linear systems, cf. [START_REF] Balay | PETSc web page[END_REF][START_REF] Heroux | An overview of the Trilinos project[END_REF]. Such tools provide easy access to a collection of Krylov subspace solvers and preconditioners that can be suitably selected depending on the system to be solved. In this article, we use such an open-source mathematical library, PETSc [START_REF] Balay | PETSc web page[END_REF], to solve the linear systems that arise in the DOM-FEM discretization of the RTE.

In this study, we used two Krylov subspace methods, the BiCGSTAB [START_REF] Van Der | Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems[END_REF] and the GMRES [START_REF] Saad | GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems[END_REF], with and without preconditioning, for radiative transfer problems with specular reflection at the boundaries. To argue in favor of Krylov subspace solvers for solving such radiative problems, an eigenvalue spectrum analysis (based on the Arnoldi iteration algorithm [START_REF] Arnoldi | The principle of minimized iterations in the solution of the matrix eigenvalue problem[END_REF]) has been performed for different transparent, absorbing, scattering, and reflecting radiation problems. By computing the condition number based on this eigenvalue analysis, we show its degradation when reflection phenomena are involved.

To sum up the remainder of this article, the upcoming section 2 introduces the discrete ordinates RTE with different boundary conditions. Next, section 3 discusses the linear system that arises from the DOM-FEM discretization of the RTE. Section 3 also provides a quick overview of solution methodologies for solving such systems. Section 4 then presents the numerical results along with discussions based on eigenspectra for various radiation problems. Section 4 further presents a comparative performance analysis of the GMRES and the BiCGSTAB, for solving some complex radiative transfer problems. We draw a quick conclusion in section 5.

Problem formulation

In this article, we consider the discrete form of the monochromatic steadystate RTE [START_REF] Fiveland | Discrete-ordinates solutions of the radiative transport equation for rectangular enclosures[END_REF], stated on a bounded domain D ⊂ R 3 . After applying the DOM, the radiative transfer model contains a set of N d coupled partial differential equations, for which the mth equation reads,

R m = (s m • ∇ + β) I m (x) -σ s N d n=1 ω n I n (x)Φ(s m , s n ) -κI b (x) = 0. ( 1 
)
The equation [START_REF] Modest | Radiative heat transfer[END_REF], written for all m = 1, . . . , N d , forms a set that statistically describes the interaction of radiation using discrete radiative intensities I m , each I m propagating towards its own direction s m . For each R m , there occurs: radiation loss due to extinction βI m (x), radiation gain due to in-scattering

σ s N d n=1 ω n I n (x)
, and radiation gain due to black-body emission κI b (x). The remaining symbols present within (1) are, the extinction coefficient β = κ+σ s , the absorption coefficient κ, the scattering coefficient σ s , the scattering phase function Φ(s m , s n ), and the Planck black-body function I b , which in turn depends on the spatial temperature distribution T within the medium. Lastly, N d and ω are the total number of angular directions and the weights associated to these directions, respectively.

To complete the problem definition, boundary conditions containing external sources and reflections at the domain boundary ∂D ∩ (s m • n < 0) (with n being the outward unit normal vector), are given by,

I m (x) = Îm (x) + (1 -α)I m (x) + αI m (x) ∀x ∈ ∂D. (2) 
Here, Îm (x) is the Dirichlet contribution due to external sources or diffused loading, I m (x) quantifies the diffused contribution of reflection, I m (x) is the specular contribution of the reflection, and α ∈ [0, 1] is a coefficient weighting the two reflection contributions. The diffused and the specular reflections are further expanded as,

I m (x) = ρ d π s j •n>0 ω j I j (x)s j • n and I m (x) = ρ s (s m , n) s j •n>0 δ m,j (n)I j (x).
The symbols ρ s and ρ d are the specular and the diffuse reflectivity coefficients, respectively, and δ m,j , for all (m, j) ∈ 1; N d 2 , are the partition-ratio coefficients. The way these coefficients are calculated in a very accurate manner for specular reflection is presented for two-and three-dimensional problems in [START_REF] Hardy | Solution of the 2-D steadystate radiative transfer equation in participating media with specular reflections using SUPG and DG finite elements[END_REF] and [START_REF] Hardy | Specular reflection treatment for the 3D radiative transfer equation solved with the discrete ordinates method[END_REF], respectively . In particular, δ m,j is calculated using the so-called "partitioning method" [START_REF] Hardy | Specular reflection treatment for the 3D radiative transfer equation solved with the discrete ordinates method[END_REF]. Note that the weighting coefficient α is assumed to be equal to 1 in this study, i.e., only specular reflection is considered. Recently, we introduced the mixed finite element method (with the SUPG stabilization) for solving the discrete ordinates RTE (1) [START_REF] Badri | Vectorial finite elements for solving the radiative transfer equation[END_REF][START_REF] Badri | High performance computation of radiative transfer equation using the finite element method[END_REF]. The solver was parallelized using either domain decomposition or angular decomposition. In these previous studies, the reflection phenomena were not integrated in the solver. However for the current study here, the equation set (1) is solved using this (parallel) mixed finite element based solver, with the added capabilities of modeling specular reflection using the partitioning method. To detail the solver further, it is interfaced with the open-source mathematical library PETSc, which offers a suite of Krylov subspace methods along with preconditioners, for solving the consequent linear systems in parallel, using distributed-memory parallelism through the Message Passing Interface (MPI). The discretization kernel uses unstructured (tetrahedral) meshes for space x, and the refined icosahedron sphere discretization for directions s. Figure 1 shows the icosahedron, the first refinement icosahedron, and the second refinement icosahedron, these correspond to N d = 20, 80, and 320, respectively.

The finite element linear system

Assembling the linear system

As mentioned earlier, the linear system arising from the finite element discretization of the discrete ordinates RTE is sparse and nonsymmetric by nature. It has the form:

AI = b, (3) 
with the matrix A ∈ R m×m and the vectors I ∈ R m and b ∈ R m . The symbol m = N d ×N v , N v being the number of degrees of freedom associated with the spatial discretization. To analyze thoroughly the linear system, we derive the following block matrix splitting using the angular approach presented in [START_REF] Badri | High performance computation of radiative transfer equation using the finite element method[END_REF], for the linear system (3).

AI A T + A E + A S + A R I = b, (4) 
with, A T , A E , A S , and A R representing, respectively, the contributions from transport, extinction, scattering, and reflection processes embedded within the RTE [START_REF] Modest | Radiative heat transfer[END_REF]. These are further expanded as,

A T =    A T 1 0 0 0 . . . 0 0 0 A T N d    , A E =    A E 1 0 0 0 . . . 0 0 0 A E N d    , (5) 
A S =    A S 1,1 • • • A S 1,N d . . . . . . . . . A S N d ,1 • • • A S N d ,N d    , and A R =      0 A R 1,2 • • • A R 2,N d A R 2,1 0 • • • A R 1,N d . . . . . . . . . . . . A R N d ,1 A R N d ,2 • • • 0      . (6) 
Similarly, the vector b

expands to b = [b 1 • • • b N d ].
The mth block of rows of the linear system is related to the finite element discretization of a single R m . It also includes, due to the integration by parts, the boundary condition terms. The entries of these matrices and the vector b are defined by,

A T m k,l = - Ω s m • ∇ϕ k (ϕ l -γs m • ∇ϕ l ) dx + ∂Ω sm•n>0 s m • n ϕ k ϕ l dx, (7) A E m k,l = Ω βϕ l (ϕ k + γs m • ∇ϕ k ) dx, (8) 
A S m,n k,l = - Ω σ s ω n Φ(s m , s n )ϕ l (ϕ k + γs m • ∇ϕ k ) dx, (9) 
A R m,n k,l = ∂Ω sn•n<0∩sm•n>0 ρ s (s m , n)δ m,n (n)ϕ l ϕ k s m • n dx, ( 10 
) [b m ] k = - ∂Ω sm•n<0 Îm ϕ k s m • n dx + Ω κI b (ϕ k + γs m • ∇ϕ k ) dx. ( 11 
)
In this paper, the finite element basis functions ϕ k , k = 1, . . . , N v are the first-order Lagrange polynomials, and the SUPG coefficient γ is chosen following [START_REF] Avila | Spatial approximation of the radiation transport equation using a subgrid-scale finite element method[END_REF]. Equations ( 7) to ( 11) combined together, correspond to the discrete formulation of equation ( 1) solved with the boundary conditions [START_REF] Krishnamoorthy | Parallelization of the p 1 radiation model[END_REF]. More detailed derivations of the variational formulation may be found in [START_REF] Hardy | Specular reflection treatment for the 3D radiative transfer equation solved with the discrete ordinates method[END_REF][START_REF] Badri | High performance computation of radiative transfer equation using the finite element method[END_REF].

Solution methods for the linear system

The most common iterative solving techniques for the discrete ordinates RTE linear system (3), belong to the fixed-point iteration schemes given by,

I k+1 = I k + C -1 (b -AI k ), (12) 
where the subscript k stands for the iteration index, and C -1 is the preconditioner. The source-iteration method, which is the most widely used method for solving the linear systems that arise from the discrete ordinates RTE, uses

C -1 = (A T + A E ) -1 .
In fact, the source-iteration scheme can be seen as a Richardson method with "nearly" block Jacobi preconditioning (because the diagonal blocks from A S are not used in C -1 ). For absorption-dominant, or purely absorbing radiative transfer problems, this preconditioner forms a good approximation of A -1 , thereby the linear system (3) solved iteratively with the source-iteration method undoubtedly performs well. In other situations, for example if the radiative transfer problem is scattering-dominant, or if it involves reflection, the source-iteration, or other fixed-point methods do not perform well.

Since the source-iteration method is a fixed-point iteration scheme, its convergence rate heavily relies on the spectral radius of the matrix C -1 A. In 1971, Reed [START_REF] Reed | New difference schemes for the neutron transport equation[END_REF] carried out the Fourier analysis for the source-iteration method, and proved that the spectral radius c s of C -1 A is independent of the spatial mesh and is equal to the ratio σs κ . Hence, when σ s κ, the sourceiteration method exhibits slow convergence. In Reed's paper it was also proved that, for the improved source-iteration scheme, namely the diffusion synthetic acceleration method, the spectral radius of C -1 A was dependent on the spatial mesh size, which was characterized by the size h of the mesh elements. It was seen that meshes with h greater than the mean free path lead to divergence of such solvers. Krylov subspace solvers, as alternatives to fixed-point methods, usually have better convergence rates. In practice, a Krylov subspace solver, from a guess I 0 and an initial residual r 0 = b -AI 0 , computes a more accurate approximation of the solution vector I k by using the Krylov subspace K k given by: K k (A, r 0 ) = span{r 0 , Ar 0 , A 2 r 0 , . . . , A k-1 r 0 }.

In other words, Krylov subspace methods solve AI = b by repeatedly performing matrix-vector multiplications.

The GMRES and the BiCGSTAB are two different Krylov methods that may be used for solving the linear system AI = b arising from the DOM-FEM discretization of the discrete ordinates RTE. These two methods can be differentiated based on how they use the Krylov space K k (A, r 0 ) to generate the solution vector I k . On the one hand, the GMRES chooses I k by minimizing the Euclidean norm of the residual r k = b -Ax k for x k in K k (A, r 0 ). It does so in two steps: at first, an orthogonal basis is generated by the Arnoldi procedure, and as a second step, a least squares problem is solved to compute I k . The BiCGSTAB, on the other hand, tries to reach convergence by following the mutual orthogonalization of two sequences using the nonsymmetric Lanczos procedure. More details may be found in [START_REF] Saad | Iterative methods for sparse linear systems[END_REF].

Concerning the stopping criterion, usually, convergence is assumed to be reached when the norm r k 2 = b -Ax k 2 is sufficiently small. Generally, the total number of iterations needed to reach convergence, k c , is much lower than m, the order of A. How few iterations are required depends on the eigenspectrum of A, and the nature of this dependence is crucial for understanding Krylov subspace methods [START_REF] Ipsen | The idea behind Krylov methods[END_REF].

Results and discussions

In this section, results and discussions for different numerical tests are provided. The convergence for the Krylov subspace solvers is reached when the norm of the relative unpreconditioned residual r k 2 r 0 2 is lower than 10 -6 .

The numerical experiments presented in the subsection 4.1 were performed on an ordinary laptop (Intel Core i7 with 16 GB of RAM) using 8 MPI processes in parallel, while the numerical experiments presented in the next subsection 4.2 were performed using 320 MPI processes on the supercomputer LIGER, at ICI supercomputing facility (6,048 cores Intel Xeon cluster) hosted by Central Nantes, France. In [START_REF] Badri | High performance computation of radiative transfer equation using the finite element method[END_REF], we reported near-linear scaling for our parallel solvers. Hence, solver performances derived using a specific number of MPI processes (320 in this case), should have similar trends at other MPI counts as well because of the optimal scaling. Before advancing further, it is to be notified that the solvers used for the upcoming tests have been verified thoroughly using standard benchmarking procedures, see [START_REF] Badri | High performance computation of radiative transfer equation using the finite element method[END_REF][START_REF] Hardy | Specular reflection treatment for the 3D radiative transfer equation solved with the discrete ordinates method[END_REF]. Note also that, among the previously developed angular decomposition and domain decomposition parallel solvers [START_REF] Badri | High performance computation of radiative transfer equation using the finite element method[END_REF], the former is used as the standard solver throughout this study.

Eigenspectrum analysis

The numerical experiments performed in this subsection are designed to study the eigenspectrum of different radiation problems. The Arnoldi iteration algorithm [START_REF] Arnoldi | The principle of minimized iterations in the solution of the matrix eigenvalue problem[END_REF] is applied for calculating the eigenspectrum of the matrices. Note that, though a total of m eigenvalues exist for a matrix of size m, the Arnoldi iteration algorithm only provides us with the N eigen dominant eigenvalues, out of all eigenvalues. This incomplete spectrum cannot be used for complete eigenvalue analysis, however it is intended here only for assisting in understanding the convergence of the Krylov subspace solvers, and for approximating the matrix condition numbers. For the numerical tests in this subsection, we used a 1 cm 3 cubic-shaped participating medium impinged with a top hat-type collimated external radiative source on its left face:

Î(x, s) = I 0 1 [(y-y0) 2 +(z-z 0 ) 2 <r 2 b , x=0, and s=s in] , (13) 
where I 0 = 100 W cm -2 , y 0 = 0.5 cm, z 0 = 0.5 cm, and r b = 0.2 cm represent the strength of the source, the center coordinates, and the impinging radius, respectively. 1 is the Heaviside step function such that 1 [condition] = 1 if the condition is true, and 1 [condition] = 0 otherwise. The impinging direction of this source is

s in = -1 √ 2 -1 √ 2 0 T .
A schematic representation of this Dirichlet boundary condition is shown in figure 2a. Further, a 10,000 nodes tetrahedral mesh and a 80 directions refined icosahedron (figure 1b) were used for the spatial and the angular meshes, respectively. The media are considered homogenized with Φ(s m , s n ) modeled using the Henyey-Greenstein phase function [START_REF] Henyey | Diffuse radiation in the galaxy[END_REF], with the anisotropy factor g = 0. ), scattering coefficient σ s (in cm -1 ), and index of refraction n of the medium. The small value is set to 10 -6 .

Figure 3a presents the eigenspectrum for test 1A, which considers a nonreflecting transparent medium. The linear system conditioning in this case is dominated by the transport matrix A T , as A S ≈ 0, A E ≈ 0, and A R = 0. As such, the linear system is diagonally dominant. Based on the highest and the lowest eigenvalues (marked with filled black and blue circles in the plot of figure 3a, respectively), we get an approximate condition number cond 2 (A) = max |λ(A)| min |λ(A)| ≈ 921.

Figure 3b presents the eigenspectrum for test 1B, which considers a nonreflecting optically thick medium (strong absorption). The linear system conditioning in this case is dominated by both the transport A T and the extinction A E , as A S ≈ 0 and A R = 0. As weights are added to the diagonal matrices, we expect a better conditioning than for the transparent test 1A. This is proved by a reduction of the condition number cond 2 (A) ≈ 695. Comparing to test 1A, there is a 30% smaller value. The Krylov subspace methods may be expected to converge in fewer iterations.

Next, for tests 1C and 1D, cases that involve scattering, the eigenspectra are presented in figures 3c and 3d, respectively. Notice the drift of minimal eigenvalues towards the origin, in comparison to the transparent and absorption test cases. min |λ| are observed to be approximately four times smaller compared to the previous tests. The highest eigenvalues max |λ| are also Figure 3: Eigenspectra for the transparent (pure transport) medium (test 1A), for the highly absorbing (optically thick) medium (test 1B), for the semi-transparent medium (test 1C), and for the highly scattering medium (test 1D). For this whole set of tests, the refractive index n was set to 1 (non-reflecting media).

observed to increase in magnitude, however by a factor two only. Overall, these drifts of eigenvalues result in increasing the condition numbers. We determined cond 2 (A) ≈ 5,155 for test 1C and cond 2 (A) ≈ 5,197 for test 1D. Hence, it is likely that a larger Krylov subspace (in dimension) would be needed for solving the scattering media problems.

Another perspective to understand the increase in cond 2 (A) for tests 1C and 1D is that, due to the presence of the scattering phenomenon (σ s ≥ 0), the N d discrete PDEs in (1) become strongly coupled, hence the global system is more difficult to solve. More specifically, now the solver has to deal with A = A T + A E + A S . Unlike matrices A T and A E , which just contain diagonal blocks, the scattering matrix A S contains both diagonal and off-diagonal blocks, cf. equations ( 5) and ( 6). Indeed, it is the presence of A S which causes the strong coupling and the increase of the condition number.

Tests 1E, 1F, 1G, and 1H are similar to tests 1A, 1B, 1C, and 1D, respectively, except that for these tests, specular reflection is allowed at the boundaries. The corresponding spectra for the tests 1E to 1H are presented in figures 4a to 4d, respectively. Observe that the eigenspectrum for test 1F (figure 4b) is almost similar to its corresponding non-reflecting test 1B (figure 3b). More precisely, we report that cond 2 (A) ≈ 699 for test 1F, which is almost similar to what was reported for test 1B, where cond 2 (A) ≈ 695. Due to such a similarity between the systems, ideally both tests 1B and 1F should converge almost with similar rates. The reason for this similarity is that, due to the strong absorption coefficient for test 1F, the impinging radiation is not able to reach any other boundary of the medium. The impinging radiation, in fact, would be absorbed as soon as it enters the medium, hence not allowing for reflection physics to occur. Thereby, we could say that, even though the physics of reflection is present in test 1F, its eigenspectrum is still mostly controlled by the transport A T and the extinction A E .

From the eigenspectrum of test 1E, which considers a transparent medium with reflection at boundaries, it is seen that adding reflection alone to the transport can lead to a change of the matrix condition number. In particular, the greatest eigenvalue was observed to increase (by a factor of two in comparison to the pure transport case), while the smaller eigenvalue remained stable. Overall, cond 2 (A) ≈ 1,598, which is 1.7 times greater than that of the non-reflecting transparent medium case (test 1A). 1E), for the highly absorbing (optically thick) medium (test 1F), for the semi-transparent medium (test 1G), and for the highly scattering medium (test 1H). For this whole set of tests, the refractive index n was set to 2.5 (highly reflective borders).

Coming to the scattering tests with reflection, tests 1G and 1H, we observe a drift of low eigenvalues towards the origin when compared to their counterpart tests 1C and 1D. In particular, the smallest eigenvalue was 1.6 and 6 times smaller for tests 1G and 1H, respectively, than what was observed for scattering tests without reflection. However the highest eigenvalue remains stable, indicating that it is not influenced by the presence of reflection. Overall, the cond 2 (A) ≈ 8,046 and 30,973 for tests 1G and 1H, respectively. Comparing to other problems in this subsection, the condition number observed for the highly scattering problem involving reflection (test 1H) is the highest in magnitude. Hence, it is likely that a larger Krylov subspace (in dimension) would be needed for solving this problem.

To explain in more details the reflecting tests, physically dealing with specular reflection can be tricky because, at the reflecting border, the energy carried by the impinging direction i is assigned to the reflecting direction(s) j. The reflecting direction(s) j depends both on the surface normal n and on the direction of incidence. For geometries with complex boundaries (many distinct normals) the probability of i getting reflected to many arbitrary directions j is high. Owing to this physics, the reflecting matrix A R contains an arbitrary weighted structure which is contrary to the uniform weighted structure of other matrices present in expression [START_REF] Lu | A parallel adaptive finite element method for the simulation of photon migration with the radiative-transfer-based model[END_REF]. In other words, the coupling between the N d PDEs (1) becomes less structured, hence more difficult to handle.

Krylov solver analysis for different radiation problems

Based on the eigenspectrum analysis carried out in the previous subsection, it was revealed that the absorbing media problems are well-conditioned, the condition number increases when scattering is involved, and becomes even worse when the medium is both scattering and reflecting. For this reason, in this subsection, we analyze five different problems, tests 2A to 2E, solved with the GMRES and the BiCGSTAB, with and without preconditioning. In particular, two classic preconditioners, the standard Jacobi and the block Jacobi (with incomplete LU factorizations with zero level of fill-in as block solvers) applied on the right, are used to enhance the efficiency of the two Krylov subspace methods.

For the tests of this subsection, a berlingot-shaped medium (see figure 2b) is used as the standard geometry. The non-convex geometry resembles a tetrahedron which is used to assimilate the cross-section between two struts of an open-cell foam, as used in concentrated solar power applications [START_REF] Hardy | Specular reflection treatment for the 3D radiative transfer equation solved with the discrete ordinates method[END_REF]. The surface topology ∂D(u, v) of the berlingot is parameterized by the following [START_REF] Robert | Berlingot[END_REF],

∂D(u, v) =      x = ab(1 + u) cos v y = ab(1 -u) sin v a, b ∈ R, u ∈ [-1, 1] , and v ∈ [0, 2π[ , z = au
in which a and b define the height and the width of the geometry, respectively. We have chosen a = b = 1, this corresponds to a berlingot-shaped medium which is 4 cm × 4 cm × 2 cm in dimensions.

Much like the boundary conditions used in the previous subsection, in this subsection the collimated top hat-type radiative source follows the same equation ( 13), but with the following parameters: I 0 = 1 W cm -2 , y 0 = 0.0 cm, z 0 = 0.0 cm, r b = 0.2 cm, and s in = [0 1 0] T , i.e., the source enters the geometry with its direction parallel to the y-axis. Figure 2b presents an isometric view of the berlingot-shaped medium and its corresponding Dirichlet boundary condition. The figure also contains internal cross-sections of the geometry in order to detail the berlingot's complex shape.

Further, a 57,000 nodes tetrahedral mesh and the 320 directions refined icosahedron (figure 1c) were used as the spatial and angular meshes, respectively. In this subsection, we would be dealing with problems involving reflection, to capture the physics more accurately such high count of directions (N d = 320) was used, as recommended in [START_REF] Hardy | 3D numerical modelling of the propagation of radiative intensity through a X-ray tomographied ligament[END_REF]. Just like the tests in the previous subsection, the media are considered homogenized with Φ(s m , s n ) modeled using the Henyey-Greenstein phase function, with the anisotropy factor g = 0.5. The five tests in this subsection, tests 2A to 2E, are formulated with the different radiation parameters summarized in table 2. ), the scattering coefficient σ s (in cm -1 ), and the index of refraction n of the medium. The small value is set to 10 -6 .

scattering dominance, and reflection dominance, for the respective tests.

Figures 6 to 10 present the convergence history of the GMRES and the BiCGSTAB used for solving tests 2A to 2E. For each case we have used the Krylov subspace solvers with and without preconditioners. From all these figures one can clearly draw a conclusion that the BiCGSTAB outperforms the GMRES in all cases. However, the BiCGSTAB is observed to show erratic behaviors of convergence ( r k 2 grows several order in magnitude) which is classic to this method. Axelsson [START_REF] Axelsson | Iterative solution methods[END_REF] claims that Lanczos-based methods, such as the BiCGSTAB, being not based on minimization principles, are susceptible to erratic convergence behaviors. Such erratic behaviors were also reported in [START_REF] Kanschat | Solution of radiative transfer problems with finite elements[END_REF][START_REF] Turek | An efficient solution technique for the radiative transfer equation[END_REF]. These convergence outbursts are in fact caused by the near failure of the mutual orthogonalization process of the BiCGSTAB. We further show that these outbursts have less inpact (almost negligent) for absorbing medium problems due to their lower condition numbers, while these are frequently present in other problems that are not absorption dominant. The outbursts in problems involving reflections are highest in number due to their weak conditioning. As it may occur, the BiCGSTAB may fail once in a while due to its delicate orthogonalization, hence its chances of failure for problems involving reflections is higher than for other problems. On the contrary, the GMRES smoothly converges to the desired solutions, however with slower rates of convergence than the BiCGSTAB. Apart from the faster convergence rates of the BiCGSTAB, it should also be noted that, the BiCGSTAB uses less memory than the GMRES. This is because 30 additional auxiliary vectors (the maximum dimension of the Krylov subspace generated by the Arnoldi procedure before a restart occurs) need to be stored for the GMRES compared to the BiCGSTAB which uses a short recurrence and only requires 8 auxiliary vectors. In all convergence history plots, it is clear that both Jacobi and block Jacobi preconditioners reduce the total iteration counts for both Krylov subspace methods. It can also be observed that preconditioning in case of the BiCGSTAB not only leads to faster convergences but also stabilizes the method.

In table 3 we provide the total number of iterations to converge k c and the respective times to solution t s for tests 2A to 2E. The reported times t s correspond to the time spent in setting up the preconditioner plus for reaching convergence. The table displays that much more work is required for solving the problems involving reflection. All expect one result are adhering to the eigenvalue analysis carried out in the previous section. The result that does not agree with the previous eigenvalue analysis is the transparent case with reflection, test 2D. The higher iteration count (compared to other tests in this subsection), may mean that this test has a worst eigenspectrum distribution than the others. While this was not the case for the cubic-shaped test case. We observed such a behavior because, unlike the cubic-shaped media that has six unique normals, the berlingot-shaped media has 455 unique normals at the boundary (mesh dependent). Because of the transparency, no resistance is offered to the incoming radiation (κ = σ s ≈ 0), this radiation will remain trapped in the medium for a longer period and each time it hits any surface different angles get coupled with each other. Hence, the coupling is arbitrary and much more complex compared to the cubic-shaped reflection cases. Overall, in this subsection, the BiCGSTAB was seen to outrun the GM-RES, for solving different problems of radiation, in terms of convergence rates, total solving times, and memory requirements.

Conclusion

This article was dedicated to the analysis of Krylov subspace methods for solving different multi-dimensional radiative transfer problems. The radiative transfer phenomena in these problems is modeled using the discrete ordinates radiative transfer equation. The linear systems for theses different multi-dimensional radiative transfer problems were built following the angular decomposition (with mixed finite elements) discretization of the discrete ordinates radiative transfer equation.

Based on the physics, radiation in transparent, absorbing, scattering, and reflecting media were analyzed. An eigenspectrum analysis was set up on these different problems in order to study the effect of each physics on the condition number of the problem. It was concluded that: absorbing/transparent media problems are well conditioned, including scattering decreases the condition number of the discretized system, condition numbers for absorbing and reflecting media do not change, and conditioning deteriorates heavily when reflection is involved in transparent/scattering medium problems.

Two Krylov subspace solvers, the GMRES and the BiCGSTAB, with and without preconditioning, were investigated for solving the above mentioned radiative transfer problems. In conclusion, the BiCGSTAB outran the GMRES for all cases, with lower iteration count, solving times, and memory requirements. However, typical to the BiCGSTAB, erratic convergences were sometimes observed in comparison to the smooth convergence curves for the GMRES. These erratic behaviors were more prominent for the cases with reflecting media. Concerning preconditioners, as expected, it was established that preconditioning systems with the block Jacobi method (with incomplete LU factorizations with zero level of fill-in as block solvers) leads to faster convergence. Moreover, preconditioning also reduced drastically the outbursts of the BiCGSTAB.

  (a) N d = 20. (b) N d = 80. (c) N d = 320.
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 1 Figure 1: Discretized angular space with the icosahedron refinements. (a) icosahedron, (b) first refinement icosahedron, and (c) second refinement icosahedron.

  (a) Tests in section 4.1. (b) Tests in section 4.2.

Figure 2 :

 2 Figure 2: Dirichlet boundary conditions and the geometry used for the tests in section 4. External radiation source is shown impinging the different media.
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Figure 4 :

 4 Figure4: Eigenspectra for the transparent (pure transport) medium (test 1E), for the highly absorbing (optically thick) medium (test 1F), for the semi-transparent medium (test 1G), and for the highly scattering medium (test 1H). For this whole set of tests, the refractive index n was set to 2.5 (highly reflective borders).

Figures 5

 5 Figures 5 shows two cross-sections (xy-plane at z = 0 and yz-plane at x = 0) of the photon density fields, G(x) = N d m=1 I(x) m ω m , within the berlingotshaped medium of the tests 2A to 2E. Adhering to the physics we can clearly notice, in the provided cross-sections, pure transport, absorption dominance,

  (a) Test 2A, transparent medium without reflection. (b) Test 2B, highly absorbing medium without reflection. (c) Test 2C, highly scattering medium without reflection. (d) Test 2D, transparent medium with reflection. (e) Test 2E, highly scattering medium with reflection.
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 5 Figure 5: Radiation density cross-sections for the berlingot-shaped medium tests.

Figure 6 :

 6 Figure 6: Logarithmic convergence history for the GMRES and the BiCGSTAB methods used for solving the transparent medium problem without reflection, test 2A. Block Jacobi is abbreviated as BJacobi.

Figure 7 :

 7 Figure 7: Logarithmic convergence history for the GMRES and the BiCGSTAB methods used for solving the absorbing medium problem without reflection, test 2B. Block Jacobi is abbreviated as BJacobi.

Figure 8 :

 8 Figure 8: Logarithmic convergence history for the GMRES and the BiCGSTAB methods used for solving the scattering medium problem without reflection, test 2C. Block Jacobi is abbreviated as BJacobi.

Figure 9 :

 9 Figure 9: Logarithmic convergence history for the GMRES and the BiCGSTAB methods used for solving the Transport problem with reflection, test 2D. Block Jacobi is abbreviated as BJacobi.

Figure 10 :

 10 Figure 10: Logarithmic convergence history for the GMRES and the BiCGSTAB methods used for solving the scattering medium problem with reflection, test 2E. Block Jacobi is abbreviated as BJacobi.

Table 1 :

 1 5. Based on this geom-etry and boundary condition, eight tests (1A to 1H) are formulated with the different radiation parameters summarized in table 1. Radiative properties for tests 1A to 1H used in section 4.1: absorption coefficient κ (in cm -1

	Test κ	σ s	n	Comments
	1A			1	Transparent medium without reflection
	1B 5		1	Highly absorbing medium without reflection
	1C 1	1	1	Semi-transparent medium without reflection
	1D		5	1	Highly scattering medium without reflection
	1E			2.5 Transparent medium with reflection
	1F	5		2.5 Highly absorbing medium with reflection
	1G 1	1	2.5 Semi-transparent medium with reflection
	1H		5	2.5 Highly scattering medium with reflection

Table 2 :

 2 Radiative properties for tests 2A to 2C used in section 4.2: the absorption coefficient κ (in cm-1 

Table 3 :

 3 Performance in terms of iterations to converge (k c ) and solving time (t s , in seconds), for the GMRES and the BiCGSTAB with/without preconditioners.

				GMRES					BiCGSTAB		
	Test		None		Jacobi	BJacobi		None	Jacobi	BJacobi
		k c	t s	k c	t s	k c	t s	k c	t s	k c	t s	k c	t s
	2A	147	88.1	147 84.17 15 9.2	50	56.5	37	41.6	8	9.8
	2B	48	34.5	19	10.9	5	4.0	25	27.3	11	6.0	3	2.0
	2C	126	70.8	74	60.1	14 8.1	61	50.7	41	44.9	9	4.0
	2D	849 496.10 596 366.47 79 45.1 481 369.7 349 260.4 48 41.01
	2E	770 445.6 517 292.2 66 57.1 368 310.4 255 200.8 35 34.01
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