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DETERMINANTAL PROBABILITY MEASURES ON GRASSMANNIANS

ADRIEN KASSEL AND THIERRY LÉVY

Abstract. We introduce and study a class of determinantal probability measures generalising
the class of discrete determinantal point processes. These measures live on the Grassmannian
of a real, complex, or quaternionic inner product space that is split into pairwise orthogonal
finite-dimensional subspaces. They are determined by a positive self-adjoint contraction of the
inner product space, in a way that is equivariant under the action of the group of isometries
that preserve the splitting.

Contents

Introduction 1
1. Overview 3
2. Invariant measures on Grassmannians 8
3. Determinantal linear processes (DLP) 16
4. Geometry of DLP 24
5. The point of view of the exterior algebra 35
6. Changing coefficient field and the quaternion case 43
Concluding remarks 52
References 53

Introduction

Determinantal point processes (DPP) are an extensively studied class of random locally finite
subsets of a nice measured topological space, for example of a Polish space endowed with a Borel
measure. There is a discrete theory and a continuous theory of DPP, corresponding to the cases
where this Borel measure is atomic or diffuse; these two cases are conceptually identical, but
differ slightly in their presentation and methods.

The goal of this paper is to introduce a generalisation of the discrete theory of DPP, which we
call determinantal linear processes (DLP), where instead of a random collection of points drawn
from a ground set, we consider a random collection of linear subspaces drawn from blocks of a
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vector space orthogonally split into finite-dimensional summands. Conceptually, this amounts
to studying probability distributions on the Grassmannian of that vector space instead of on
the power set of the ground set, and to consider the co-incidence of inclusion events in the
lattice of linear subspaces of that vector space rather than in the lattice of subsets of that set.
Although the family of measures we construct is indeed a generalisation of DPP, we emphasise the
introduction of a geometric framework (closer to the language of geometric probability) which,
already apparent in the exterior algebra description of DPP, here plays a genuine role and better
reveals the geometric structure of these processes. Indeed, some of the general results we provide
using this approach are new, at least to us, even in the classical case of DPP.

Before discussing the motivation, let us say a short word on the background. DPP as we
know them were initially introduced by Macchi [Mac75] in order to model probabilistically the
statistical observables of fermions in certain quantum optics experiments (see also [Mac19]). This
was a groundbreaking work connecting experimental physics with the theory of point processes.
Before her work, and in parallel to it, continuous DPP had been studied, among others, by
Wigner, Dyson, Mehta, Gaudin, who studied spectra of random matrices in the context of nuclear
physics. Since then, the probability community has extensively studied these processes which
arise in various stochastic models (whether discrete: e.g. uniform spanning trees, or continuous:
e.g. eigenvalues of certain random matrices) and constitute a class of tractable point processes
exhibiting repulsive behaviour a.k.a. negative association (a notion of negative dependence has
yet to be fully understood [Pem00], although recent major progress has been made [BBL09]).
Recently, DPP have found many applications in statistics, starting with the foundational work
of [KT12]; see [BLMV17] for a review. Along with authoritative papers of Borodin [Bor11] and
Soshnikov [Sos00] (see also [ST03] and [Joh06]), a good entry point in the theory of discrete, or
even finite, DPP is the paper of Lyons [Lyo03]; see also the survey [Lyo14] and reference therein
for a more complete overview of the numerous works on the subject. Our work draws closer to
the one of Lyons, first by emphasising the point of view of the exterior algebra (which is further
justified here, by our discussion of Grassmannians) and second by being motivated by the theory
of random spanning trees and their variants (on graphs, simplicial complexes, and vector bundles
over these).

To put it in a nutshell, our motivation came from the following modelling question: How to
construct a discrete probabilistic model which could be a toy-model for a system of fermionic
matter interacting with a gauge field. Building on the two classical ideas that uniform spanning
trees on graphs are a toy-model for fermions, and that a collection of coupled random matrices is
a toy-model for a gauge field, our goal was to build a model where a random spanning tree would
interact with a collection of coupled random matrices on the edges of the graph. Pushed by
considerations of symmetry under the natural linear group acting on this situation, we realised
that spanning trees could fruitfully be replaced by a collection of random linear subspaces, one
for each edge (see Section 1.5 for an illustration and [KL19b] for a detailed presentation of this
model, which we call quantum spanning forests). In order to formalise this definition, we had
to revisit our point of view on DPP and define DLP. The goal of this paper is to present this
theory of DLP. Let us stress that, since no prerequisites are assumed from the reader, this paper
may also serve as a self-contained introduction to discrete DPP, from a slightly more geometrical
point of view than the usual.

The paper is organised as follows. Section 1 consists in an overview of the path going from DPP
to DLP. In that section, we review the definition of DPP and highlight the conceptual change of
point of view consisting in replacing subsets by subspaces; this allows us to describe broadly what
DLP are, to highlight their main properties, and to illustrate the theory from the point of view
of uniform spanning trees and their generalisation, quantum spanning forests. Section 2 lays the



DETERMINANTAL PROBABILITY MEASURES ON GRASSMANNIANS 3

groundwork about measures on real and complex Grassmannians, their incidence measures, as
well as useful formulas on determinants we will use throughout. Section 3 proceeds to construct
DLP (Theorem 3.2) both as a measure with an explicit density (Proposition 3.3) and as the result
of a concrete sampling algorithm (Proposition 3.13). Section 4 contains a presentation of the
main geometrical properties of DLP; some of these properties, such as Theorem 4.13, seem to be
new even for DPP (we also note the nice, but maybe not so surprising fact, that the support of
any of these determinantal measures is determined by a matroid polytope, see Proposition 4.11).
In that section, we also extend the construction of DLP to the infinite-dimensional setting.
Section 5 gives a presentation of DLP from the point of view of the exterior algebra. This
is somewhat closer to the initial physics motivation and language, and we in particular give a
quantum information theoretic interpretation of DLP in Corollary 5.7 (based on an algebraic
reformulation in Proposition 5.6 of the explicit density given in Proposition 3.3), and a very
concise rewriting of Theorem 4.13 in Theorem 5.9 (this formalism also allows to see the so-called
l-ensembles appear naturally, see Section 5.5). Finally, Section 6 is devoted to explaining how
the theory of DLP extends to the case of quaternionic vector spaces and discusses how DLP
behave upon restriction of scalars from quaternions, to complex numbers, to real numbers.1 The
paper closes on a few directions of research we find interesting.

1. Overview

In this section, which precedes the formal introduction of definitions and statements, we
present an overview of the path which leads from the classical notion of DPP to that of DLP
and provide an example.

1.1. Finite determinantal point processes. Let us fix an integer d > 1 and consider the set
S = {1, . . . , d}. Let K ∈ Md(C) be a matrix. For all subsets J of S, let us denote by KJ

J the
sub-matrix of K obtained by erasing all rows and columns whose indices do not belong to J .

We say that a random subset X of S is determinantal with kernel K if for all subsets J of S,
the equality

(1) P(J ⊆ X) = detKJ
J

holds. Probabilities of the form P(J ⊆ X) are called incidence probabilities.
One interesting aspect of this definition is that there is no reason why there should exist a

random subset X satisfying (1), and in general there does not. On the other hand, if there does,
then it is an elementary fact that (1) characterises the distribution of X completely (see (17)).

One of the first results of the theory is that a random subset satisfying (1) exists whenever K
is a self-adjoint contraction, that is, a Hermitian matrix such that 0 6 K 6 1. The case where K
is a self-adjoint projection is of particular and fundamental interest. If K is a projection of
rank n, it can be shown that the subset X has n elements with probability 1. In particular, its
distribution can be described as follows: for all n-subset I of S,

(2) P(X = I) = detKI
I .

The equality

(3)
∑

I⊆S,|I|=n

detKI
I = 1

1Our motivation for treating the quaternionic case is threefold; mathematical : “As a matter of principle, one
should always consider the three cases R, C, and H, and these are the only three finite-dimensional real division
algebras” [BtD95, page 9]; physical: the orthogonal, unitary, and symplectic groups are natural from the point of
view of lattice gauge theory [Lév04]; and concrete: we give an example of such a process in Example 6.10.
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can be understood as the statement that the n-th elementary symmetric function of the eigenval-
ues of K is equal to 1, or as an instance, in the appropriate inner product space, of Pythagoras’
theorem (see Proposition 5.8 for a precise, but more general statement, and the remark right
after that proposition).

A determinantal point process with arbitrary contraction kernel can be realised as a mixture of
determinantal point processes with projection kernels. In this more general case, the formula (2)
is replaced by the following:

(4) P(X = I) = det(KP I + (Id −K)P I
c
),

where Ic = S \ I is the complement of I, and P I denotes the diagonal matrix with entries equal
to 1 in the columns indexed by elements of I, and 0 elsewhere. The fact that these probabilities
add up to 1 is a consequence of the equality

(5)
∑
I⊆S

det(AP I +BP I
c
) = det(A+B),

which is valid for any two d×d square matrices A and B, and an expression of the multilinearity of
the determinant with respect to the columns (see also Proposition 2.8 for a proof of a more general
formula). The number of points of a determinantal point process with kernel K is random, with
the distribution of the sum of independent Bernoulli random variables with parameters equal to
the eigenvalues of K.

1.2. A geometric point of view. The point of view that we adopt in this paper is that the
elements of the set S label the vectors of the canonical basis of the vector space Cd, or more
generally of an orthonormal basis (e1, . . . , ed) of an arbitrary Hermitian space E of dimension d.
The matrix K is the matrix in this basis of a self-adjoint endomorphism k of E. Then, we
interpret the random subset X as a random linear subspace of E, namely the random subspace

(6) Q = Vect(ei : i ∈ X).

This way of thinking of a subset as a linear subspace was already used, for instance, in [Oko05,
Section 1.3].

It is thus fair to say that a determinantal point process produces, from an orthonormal basis
(e1, . . . , ed) of an inner product space E and a self-adjoint operator k on this space such that
0 6 k 6 1, a random linear subspace of E that is adapted to the basis (e1, . . . , ed) in the sense
that it is a sum of lines generated by these vectors:

(7) . orthonormal basis (e1, . . . , ed) of E
. self-adjoint operator k on E with 0 6 k 6 1

〉
 

random subspace of E
adapted to (e1, . . . , ed)

The dimension of the random subspace of E is itself random, with the distribution of the sum
of d independent Bernoulli random variables with parameters given by the eigenvalues of k. In
the special case where k is a projection, this dimension is almost surely equal to the rank of k.

In this construction, the orthonormal basis of E is only used through the splitting of E that
it induces, that is, the orthogonal decomposition

E = Ce1 ⊕ . . .⊕ Ced.

The goal of this paper is to extend the correspondence (7) to the situation where the orthonor-
mal basis, or the splitting that it induces, is replaced by an arbitrary orthonormal splitting

E = E1 ⊕ . . .⊕ Es
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of E as an orthogonal direct sum of linear subspaces. A subspace Q of E is said to be adapted to
this splitting if it is a sum of subspaces of E1, . . . , Es. This can be written in several equivalent
ways, such as

Q = (Q ∩ E1)⊕ . . .⊕ (Q ∩ Es) or dimQ =

s∑
i=1

dim(Q ∩ Ei).

The correspondence replacing (7) is then

(8)
. splitting E = E1 ⊕ . . .⊕ Es
. self-adjoint operator k on E with 0 6 k 6 1

〉
 

random subspace of E
adapted to the splitting

As before, the case where k is a projection is special, in that the dimension of the random
subspace of E is almost surely equal to the rank of k.

1.3. Determinantal measures on Grassmannians. The basic data of our construction is
thus an inner product space E endowed with a splitting E = E1 ⊕ . . .⊕Es and a kernel k, that
is a self-adjoint endomorphism of E with spectrum contained in the interval [0, 1]. We use the
letter σ to denote the splitting, and to label objects which depend on it.

From this data, we construct a probability measure µσ,k on the subset Gr(E, σ) of the Grass-
mannian of E consisting of all linear subspaces of E adapted to the splitting.

A random linear subspace Q of E distributed according to this measure µσ,k can be sampled
according to the following very simple procedure:

(9)
• pick uniformly at random an orthonormal basis of each of the spaces E1, . . . , Es and
agregate them to form an orthonormal basis of E,

• sample the determinantal point process with kernel k associated with this basis, seen as
a linear subspace of E according to (6).

It is not clear on this description of the measure µσ,k to what extent it deserves to be called a
determinantal probability measure. It turns out that it satisfies a property that is, in this new
context, the closest possible analogue of (1). To formulate this property, we define on Gr(E, σ)
the incidence measure Zµσ,k of µσ,k as a dimension-biased version of a uniform random subspace
of Q (see Definition 2.5). In the case of a finite determinantal point process X, this incidence
measure is simply the counting measure

E
[∑
J⊆X

δJ

]
which to each singleton {J} gives the mass P(J ⊆ X). As this special case suggests, Zµσ,k
is in general a finite measure rather than a probability measure. We will prove that, just as
the incidence measure of X characterises its distribution, the measure µσ,k can be recovered
from Zµσ,k, by a continuous version of the Möbius inversion in the lattice of linear subspaces
of E adapted to the splitting σ (see Proposition 2.6). Moreover, the density of Zµσ,k with respect
to a natural reference measure νE,σ on Gr(E, σ) is given by minors of k (see Section 2.4 for the
notation):

(10) d(Zµσ,k)(R) = det kRR dνE,σ(R),

in close analogy to (1).
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1.4. Properties of the determinantal measures. In this paper, we choose to define the
measure µσ,k by (10) rather than by the algorithm (9), which will be seen as one of its properties.

Our first task will be to prove that there exists, for every splitting σ of E and every contrac-
tion k, a unique probability measure µσ,k on Gr(E, σ) satisfying (10). Then, we will prove that
this measure satisfies the following properties.

Sampling: The outcome of the procedure (9) is a random subspace of E distributed ac-
cording to µσ,k.

Dimension: Let Q be distributed according to µσ,k. The dimension of Q has the distribu-
tion of the sum of d independent Bernoulli random variables with parameters given by the
eigenvalues of k. More precisely, consider the random vector of integers (D1, . . . , Ds) =
(dim(Q∩E1), . . . ,dim(Q∩Es)) and fix s real numbers t1, . . . , ts. Let T be the endomor-
phism of E that acts on Ei by multiplication by ti for each i ∈ {1, . . . , s}. Let finally ΠQ

denote the orthogonal projection on Q. Then

E
[
eTr(Π

QT )
]

= E
[
et1D1+...+tdDs

]
= det(idE + k(eT − 1)).

Orthocomplement: The random subspace Q⊥ is still determinantal, distributed according
to µσ,1−k.

Scaling: Pick p ∈ [0, 1]. Sample Q according to µσ,k. For each i ∈ {1, . . . , s}, sample a
binomial random variable di with parameters dim(Q ∩ Ei) and p, and choose uniformly
at random a subspace Ri of Q ∩ Ei of dimension di. The direct sum R1 ⊕ . . . ⊕ Rs is
distributed according to µσ,pk.

Restriction: Choose t ∈ {1, . . . , s} and consider the subspace F = E1 ⊕ . . . ⊕ Et of E,
endowed with the obvious splitting. Then Q ∩ F is a random subspace of F associated
to the kernel kFF , obtained from k by compression on F (see Section 2.4).

Equivariance: Let u be an isometry of E preserving the splitting σ. Then u(Q) is dis-
tributed according to µσ,uku∗ . More generally, if u is an isometry of E, without any
special relation to σ, then u(Q) is distributed according to µu(σ),uku∗ .

Extension to infinite dimensional spaces: LetE =
⊕

i>1Ei be an infinite-dimensional
inner product space written as the orthogonal direct sum of finite-dimensional subspaces.
Let k be a self-adjoint operator on E such that 0 6 k 6 1. There exists a unique ran-
dom linear subspace Q of E adapted to its (infinite) splitting such that for all s > 1,
setting E6s = E1⊕ . . .⊕Es, the random subspace Q∩E6s of E6s is determinantal with
kernel k

E6s
E6s

.
Stochastic domination: If k1 and k2 are two kernels on E such that 0 6 k1 6 k2 6 1,

then the measure µσ,k1 is stochastically dominated by µσ,k2 . This means that if Q1

and Q2 are respectively distributed according to µσ,k1 and µσ,k2 , then for all continuous
non-decreasing functions f on the partially ordered space (Gr(E, σ),⊆), one has the
inequality E[f(Q1)] 6 E[f(Q2)].

Negative association: Let R be a subspace of E equal to the direct sum of some of
the elements of σ. Let f, g be continuous non-decreasing functions on Gr(E, σ). Then
E[f(Q ∩R)g(Q ∩R⊥)] 6 E[f(Q ∩R)]E[g(Q ∩R⊥)] holds.

Unicity: If k is the orthogonal projection on a subspace H of E, then almost surely,

Q⊕H⊥ = Q⊥ ⊕H = E .

In particular, the map

H −→ Q∗

h 7−→ 〈h, ·〉
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is almost surely injective, indeed bijective. This parallels results of Lyons and Bufetov–
Qiu–Shamov stating that almost every realisation of a determinantal point process as-
sociated with a kernel that is a projection on a finite-dimensional space of functions is
a unicity set for this space of functions (see [Lyo03, Thm. 7.11] and [BQS16] for an
extension to Polish spaces).

Mean projection: Let us assume again that k is the orthogonal projection onto a sub-
space H of E. Then the orthogonal projection onto H is equal to the expectation of the
projection onto Q parallel to H⊥, i.e.

E
[
PQ
]

= ΠH ,

where ΠH denotes the orthogonal projection on H and PQ the projection onto Q parallel
to H⊥. In fact, much more is true, and we have the following equality of endomorphisms
of the exterior algebra of E:

(11) E
[∧

PQ
]

=
∧

ΠH .

In other words, if we choose a basis of E, it is not only every entry, but every minor
of the matrix of ΠH that is the expectation of the corresponding minor of the random
matrix PQ. Note that, thanks to the self-adjointness of ΠH , one can replace, in (11), the
operator PQ by its adjoint, which is the projection on H parallel to Q⊥.

1.5. Example. We now illustrate the above framework with a concrete example motivated by
statistical physics. In order to keep this section short, we voluntarily go briefly over the following
definitions. The reader is invited to consult the given references for more details.

Let X be a finite weighted simplicial complex of dimension m ≥ 1. For each 0 ≤ k ≤ m, let
Ωk(X,R) be the space of real k-forms, that is, antisymmetric real functions over oriented k-cells.
There is a structure of chain complex induced by a collection of maps d : Ωk−1(X,R)→ Ωk(X,R)
such that d◦d = 0 (one for each 1 ≤ k ≤ m, although, following tradition, we omit the dependency
of d on k), along with associated dual maps, which we denote d∗.

Coming from the structure of chain complex, there are some natural subspaces of Ωk(X,R) to
consider: Fk = im(d), the space of exact forms, ♦k = ker(d∗), the space of cycles; and likewise
F∗k = im(d∗) and ♦∗k = ker(d). Since the complex is finite, we immediately have the orthogonal
decompositions Ωk(X,R) =Fk ⊕ ♦k = ♦∗k ⊕F∗k.

By further considering the possibly trivial subspace of harmonic forms Hk = ker(d◦d∗+d∗◦d),
and noting that ♦k = Hk ⊕F∗k, we arrive at the refined decomposition

Ωk(X,R) =Fk ⊕Hk ⊕F∗k ,

which is a discrete analog of the Hodge decomposition for differential forms in geometry, as first
considered by Eckmann [Eck45].

For any unoriented k-cell τ , let ωτ be an associated k-form, defined up to sign, if {τ1, τ2}
denote the two orientations of that cell, by 1ω1 − 1ω2 . The line Lτ = Rωτ is independent of that
choice of sign, and there is a natural splitting σ given by

Ωk(X,R) =
⊕

τ∈Ck(X)

Lτ ,

where Ck(X) denotes the collection of unoriented k-cells of X.
The DLP associated to H = Fk (respectively H = F∗k) and the above splitting σ, is a

random subspace Q of Ωk(X,R) which is a supplement to H⊥ = Hk ⊕F∗k = ♦k (respectively
H⊥ =Fk ⊕Hk = ♦∗k).
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Given a subset T of k-cells, we let QT =
⊕

τ∈T Lτ . This establishes a correspondence between
subsets of Ck(X) and subspaces of Ωk(X,R). The above DLP correspond under this mapping to
the DPP introduced by Lyons [Lyo09] (the so-called upper and lower matroidal measures, dual
of one another, defined for any chain complex) and the above properties about the geometric
position of the random subspace Q with respect to H are equivalent to [CCK15, Theorem A].
As we have already mentioned, this last statement can be further strenghtened to a statement
in the exterior algebra, and moreover it holds true for all DLP, not just the example described
here, see Theorems 4.13 and 5.9 below.

In the case whenm = 1,X is simply a finite graph, andF1 = im(d),H1 = 0, and ♦1 = ker(d∗),
where d is sometimes called the discrete derivative map, and d∗ its adjoint, the discrete divergence
map. The DLP just described, a random supplement to the space of cycles whose average is
the space of stars, is simply the uniform spanning tree measure, initially shown to be a DPP by
Burton and Pemantle [BP93].

We may generalise the above setup by twisting the chain complex with the data of linear
isomorphisms for pairs of adjacent cells (i.e. one isomorphism for each edge of the barycentric
subdivision of the simplicial complex, see e.g. [RV15]). In the case of a graph (m = 1), this
amounts to putting orthogonal matrices of size N ×N over half-edges, for a fixed integer N ≥ 1
we call the rank, the collection of which we denote h and call a connection. There is then a space
of vector-valued 1-forms to be considered, Ω1(X,RN ), a twisting of the map d, denoted dh, and
corresponding subspaces F1

h and ♦1h, which give the decomposition Ω1(X,RN ) =F1
h⊕♦1h. The

lines Lτ are moreover replaced by N -dimensional vector spaces Fτ and they induce a splitting
Ω1(X,RN ) =

⊕
τ∈Ck(X) Fτ .

We call the DLP associated to this splitting and the orthogonal projection on F1
h, a quantum

spanning forest. The case N = 1 and h non-trivial, corresponds to the cycle-rooted spanning for-
est model [Ken11], and the above statement about the average projection was shown in [CCK13,
Theorem A].

Similarly, for m ≥ 2 and any 0 ≤ k ≤ m, one may consider the DLP on Ωk(X,RN ) induced
by a splitting indexed by Ck(X) and the orthogonal projection on Fk

h. This yields a general
notion of quantum spanning forest in dimension k and rank N .

A sample of quantum spanning forests for N = 3 on a square grid graph is given in Figure 1
(in this simulation, the connection h was chosen randomly under a 2-dimensional Yang–Mills
measure; see e.g. [Lév19] for background). A more detailed presentation of this model and its
basic properties will appear in [KL19b].

2. Invariant measures on Grassmannians

In this section, we introduce split vector spaces, their Grassmannians, invariant measures on
these, and their incidence measures, and prove useful formulas about the integral of determinants
of operators with respect to these. This is the formal setup which will be used in Section 3 to
define DLP.

2.1. Split inner product spaces. In this paper, until Section 6, vector spaces are over real or
complex numbers. Moreover, until further notice, they have finite dimension. Inner products are
understood to be Euclidean in the real case and Hermitian in the complex case. Hermitian inner
products are taken to be linear with respect to the second variable, according to the physicists’
convention. We use, in the real and complex case, the notation U(E) for the group of isometries
of an inner product space E.

Definition 2.1. An orthogonal splitting, or simply splitting, of an inner product space E is a
finite ordered sequence σ = (E1, . . . , Es) of pairwise orthogonal linear subspaces of E of positive
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Figure 1. Simulation of a quantum spanning forest in the case of rank N = 3.
As explained in Section 1.5, this is a DLP associated to a graph and a collection
of orthogonal matrices on its edges. This figure was sampled using an algorithm
described in Section 3.4.

dimension such that E = E1 ⊕ . . .⊕Es. A split inner product space is a pair (E, σ) where E is
an inner product space and σ a splitting of E.

We like to think of a splitting of an inner product space as a linearised version of a labelled
partition of a finite set.

Example 2.2. Extreme examples of splittings of a d-dimensional space E are the splittings in
lines, which are the splittings consisting of d pairwise orthogonal lines and, if d is positive, the
coarse splitting σ = (E). The unique splitting of the null vector space is the empty splitting
σ = (). In general, the set of all possible splittings of an inner product space identifies with the
set of flags, complete or partial, of this vector space.

Let Σ(E) denote the set of all splittings of an inner product space E. The group U(E) acts
on Σ(E): for all u ∈ U(E) and σ = (E1, . . . , Es) ∈ Σ(E), we set

u(σ) = (u(E1), . . . , u(Es)).
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The stabiliser of a splitting σ is denoted by U(E, σ). If σ = (E1, . . . , Es), we have, up to an
obvious identification, U(E, σ) = U(E1)× . . .×U(Es). Note that an element of U(E, σ) cannot
exchange elements of σ of equal dimension, if any.

Let us also mention that the set Σ(E) carries a natural partial order. Given two splittings τ
and σ, we say that τ is finer than σ, and we write τ 6 σ, if every element of τ is contained in
an element of σ.

Our main goal in this paper is to associate to some linear data on E, namely a linear subspace
or an operator of a certain kind, a probability measure on the Grassmannian of E, in a way that
is equivariant under the action of a group U(E, σ).

2.2. Grassmannians. Let E be a d-dimensional vector space. For each n ∈ {0, . . . , d}, we
denote by Grn(E) the variety of all n-dimensional linear subspaces of E. It is a smooth compact
connected real manifold on which the group U(E) acts smoothly and transitively. We denote
by νEn the unique Borel measure on Grn(E) that is invariant under the action of U(E) and has
total mass

(
d
n

)
. This measure can be realised as the average under the action of U(E) of any

Borel measure on Grn(E) with total mass
(
n
d

)
. In particular, it can be described concretely as

follows. Let du denote the normalised Haar measure on U(E). Let us choose an orthonormal
basis (e1, . . . , ed) of E. For every subset J of {1, . . . , d}, let us write EJ = Vect(ei : i ∈ J). Let
us also denote by |J | the cardinality of J . Then for all scalar continuous functions f on Grn(E),
we have

(12)
∫

Grn(E)
f(Q) dνEn (Q) =

∫
U(E)

∑
J⊂{1,...,d},|J |=n

f(u(EJ)) du.

We denote by Gr(E) =
⋃d
n=0 Grn(E) the full Grassmannian of E and endow it with the

measure νE =
∑d

n=0 ν
E
n , which has total mass 2d.

Let us now assume that E is an inner product space and let σ = (E1, . . . , Es) be a splitting
of E. Let us say that a linear subspace Q of E is adapted to σ if one, and hence all of the
following equivalent conditions are satisfied:

∃(Q1, . . . , Qs) ∈ Gr(E1)× . . .× Gr(Es), Q = Q1 ⊕ . . .⊕Qs,
Q = (Q ∩ E1)⊕ . . .⊕ (Q ∩ Es),
dimQ = dim(Q ∩ E1) + . . .+ dim(Q ∩ Es).

An adapted subspace Q of (E, σ) comes with an induced splitting σQ = (Q∩E1, . . . , Q∩Es). We
call the s-tuple of integers dimQ = (dim(Q∩E1), . . . ,dim(Q∩Es)) the split dimension of Q. It
will be convenient to denote by d the split dimension of E itself, that is, d = (dimE1, . . . ,dimEs).
We will compare tuples of integers componentwise, so that m 6 n is equivalent, by definition, to
m1 6 n1, . . . ,ms 6 ns. We will also write |n| = n1 + . . .+ ns, so that an adapted subspace of E
with split dimension n has ordinary dimension |n|.

We define the following subsets of Gr(E), which depend on an integer n 6 d and an s-tuple of
integers n 6 d:

• Gr(E, σ), the set of all linear subspaces of E adapted to σ,
• Grn(E, σ) = {Q ∈ Gr(E, σ) : dimQ = n},
• Grn(E, σ) = {Q ∈ Gr(E, σ) : dimQ = n}.

For all n = (n1, . . . , ns), we make without further comment the identification

Grn(E, σ) ' Grn1(E1)× . . .× Grns(Es).
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The space Grn(E, σ) is acted on smoothly and transitively by U(E, σ) and the unique Borel
measure that is invariant under this action and has total mass

(
d1
n1

)
. . .
(
ds
ns

)
is the measure

νE,σn = νE1
n1
⊗ . . .⊗ νEsns .

We will use the notation
(
d
n

)
=
(
d1
n1

)
. . .
(
ds
ns

)
. We define also the measures

νE,σn =
∑

n6d, |n|=n

νE,σn and νE,σ =
d∑

n=0

νE,σn

on Grn(E, σ) and Gr(E, σ) respectively. Note that these measures have total masses

νE,σn (Grn(E, σ)) =

(
d

n

)
and νE,σ(Gr(E, σ)) = 2d,

regardless of the splitting of E.
The measures νE,σn can be described by a formula analogous to (12). Let us say that an

orthonormal basis of E is adapted to σ if the linear subspace generated by any subset of this
basis is adapted to σ. Equivalently, a basis is adapted if every vector of this basis belongs to
one of the subspaces of the splitting. Let us choose such an orthonormal basis (e1, . . . , ed) of E
adapted to σ. Let us denote by du the normalised Haar measure on U(E, σ). Then, for all
continuous functions f on Grn(E, σ), we have, with the notation used in (12),

(13)
∫

Grn(E,σ)
f(Q) dνE,σn (Q) =

∫
U(E,σ)

∑
J⊆{1,...,d}
|J |=n

f(u(EJ)) du.

This formula can easily be adapted to describe, instead of the measure νE,σn , the measure νE,σn

for some n = (n1, . . . , ns): it suffices to restrict the sum in the right-hand side to subsets J such
that dimEJ = n, that is, to subsets that pick n1 vectors in the subspace E1, n2 vectors in E2,
and so on.

Example 2.3. In the case where σ = (E1, . . . , Ed) is a splitting in lines of E, the map from the
power set 2{1,...,d} to Gr(E, σ) which to a set I ⊂ {1, . . . , d} associates the subspace EI =

⊕
i∈I Ei

is a bijection. Moreover, the measure νE,σ is simply the counting measure on Gr(E, σ).

It is useful to realise that Gr(E, σ) is stable under the involution Q 7→ Q⊥ which sends a
subspace of E to its orthogonal. Moreover, this involution exchanges the subsets Grn(E, σ) and
Grd−n(E, σ) in a way that is equivariant under the action of U(E, σ), and hence is measure-
preserving. Thus, if f is a continuous test function on Gr(E, σ), then

(14)
∫

Grn(E,σ)
f(Q) dνE,σn (Q) =

∫
Grd−n(E,σ)

f(Q⊥) dνE,σd−n(Q).

We will use this equality, as well as the following slightly elaborated version of it.

Lemma 2.4. Let f be a continuous test function on Gr(E, σ)× Gr(E, σ). We have the equality∫
Gr(E,σ)

(∫
Gr(Q,σQ)

f(R,Q) dνQ,σQ(R)

)
dνE,σ(Q)

=

∫
Gr(E,σ)

(∫
Gr(Q,σQ)

f(Q⊥, R⊥) dνQ,σQ(R)

)
dνE,σ(Q).
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Proof. It is sufficient to prove that for all vectors of integers 0 6 m 6 n 6 d, the following
equality holds:∫

Grn(E,σ)

(∫
Grm(Q,σQ)

f(R,Q) dν
Q,σQ
m (R)

)
dνE,σn (Q)

=

∫
Grd−m(E,σ)

(∫
Grd−n(Q,σQ)

f(Q⊥, R⊥) dν
Q,σQ
d−n (R)

)
dνE,σd−m(Q)

(15)

since the result follows by summing over m and n.
The set of pairs (R,Q) of subspaces of E such that Q ∈ Grn(E, σ) and R ∈ Grm(Q, σQ) is

a connected component of a partial flag manifold of (E, σ) that could, following tradition, be
denoted by Gr(m,n−m,d−n)(E, σ), the indices being the split dimensions of the successive quotients
of the ascending chain {0} ⊆ R ⊆ Q ⊆ E. This set is acted on transitively by U(E, σ) and the
measure described by the left-hand side of (15) is its invariant measure of total mass

(
d
n

)(
n
m

)
.

The map (R,Q) 7→ (Q⊥, R⊥) commutes to the action of U(E, σ) and sends Gr(m,n−m,d−n)(E, σ)
to Gr(d−n,n−m,m)(E, σ). It pushes the invariant measure on the first space to an invariant measure
of the same mass on the second space, which is thus the unique invariant measure with this mass,
and is precisely the measure described by the right-hand side of (15). �

2.3. Incidence measure of a random linear subspace. With the notation introduced so far,
our aim is to construct and study a family of probability measures on Gr(E, σ). Such measures
can be described, as we explain now, by their incidence measures. We start by reviewing the
more classical situation of point processes on a finite set which, according to Example 2.3, is in
our language the special case where σ is a splitting in lines.

Let X be a random subset of the set S = {1, . . . , d}. By this we mean that we are given
a probability measure µ on the measurable space (2S , 22

S
) and that X is the identity map of

the probability space (2S , 22
S
, µ). The incidence measure of the distribution of X is the finite

measure Zµ on 2S defined by

(16) Zµ = E
[∑
J⊆X

δJ

]
=

∑
J⊆I⊆S

µ({I})δJ ,

so that for all J ⊆ S, we have
P(J ⊆ X) = Zµ({J}).

The letter Z stands here for zeta, in reference to the zeta function of the lattice (2S ,⊆), of which
the Möbius function is the inverse (see for example [Rot64]).

Point processes are often described by their incidence measure rather than by their distribu-
tion.2 It is thus a crucial fact that a measure on 2S is uniquely characterised by its incidence

2This incidence measure, in turn, is usually described by first pushing it forward onto the space
⊔
n>0 S

n by
the map

2S −→ Meas

( ⊔
n>0

Sn
)

I = {i1, . . . , in} 7−→
∑
σ∈Sn

δ(iσ(1),...,iσ(n))
,

and expressing the density of the resulting measure with respect to the measure
∑
n>0 ρ

⊗n, where ρ is some
reference measure on S. For each n > 0, the restriction to Sn of the density is called the n-th correlation function
of the process. We will not need the language of correlation functions, and will instead work with the incidence
measure itself.
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measure, thanks to the following inclusion-exclusion, or Möbius inversion formula: for all I ⊆ S,
we have

(17) P(X = I) =
∑

I⊆J⊆S
(−1)|J\I|P(J ⊆ X).

Recall that here and thereafter, we denote by |J | the cardinality of a set J .
This formula can be checked by a simple computation using the elementary fact that for all

I ⊆ {1, . . . , d}, the alternated sum
∑

J⊆I(−1)J is equal to (1 − 1)|I|, that is to 0, unless I is
empty, in which case it is equal to 1. Let us note that the equality (17) can be written, in terms
of measures, under the form

(18) µ =
∑
J⊆S

(∑
I⊆J

(−1)|J\I|δI

)
Zµ({J}).

Let us now state and prove the results that extend these relations to our setting of measures on
Grassmannians.

Definition 2.5. Let (E, σ) be a split inner product space. Let µ be a Borel measure on Gr(E, σ).
The incidence measure of µ is the measure

(19) Zµ =

∫
Gr(E,σ)

νQ,σQ dµ(Q),

where for every Q ∈ Gr(E, σ), the set Gr(Q, σQ) is seen as a subset of Gr(E, σ), and the measure
νQ,σQ as a measure on Gr(E, σ).

This definition is manifestly analogous to (16), once the lattice (2S ,⊆) has been replaced by
the lattice (Gr(E, σ),⊆).3 Let us stress that the definition of Zµ depends on the splitting.

Let us observe that the total mass of Zµ, which is equal to the integral of the function
Q 7→ 2dimQ with respect to µ, is equal at least to the total mass of µ and at most to 2d times
this mass. In particular, µ is a finite measure if and only if Zµ is a finite measure.

The main result at this point is the following.

Proposition 2.6. Let (E, σ) be a split inner product space. Let µ be a finite measure on Gr(E, σ).
Let Zµ be the incidence measure of µ. Then

(20) µ =

∫
Gr(E,σ)

(∫
Gr(Q,σQ)

(−1)dimQ−dimRδR dνQ,σQ(R)

)
dZµ(Q).

This formula implies in particular that the measure Zµ characterises µ uniquely. In the case
of a splitting in lines, it reduces to (17).

Proof. Since µ is finite, the measure Zµ is also finite and the integral on the right-hand side is
well defined, a priori as a signed measure on Gr(E, σ). Let f be a continuous test function on
Gr(E, σ). Let us compute the integral of f with respect to the measure defined by the right-hand
side of (20). Using the definition of Zµ, we find that this integral is equal to

(21)
∫

Gr(E,σ)

(∫
Gr(Q,σQ)

(∫
Gr(R,σR)

(−1)dimR−dimSf(S) dνR,σR(S)

)
dνQ,σQ(R)

)
dµ(Q).

3Recall that a lattice is a partially ordered set with a notion of meet and join for any pair of elements.
As pointed out in [KR97], the two above-mentioned lattices have analogies but the main (obvious) difference
is that the Grassmannian is not a distributive lattice: in general, for vector spaces E,F,H, we do not have
(E ⊕ F ) ∩H = (E ∩H)⊕ (F ∩H). This property is of crucial importance for the fact that DLP are non trivial
and this argues in favour of the point of view of considering random subspaces instead of point processes, even in
the case of DPP.
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Let us fix Q and consider the expression between the outermost pair of brackets. Let us compute
this expression by applying Lemma 2.4 in the split inner product space (Q, σQ), paying attention
to the fact that orthogonal complements must be taken with respect to Q, so that, for instance,
wherever R⊥ stands in the statement of Lemma 2.4, we must write Q ∩R⊥. We find, thanks to
the equality dim(Q ∩ S⊥)− dim(Q ∩R⊥) = dimR− dimS, that this expression is equal to

(22)
∫

Gr(Q,σQ)

(∫
Gr(R,σR)

(−1)dimS dνR,σR(S)

)
(−1)dimRf(R⊥) dνQ,σQ(R) .

The innermost integral of (22) is equal to (1−1)dimR, that is, to 1 if R = {0} and to 0 otherwise.
Thus, (22) is equal to f(Q), and (21) is the integral of f with respect to µ. �

2.4. Sub-matrices and compressions. In this brief section, we introduce some notation for
sub-matrices of matrices and compressions of linear maps. This notation will allow us to write
the incidence measures of the determinantal subspace processes that we want to define.

Let us consider first sub-matrices. Consider a p × q matrix M . For all I ⊂ {1, . . . , p} and
all J ⊂ {1, . . . , q}, we denote by M I

J the matrix obtained from M by keeping only the rows
indexed by the elements of I and the columns indexed by the elements of J . For example, M {i}

{j}

is the 1× 1 matrix containing the element usually denoted by Mij . We also use the notation M I

instead of M I
{1,...,q} and MJ instead of M {1,...,p}

J .
We find it convenient to introduce the analogue of this notation for linear maps. Let a : F → E

be a linear map between two inner product spaces. For all linear subspaces Q ⊂ E and R ⊂ F ,
we denote by 1R : R→ F the inclusion map, by 1Q : E → Q the orthogonal projection, and we
set

aQR = 1Q ◦ a ◦ 1R : R→ Q.

We also introduce the notation aQ = aQF and aR = aER. For example, (idF )R = 1R and
(idE)Q = 1Q. Note also that aQR = (aR)Q = (aQ)R.

Let us give a few more examples of uses of this notation which will occur later on in the text.
Given two linear subspaces Q and R of an inner product space E, the endomorphism

1RQ = (idE)RQ : Q→ R

is the orthogonal projection of Q on R. In particular,

idQ = 1Q1Q : Q→ Q

is the identity of Q. On the other hand,

ΠQ = 1Q1Q : E → E

is the orthogonal projection on Q seen as an endomorphism of E. Although it is not entirely
consistent with the definitions of this section, we will keep using the notation ΠQ for this pro-
jection.

2.5. An invariant Cauchy–Binet formula. Let us discuss an extension of the classical Cauchy–
Binet formula which will be an important tool in our computations.

Let E and F be two finite-dimensional vector spaces, of respective dimensions d and n. Let
(e1, . . . , ed) and (f1, . . . , fn) be two bases of E and F respectively. Let a : F → E and b : E → F
be two linear maps. Let A and B be the matrices of a and b respectively with respect to the
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chosen bases of E and F . The classical Cauchy–Binet formula computes the determinant of the
endomorphism b ◦ a of F :

det(ba) =
∑

J⊂{1,...,d}
|J |=n

det(BJ) det(AJ).

The individual terms of the sum in the right-hand side of the Cauchy–Binet formula depend on
the choice of the basis of E, but of course, their sum does not. From our point of view, this
classical Cauchy–Binet formula is well adapted to the splitting in lines determined by the basis
that we chose on E. We will now write a Cauchy–Binet formula that is adapted to an arbitrary
splitting of E.

In the next statement, we use the notation introduced in Section 2.4.

Proposition 2.7 (Split Cauchy–Binet formula). Let E and F be two inner product spaces.
Assume that E is endowed with an orthogonal splitting σ = (E1, . . . , Es). Set n = dimF . Let
a : F → E and b : E → F be two linear maps. Then

(23) det(ba) =

∫
Grn(E,σ)

det(bQaQ) dνE,σn (Q) =

∫
Grn(E,σ)

det(aQbQ) dνE,σn (Q).

Let us emphasise that in the case of a splitting in lines, (23) reduces to the classical Cauchy–
Binet formula.

Note also that in general, and by contrast with the classical case, neither det(aQ) nor det(bQ) is
defined in isolation. This is why we give two versions of the Cauchy–Binet formula, corresponding
to the two possible orders of multiplication of the compressed linear maps. In the first integral,
the determinant is that of an endomorphism of F , whereas in the second integral, it is the
determinant of an endomorphism of Q.

Proof. The equality between the two integrals of (23) is a consequence of the following elementary
fact: given any two vector spaces G and H with the same dimension and any two linear maps
g : H → G and h : G→ H, we have det(gh) = det(hg).

In order to prove the first equality, let us start by rewriting the classical Cauchy–Binet formula
in a slightly different way. Set d = dimE and choose an orthonormal basis (e1, . . . , ed) of E that
is adapted to the splitting of E (recall that this means that it is obtained by concatenating
orthonormal bases of E1, . . . , Es). For all J ⊂ {1, . . . , d}, let us denote by EJ the subspace
Vect(ej : j ∈ J) of E. Then the classical Cauchy–Binet formula reads

det(ba) =
∑

J⊂{1,...,d}
|J |=n

det
(
bEJaEJ

)
.

Since this formula holds for every basis of E adapted to σ, we have, for all u ∈ U(E, σ),

det(ba) =
∑

J⊂{1,...,d}
|J |=n

det
(

bu(EJ )a
u(EJ )

)
.

Integrating with respect to the normalised Haar measure on U(E, σ) and using (13), we find the
announced result. �

2.6. A simple formula about determinants. We will also make repeated use of an equality
that, in the case of a splitting in lines, reduces to the multilinearity of the determinant.
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Proposition 2.8. Let (E, σ) be a split inner product space. Let a and b be linear endomorphisms
of E. Let Q ∈ Gr(E, σ) be a linear subspace of E adapted to σ. The following equalities hold:∫

Gr(Q,σQ)
det(aΠR + bΠR⊥) dνQ,σQ(R) = det(aΠQ + b)

and ∫
Gr(Q,σQ)

det(ΠRa + ΠR⊥b) dνQ,σQ(R) = det(ΠQa + b).

Let us emphasise that R⊥ denotes the orthogonal of R in E, not in Q. Also, in the special
case where Q = E, the right-hand side reduces to det(a + b).

Proof. Let us choose an orthonormal basis (e1, . . . , en) of Q adapted to σQ and let us complete
it into an orthonormal basis (e1, . . . , ed) of E. For every subset J of {1, . . . , n}, the matrix of
aΠEJ + bΠE⊥J in this basis is obtained by replacing, in the matrix of b, the columns indexed by
an element of J by the corresponding columns of a. Summing over all subsets of {1, . . . , n} and
using the multilinearity of the determinant with respect to the columns, we find∑

J⊆{1,...,n}

det(aΠEJ + bΠE⊥J ) = det((a + b)ΠQ + bΠQ⊥).

This equality is still true if we replace the basis of Q by its image by an arbitrary element of
U(Q, σQ). Therefore, seeing, for all J ⊆ {1, . . . , n} and all u ∈ Gr(Q, σQ), the subspace u(EJ)
of Q as a subspace of E, we have∑

J⊆{1,...,n}

det(aΠu(EJ ) + bΠu(EJ )
⊥

) = det((a + b)ΠQ + bΠQ⊥).

Integrating with respect to the normalised Haar measure on U(Q, σQ) and using (13), we find
the first equality. The second is deduced from the first by adjunction. �

3. Determinantal linear processes (DLP)

This section defines and shows the existence of DLP, the properties of which will be analysed
in Section 4.

3.1. Definition, existence and uniqueness of DLP. We are now able to give the main
definition of this paper.

Definition 3.1 (Determinantal linear process). Let (E, σ) be a split inner product space. Let k
be a linear endomorphism of E. Let µ be a Borel probability measure on Gr(E, σ). We say that µ
is a determinantal linear process on (E, σ) with kernel k if the incidence measure Zµ is absolutely
continuous with respect to νE,σ, with density given by

(24) ∀Q ∈ Gr(E, σ),
dZµ

dνE,σ
(Q) = det kQQ.

Let us emphasise that, by contrast with the situation of determinantal point processes, the
kernel k is not a matrix, but a linear operator on the space E, on which no preferred basis is
chosen. Our first main result is the following.

Theorem 3.2. Let (E, σ) be a split inner product space. Let k be a self-adjoint linear endomor-
phism of E such that 0 6 k 6 1. There exists a unique determinantal linear process on (E, σ)
with kernel k.
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We will denote the unique determinantal linear process on a split inner product space (E, σ)
with kernel k by µσ,k and will use the shorthand notation DLP for determinantal linear process.

The fact that there is at most one measure µ satisfying (24) is a direct consequence of Propo-
sition 2.6. Indeed, (24) describes the incidence measure Zµ and Proposition 2.6 allows us to
recover µ from Zµ. The reason why the existence of µ is not obvious is that it is not clear that
the signed measure on Gr(E, σ) defined by the inversion formula (20) is a probability measure.

We will prove the existence of a determinantal linear process in quite a direct way, by exhibiting
its density with respect to the uniform measure on Gr(E, σ).

Proposition 3.3. Let (E, σ) be a split inner product space. Let k be a kernel on E. The formula

(25) dµσ,k(Q) = det
(
kΠQ + (1− k)ΠQ⊥

)
dνE,σ(Q)

defines a probability measure on Gr(E, σ), the incidence measure of which is given by (24).

Note that the density of µσ,k, being a real number and the determinant of an operator, is also
the determinant of the adjoint operator, and thus equal to det

(
ΠQk + ΠQ⊥(1− k)

)
.

Note also that a less symmetric, but Hermitian version of the density of µσ,k is given by

(26) dµσ,k(Q) = (−1)dimQ⊥ det(−ΠQ⊥ + k) dνE,σ(Q).

Indeed, with the notation of the proof below, the determinant in this expression is that of the
matrix

det
(
− ΠQ⊥ + k

)
= det

(
A B
B∗ D − I

)
.

Let us finally emphasise that the assumption that k is self-adjoint is only used in the proof
of the positivity of µσ,k. This could be useful for the theory of determinantal measures with
non-symmetric kernels, which form an interesting class which we otherwise leave aside in this
paper.

Proof. We need to prove three things: that the density appearing in (25) is non-negative, that
the integral of this density is 1, and that the incidence measure of µσ,k is indeed given by (24).

1. Let Q be a linear subspace of E. Let us choose an orthonormal basis of E adapted to the
splitting (Q,Q⊥) and write the matrix of k in this basis as

(27)

Q Q⊥( )
Q A B
Q⊥ B∗ D

so that
det
(
kΠQ + (1− k)ΠQ⊥

)
= det

(
A −B
B∗ I −D

)
.

Let us assume for a moment that k satisfies not only 0 6 k 6 1, but the stronger assumption
0 < k < 1. Then k is positive definite, and so is the principal sub-matrix A. In particular,
A is invertible. The classical trick of blockwise elimination, also called the Schur complement
formula4, yields

det
(
kΠQ + (1− k)ΠQ⊥

)
= det(A) det(I −D +B∗A−1B).

4 For the convenience of the reader, let us recall the one sentence proof of this formula, which we will use

again later: multiplying on the left any 2× 2 block matrix M =

(
A B
C D

)
in which A is invertible by the matrix(

I 0
−CA−1 I

)
and taking determinants yields det(M) = det(A) det(D − CA−1B).
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We already noted that A is positive definite, so that det(A) > 0. The matrix I −D, which is a
principal sub-matrix of the matrix of 1 − k in our basis of E, is also positive definite. Finally,
B∗A−1B is self-adjoint and non-negative. The sum (I −D) +B∗A−1B is thus positive definite,
and has positive determinant. Thus,

det
(
kΠQ + (1− k)ΠQ⊥

)
> 0.

To relax the extra assumption that we made on k, it suffices to observe that for every kernel k
and all ε ∈ (0, 12), the operator kε = (1 − 2ε)k + ε is still a kernel and satisfies ε 6 k 6 1 − ε.
Our argument can thus be applied to kε and we conclude by letting ε tend to 0.

2. The total mass of the measure defined by the right-hand side of (25) is easily computed
thanks to Proposition 2.8. We find∫

Gr(E,σ)
det
(
kΠQ + (1− k)ΠQ⊥

)
dνE,σ(Q) = det(k + 1− k) = 1.

3. The computation of the incidence measure of the probability measure µσ,k also relies on
Proposition 2.8. Let us choose a continuous test function f on Gr(E, σ). According to the
definition (19) of the incidence measure, we need to compute

(28)
∫

Gr(E,σ)

(∫
Gr(Q,σQ)

f(R) dνQ,σQ(R)

)
det
(
kΠQ + (1− k)ΠQ⊥

)
dνE,σ(Q).

Using Lemma 2.4, this is equal to∫
Gr(E,σ)

(∫
Gr(Q,σQ)

det
(
kΠR⊥ + (1− k)ΠR

)
dνQ,σQ(R)

)
f(Q⊥) dνE,σ(Q)

and by Proposition 2.8, the integral between brackets is equal to

det((1− k)ΠQ + k) = det(ΠQ + kΠQ⊥)

which, writing the matrix of k in a basis of E adapted to the splitting (Q,Q⊥), is easily seen to
be equal to det kQ

⊥

Q⊥
. Thanks to (14), we find that (28) is equal to∫

Gr(E,σ)
f(Q) det kQQ dνE,σ(Q),

which concludes the proof. �

As everything we do in this paper, this proof applies to the case of a determinantal point
process on a finite space as well. Our proof amounts to showing that the DPP with kernel K
has, with self-explanatory notation, the distribution

∀I ⊆ {1, . . . , d}, P(X = I) = det(KΠI + (I −K)ΠIc).

This is however not the usual way in which the construction of determinantal processes is done.
The classical approach consists in studying first the case where K is a projector, and then
showing that the general case can be realised as a mixture of projector cases. This approach is
also possible, and instructive, in the more general setting that we explore in this paper. Although
this is logically not necessary, we devote the next two sections to a discussion of projection DLP
and of the way in which an arbitrary DLP can be obtained as a mixture of projection DLP.
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3.2. Projection DLP and angle between linear subspaces. We want to give special at-
tention to the case where k is the orthogonal projection on a linear subspace H of E. In this
case, the density of the distribution of a DLP with kernel k can be described in a nice geometric
way in terms of a notion of angle between two linear subspaces, or more precisely of the square
cosine of this angle.

Definition 3.4. Let E be an inner product space. Let F and G be two linear subspaces of E.
We define the square of the cosine of the angle between F and G as

(29) cos2(F,G) = det(1FG1GF ).

This definition is illustrated by Figure 2 below. Let us emphasise that this definition is not
symmetric in F and G: for example, if F is a proper subspace of E, then cos2(F,E) = 1 but
cos2(E,F ) = 0.

α

F

G

1GF

1FG

Figure 2. The square of the cosine of the angle between two lines, here cos2 α =
cos2(F,G), can be computed by two successive orthogonal projections.

A geometric understanding of cos2(F,G) can be based on the observation that it is the product
of the squares of the singular values of the orthogonal projection 1GF : F → G. Writing m =
dimF , these singular values are the half-lengths of the m longest principal axes of the ellipsoid
in G that one obtains by projecting the unit ball of F . Denoting by BF this unit ball, and by
volm the m-dimensional volume (that is, to be precise, the m-dimensional Hausdorff measure),
we have

cos2(F,G) =
volm(1GF (BF ))2

volm(BF )2
.

The number cos2(F,G) is also the product of the squares of the cosines of the principal angles
between F and G as defined by Jordan [Jor75].

Let us prove some basic properties of this function.

Proposition 3.5. Let F and G be two linear subspaces of E.
1. cos2(F,G) ∈ [0, 1].
2. cos2(F,G) = 0⇔ F ∩G⊥ 6= {0}. In particular, if dimF > dimG, then cos2(F,G) = 0.
3. cos2(F,G) = 1⇔ F ⊂ G.
4. cos2(F,G) = cos2(F, 1GF (F )).
5. If dimF = dimG, then cos2(F,G) = cos2(G,F ).
6. Let u ∈ U(E) be an isometry of E. Then cos2(u(F ), u(G)) = cos2(F,G).

Proof. 1. The projections 1GF and 1FG are each other’s adjoint, so that 1FG1GF is a non-negative
self-adjoint operator. Moreover, since any orthogonal projection is 1-Lipschitz continuous, the
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linear map 1FG1GF is 1-Lipschitz continuous on F , and its eigenvalues are bounded by 1. Thus,
cos2(F,G) ∈ [0, 1].

2. The kernel of 1FG1GF = (1GF )∗1GF is equal to the kernel of 1GF , that is, to F ∩G⊥. The second
assertion follows from the inequality dim(F ∩G⊥) > dimF − dimG.

3. If F ⊂ G, then 1FG1GF = idF and cos2(F,G) = 1. Assume conversely that cos2(F,G) = 1.
Since 1FG1GF is a self-adjoint operator on F with eigenvalues between 0 and 1, the only way
it can have determinant 1 is by being the identity of F . Now for all x ∈ F , the inequalities
‖1FG1GFx‖ 6 ‖1GFx‖ 6 ‖x‖ combined with the equality 1FG1GFx = x imply ‖1GFx‖ = ‖x‖ and finally
1GFx = x, so that F ⊂ G.

4. Let G′ = 1GF (F ) be the image of the orthogonal projection of F on G. We have 1GF = 1GG′1
G′
F ,

so that cos2(F,G) = det(1FG1GG′1
G′
F ) = det(1FG′1

G′
F ) = cos2(F,G′).

5. If dimF = dimG, then cos2(F,G) = det((1GF )∗1GF ) = det(1GF (1GF )∗) = cos2(G,F ).
6. This equality is obvious from a structural point of view, since cos2(F,G) is defined using

only the inner product structure of E. It is nevertheless possible to compute

1
u(F )
u(G)1

u(G)
u(F ) = u

u(F )
F 1FG(u−1)Gu(G)u

u(G)
G 1GF (u−1)Fu(F )

and to draw the desired conclusion. �

It follows in particular from the previous proposition that the computation of cos2(F,G) can
always be reduced to the case where dimF = dimG. Indeed, cos2(F,G) 6= 0 if and only if 1GF is
injective on F and in this case, cos2(F,G) = cos2(F, 1GF (F )).

The next proposition provides us with a matricial understanding of the number cos2(F,G).

Proposition 3.6. Let F and G be two linear subspaces of E.
1. Let (f1, . . . , fm) and (g1, . . . , gn) be orthonormal bases of F and G. Set A = (〈gi, fj〉) i=1,...,n

j=1,...,m
.

Then
cos2(F,G) = det(A∗A).

2. Let (f1, . . . , fm, em+1, . . . , ed) be an orthonormal basis of E obtained by completing an
orthonormal basis of F . Let ΠG be the matrix in this basis of the orthogonal projection on G.
Let ΠG1···m

1···m be the top left m×m sub-matrix of ΠG. Then

cos2(F,G) = det ΠG1···m
1···m.

3. Let ΠG : E → E be the orthogonal projection on G. Then

cos2(F,G) = det(ΠG)FF .

Proof. The matrix A is the matrix, with respect to the chosen bases of F and G, of the
map 1GF . The first assertion is thus the direct translation in matricial language of the defini-
tion of cos2(F,G). The second assertion follows from the first and the observation that the top
left m ×m sub-matrix of ΠG is equal to A∗A. The third assertion is a reformulation, without
any explicit reference to bases, of the second. �

The link between the cosine of the angle of two linear subpaces of E and the density of the
distribution of a projection DLP is given by the following proposition.

Proposition 3.7. Let F and G be two linear subspaces of E. Then

det(ΠFΠG + ΠF⊥ΠG⊥) =

{
cos2(F,G) if dimF = dimG,
0 otherwise.
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Proof. Let us start by proving that dimF and dimG must be equal for the determinant not to
be zero. For this, let us assume that the determinant is not zero. Then ΠFΠG + ΠF⊥ΠG⊥ is
onto, so that the range of ΠFΠG is F and the range of ΠF⊥ΠG⊥ is F⊥. This implies on one hand
that dimG > dimF and on the other hand that dimG⊥ > dimF⊥.

Let us now prove the equality when dimF = dimG = n. Let us choose an orthonormal basis
(e1, . . . , ed) of E such that (e1, . . . , en) is a basis of F . Let us write the matrix of ΠG in this basis
and decompose it in blocks according to the splitting E = F ⊕ F⊥:

ΠG =

F F⊥( )
F A B
F⊥ C D

.

Then we know from Proposition 3.6 that cos2(F,G) = detA.
Let us assume first that detA = 0. In this case, cos2(F,G) = 0, so that, by Proposition 3.5,

F and G⊥ have a non-trivial intersection. This forbids the range of ΠF⊥ΠG⊥ from being equal
to F⊥, and forces the determinant to be zero: the equality also holds in this case.

There remains to treat the case where A is invertible. Our assumption that dimF = dimG
implies that A has full rank in the matrix written above, so that there exists a n × (d − n)
matrix V such that B = AV , C = V ∗A and D = CV = V ∗AV , so that

(30) ΠFΠG + ΠF⊥ΠG⊥ =

(
A AV

−V ∗A 1− V ∗AV

)
.

An application of the Schur complement formula (see Footnote 4) shows that the determinant
of this matrix is equal to det(A), as expected. �

An immediate consequence of this proposition is the following expression of the distribution
of a projection DLP.

Proposition 3.8. Let (E, σ) be a split inner product space. Let H be a linear subspace of E of
dimension n. Then the following equality of probability measures holds on Gr(E, σ):

(31) dµσ,ΠH (Q) = cos2(Q,H) dνE,σn (Q).

3.3. General DLP as mixtures of projection DLP. Just as in the classical theory of de-
terminantal point processes, a DLP with a general kernel can be constructed as a mixture of
projection DLP, and our next task is to understand which particular mixture. For this, we will
associate to each kernel k on E a probability measure (indeed several probability measures in
general) on the full Grassmannian of E, such that the projection DLP associated to a random
subspace of E chosen according to this probability measure is a DLP with kernel k.

Let, as always, (E, σ) be a split inner product space. Let k be a kernel on E. Let us say that
a splitting τ = (E1, . . . , Er) of E is adapted to k if k acts as a scalar on each space E1, . . . , Er:

∀j ∈ {1, . . . , r}, ∃λj : k|Ej = λj idEj .

For instance, the splitting of E by the eigenspaces of k is adapted to k, but any finer splitting
of E is also adapted to k. There is more than one splitting adapted to k (up to reordering) if
and only if k has at least one multiple eigenvalue.

Let τ = (E1, . . . , Er) be a splitting of E adapted to k. It turns out that the DLP with kernel k
on (E, τ) is a random subspace of E which will solve our problem. Fortunately, this random
subspace of E is easily described. Indeed, for all tuples n = (n1, . . . , nr), the density of the
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measure µτ,k is constant on Grn(E, τ): setting (d1, . . . , dr) = (dimE1, . . . ,dimEr), we have

∀Q ∈ Grn(E, τ), det
(
kΠQ + (1− k)ΠQ⊥

)
=

r∏
i=1

λnii (1− λi)di−ni .

Accordingly, sampling ηE,τk amounts to choosing, in each space Ei of the splitting τ , on which k
acts as the scalar λi ∈ [0, 1], a uniform linear subspace with dimension distributed according to
the binomial distribution of parameters λi and di.

Example 3.9. The measure µτ,k is a variant of a measure that is classical in the theory of
determinantal point processes and is for instance implicitly defined in [HKPV06, Theorem 7]. In
this paper, the authors choose first an orthogonal basis of eigenvectors and then build a random
subspace of E as the linear span of the subset of this basis obtained by keeping each vector with a
probability equal to the corresponding eigenvalue, independently of the others. In our language,
they consider the case where τ is a splitting in lines of E adapted to k.

If k = 1
2 idE for example, the authors of [HKPV06] consider the uniform measure on the set of

the 2d linear subspaces generated by all possible subsets of a fixed orthogonal basis of E, whereas
we allow for example, by taking τ = (E), a uniform linear subspace of binomial dimension B(n, 12),
a measure which has full support in Gr(E).

The main result of this section is the following.

Proposition 3.10. Let (E, σ) be a split inner product space. Let k be a kernel on E. Let τ be
a splitting of E adapted to k. Then the following equality of probability measures on Gr(E, σ)
holds:

(32) µσ,k =

∫
Gr(E,τ)

µσ,ΠH dµτ,k(H).

In words: sampling a subspace H of E under the measure µτ,k and then a second subspace
under the measure µσ,ΠH yields a random linear subspace of E distributed as a DLP on (E, σ)
with kernel k. Let us emphasise again that the splitting τ can be chosen arbitrarily among all
splittings adapted to k.

Proof. We prove the equality of the continuous densities of both sides of (32) with respect
to νE,σ at a point Q of Gr(E, σ). On the left-hand side, this density is equal, by (25), to
det
(
kΠQ + (1− k)ΠQ⊥

)
. On the right-hand side, it is equal to∫

Gr(E,τ)
det
(
kΠH + (1− k)ΠH⊥

)
det
(
ΠHΠQ + ΠH⊥ΠQ⊥

)
dνE,τ (H).

Multiplying the two determinants inside the integral yields det(kΠHΠQ + (1− k)ΠH⊥ΠQ⊥). The
fact that the splitting τ is adapted to k implies that k commutes to ΠH for every H ∈ Gr(E, τ).
Thus, we are computing the integral∫

Gr(E,τ)
det(ΠHkΠQ + ΠH⊥(1− k)ΠQ⊥) dνE,τ (H)

which, according to Proposition 2.8, is precisely equal to det
(
kΠQ + (1− k)ΠQ⊥). �
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3.4. Sampling of DLP. In this section, we give a formal statement and proof of the sampling
procedure for DLP explained in Section 1.3, see (9). In fact, we prove a slightly more general
result. Let us start by establishing a property of uniform measures on Grassmannians.

Recall the partial order that we introduced, at the very beginning of this study, on the set of
all splittings of E (see Section 2.1): a splitting δ is finer than the splitting σ if each element of δ
is contained in an element of σ. Recall also that we denote simply by du the normalised Haar
measure on the group U(E, σ).

Proposition 3.11. Let E be an inner product space. Let δ and σ be two splittings of E. Assume
that δ is finer than σ. Then for every isometry u ∈ U(E, σ), the splitting u(δ) is still finer than σ,
and we have

(33)
∫
U(E,σ)

νE,u(δ) du = νE,σ,

where for every u ∈ U(E, σ), the space Gr(E, u(δ)) is seen as a subspace of Gr(E, σ), and νE,u(δ)
as a measure on Gr(E, σ).

Proof. We use the concrete description of the uniform measures on Grassmannians given by (13).
Let (e1, . . . , ed) be an orthonormal basis of E adapted to δ. Then for every u ∈ U(E, σ), the basis
(u(e1), . . . , u(ed)) is adapted to u(δ), and to σ. Thus, the left-hand side of (33) is the measure∫

U(E,σ)

(∫
U(E,u(δ))

∑
J⊆{1,...,d}

δv(u(EJ )) dv

)
du.

For all u ∈ U(E, σ), we have the equality U(E, u(δ)) = uU(E, δ)u−1 of subgroups of U(E, σ).
Thus, the left-hand side of (33) is equal to∫

U(E,δ)

(∫
U(E,σ)

∑
J⊆{1,...,d}

δuw(EJ ) du

)
dw.

The invariance of the Haar measure by translation on the right implies that the integral between
the brackets does not depend on w and we are left with the expression of the right-hand side
of (33) given by (13). �

The result that will lead us to the sampling algorithm is the following.

Proposition 3.12. Let E be an inner product space. Let δ and σ be two splittings of E. Assume
that δ is finer that σ. Let k be a kernel on E. Then the following equality of measures holds on
Gr(E, σ):

(34) µσ,k =

∫
U(E,σ)

µu(δ),k du.

In this statement, as in the statement of Proposition 3.11, we see, for all u ∈ U(E, σ), the
measure µu(δ),k as a measure on Gr(E, σ), through the natural inclusion Gr(E, u(δ)) ⊆ Gr(E, σ).

Proof. Let f be a continuous test function on Gr(E, σ). We compute the integral of f with
respect to the right-hand side of (34), using the definition (25) of the DLP. This integral is equal
to ∫

U(E,σ)

∫
Gr(E,u(δ))

f(Q) det(kΠQ + (1− k)ΠQ⊥) dνE,u(δ)(Q)

=

∫
Gr(E,σ)

(
Q 7→ f(Q) det(kΠQ + (1− k)ΠQ⊥)

)
d

∫
U(E,σ)

νE,u(δ) du.
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According to Proposition 3.11, the measure against which the last integral is computed is nothing
but νE,σ. Hence, the integral is equal to∫

Gr(E,σ)
f(Q) det(kΠQ + (1− k)ΠQ⊥) dνE,σ(Q) =

∫
Gr(E,σ)

f dµσ,k,

and the result is proved. �

Let us note that in this proof, the particular form of the density plays no role whatsoever.
This relates to the fact that the distributions of DLP with the same kernel but relative to
different splittings have the same density with respect to different reference measures (recall
Proposition 3.3).

In the case where δ is a splitting in lines, we arrive at the sampling procedure (9) explained
in Section 1.

Proposition 3.13 (Sampling of DLP). Let (E, σ) be a split inner product space. Let k be a
kernel on E. In each element of σ, choose uniformly at random an orthonormal basis. Agregate
these bases to produce a (random) orthonormal basis (e1, . . . , ed) of E. Let K be the matrix of k
in this basis. Sample the determinantal point process with kernel K on {1, . . . , d}. This produces
a (random) subset X of {1, . . . , d}. Then the random linear subspace Vect(ei : i ∈ X) of E is
distributed according to µσ,k.

For the sake of completeness, let us briefly give an algorithm for sampling a DPP, denoted
by X, on {1, . . . , d} with kernel K. This recursive algorithm extends [HKPV06, Algorithm 18]
to the case where the kernel is not necessarily a projection:5

• write K =

(
K11 R
C K ′

)
as a (1, (d− 1))× (1, (d− 1)) block matrix,

• add 1 to X with probability K11,
• if 1 has been picked (so that K11 > 0), sample a DPP X′ on {2, . . . , d} with kernel
K ′ −K−111 CR and set X = {1} ∪ X′,

• if 1 has not been picked (so that K11 < 1), sample a DPP X′ on {2, . . . , d} with kernel

Id−1 − ((Id−1 −K ′)− (1−K11)
−1CR) = K ′ + (1−K11)

−1CR

and set X = X′.
This algorithm therefore only requires sampling Bernoulli random variables and performing

linear algebra operations. The fact that the above operations yield the right probabilities is a
consequence of the Schur complement formula again (recall Footnote 4).

The task of picking a uniform random orthonormal basis can be done easily provided one
knows how to sample a Gaussian distribution and perform a Gram–Schmidt orthonormalisation
procedure, see e.g. [Dia05].

This provides a concrete way to ask a computer to sample a DLP, and this is how Figure 1
was sampled for instance.

4. Geometry of DLP

We will now describe some geometric properties of DLP. Most of these properties will parallel
classical properties of DPP. Nevertheless, the content of Section 4.3 is more specific to DLP, and
the main result of Section 4.5 (Theorem 4.13), although true and meaningful for DPP, does not
seem to be as well known in this case as it would deserve to be, and it was new to us.

5In the literature, the preferred sampling method usually seems to be to use the fact that a DPP for a general
kernel is a mixture of projection DPP, see Example 3.9, but we prefer this more direct way to proceed.
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In all this section, we fix a split inner product space (E, σ), with σ = (E1, . . . , Es), and a
kernel k on E. We let Q be a random linear subspace of E distributed according to µσ,k.

4.1. Basic properties. Let us start with a property of equivariance of DLP.

Proposition 4.1 (Equivariance). For all u ∈ U(E), the random linear subspace u(Q) of E is a
DLP on (E, u(σ)) with kernel uku−1.

In terms of measures, and considering the induced map u : Gr(E, σ) → Gr(E, u(σ)), this
property reads

(35) u∗µσ,k = µu(σ),uku−1 .

Proof. The result follows at once from the fact that the image of the measure νE,σ by u is the
measure νE,u(σ) and the equality

det
(
kΠu−1(Q) + (1− k)Πu−1(Q)⊥

)
= det

(
uku−1ΠQ + (1− uku−1)ΠQ⊥

)
,

which itself follows from Πu−1(Q) = u−1ΠQu and det(u) = 1. �

Let us stress that this property loses its substance in the case of DPP. Indeed, one works in
this case with a fixed splitting in lines σ of E, and the group U(E, σ) reduces to the product of
the isometry groups of the lines, which acts trivially on the finite set Gr(E, σ).

The next property has to do with the orthocomplement of Q, and extends the fact that the
complement of a finite DPP is still a DPP.

Proposition 4.2 (Orthocomplement). The random linear subspace Q⊥ of E is a DLP on (E, σ)
with kernel 1− k.

Proof. This follows immediately from the invariance of the measure νE,σunder the map Q 7→ Q⊥

(see (14)) and from the expression (25) of the density of µσ,k with respect to νE,σ. �

Let us now turn to a scaling property, which in the case of DPP is the following: sampling a
DPP with kernel K and then erasing each point of the resulting set independently of the others
with probability 1−p results in a DPP with kernel pK. Note that erasing each point of a subset I
of {1, . . . , d} with probability 1 − p amounts to sampling a DPP with kernel pP I , where P I is
the diagonal matrix with 1’s in the columns labelled by I and 0’s elsewhere.

The similar statement for DLP is this: if after sampling our DLP Q with kernel k we keep,
for each i ∈ {1, . . . , s}, from Q ∩ Ei only a uniform random subspace with binomial dimension
of parameters dim(Q ∩ Ei) and p, we obtain a DLP with kernel pk.

In order to articulate and prove this statement, we need to understand the operation on Q that
we just described in terms of DLP. Let us approach this question in the form of several simple
examples. Each of the following statements can be checked using the algorithmic description of
DLP given by Proposition 3.13.

Example 4.3. Let p ∈ [0, 1] be a real. Let us agree on the name p-binomial subspace of an
inner product space F for a uniformly distributed subspace of F with binomial dimension with
parameters dimF and p.

1. A DLP in the coarse split inner space (E, (E)) with kernel k = p idE is a p-binomial
subspace of E.

2. A DLP in the split inner product space (E, σ) with kernel p idE is the direct sum over
i ∈ {1, . . . , s} of a p-binomial subspace of Ei.

3. Let Q be a subspace of E adapted to σ, that is, an element of Gr(E, σ). A tempting but
wrong guess would be that a DLP in (E, σ) with kernel pΠQ is the sum over i ∈ {1, . . . , s} of a
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p-binomial subspace of Q ∩ Ei.6 For instance, consider the case where E is a Euclidean plane
endowed with the coarse splitting (E), and Q is a line of E. Then a DLP with kernel ΠQ is
supported by the whole set of lines in E, the density of probability of a line forming an angle α
with Q being cos2(α).7

In fact, we need to use Q to form a new splitting of E that we denote by σ ∨ Q, and which
consists in the non-zero subspaces in the list

Q ∩ E1, Q
⊥ ∩ E1, . . . , Q ∩ Es, Q⊥ ∩ Es.

The DLP on (E, σ ∨ Q) with kernel pΠQ is the random space we were looking for: the direct
sum over i ∈ {1, . . . , s} of a p-binomial subspace of Q ∩ Ei.

Here is the formal statement.

Proposition 4.4 (Scaling). Let p ∈ [0, 1] be a real number. Then

E[µσ∨Q,pΠQ ] =

∫
Gr(E,σ)

µσ∨Q,pΠQ dµσ,k(Q) = µσ,pk.

Proof. Let us consider a point R ∈ Gr(E, σ). The density at R of the measure E[µσ∨Q,pΠQ ] with
respect to νE,σ is equal to∫

Gr(E,σ)
det
(
kΠQ + (1− k)ΠQ⊥

)
det
(
pΠQΠR + (1− pΠQ)ΠR⊥

)
dνE,σ(Q).

Multiplying the two determinants and reordering the terms, we find the expression∫
Gr(E,σ)

det
(
kΠQ(pΠR + (1− p)ΠR⊥) + (1− k)ΠQ⊥ΠR⊥

)
dνE,σ(Q).

Now we claim that ΠR and ΠQ commute in this expression. Indeed, the subspace Q is adapted
to σ, and R is sampled under the measure µσ∨Q,pΠQ . According to the discussion preceding
the statement of Proposition 4.4, R is almost surely a subspace of Q. More precisely, for R ∈
Gr(E, σ ∨Q), the determinant det

(
pΠQΠR + (1− pΠQ)ΠR⊥

)
vanishes whenever R 6⊆ Q. Thus,

the value at R of the density of the measure that we are computing is equal to∫
Gr(E,σ)

det
(
k(pΠR + (1− p)ΠR⊥)ΠQ + (1− k)ΠR⊥ΠQ⊥

)
dνE,σ(Q).

Applying Proposition 2.8, we find that it is equal to

det
(
k(pΠR + (1− p)ΠR⊥) + (1− k)ΠR⊥

)
= det

(
pkΠR + (1− pk)ΠR⊥

)
,

and the result is proved. �

4.2. Dimension and split dimension.

Proposition 4.5 (Dimension I). Assume that k is an orthogonal projection of rank n. Then
dim Q = n almost surely.

Proof. Indeed, the density of µσ,k, which is given by (25), is, according to Proposition 3.7,
supported by Grn(E, σ). �

6Even more tempting but equally wrong would be the guess that this DLP is a p-binomial subspace of Q.
7The reader wondering how the function cos2, which notoriously has mean 1

2
, can be a density of probability,

should remember that our reference measure on the set of lines of E has total mass
(
2
1

)
= 2.
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We can in fact describe, in general, the Laplace transform of the split dimension of Q. For
that purpose, it will be useful to consider a class of very simple linear operators on E, namely
those which act by a scalar on each of the subspaces E1, . . . , Es. We will call such operators
split scalar operators. The set of split scalar operators is a subalgebra of End(E), indeed the
commutant of the subalgebra End(E1)⊕ . . .⊕End(Es). In particular, an operator is split scalar
if and only if it commutes to ΠQ for all Q ∈ Gr(E, σ).

We introduce s indeterminates t1, . . . , ts and consider the generic split scalar operator

T = t1ΠE1 + . . .+ tsΠ
Es ∈ C[t1, . . . , ts]⊗ End(E).

Proposition 4.6 (Split dimension). Let k be a kernel on (E, σ). In the ring of formal series
C[[t1, . . . , ts]], the following equalities hold:

(36) E
[
eTr(TΠQ)

]
= E

[
exp

s∑
i=1

ti dim(Q ∩ Ei)
]

= det(idE + k(eT − 1)).

Proof. The first equality is straightforward. The left-hand side is equal to

E
[

det
(
ΠQeT + ΠQ⊥

)]
=

∫
Gr(E,σ)

det
(
kΠQ + (1− k)ΠQ⊥

)
det
(
ΠQeT + ΠQ⊥

)
dνE,σ(Q)

=

∫
Gr(E,σ)

det
(
kΠQeT + (1− k)ΠQ⊥

)
dνE,σ(Q)

and since T commutes with ΠQ for every Q adapted to σ, this is equal to∫
Gr(E,σ)

det(keTΠQ + (1− k)ΠQ⊥) dνE,σ(Q)

which, by Proposition 2.8, is in turn equal to det(1 + k(eT − 1)). �

It is tempting to replace, in E
[
eTr(TΠQ)

]
, the operator T by something more general than

a split scalar operator. Unfortunately, looking at the proof, we see that a crucial step is the
commutation of T with ΠQ for every Q adapted to σ, and this is equivalent to T being scalar on
each block of the splitting. This does not of course rule out the existence of a different argument
that would allow one to treat a more general situation, but assuming that there is one, we were
not able find it.

Corollary 4.7 (Dimension II). Let λ1, . . . , λd be the eigenvalues of the kernel k. Then the dimen-
sion of Q is distributed as the sum of d independent Bernoulli random variables with parameter
λ1, . . . , λd.

Proof. Specialising Proposition 4.6 to t1 = . . . = ts = t, we find

E
[
et dimQ

]
=

d∏
i=1

(λie
t + (1− λi)),

which is the expected Laplace transform. �

These results could have been deduced from their version for DPP, which is known to be true,
using the sampling algorithm described in Proposition 3.13. However, we believe that the more
canonical proofs that we provide reveal more of the structure of DLP.
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4.3. Support. The question of the support of the distribution of a DLP, which is a probability
measure on a continuous space, is more subtle and interesting than the corresponding question
for a DPP.

We start by proving that the support of a DLP is a union of connected components of Gr(E, σ).
Recall that these connected components are exactly the subsets Grn(E, σ), for 0 6 n 6 d, where d
is the split dimension of E. Let us denote by [[0, d]] the set of possible split dimensions of an
element of Gr(E, σ).

In the following proposition, by the support of µσ,k, we mean the smallest closed subset of
Gr(E, σ) with measure 1. We denote it by Supp(µσ,k).

Proposition 4.8. Let (E, σ) be a split inner product space. Let k be a kernel on E. There exists
a subset Dσ,k ⊆ [[0, d]] such that

Supp(µσ,k) =
⋃

n∈Dσ,k

Grn(E, σ).

We will prove this proposition by proving that for all n, the density of µσ,k given by (25)
is either identically zero on Grn(E, σ) or positive on a dense subset. For this, we will use the
following lemma about the vanishing set of a representative function on a compact matrix group.
By a compact matrix group, we mean a compact subgroup of GL(E) for some finite-dimensional
vector space E.

Lemma 4.9. Let E be a real or complex vector space. Let G ⊂ GL(E) be a compact group. Let
f : End(E) → R be a polynomial function on the real vector space End(E). Then f vanishes
either identically on G, or on a closed subset of G with empty interior.

Proof. The proof relies on two facts. The first is a Taylor formula for f , and the second is the
fact that the exponential map of G is surjective.

Let g be the Lie algebra of G. For every X ∈ g, the Lie derivative in the direction X is the
differential operator LX on G which acts on a smooth function, for instance f , by

(LXf)(g) =
d

dt |t=0
f(getX).

For every g ∈ G and X ∈ g, it follows from the fact that f is a polynomial function that the
function of one real variable t 7→ f(getX) is real analytic. Thus, we have the Taylor formula

f(geX) =

∞∑
n=0

1

n!

(
(LX)nf

)
(g).

Let us now assume that the interior of the vanishing set of f on G is not empty, and contains
an element g ∈ G. Then for all X ∈ g, all iterated Lie derivatives of f at g in the direction X
vanish, and f(geX) = 0.

Since G is compact, the exponential map exp : g → G is onto, and the last equality implies
that f vanishes identically on G. �

Proof of Proposition 4.8. Let us choose n ∈ [[0, d]] and assume that the density of µσ,k with
respect to νE,σ is positive at a point Q0 of Grn(E, σ).

Let us consider the maps U(E, σ)
π−→ Grn(E, σ)

g−→ R defined by

π(u) = u(Q0) and g(Q) = det(kΠQ + (1− k)ΠQ⊥).

Our assumption is that g(Q0) > 0. On U(E, σ), the function f = g ◦ π can be written

f(u) = det(kuΠQ0u∗ + (1− k)uΠQ⊥0 u∗).



DETERMINANTAL PROBABILITY MEASURES ON GRASSMANNIANS 29

In particular, it is the restriction to U(E, σ) of the polynomial function defined by the same
formula on End(E1)× . . .× End(Es).

Let V be the vanishing set of g on Grn(E, σ). The vanishing set of f on U(E, σ) is π−1(V ).
By our assumption and Lemma 4.9, the interior of π−1(V ) is empty. Since π is continuous and
onto, this implies that the interior of V is empty. In particular, any non-empty open subset of
Grn(E, σ) contains a point, hence an open subset, where g is positive, and has positive measure
for µσ,k. �

Now, we would like to understand better the set Dk, that is, identify those n for which
Grn(E, σ) is in the support of µσ,k. The following result does this in a way.

Proposition 4.10. Let (E, σ) be a split inner product space. Let k be a kernel on E. For all
n = (n1, . . . , ns) ∈ [[0, d]], we have

µσ,k(Grn(E, σ)) = the coefficient of tn1
1 . . . tnss in det(Tk + (1− k)).

It may not even be obvious that this coefficient is non-negative. We know from the proof of
Proposition 3.3 that any kernel can be approximated by invertible kernels. But if k is invertible,
then

det(Tk + (1− k)) = det(k) det(T + k−1(1− k)).

The determinant of k is positive and the coefficient of tn1
1 . . . tnss in the second determinant is a

sum of principal minors of k−1(1− k), which are all positive.
Moreover, specialising to t1 = . . . = ts = 1 and summing over n, we find that the sum of all

these coefficients is equal to det(k + 1− k) = 1.

Proof of Proposition 4.10. By definition of µσ,k, we have

µσ,k(Grn(E, σ)) =

∫
Grn(E,σ)

det(kΠQ + (1− k)ΠQ⊥) dνE,σn (Q).

What we need now is a refinement of Proposition 2.8: we claim that for all endomorphisms a
and b of E, we have

(37)
∫

Grn(E,σ)
det(aΠQ + bΠQ⊥) dνE,σn (Q) = the coefficient of tn1

1 . . . tnss in det(Ta + b).

Indeed, let us choose an orthonormal basis (e1, . . . , ed) of E adapted to σ. Writing matrices in
this basis, we can compute the coefficient of tn1

1 . . . tnss in det(Ta + b) and find that it is equal to∑
J⊆{1,...,d}
dimEJ=n

det(aΠEJ + bΠE⊥J ).

Averaging over all orthonormal bases of E adapted to σ as we did in the proof of Proposition 2.8
yields the left-hand side of (37). The result follows immediately. �

In a later section, we will provide an alternative description of these coefficients in terms of
the Euclidean geometry of the exterior algebra of E, see Section 5 and Proposition 5.8.

In the case where k is an orthogonal projection, it is possible to characterise more explicitly
those n which have positive probability of occurring as split dimensions of a DLP with kernel k.
We borrow this result to [Laf03, Proposition 1.1] and rephrase it in our context to obtain the
following statement.
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Proposition 4.11. Let (E, σ) be a split inner product space. Let H be a linear subspace of E.
Set n = dimH. Let n = (n1, . . . , ns) 6 d be such that n1 + . . .+ ns = n. Then the following two
assertions are equivalent.

1. µσ,ΠH (Grn(E, σ)) > 0.
2. For all T ⊂ {1, . . . , s}, the following inequality holds:∑

t∈T
nt > dim(H ∩

⊕
t∈T

Et).

Let us indicate that the questions treated in this section can usefully be formulated in the
language of matroids. For instance, the last inequality defines the rank function of a matroid
on {1, . . . , s} and the support of the split dimension is an example of a matroid polytope. A
beautiful short account of matroid theory can be found in [Ard18].

4.4. Unicity. In this section and the next, we are concerned with the case where the kernel of
our DLP is a projection.

Proposition 4.12 (Unicity). Assume that k is the orthogonal projection on a linear subspace H
of E. Then almost surely, one has the equality

Q⊕H⊥ = E.

Proof. Since, by Proposition 4.5, dim Q+dimH⊥ = dimE almost surely, it suffices to prove that
Q ∩H⊥ = 0 almost surely. But the second assertion of Proposition 3.5 ensures that the density
of µσ,k, given by (31), vanishes at every Q ∈ Gr(E, σ) that does not satisfy this condition. �

This property can be interpreted as a statement of unicity in a sense that was already explored
by Lyons and Bufetov–Qiu–Shamov for DPP in [Lyo03, BQS16]: it says that almost surely, the
map

H −→ Q∗

h 7−→ 〈h, ·〉
is a bijection. If we think of H as a space of linear functions on E, then Q is almost surely a
unicity set for this space of functions: any function in this space that vanishes on Q is identically
zero.

We will come back to this property a bit later and pursue the idea that Q is a (random)
substitute to H that is adapted to the splitting σ. In particular, one can consider the projection
on Q parallel to H⊥, that is random and not orthogonal, as a substitute for the orthogonal
projection on H.

4.5. Mean projection. Let us consider again the case where the kernel k is the orthogonal
projection on some linear subspace H of E, of dimension n. In this case, the associated DLP
has almost surely dimension n and is, according to Proposition 4.12, a linear complement of H⊥.
We will study the almost surely defined projection on Q parallel to H⊥. Let us emphasise that
this is in general not an orthogonal projection.

We will prove that, in a strong sense, the average of this projector is the orthogonal projection
onto H. More precisely, we will prove that in any basis of E, the average of every minor, principal
or not, of the matrix of this random non-orthogonal projection is equal to the corresponding minor
of the orthogonal projection onto H. The fact that Theorem 4.13 is equivalent to this strong
property is more apparent from its reformulation in Theorem 5.9.

To the best of our knowledge, this fact is not well known even in the case of DPP, although
it is true, and not trivial, in this case. It was proved in a weaker form in the special case of
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cycle-rooted spanning forests of a graph in [CCK13, Theorem A] (the weaker form of that result
in the case of spanning trees is presented in [Big97, Proposition 7.3] and arguably dates back to
Kirchhoff, although not stated in this form; an earlier version is in [NS61]). One motivation for
the following theorem was to revisit the proofs of these special cases and put them in a unified
general framework.

Theorem 4.13 (Mean projection). Assume that k is the orthogonal projection on a linear sub-
space H of E. Let PQ denote the almost surely defined projector onto Q parallel to H⊥. Let a be
a linear endomorphism of E. Then

(38) E
[

det
(
1 + aPQ

)]
= det

(
1 + aΠH

)
.

Thanks to the self-adjointness of ΠH , one can replace, in (38), the operator PQ by its adjoint,
which is the projection on H parallel to Q⊥.

Proof. Let us write the left-hand side of (38) using (25). We find

E
[

det
(
1 + aPQ

)]
=

∫
Grn(E,σ)

det
(
1 + aPQ

)
det
(
ΠHΠQ + ΠH⊥ΠQ⊥

)
dνE,σn (Q).

We will now multiply the determinants. Before that, let us observe that, H⊥ being by definition
the kernel of PQ, we have PQΠH⊥ = 0. Moreover, we claim that PQΠHΠQ = ΠQ. Indeed, if v is
a vector of Q, then ΠHv− v belongs to H⊥, so that PQΠHv = PQv and PQv = v. Thus, we have

E
[

det
(
1 + aPQ

)]
=

∫
Grn(E,σ)

det
(
(ΠH + a)ΠQ + ΠH⊥ΠQ⊥

)
dνE,σn (Q).

Using (37) again (as in the proof of Proposition 4.10), now summed over all n’s with weight n,
we find that

E
[

det
(
1 + aPQ

)]
= the coefficient of tn in det

(
t(a + ΠH) + ΠH⊥

)
.

To see that this coefficient is the right-hand side of (38), let us write the matrix of a in a basis
adapted to the splitting (H,H⊥) of E:

a =

H H⊥( )
H A B
H⊥ C D

.

Then, assuming that A+ 1 is invertible, we find by Schur’s formula

det

(
tA+ t tB
tC tD + 1

)
= det(tA+ t) det(tD + 1− tC(A+ 1)−1B).

The first term of the product on the right-hand side is tn det(A+ 1) and the second is 1 +O(t).
The coefficient of tn in this determinant is thus det(A+ 1), which is equal to det(1 + aΠH). �

4.6. Stochastic domination. Let us consider two kernels k1 and k2 on (E, σ) such that 0 6
k1 6 k2 6 1. We want to establish a property of stochastic domination of the measure µσ,k1 by
the measure µσ,k2 . In fact, we prove the existence of a monotone coupling of these two DLP.

Proposition 4.14 (Monotone coupling). Let k1 and k2 be two kernels on (E, σ) such that 0 6
k1 6 k2 6 1. There exists a coupling of a DLP Q1 with kernel k1 and a DLP Q2 with kernel k2
such that Q1 ⊆ Q2 almost surely.
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Proof. We use the corresponding result for DPP, proved for instance by Lyons in [Lyo03, The-
orems 6.2 and 8.1] (based on a result of stochastic domination and a theorem of Strassen), and
infer it for DLP using Proposition 3.13. We choose a uniform orthonormal basis (e1, . . . , ed) of
E adapted to σ. Then, we write the matrices K1 and K2 of our kernels in this basis, and sample
the corresponding DPP X1 and X2 in a way that X1 ⊆ X2. Finally, we set Q1 = Vect(ei : i ∈ X1)
and Q2 = Vect(ei : i ∈ X2). �

It would be more satisfactory to have a proof of the existence of this coupling, or equivalently,
of the stochastic domination of µσ,k1 by µσ,k2 , that does not depend on previous results of DPP,
but we were not able to find such a proof.

4.7. Negative association. It is known that DPP satisfy a property called negative association
(see e.g. [Lyo03, Theorems 6.2 and 8.1] or [BBL09, Theorem 3.4]). DLP satisfy an analogous
property.

Proposition 4.15. Let R be a subspace of E that is the direct sum of some of the spaces
E1, . . . , Es. Let f, g be continuous non-decreasing functions on Gr(E, σ). Then E[f(Q∩R)g(Q∩
R⊥)] 6 E[f(Q ∩R)]E[g(Q ∩R⊥)].

Proof. As in the proof of Proposition 4.14, we deduce this from the corresponding result for DPP
along with Proposition 3.13. �

Let us indicate an inequality that relates to this property of negative association: given any
two orthogonal elements R1 and R2 of Gr(E, σ), the inequality

(39) det kR1⊕R2
R1⊕R2

6 det kR1
R1

det kR2
R2

holds, and shows informally that

dµσ,k(R1 ⊕R2 ⊆ Q) 6 dµσ,k(R1 ⊆ Q) dµσ,k(R2 ⊆ Q).

This inequality is nothing more than the following property, which must be well known, but of
which we give a short proof.

Lemma 4.16. Let M be a non-negative Hermitian matrix written in block form

M =

(
A B
B∗ D

)
in such a way that A and D are square matrices. Then det(M) 6 det(A) det(D).

Proof. Adding if necessary a small multiple of the identity to M , which can be removed by
continuity of the determinant at the end of the proof, we can and will assume that M , A and D
are non singular. Then, according to a classical trick, we can eliminate B and B∗ by multiplying
M on the left and on the right by appropriate matrices:(

I 0
−B∗A−1 I

)(
A B
B∗ D

)(
I −A−1B
0 I

)
=

(
A 0
0 D −B∗A−1B

)
.

On one hand, taking the determinant on both sides of this equality yields

det(M) = det(A) det(D −B∗A−1B).

On the other hand, the left-hand side of the equality is a positive Hermitian matrix. Therefore,
D − B∗A−1B, which is a principal sub-matrix of a positive Hermitian matrix, is also positive
Hermitian. Since B∗A−1B is non-negative, we thus have

0 6 D −B∗A−1B 6 D.
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Now, if S and D are positive Hermitian matrices such that 0 6 S 6 D, then 0 6 D−
1
2SD−

1
2 6 I,

so that det(S) 6 det(D). Thus, our last inequality entails

det(D −B∗A−1B) 6 det(D),

and the proof is complete. �

4.8. Restriction. Let us choose an integer t ∈ {0, . . . , s} and consider the linear subspace
F = E1 ⊕ . . .⊕ Et of E, endowed with the splitting τ = (E1, . . . , Et).

Proposition 4.17 (Restriction). The random subspace Q ∩ F of F is a DLP on (F, τ) with
kernel kFF .

Proof. It is possible to prove the result by computing the density of the distribution of Q∩F on
Gr(F, τ), using Proposition 2.8.

Another possibility is to compute the incidence measure of the distribution of Q ∩ F . This
can be done almost without any computation, by observing that the square

M1(Gr(E, σ))
Z //

( · ∩F )∗
��

M(Gr(E, σ))

ResF
��

M1(Gr(F, τ))
Z //M(Gr(F, τ))

is commutative. In this diagram,M1 andM denote respectively the spaces of Borel probability
measures and Borel measures on the corresponding Grassmannians. The horizontal arrows send
a probability measure to its incidence measure. The vertical arrow on the left sends a probability
measure to its image measure by the map Q 7→ Q ∩ F . The vertical arrow on the right sends
a measure to its restriction to the subset Gr(F, τ) of Gr(E, σ). To check that this square is
commutative, it suffices to observe that for every Q ∈ Gr(E, σ), one has

ResF (ZδQ) = ZδQ∩F = νQ∩F,τQ∩F .

The case of a general probability measure on Gr(E, σ) follows by the linearity of all maps of the
diagram.

Applying this observation to the distribution of Q, we find that the incidence measure of the
distribution of Q∩F is the restriction to Gr(F, τ) of the incidence measure of Q. By definition of
a DLP, this restriction has the density R 7→ det kRR with respect to νF,τ . To complete the proof,
we observe that for all R ∈ Gr(F, τ),

det kRR = det(kFF )RR

and kFF is a kernel on F . �

4.9. Determinantal linear processes in infinite-dimensional spaces. Our understanding
of restrictions of determinantal linear processes will allow us to extend their definition to a
(mildly) infinite-dimensional setting.

Let us start by extending the definition of a split inner product space (Definition 2.1). We
call split Hilbert space a pair (E, σ) where E is a separable Hilbert space and σ = (Ei)i∈I is
a countable family of pairwise orthogonal finite-dimensional linear subspaces of E of positive
dimension such that

E =
⊕
i∈I

Ei,

the direct sum being in the category of Hilbert spaces. Let us repeat the crucial assumption that
each summand Ei is finite-dimensional.
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Let (E, σ) be a split Hilbert space. We define

Gr(E, σ) =
∏
i∈I

Gr(Ei)

and endow this space with the product topology. This makes it a compact topological space, of
which the connected components are the subspaces

Grn(E, σ) =
∏
i∈I

Grni(Ei), n = (ni)i∈I ∈ NI .

For every J ⊆ I, let us define the split Hilbert space (EJ , σJ), with

EJ =
⊕
j∈J

Ej and σJ = (Ej)j∈J .

For all J,K ⊆ I such that J ⊆ K, let us define the restriction map

ResJK : Gr(EK , σK) −→ Gr(EJ , σJ)

Q 7−→ Q ∩ EJ .

We will also use, for all J ⊆ I, the notation ResJ = ResJI : Gr(E, σ) −→ Gr(EJ , σJ).
According to Kolmogorov’s extension theorem, a Borel probability measure on Gr(E, σ) is the

same thing as a consistent collection of Borel probability measures on all spaces Gr(EJ , σJ),
where J is a finite subset of I.

The notation introduced for compressions of endomorphisms in Section 2.4 extends to bounded
linear operators and closed subspaces of a Hilbert space. With the tools that we have in hand,
the construction of determinantal subspaces of a split Hilbert space is straigthforward.

Theorem 4.18. Let (E, σ) be a split Hilbert space, with σ = (Ei)i∈I . Let k be a bounded
self-adjoint linear operator on E such that 0 6 k 6 1.

There exists a unique probability measure µσ,k on Gr(E, σ) such that for every finite subset
J ⊂ I, the image of µσ,k by the projection ResJ : Gr(E, σ)→ Gr(EJ , σJ) is equal to µ

σJ ,k
EJ
EJ

.

Proof. For every finite subset J of I, the operator kEJEJ is self-adjoint on EJ , and satisfies
0 6 kEJEJ 6 1 : it is a kernel on EJ . Thus, the measure µ

σJ ,k
EJ
EJ

, which we denote by µJ for

simplicity, is well defined. Moreover, it follows immediately from Proposition 4.17 that the
family of probability spaces ((

Gr(EJ , σJ), µJ
)

: J ⊂ I, J finite
)

together with the restriction maps (ResJK : J ⊂ K ⊂ I, J and K finite) form a projective
system. Each probability space of this system is a compact topological space equipped with a
Borel probability measure. Thus, there exists an inverse limit to this system. This inverse limit
is a probability measure on the Borel σ-field of

lim
←−

Gr(EJ , σJ) = Gr(E, σ)

endowed with its product topology. By definition, this probability measure, which we denote by
µσ,k, is the unique probability measure on Gr(E, σ) such that for every finite subset J of I, the
image of µσ,k by ResJ is equal to µJ . �
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Example 4.19. The previous theorem, in its version for DPP, is what allows to define objects
such as the free and wired uniform spanning forests on infinite graphs; see e.g. [Lyo09, Section
4]. Similarly, quantum spanning forests (see Section 1.5) on infinite graphs are built in [KL19b]
using the DLP version of the above theorem.

5. The point of view of the exterior algebra

In this section, we will discuss a slightly more abstract point of view on DLP and see how
their properties can be understood in terms of the Euclidean geometry of the exterior algebra of
the ambient space. This point of view was already largely adopted by Lyons in his study of DPP
[Lyo03, Lyo14]. Taking a more abstract point of view has the usual advantages and disadvantages:
depending on one’s familiarity with the language of exterior algebra, it will obscure things, or
make them more transparent. We will in any case not assume prior knowledge of this piece of
linear algebra, and offer an introduction to the notions that we want to use.

5.1. The exterior algebra. Let E be a vector space of dimension d. Properly speaking, the
exterior algebra

∧
E of E is defined only up to isomorphism as a solution of a universal problem.

From an only slightly less canonical point of view, it is a quotient of the tensor algebra of E.
We prefer to take the distinctly less canonical but more concrete point of view that the exterior
algebra of E is the subspace of the tensor algebra of E consisting of all fully antisymmetric
tensors.

Let k > 0 be an integer. We define the linear endomorphism Ak of E⊗k by setting, for all
v1, . . . , vk ∈ E,

Ak(v1 ⊗ . . .⊗ vk) =
1

k!

∑
σ∈Sk

ε(σ)vσ(1) ⊗ . . .⊗ vσ(k).

The endomorphism Ak is a projection and we define the k-th exterior power of E as its range:∧
kE = Ak(E

⊗k).

For k > d, the space
∧
kE is the null vector space, and we set

∧
E =

d⊕
k=0

∧
kE.

We endow this vector space with a structure of graded algebra by setting, for all k, l ∈ {0, . . . , d},
and all x ∈

∧
kE and y ∈

∧
lE,

x ∧ y = Ak+l(x⊗ y).

One checks that this makes
∧
E a graded associative algebra with unit.

Let us assume that E is endowed with an inner product. We endow the exterior algebra of E
with an inner product by setting, for all k, l ∈ {0, . . . , d}, and all v1, . . . , vk and w1, . . . , wl in E,

〈v1 ∧ . . . ∧ vk, w1 ∧ . . . ∧ wl〉 =

{
det(〈vi, wj〉)i,j∈{1,...,k} if k = l,
0 if k 6= l.

Let us note that this inner product is the restriction to the exterior algebra of the inner product
on the full tensor algebra defined by

〈v1 ⊗ . . .⊗ vk, w1 ⊗ . . .⊗ wl〉 = δk,lk!〈v1, w1〉 . . . 〈vk, wk〉.
Let (e1, . . . , ed) be an orthonormal basis of E. Let us define, for all subset I = {i1 < . . . < ik}

of {1, . . . , d}, the tensor eI = ei1 ∧ . . . ∧ eik . Then {eI : I ⊂ {1, . . . , d}} is an orthonormal basis
of
∧
E. In particular,

∧
E has dimension 2d.
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5.2. Exterior algebra and splittings. Let (E, σ) be a split inner product space. The splitting
of E induces an orthogonal decomposition of the exterior algebra of E, as follows.

Let us write σ = (E1, . . . , Es), as usual. For each r ∈ {1, . . . , s}, the inclusion map Er ↪→ E
induces an injective map

∧
Er ↪→

∧
E, for which we do not use any special notation. From these

injective maps, we can form the map∧
E1 ⊗ . . .⊗

∧
Er −→

∧
E

x1 ⊗ . . .⊗ xr 7−→ x1 ∧ . . . ∧ xr

which is an isomorphism of vector spaces8.
Let us write, as we did before, d = (d1, . . . , ds) = (dimE1, . . . ,dimEs). Then for all n ∈

{0, . . . , d}, the isomorphism above restricts to the following isomorphism of vector spaces:

(40)
∧
nE '

⊕
n6d,|n|=n

∧
n1E1 ⊗ . . .⊗

∧
nsEs︸ ︷︷ ︸∧

nE

.

This decomposition of
∧
nE can be understood very concretely by building an orthonormal basis

(e1, . . . , ed) of E as the concatenation of orthonormal bases of E1, . . . , Es, and partitioning the
basis {eI : I ⊂ {1, . . . , d}, |I| = n} of

∧
nE according to the number of factors in each subspace

E1, . . . , Es.
A simple fact that plays an important role for us is that the decomposition (40) is an orthogonal

decomposition of
∧
E – indeed an orthogonal splitting of

∧
E, although we are not going to apply

to this splitting the same treatment that we apply to the original splitting (E, σ).
We will make use of the orthogonal projections on

∧
nE, that we denote by

(41) Πn = 1∧nE1
∧
nE :

∧
E →

∧
E,

instead of Π
∧
nE . Similarly, we will denote by

(42) Πn =
∑

n6d,|n|=n

Πn

the orthogonal projection on
∧
nE.

5.3. The Plücker embedding. Given a linear subspace F of dimension n of E, the subset

{f1 ∧ . . . ∧ fn : (f1, . . . , fn) basis of F}

of
∧
nE is the complement of {0} in a line which we denote by ι(F ). The map

ι : Gr(E) −→ Gr1
(∧

E
)

F 7−→ ι(F )

is a minute variant of a classical map called the Plücker embedding9.
The relevance of this construction to the description of DLP is made apparent by the following

result.

8It is also an isomorphism of algebras, provided one understands tensor products in the category of Z/2Z-graded
algebras. We will however only need the linear isomorphism.

9The classical Plücker embedding takes its values in the projective space of the exterior algebra rather than in
Gr1(

∧
E).
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Proposition 5.1. Let E be an inner product space. Let F and G be two linear subspaces of E.
1. If F and G do not have the same dimension, then ι(F ) ⊥ ι(G) and cos2(ι(F ), ι(G)) = 0.
2. It F and G have the same dimension, then

cos2E(F,G) = cos2∧E(ι(F ), ι(G)),

where the subscript indicates the space in which the cosine is computed.
3. In all cases,

cos2∧E(ι(F ), ι(G)) = Tr∧E(Πι(F )Πι(G)
)

= detE
(
ΠFΠG + ΠF⊥ΠG⊥).

Proof. 1. If F has dimension n and G dimension m, then ι(F ) belongs to
∧
nE and ι(G) to∧

mE. If m 6= n, these two subspaces of
∧
E are orthogonal.

2. Let (f1, . . . , fn) and (g1, . . . , gn) be orthonormal bases of F and G respectively. Then
f1∧ . . .∧fn and g1∧ . . .∧gn are unit vectors of ι(F ) and ι(G). The square of their scalar product
is the square of the cosine of the angle between the two lines ι(F ) and ι(G). On the other hand,
using the definition of the scalar product on

∧
E and Proposition 3.6, we find

cos2(ι(F ), ι(G)) = 〈f1 ∧ . . . ∧ fn, g1 ∧ . . . ∧ gn〉2 = det(〈fi, gj〉)2i,j=1,...,n = cos2(F,G).

3. The first equality follows from the fact that, in an inner product space, the trace of the
product of the orthogonal projection on two lines is equal to the square cosine of the angle between
these two lines. The second equality follows from the previous assertions and Proposition 3.7. �

The previous proposition implies in particular that the Plücker embedding is an injective map.
Indeed, if ι(F ) = ι(G), then F and G have the same dimension and cos2(F,G) = 1, which by
the third assertion of Proposition 3.5 implies that F = G.

5.4. Linear maps. The construction of the exterior algebra is functorial and every linear endo-
morphism of E gives rise to an algebra endomorphism of

∧
E. Concretely, any linear endomor-

phism a of E induces the algebra endomorphism
∧

a defined by the formula(∧
a
)
(v1 ∧ . . . ∧ vk) = a(v1) ∧ . . . ∧ a(vk).

We can now explain why the language of the exterior algebra is so convenient in situations
where minors of matrices play a prominent role.

Let (e1, . . . , ed) be an orthonormal basis of E. Let {eI : I ⊂ {1, . . . , d}} be the orthonormal
basis of

∧
E that it induces. Let a be a linear endomorphism of E and let

∧
a be the induced

algebra endomorphism of
∧
E. Let A be the matrix of a in the basis (e1, . . . , ed). Then for all I

and J subsets of the same size of {1, . . . , d}, one has the equality

(43) det(AIJ) = 〈eI ,
(∧

a
)
eJ〉.

In words: with respect to an orthonormal basis of E and the induced orthonormal basis of
∧
E,

the matrix coefficients of
∧

a are the minors of the matrix representing a.
Many important relations follow from this observation, for example the relation

(44) Tr∧E(∧a
)

= det(1 + a),

both sides being equal to the sum of all principal minors of a. We will state and prove a useful
generalisation of this equality once we have introduced the Hodge operator (see Lemma 5.4).
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5.5. Quantum measurement interpretation. Before explaining in more technical detail how
computations about DLP can be made in the exterior algebra, we will pause briefly to discuss,
rather informally and without claiming to any physical accuracy, how we think of DLP in terms
inspired from quantum mechanics.

If a Hermitian space E is the state space of a certain type of quantum particle, then in absence
of any information about the nature of this particle, the state space of a system formed by n
particles of the same type is E⊗n. If our particle is a fermion, then this state space can be
reduced to

∧
nE. Furthermore, the state space of a system formed by an arbitrary number of

identical such particles is the full exterior algebra
∧
E.

Let us assume, as usual, that E has dimension d. Let us consider a system formed by n
particles. Since the particles cannot be distinguished, it makes no sense to say that the first
particle is in the state e1, the second in the state e2, and so on. What can perhaps be said is
that the n particles are collectively in a state described by the n vectors {e1, . . . , en} and it turns
out that the meaningful quantity describing the system is the linear span H = Vect(e1, . . . , en).
Equivalently, the system is described by the line ι(H) in the exterior algebra

∧
E, or by any unit

vector of this line.
We would like to argue that our construction of DLP is related to a quantum measurement of

the state of the system as a linear subspace of E. Let us explain, in general, the framework of
quantum measurement that we have in mind (see [BLM96] for details). Given a Hilbert space H ,
and a measurable space (G,G), we call positive operator-valued measure a map O : G → End(H )
which to each event B ∈ G associates a non-negative self-adjoint operator O(B) on H. This map
is moreover required to be σ-additive, and to be such that O(G) = idH . Let us choose such a
positive operator-valued measure O. Let us now choose a density of states ρ on H , that is, a
non-negative self-adjoint operator with unit trace. Then the map µ : B 7→ Tr(O(B)ρ) defines
a probability measure on G and µ(B) is interpreted as the probability, when the system is in
the statistical superposition of states represented by ρ, that the observation of O yields a result
within B.

A positive operator-valued measure O is called a projector-valued measure if for every Borel
set G, the operator O(G) is a projection. When (G,G) is the real line with its Borel σ-field,
the spectral theorem sets a one-to-one correspondence between projector-valued measures and
self-adjoint operators on H . In general, however, the framework that we described is slightly
more general than the most usual setup of quantum mechanics.

In our case, the Hilbert space is the exterior algebra
∧
E and the measurable space is Gr(E, σ)

with its Borel σ-field. The observable is simply the map which to a Borel set B associates the
operator

(45) Oσ(B) =

∫
B

Πι(Q) dνE,σ(Q).

We will explain how to associate to every kernel k on E a density of states ρk. In fact, when
k < 1, this density of states is given by the formula

(46) ρk = det(1− k)
∧

(k(1− k)−1).

Then the probability measure associated to Oσ and to ρk is exactly the measure µσ,k.
The non-negative operator l = k(1−k)−1 gives their name to so-called l-ensembles (see [BR05]).

We have, still under the condition k < 1, the alternative expression

(47) ρk = det(1 + l)−1
∧

l.
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Our actual definition of the density of states ρk, valid even if 1 is an eigenvalue of k, is
unfortunately less straightforward than (46) and (47) would suggest, and we will devote the next
few sections to this definition.

The content of Sections 5.6 and 5.7 may seem a bit technical. It is however needed to associate
to each kernel a density of states (to be defined in (54) below) and, in Section 5.8 for the
interpretation of DLP in terms of quantum measurements with values in the Grassmannian.

5.6. The Hodge operator. Let us resume our investigation of the exterior algebra of an inner
product space E of dimension d.

The algebra of endomorphisms of the exterior algebra of an inner product space carries an
involution that will play an important role for us, and that is essentially the conjugation by the
Hodge operator. Our experience is that this involution needs to be described with some care,
especially in the complex case, and that is what we do in this paragraph.

The Hodge operator is usually defined on the exterior algebra of an oriented Euclidean real
vector space. In such a space E, the exterior product of the elements of a positively oriented
orthonormal basis does not depend on the choice of this basis, and singles out a non-zero element
of
∧
dE that we denote by codetE . The Hodge star operator, denoted by ? , is then defined as

the unique linear endomorphism of the tensor algebra of E which, for each k ∈ {0, . . . , d}, sends∧
kE into

∧
d−kE in such a way that for all x, y ∈

∧
kE,

(48) x ∧ ?y = 〈y, x〉codetE .
Concretely, given a positively oriented orthonormal basis (e1, . . . , ed) of E, and with the notation
introduced in Section 5.1, we have codetE = e{1,...,d} and the Hodge star operator sends, for each
subset I ⊂ {1, . . . , d} containing k elements, the vector eI to the vector

? eI = (−1)
k(k+1)

2
+
∑
i∈I ieIc ,

where Ic = {1, . . . , d} \ I. We will denote by (−1)I the sign which appears in this equality.
This construction of the Hodge operator depends on the orientation of the vector space; indeed

choosing the other orientation of E would result in the Hodge star operator being multiplied
by −1. The only role of the orientation is in fact to allow us to decide which of the two elements
of norm 1 in

∧
dE we call codetE . In the case where E is a complex inner product space however,

the unit sphere of
∧
dE is a circle. There does not seem to exist a notion of orientation in this

case10 and without it we cannot pick a point on this circle in a natural way.
We go around this problem by taking a slightly more abstract point of view. Let E be a real

or complex inner product space. Choose k ∈ {0, . . . , d}. The tensor contraction

(E∗)⊗d ⊗ E⊗k −→ (E∗)⊗(d−k)

(φ1 ⊗ . . .⊗ φd)⊗ (v1 ⊗ . . .⊗ vk) 7−→ φ1(v1) . . . φk(vk)φk+1 ⊗ . . .⊗ φd
restricts to a linear mapping

∧
dE∗ ⊗

∧
kE →

∧
d−kE∗ and, by taking the direct sum over k, to

a linear mapping
κ :

∧
dE∗ ⊗

∧
E −→

∧
E∗.

Given a basis (e1, . . . , ed) of E and the dual basis (ε1, . . . , εd) of E∗, one has for all I ⊂ {1, . . . , d}
the equality

κ(ε{1,...,d} ⊗ eI) = (−1)IεIc ,

from which it follows that κ is surjective, hence an isomorphism. Let us emphasise that the
definition of κ does not depend on the inner product on E.

10One could define an orientation of a d-dimensional complex space as an orbit of SLd(C) on the set of bases
of this space, but this does not seem to be a classical notion.
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We will now make use of this inner product, in the guise of the antilinear isomorphism

c : E −→ E∗

v 7−→ c(v) = 〈v, ·〉.
In the real case, the map c is a linear isomorphism. In the complex case, because we take the
Hermitian inner product to be linear in the second variable, c is antilinear, in the sense that for
all λ ∈ C and v ∈ E, one has c(λv) = λ̄c(v).

The map c extends to an antilinear morphism of algebras
∧
c :
∧
E →

∧
E∗ and we define the

Hodge operator ? :
∧
E →

∧
dE∗ ⊗

∧
E as :

(49) ? = κ−1 ◦
∧
c :
∧
E

∧
c−→
∧
E∗

κ−1

−→
∧
dE∗ ⊗

∧
E ' Hom(

∧
dE,

∧
E).

Let us emphasise that the map ? is antilinear.
The usual Hodge operator, in the oriented Euclidean case, is obtained by composing the

map ? thus defined by the evaluation at the element codetE ∈
∧
dE. Our construction takes

the orientation as a variable instead of a given parameter, and this point of view suits both the
real and complex cases. The formula which replaces (48) is the following: for all k ∈ {0, . . . , d},
all x, y ∈

∧
kE and all z ∈

∧
dE,

(50) x ∧ ( ? y)(z) = 〈y, x〉z.
In coordinates, given an orthonormal basis (e1, . . . , ed) of E and the dual basis (ε1, . . . , εd)

of E∗, we have for all I ⊂ {1, . . . , k} the equality

? eI = (−1)Iε{1,...,d} ⊗ eIc .
This formula shows that the Hodge operator is invertible.

5.7. The adjugate endomorphism. We will use the Hodge operator to make the following
important construction: to each linear endomorphism f of

∧
E, we associate the adjugate endo-

morphism adj(f) of
∧
E by setting

(51) adj(f) =
(
?−1 ◦ (id∧

dE∗ ⊗ f) ◦ ?
)∗
.

This definition may look unappealing, but we shall soon see that it corresponds to the operation
which to a matrix associates the transpose of its cofactor matrix. At least, we see on this
definition that the adjugation map is linear on End(

∧
E). We see also that it is an antimorphism

of algebra, in the sense that for all f, g ∈ End(
∧
E), we have

(52) adj(f ◦ g) = adj(g) ◦ adj(f).

Let us compute the adjugate endomorphism in coordinates. Let again (e1, . . . , ed) be an
orthonormal basis of E. For all subsets I, J ⊂ {1, . . . , d}, it follows from unfolding the definitions
that

(53) 〈eI , adj(f)eJ〉 = (−1)I(−1)J〈eJc , feIc〉.
From this relation, we deduce for instance that

adj(adj(f)) =
∧

(−1)d+1 ◦ f ◦
∧

(−1)d+1.

The following observation will be useful for us.

Lemma 5.2. Let f be a linear endomorphism of
∧
E. Let r ∈ U(

∧
E) be an isometry of

∧
E.

Then r ◦ adj(f) ◦ r∗ = adj(r ◦ f ◦ r∗).

This property reflects the fact that the construction of the adjugate endomorphism uses only
the inner product on E.
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Proof. Let us compute radj(f)r−1:

radj(f)r−1 = r( ?−1(id∧
dE∗ ⊗ f) ? )∗r−1 = (r ?−1(id∧

dE∗ ⊗ f) ? r−1)∗.

From (50), we deduce that ? r−1 = det(r)(id∧
dE∗ ⊗ r−1) ? . Taking the inverse of both sides, we

find r ?−1 = ?−1(id∧
dE∗ ⊗ r) det(r−1). Thus,

radj(f)r−1 = ( ?−1(id∧
dE∗ ⊗ rfr−1) ? )∗ = adj(rfr−1),

the expected equality. �

Let us make a few remarks about the relation between adjugation and inversion. Let us
consider an endomorphism a of E. We want to compute the adjugate of

∧
a.

Proposition 5.3. Let E be an inner product space. Let a be an endomorphism of E. Then

adj
(∧

a
)
◦
∧

a = det(a)id∧
E .

In particular, if a is invertible, then

adj
(∧

a
)

= det(a)
∧

a−1.

Proof. The endomorphisms
∧

a and adj
(∧

a
)
of
∧
E preserve the degree. Hence, the first equality

follows from the fact that for all k ∈ {0, . . . , d}, all x, y ∈
∧
kE and all z ∈

∧
dE, we have

〈y, adj
(∧

a
)
◦
∧
u(x)〉z = 〈 ?−1(id∧

dE∗ ⊗
∧

a) ? y,
∧
u(x)〉z

=
∧

a(x) ∧
(
(id∧

dE∗ ⊗
∧

a)( ? y)
)
(z)

=
∧

a(x) ∧
∧

a(( ? y)(z))

= det(a)x ∧ ( ? y)(z)

= 〈y,det(a)x〉z.

The second equality follows immediately from the first and the fact that, if a is invertible,∧
(a−1) = (

∧
a)−1. �

We can now prove the following useful formula.

Lemma 5.4. Let a and b be two endomorphisms of E. Then

Tr∧E(adj
(∧

a
)
◦
∧

b
)

= det(a + b).

Proof. The endomorphism b being fixed, both sides of the equality to prove are polynomial
functions of a ∈ End(E). It is thus enough to prove that the equality holds when a is invertible.
In this case, using Proposition 5.3 and (44), we find

Tr∧E(adj
(∧

a
)
◦
∧

b
)

= (det a)Tr∧E(∧a−1
∧

b)

= (det a)Tr∧E(∧(a−1b))

= det(a) det(1 + a−1b),

and the result follows. �
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5.8. DLP as positive operator-valued measures. To each kernel on E, we associate a den-
sity matrix on the exterior algebra of E, that is, a non-negative self-adjoint operator of trace 1.

Proposition 5.5. Let k be a kernel on an inner product space E. The operator

(54) ρk = adj
(∧

(1− k)
)
◦
∧

k =
∧

k ◦ adj
(∧

(1− k)
)

is self-adjoint and non-negative on
∧
E, and it satisfies Tr∧E(ρk) = 1.

Moreover, if k is the orthogonal projection on a linear subspace H of E, then ρk is the orthog-
onal projection on the line ι(H):

(55) ρΠH = Πι(H).

Proof. Let (e1, . . . , ed) be an orthonormal basis of E formed with eigenvectors of k, such that for
all i ∈ {1, . . . , d} we have kei = λiei, with λi ∈ [0, 1]. Then, for all I ⊂ {1, . . . , d}, we find, using
(53),

adj
(∧

(1− k)
)
◦
∧

k(eI) =
∏
i∈I

λi
∏
i/∈I

(1− λi)eI =
∧

k ◦ adj
(∧

(1− k)
)
(eI).

All the claimed properties of ρk follow readily from these equalities. The fact that ρk has trace 1
can also be deduced in a basis-free way from Lemma 5.4. �

We can now prove a result which relates the measure µσ,k and the density of states ρk.

Proposition 5.6. Let (E, σ) be a split inner product space. Let k be a kernel on E. Let Q be
an element of Gr(E, σ). Then

(56) det(kΠQ + (1− k)ΠQ⊥) = Tr∧E(Πι(Q)ρk) .

More generally, let l be another kernel on E. Then

(57) det(kl + (1− k)(1− l)) = Tr∧E(ρkρl) .

Proof. Thanks to the last assertion of Proposition 5.5, the first equality is a consequence of the
second, in the special case where l = ΠQ. The second equality, in turn, follows from the definition
(54) of ρk and ρl, from (52) and from Lemma 5.4. �

Corollary 5.7. Let Q be a determinantal linear process of (E, σ) with kernel k. Let Oσ be the
positive operator-valued measure defined by (45). Then for every Borel subset B of Gr(E, σ), one
has the equality

(58) P(Q ∈ B) = Tr∧E(Oσ(B)ρk) .

Proof. Indeed, by definition of determinantal linear processes and by Proposition 5.6, both sides
of the equality to prove are equal to∫

B
det(kΠQ + (1− k)ΠQ⊥) dνE,σ(Q) .

�

5.9. Some results revisited. Having expressed the distribution of determinantal linear pro-
cesses as we did in Corollary 5.7, we can reformulate in a more concise way some of their prop-
erties, in particular those concerning the support of the distribution. Recall that we denote by
Πn the orthogonal projection on the subspace

∧
nE of the exterior algebra of E, see Section 5.2.
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Proposition 5.8. Let (E, σ) be a split inner product space. Let k be a kernel on E. For all
n ∈ [[0, d]], we have

µσ,k(Grn(E, σ)) = Tr∧E(Πnρk).

In particular, if k is the orthogonal projection on a linear subspace H of E, and if ωH is a unit
vector of the line ι(H), then for all n ∈ [[0, d]],

µσ,k(Grn(E, σ)) = ‖ΠnωH‖2.

Note that Pythagoras’ theorem, stating that
∑

n∈[[0,d]] ‖ΠnωH‖2 = ‖ωH‖2 = 1, boils down to
a proof of (3) in the DPP case.

Proof. In view of Corollary 5.7, the first assertion will follow from the equality

Oσ(Grn(E, σ)) = Πn.

To prove it, we need to compute the integral

(59)
∫

Grn(E,σ)
Πι(Q) dνE,σ(Q).

For this, we used a refined version of (13): we choose an orthonormal basis (e1, . . . , ed) of E
adapted to σ and consider, for each subset J of {1, . . . , d} such that (ej : j ∈ J) contains n1
vectors in E1, n2 vectors in E2 and so on, the orthogonal projection on the line ι(Vect(ej : j ∈ J)).
The sum over all such subsets J of these projections is the sum of the orthogonal projections on
a set of lines forming a splitting in lines of the subspace

∧
nE of

∧
E. It is thus equal to Πn.

Averaging over the action of the group U(E, σ) on the set of orthonormal bases of E adapted
to σ, we find that the integral (59) is equal to Πn.

The second assertion follows immediately from the first and the fact that, in this case, ρk is
the orthogonal projection on ι(H). �

Another result that is more easily expressed in terms of the exterior algebra is Theorem 4.13.

Theorem 5.9. With the notation of Theorem 4.13, we have the equality

E
[∧

PQ
]

=
∧

ΠH .

Thanks to the self-adjointness of ΠH , one can replace, in the equality, the operator PQ by its
adjoint, which is the projection on H parallel to Q⊥.

Proof. Indeed, the statement of Theorem 4.13 can be written, using Proposition 5.6, as

E
[
Tr∧E(∧a

∧
PQ
)]

= Tr∧E(∧a
∧

ΠH
)

and the fact that this holds for every endomorphism a of E implies the announced equality. �

6. Changing coefficient field and the quaternion case

In this section, we explain how the previous construction adapts to the case of quaternionic
vector spaces (Definition 6.5 and Theorem 6.6). Some care is needed in defining an appropriate
notion of determinant which we review below in Section 6.3. Before doing so, we start by
studying how changing the coefficient field from complex numbers to real numbers changes the
DLP (Proposition 6.1). Then we treat the analogous change from the quaternionic to the complex
case (Proposition 6.13). We also detail some properties of quaternionic DLP in Proposition 6.11
and Theorem 6.12.
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6.1. From complex to real coefficient field. We have so far defined and studied determi-
nantal probability measures on Grassmannians of real and complex vector spaces. Although the
specification of the underlying coefficient field seems to make little difference11 in the classical
case of determinantal point processes, it does here.

Indeed, if E is a complex vector space split in lines, any kernel induces a discrete determinantal
probability measure on the complex Grassmannian of E. However, when E is viewed as a
real vector space Ê, the induced splitting consists of real 2-dimensional blocks, and unless the
kernel has eigenspaces consisting exactly in sums of these blocks (i.e. unless the eigenspace
decomposition of the kernel is coarser than the given splitting of E), the induced determinantal
probability measure will have a continuous support in the even-dimensional real Grassmannian
of Ê.

Let us more generally introduce the following notation. Given a split complex vector space
(E, σ), let Ê be the real vector space obtained by restriction of scalars, let σ̂ be the correspond-
ing splitting of Ê, and if k is a kernel on E, let k̂ be the corresponding kernel on Ê. This
correspondence is canonical.

The point is that the measure µσ̂,k̂ is not the pushforward of µσ,k under the natural inclusion
map Gr(E) ⊂ Gr(Ê). In general, it seems that these two measures are not easily related. However,
one can compare some amount of information contained in both probability measures as shown
by the following proposition.

Proposition 6.1. Let E be a complex vector space given with a splitting σ = (E1, . . . , Es) and a
kernel k. Let Ê, σ̂, and k̂ be the data induced by restricting the coefficient field to real numbers.
Let C(1) and C(2) be two independent random complex linear subspaces of E sampled from µσ,k
and let R be a random real linear subspace of Ê sampled from µσ̂,k̂. Then we have the equality
in distribution

(dimR Ri)16i6s
(law)
=
(

dimC C
(1)
i + dimC C

(2)
i

)
16i6s

.

The proof of Proposition 6.1 is based on Lemma 6.2 below which allows to compare deter-
minants of complex matrices seen as complex or real matrices. In order to state the latter
proposition, we introduce some notation. We will make use of a choice of basis in order to
represent matrices. Let us introduce the real matrix

I =

(
0 −1
1 0

)
.

The algebra of complex numbers may be realised as the subalgebra of M2(R) consisting in
matrices of the form aI2 + bI with a, b real numbers, where I2 is the identity matrix.

For any d ≥ 1 and all matrices M in Md(C), let M̂ denote the matrix in M2d(R) obtained by
replacing each entry by the 2× 2 real matrix given by the above identification.

Lemma 6.2. Let M be a complex matrix. Then det M̂ = | detM |2.

Proof. For a diagonal matrix, the result holds by inspection. Since the map M 7→ M̂ is a
morphism of algebras from Md(C) to M2d(R), the result extends to diagonalisable matrices.
Finally, it extends to Md(C) by an argument of density. �

In particular, if k is a Hermitian endomorphism of E, then det(k̂) = det(k)2. We are now
ready to prove Proposition 6.1.

11Unless when talking about the algebraic question of the equivalence of kernels (When do kernels k and k′

define the same probability measures µσ,k = µσ,k′?), which boils down to a question about determinantal varieties.
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Proof of Proposition 6.1. We compute the Laplace transform of the left-hand side using Propo-
sition 4.6 and observe that it can be rewritten, thanks to Lemma 6.2, as the square of a deter-
minant. This second determinant is the Laplace transform of a summand of the right-hand side
by Proposition 4.6 again, which concludes the proof. �

6.2. Quaternions. For self-containedness, we review some basics about quaternions.
In the following, we let H = {a+bi+cj+dk | a, b, c, d ∈ R} be the four-dimensional real division

algebra of real quaternions, where the three elements i, j, k are subject only to the relations

i2 = j2 = k2 = ijk = −1 .

We will abuse terminology slightly and call quaternionic vector space any right-module on H.
Because H is a division algebra, there is a well-defined notion of basis and hence of dimension.

The coefficient a of q = a+ bi+ cj+dk is called the real part of q, denoted <(q). Furthermore,
let us define the anti-involution by conjugation q = a + bi + cj + dk 7→ q = a − bi − cj − dk; in
particular, we have q + q = 2<(q).

On the quaternionic vector space Hd, there is the standard inner product

〈(q1, . . . , qd), (r1, . . . , rd)〉 =
d∑
i=1

qiri .

On a quaternionic vector space E, an inner product is a map 〈·, ·〉 : E×E → H which is additive
in each variable, quaternion-sesquilinear in the sense that for all v, w ∈ E and all q, r ∈ H,

〈vq, wr〉 = q〈v, w〉r.

It is moreover required to be such that 〈v, v〉 is a non-negative real number for every v ∈ E,
and 0 only if v = 0.

The group of isometries of such a quaternionic inner product space is called the group of
symplectic transformations, and we keep the notation U(E) for it.

Splittings of quaternionic inner product spaces are defined exactly as in the real and complex
case, as well as Grassmannians and split Grassmannians. If σ is a splitting of E, the group
of isometries preserving σ is denoted by Gr(E, σ) and each connected component of Gr(E, σ) is
acted on transitively by U(E, σ). This gives rise to the invariant measure νE,σ.

The relation between probability measures on Gr(E, σ) and their incidence measures relies on
the lattice structure of (Gr(E, σ),⊆) and is thus the same as in the real or complex case.

We will construct a probability measure on Gr(E, σ) which is equivariant under the action
of U(E, σ), and which is determinantal in the sense of (24).

This probability measure is determined by a kernel, that is, a self-adjoint endomorphism of
our quaternionic inner product space, the (right-)eigenvalues of which are reals between 0 and 1.

The main difficulty in generalising (24) to the quaternionic case is to clarify which notion of
determinant has to be used.

6.3. τ-determinants and quaternion determinant.

6.3.1. τ -determinants. When dealing with matrices in a non-necessarily commutative ring R, a
simple combinatorial approach to determinants suggests the following candidate [KL19a]. Given
an abelian ring A, consider an additive map τ : R→ A which we assume to be tracial, or central,
in the sense that for any r, r′ ∈ R, we have τ(rr′) = τ(r′r). For all integers d > 1 and all
d× d matrices M ∈Md(R), we define the τ -determinant of M as the element of A given by the
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formula

(60) detτ (M) =
∑
σ∈Sd

ε(σ)
∏

c cycle of σ
c=(i1...ir)

τ(Mi1i2Mi2i3 . . .Miri1) ,

where Sd denotes the symmetric group on d elements.
The τ -determinant is obviously Z-linear in columns of the matrix, and if a column vanishes,

it vanishes. But in general, this τ -determinant does not have especially nice further properties.
In particular, if a matrix M ∈Md(R) is singular, in the sense that there exists a non-zero vector
X ∈ Rd such that MX = 0 or tXM = 0, we need not have detτ (M) = 0. In particular, this
Z-multilinear operation need not be alternating. Moreover, it need not be multiplicative.

6.3.2. Quaternion determinant. However, in the case R = H, A = R and τ = < (the real part
map), this is the so-called Q-determinant, introduced by Moore [Moo22] (the work of Moore was
published only posthumously, so we invite the reader to consult the very interesting [Dys96], or
see [Meh04, Section 5.1] for a more detailed textbook treatment), which, when restricted to the
space of quaternion Hermitian matrices, does have very nice properties. For æsthetical reasons,
rather than writing Qdet as done by some authors, we will denote it det< in what follows.

It seems that no definition of determinants on a noncommutative ring enables it to keep all
properties we are accustomed to from usual determinants. Somewhat magically, on the set of
quaternion Hermitian matrices, most definitions of noncommutative determinants do coincide
(up to normalisation) and we can use this to transfer properties more apparent from other
definitions [Asl96, GRW03]. This implies the following important property, which we highlight
as we will use it throughout in the rest of this section.

Proposition 6.3. Let E be a quaternionic inner product space. Let k be a self-adjoint endomor-
phism of E. Let K be the matrix of k in an orthonormal basis of E. Then det<(K) does not
depend on the chosen basis.

We denote the common value of the determinants in the above proposition by det<(k).

Proof. If K and K ′ are the matrices of k in two orthonormal bases, then there is a quaternion
unitary matrix U satisfying K = UK ′U−1. As explained before the statement of Proposition 6.3,
one of the many definitions of noncommutative determinants is actually multiplicative, and
coincides on quaternion Hermitian matrices with the Q-determinant det<. Therefore, det<(K) =
det<(K ′). �

Similarly to the complex-to-real mapping discussed in Section 6.1 above, we introduce both
a canonical and a non-canonical correspondence when restricting scalars from quaternions to
complex numbers. First of all, if E is a quaternionic vector space, σ a splitting, and f an
endomorphism of E, we denote by Ê, σ̂, and f̂ the corresponding data obtained by restriction of
scalars to complex numbers. If f is self-adjoint, then so is f̂.

Moreover, we introduce a map M 7→ M̂ from d× d quaternionic matrices to 2d× 2d complex
matrices, given an identification H ' C2. A way of doing this by choosing bases, is to use the
following classical representation of i, j, and k by the complex matrices:

I =

(
0 −1
1 0

)
, J =

(
0 i
i 0

)
, and K =

(
−i 0
0 i

)
.

Proposition 6.4. Let K be a quaternion Hermitian matrix. We have

(61) det(K̂) = det<(K)2.
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Proof. Although the identity is purely algebraic and could in principle be proved combinatorially,
we resort to a spectral theorem, also valid in the quaternion case (see [AGZ10, Theorem E.11],
[FP03, Theorem 3.3], or [Hel01] for a statement in a very general setup). Write K = PDP−1.
Then K̂ = P̂ D̂P̂−1 and clearly det(K̂) = det(D̂) = det<(D)2 since D is real-valued. Now we
conclude by using the fact mentioned earlier in this section (Proposition 6.3), that det<(D) =
det<(K) . �

6.4. Determinantal linear processes (DLP) on quaternionic Grassmannians. Now that
we have a working definition for the determinant of a quaternion Hermitian endomorphism at
hand, we are ready to give the definition of determinantal probability measures on quaternionic
Grassmannians, and show their existence.

Definition 6.5 (Quaternionic DLP). Let E be a quaternionic inner product space given with a
splitting σ and a kernel k. We say that a probability measure µσ,k on Gr(E, σ) is determinantal
with kernel k if

(62) d(Zµσ,k)(R) = det<(kRR) dνE,σ(R).

Our goal is to prove the following theorem.

Theorem 6.6. Let E be a quaternionic inner product space given with a splitting σ and a
kernel k. There exists a unique DLP on Gr(E, σ) with kernel k.

As in the real and complex case, uniqueness follows immediately from the Möbius inversion
formula (Proposition 2.6).

To prove existence, we propose an alternative construction to the more intrinsic and geometric
approach presented in Section 3. This construction is more concrete in that it builds on the notion
of quaternionic DPP. In order to construct these DPP, we follow an approach due to Dyson and
based on formulas originally proved for Q-determinants, and which, as we will see, hold for
τ -determinants in general.12 13

6.4.1. Some facts about general τ -determinants. Let R and τ be as in Section 6.3.1 above. In
the following, for any matrix M = (Mij)1≤i,j≤d ∈ Md(R), any k ≥ 1, and any ordered multiset

12 For a quaternion Hermitian matrix K, Moore observed that det<(K) coincides with

(63) Mdet(K) =
∑
σ∈Sd

ε(σ)
∏

c cycle of σ
c=(i1...ir)

Ki1i2Ki2i3 . . .Kiri1 ,

where the elements in the products are ordered consistently according to the cycle structure of the permutation σ,
for example by letting each cycle start with its minimal index, called its root, and ordering cycle roots in decreasing
order. The equality det<(K) = Mdet(K) follows from the fact that q + q = 2<(q) for any q ∈ H, and the fact
that permutations in the sum can be grouped according to their unoriented cycle structure.

The results of Section 6.4.1 can more generally be proved for the R-valued Mdet, provided the diagonal
entries Mii are in the center of R.

13In view of Dyson’s results, it makes little doubt that quaternionic DPP were known to Dyson and Mehta
in the context of the Gaussian symplectic ensemble. Let us however mention that they were yet again formally
introduced in [Kar14] using the consequence of (61) which gives the known relation between the Q-determinant
of a quaternion Hermitian matrix and the Pfaffian of an associated complex antisymmetric matrix. Our existence
proof bypasses the use of Pfaffians by working directly with the Q-determinant. Although quaternionic DPP are
a special instance of Pfaffian processes, they enjoy strong additional symmetry properties which we think justify
that we treat them separately, in as close a determinantal way as possible. Yet Dyson, whose pioneering ideas
we rely on, passed the provocative and somewhat discouraging sentence: “It is unlikely that the applications of
quaternion-determinants to physics will ever be important.” See [Dys96] for the full commentary.
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I = (i1, . . . , ik) ∈ {1, . . . , d}k, let M I
I denote the matrix (Miaib)1≤a,b≤k. By convention, we also

set M I
I = 1 when I = ∅. Moreover, let

Trτ (M) =
d∑
i=1

τ(Mii)

denote the τ -trace of a matrix M ∈Md(R).
The following statement and proof is the exact analogue of Dyson’s result for Q-determinants

(see [Meh04, Theorem 5.1.4]). Its statement and proof are reminiscent of the work of Diaconis
and Evans on immanants [DE00, Theorem 2.1].

Proposition 6.7. Let M ∈ Md(R) be such that M2 = M . Let k ≥ 1 and I = (i1, . . . , ik−1) ∈
{1, . . . , d}k−1 be an ordered multiset. Then

(64)
d∑

ik=1

detτ

(
M

I∪(ik)
I∪(ik)

)
= (Trτ (M)− k + 1) detτ (M I

I ) .

Proof. Note that for k = 1, this is simply the definition of the τ -trace. Let us hence assume k ≥ 2.
We look at the left-hand side of Equation (64). We consider the set of permutations in Sk

and partition it according to whether k is a fixed point or not.
If σ is a permutation which fixes k, we can factor τ(Mikik) in each of the terms detτ

(
M

I∪(ik)
I∪(ik)

)
.

Summing over ik ∈ {1, . . . , d} yields a total contribution, from all permutations fixing k, of Trτ (M)
times the τ -determinant of M I

I .
Now consider those permutations which do not fix k. By removing k from its cycle, we

define a (k − 1)-to-1 correspondence to all permutations on (k − 1) elements. Consider such a
permutation σ and the cycle c containing k. It is locally of the form · · · → a → k → b → · · · .
Let σ̃ and c̃ be the permutation and cycles obtained by the above map. The signature of σ̃ is
the opposite of that of σ.

Since M2 = M , we have
∑d

ik=1MiaikMikib = Miaib , so that, by Z-linearity of τ ,

(65)
d∑

ik=1

ε(σ)τ(· · ·MiaikMikib · · · ) = −ε(σ̃)τ(· · ·Miaib · · · ) .

By grouping all permutations not fixing k in the left-hand side of (64) according to their
image σ̃ and using the simplification (65), we therefore get an overall contribution of

(−1)(k − 1)detτ (M I
I )

from all the permutations not fixing k.
Summing the two contributions yields the equality (64). �

As a consequence of Proposition 6.7, let us observe that if rkτ (M) denotes the smallest integer
such that all principal minors of M (possibly with multiple indices) of that size are zero (if this
integer exists), then necessarily Trτ (M) = rkτ (M).

Furthermore, by applying Proposition 6.7 inductively on k running from n down to 1 we obtain
the following.

Corollary 6.8. Let M ∈Md(R) be such that M2 = M . Then for all n ≥ 1, we have∑
I∈{1,...,d}n

detτ (M I
I ) = Trτ (M)(Trτ (M)− 1) · · · (Trτ (M)− n+ 1) .
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Before specialising to τ = <, let us give a simple formula for the characteristic polynomial of a
matrix with respect to the τ -determinant. This will be handy to compute the Laplace transform
when we specialise to τ = <.

Proposition 6.9. Let M ∈ Md(R) be any matrix, and let X denote the diagonal matrix with
entries x1, . . . , xd in the ring R. Then

detτ (X +M) =
∑

I⊆{1,...,d}

 ∏
i∈{1,...,d}\I

τ(xi)

 detτ
(
M I
I

)
.

Proof. We use Z-multilinearity to write

detτ (X +M) =
∑

I⊆{1,...,d}

detτ (M
I
�X)

where M
I
�X denotes the matrix obtained from M by replacing each column not indexed in I

by the corresponding column of X. We then use the fact that τ(0) = 0, so that when one of the
columns is zero except for its diagonal coefficient, the only permutations which contribute are
the ones for which the index of the column is a fixed point. �

6.4.2. Construction of quaternionic DPP. We now specialise the previous statements to det<
for quaternionic Hermitian matrices and show that they imply, in the case of a quaternionic
orthogonal projection, a well-defined notion of determinantal point process.

Let E be a quaternionic vector space split in lines σ = (E1, . . . , Es) and let H be a subspace
of E. Consider an arbitrary choice of unit vector in each line and let K = ΠH = K2 be the
quaternion Hermitian matrix of the orthogonal projection onH in the corresponding orthonormal
basis.

Without resorting to quaternion linear algebra, we can compare K to its complex version K̂
and deduce elementary properties on the rank and the sign of the principal minors. We thus find
that Tr<(K) = n where n = dimH(H), and that all principal minors of K are nonnegative.

Furthermore, note that if I is a multiset containing an index twice, which we assume without
loss of generality to be i1, then, letting X = (1,−1, 0, . . . , 0), we have KI

IX = 0. Hence K̂I
I X̂ = 0

and this implies that det(KI
I ) = 0. Hence det<(KI

I ) = 0 by Proposition 6.4.
This means that we can rewrite Corollary 6.8 as

(66)
∑

1≤i1<...<in≤d
det<

(
K
{i1,...,in}
{i1,...,in}

)
= 1 ,

which we read as the definition of a probability measure on unordered n-subsets of {1, . . . , d},
just as we did with (3).

Now we can check that the incidence probabilities are indeed given by principal minors of K
using Proposition 6.7. Thus, (66) constructs a determinantal probability measure µσ,ΠH on
Gr(E, σ) in the sense of Definition 6.5.

In order to extend the construction from projection kernels to general ones, but still working
with a splitting in lines, we use the well-known fact (see e.g. [Lyo03, Section 8]) that any kernel
is the compression of a projection kernel. This works in the quaternion case just as well. If k is
a kernel on E, the operator on E ⊕ E defined in block form by

Π =

(
k

√
k(1− k)√

k(1− k) 1− k

)
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is a projection operator. The fact, proved just above, that Π defines a DPP implies, by com-
pression, that k defines one as well.

We have now proven the existence of quaternionic DLP for a general kernel k and splittings
in lines σ: we denote these measures by µσ,k.

Let us note that, by inclusion-exclusion and Proposition 6.9, the density of the measure µσ,k
with respect to the counting measure νE,σ is given by

(67) Q 7→ (−1)dimQ⊥det<(−ΠQ⊥ + k).

6.4.3. Construction of quaternionic DLP. We are now ready to give a practical construction of
determinantal probability measures on a quaternionic Grassmannian (recall Definition 6.5) for
any splitting.

Let E be a split quaternionic inner product space with splitting σ = (E1, . . . , Es) and let k
be a kernel. We consider the random subspace obtained by sampling a quaternionic DPP in a
random uniform orthonormal basis and with kernel the matrix K of k in that basis.

By linearity of the map which to a probability measure on Gr(E, σ) associates its incidence
measure, the incidence measure of this random linear subspace of (E, σ) is R 7→ det<(kRR) with
respect to νE,σ.

This concludes the proof of Theorem 6.6. We denote by µσ,k the distribution of the unique
DLP on (E, σ) with kernel k.

Example 6.10. A quantum spanning forest on a graph with connection h, whose holonomies
take values in the symplectic group Sp(N) for some N ≥ 1, is a quaternionic DLP associated
to a projection kernel on the space of twisted exact forms F1

h (in the notation of Section 1.5);
see [KL19b].

In the case N = 1, where the holonomy group is Sp(1) = SU(2), and studied in [Ken11,
Kas13, KL19b], this DLP is in bijection with the set of edges of a random cycle-rooted spanning
forest on a graph sampled with probability proportional to the product of its edge-weights times a
certain function of the holonomy of its cycles (the product over the cycles of 2 minus the trace
of their holonomy).

By Proposition 3.12 and (67), the measure µσ,k has density

(68) Q 7→ (−1)dimQ⊥det<(−ΠQ⊥ + k)

with respect to νE,σ (the quaternionic analogue of (26)). Indeed, the content of Proposition 3.12
does not depend on the precise density of the measures and holds for the quaternion determinant
just as well.

A number of properties detailed in Section 4 are true for quaternionic DLP. We leave it to the
interested reader to check which proofs do carry through in the quaternionic case.

Nevertheless, let us state one simple result about the Laplace transform of the split dimension
of a quaternionic DLP. This is the quaternionic analogue of Proposition 4.6.

Proposition 6.11. Let (t1, . . . , ts) ∈ Rs and write eT − 1 for the scaling operator acting by
multiplication by eti − 1 in block Ei. If Q follows distribution µσ,k, then

(69) E
[
e
∑s
i=1 ti dimH(Q∩Ei)

]
= det<(1 + (eT − 1)k) .

A further, more subtle, result we emphasise is the following.

Theorem 6.12 (Unicity and mean projection). Let (E, σ) be a quaternionic inner product space
and H a subspace of E. Let Q be a random subspace following the distribution µσ,ΠH in Gr(E, σ).
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Then, almost surely, E = Q⊕H⊥, and moreover

E
[
PQ + (PQ)∗

]
= 2ΠH ,

where PQ is the projection on Q parallel to H⊥.

Proof. The proof of the first statement is not hard to adapt from the real and complex cases
and we leave it to the interested reader. For the second statement, we follow a slightly different
strategy than the one of the proof of Theorem 4.13.

First note that, by (68) and (61), the density of the measure µσ,ΠH with respect to νE,σ is

Q 7→
√
|det(−Π̂Q⊥ + Π̂H)| ,

which, by the remark containing (26), may be rewritten as

Q 7→
√

det
(
Π̂HΠ̂Q + Π̂H⊥Π̂Q⊥

)
.

Note that the determinant of which we take the square root is indeed positive (cf. the beginning
of the proof of Proposition 3.3).

Moreover, note that if F̂ denotes the complex subspace obtained from the quaternionic sub-
space F by restriction of scalars, then Π̂F = ΠF̂ . From this remark and Proposition 3.7, it follows
that

det
(
Π̂HΠ̂Q + Π̂H⊥Π̂Q⊥

)
= cos2(Q̂, Ĥ) = det(1Q̂

Ĥ
1Ĥ
Q̂

) = det(1̂QH 1̂HQ ) ,

where we used the notation for compressions of operators introduced in Section 2.4. The density
of µσ,ΠH may thus be rewritten as

Q 7→
√

det(1̂QH 1̂HQ ) .

Still using the notations of Section 2.4, note that for any Q in direct sum with H, we have

PQ = 1Q1QH(1HQ1QH)−11H ,

as indeed it can be checked that this is a projection whose kernel is H⊥ and whose image is Q.
Now let a be any endomorphism of E. If ε is a complex number of small enough modulus, the

complex number det
(
1̂+εâP̂Q

)
has positive real part for any Q ∈ Gr(E, σ), and we will consider

its principal square root. Note that, as a consequence of the identity det(I+AB) = det(I+BA)
for rectangular matrices of compatible dimensions A,B, we have

det
(
1 + εaPQ

)
= det

(
1HH + 1Hεa1Q1QH(1HQ1QH)−1

)
.

Letting n be the quaternion dimension of H, we thus obtain

E
[√

det
(
1̂ + εâP̂Q

) ]
=

∫
Grn(E,σ)

√
det
(
1̂HH + 1̂Hεâ1̂Q1̂QH(1̂HQ 1̂QH)−1

)√
det(1̂QH 1̂HQ ) dνE,σn (Q).

We now multiply the (usual, not quaternion) determinants, and find

E
[√

det
(
1̂ + εâP̂Q

) ]
=

∫
Grn(E,σ)

√
det
(
1̂H(1 + εâ)1̂Q1̂Q1̂H

)
dνE,σn (Q) .

Let us now assume that a is self-adjoint and ε is real and small enough for the above determinants
to be positive. In that case, letting b be an endomorphism of E such that 1 + εa = b∗b,
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using multiplicativity of the usual determinant, noting that 1Hb∗1Q1Qb1H is self-adjoint, and
using (61), we have shown that

(70) E
[√

det
(
1̂ + εâP̂Q

) ]
=

∫
Grn(E,σ)

det<
(
1Hb∗1Q1Qb1H

)
dνE,σn (Q) .

By a quaternion analogue of the invariant Cauchy–Binet formula (23) (this formula is proved
using the quaternion Hermitian matrix analogue of the Cauchy–Binet formula – which appears
in various places in the literature, see e.g. [SS14, Proposition A.3 (g)] – and averaging over the
action of U(E, σ) on the choice of orthonormal basis like in the proof of Proposition 2.7), the
right-hand side of (70) is now equal to det<(1H(1 + εa)1H).

Now, using (61) again to convert to usual determinants, and using the equality det(1HH +
1Hεa1H) = det(1+εaΠH) (which is again an instance of the equality det(I+AB) = det(I+BA)),
we find that for any self-adjoint a, and real small enough ε, we have

(71) E
[√

det(1̂ + εâP̂Q)

]
=

√
det
(
1̂ + εâΠ̂H

)
.

By differentiating with respect to ε at 0, we finally arrive at the following statement. For any
self-adjoint a, we have E

[
Tr(âP̂Q)

]
= Tr(âΠ̂H), which implies E

[
Tr(aPQ)

]
= Tr(aΠH). Since ΠH

is self-adjoint itself, this implies the announced equality. �

It would be nice to have a refinement of Theorem 6.12 as in Theorems 4.13 or 5.9. For the
moment we could not find one, by lack of a notion of quaternion determinant for non self-adjoint
operators, and by lack of a notion of exterior algebras for quaternionic vector spaces.

6.5. From quaternion to complex coefficient field. We conclude this section by coming
back to the discussion of Section 6.1. We have the following analogue of Proposition 6.1 in the
quaternion-to-complex case.

Proposition 6.13. Let E be a quaternionic inner product space, given with a splitting σ =
(E1, . . . , Es) and a kernel k. Let Ê, σ̂, and k̂ be the data induced by restricting the coefficient
field to complex numbers. Let Q(1) and Q(2) be two independent random quaternionic linear
subspaces of E sampled from µσ,k. Let C be a random complex linear subspace of Ê sampled
from µσ̂,k̂. Then we have the equality in distribution

(dimC Ci)16i6s
(law)
=
(

dimH Q
(1)
i + dimH Q

(2)
i

)
16i6s

.

Proof. We compute the Laplace transform of the left-hand side using Proposition 4.6, use (61)
and Proposition 6.11 to recognise that it is equal to the square of the Laplace transform of each
of the two summands of the right-hand side. �

Concluding remarks

The main example and motivation for our introducing the theory of DLP are quantum span-
ning forests (see Section 1.5 and Figure 1). It would be interesting to find other meaningful
examples of DLP. Are there such examples coming from representation theory, related to the
theory of Schur processes [Oko05]?

Is it possible to delve deeper into the connection with matroid theory provided by Propo-
sition 4.11 and the geometry of the Grassmannian, maybe in the spirit of the recent work on
probabilistic Schubert calculus [BL18]?

DPP have been widely used in statistical learning theory starting with the work of [KT12]; see
also [BLMV17]. The main focus of study has been on signals which can be represented as point
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processes, such as 2D visual images. Could one use DLP to study signals of a more vectorial
nature, such as sound recordings for instance? See e.g. [YL16] for an approach to subspace
learning, and references therein for examples of subspace-valued data.

Coming back to Macchi’s foundational work [Mac75] who introduced DPP as a way to model
systems of fermions in quantum optics, could one use DLP to model fermionic observables in a
real physical system with internal symmetry or coupled to a gauge field?

As briefly mentioned in the opening lines of this paper, there is a rich continous theory of
DPP. In view of the fact that continous DPP can be thought of as scaling limits of discrete
DPP, is there a continuous theory of DLP? A convenient way of thinking about point processes
in continuous spaces is as a random measure. One might imagine developing a framework for a
process which would be a random measure, whose values instead of being real would be sections
of the Grassmannian bundle of a given vector bundle. Are there such determinantal measures?
Could Corollary 5.7 provide an approach for defining DLP with a kernel given by a trace-class
operator? What would be an analog of Theorems 4.13 and 5.9 in that context?
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