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ABSTRACT: The newly discovered macrolactone mucorolactone, along with 8 known compounds, was isolated from an ethyl 

acetate extract of the insect-born fungus Mucor sp. All structures were elucidated using 1D and 2D NMR and MS spectroscopic 

experiments. Relative and absolute configurations of the original skeleton of mucorolactone was deduced from NOESY experi-

ment, from the 
13

C NMR chemical shifts calculation based on the DP4 probability method, and from the comparison of experi-

mental and calculated electronic circular dichroism spectra. 

Natural products are a historically successful option in the 

drug discovery and development process. They have an indis-

pensable role to play, continuing to provide for and influence 

the search and development of current therapeutic drugs in 

spite of the reduced level of natural products based drug dis-

covery programs.
1
 The recent decade has seen a growing 

recognition that natural products isolated from plants and 

animals may sometimes be the metabolic products of co-living 

microbes.
2
 This fact leads researchers to the exploration of 

underrated ecological niches to identify novel chemical enti-

ties. Consequently, natural products regulating insect–microbe 

interactions have emerged as a promising resource for drug 

discovery.
3,4

 These microorganisms, either mutualists or path-

ogens, generate a number of secondary metabolites involved 

in the mechanisms of defense, protection, or virulence.
5,6 

Among them, entomopathogenic microorganisms are expected 

to produce insecticides and antimicrobial compounds during 

the process of infection and proliferation.
7
 In our work, we 

undertook the exploration of secondary metabolites of the 

fungus Mucor sp. isolated from the cuticle of an alive, yet 

infected, unidentified wasp (Vespidae) collected in French 

Guiana. 

 

Figure 1. The structure of mucorolactone (1). 

A fractionation was performed on the ethyl acetate extract 

of Mucor sp. SNB-VECD13A and a new compound 1 (Figure 

1) was isolated, along with known dehydroabietic acid,
8
 

cyclo(L-Pro-L-Phe),
9
 N-acetyltryptophane,

10
 daidzein,

11
 2-(4-

hydroxyphenyl)ethyl acetate,
12

 phenylacetic acid,
13

 ergosterol-
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5α,8α-peroxide,
14

 and ergosta-5,7,22-trienol.
15

 Known com-

pounds were identified by the comparison of their analytical 

data with those from the literature, as described in the Sup-

porting Information. 

Table 1. 1H and 13C NMR Data of Compound 1a 

1 

no.  δH, mult (J in Hz) δC  

1 4.32, d (7.6) 106.1  

2 3.15, dd (9.4, 7.6) 75.5 

3 3.329, br t (9.3) 77.5 

4 3.51, br t (9.3) 70.6 

5 3.332, br dt (9.6, 2.0) 74.6 

6 a: 4.13, dd (11.7, 1.6) 63.2 

b: 4.44, dd (11.7, 2.5) 

7 5.33, br t (2.7) 76.0 

8 3.73, br q (2.5) 77.3 

9 ax: 2.04, dt (15.2, 3.8) 34.5 

eq: 2.12, br d (15.2) 

10 3.95, br q (2.1) 70.1 

11 1.71, m  38.6 

12 2.85, br d (10.1) 39.1 

13 6.08, br t (10.7) 131.1 

14 5.46, br td (11.2, 5.2) 130.8 

15 a: 1.76, m 27.6 

b: 2.43, m 

16 1.50, m 31.0 

17 a: 1.64, m 26.5 

 b: 1.84, m  

18 a: 2.27, ddd (13.8, 8.8, 5.2) 36.6 

b: 2.41, m  

19  175.6 

20  174.0 

21 a: 2.29, dt (15.0, 7.3) 

b: 2.33, dt (15.0, 7.3) 

35.6 

22 1.61, m 26.5 

23-34  1.21-1.35, m 23.8 to 33.3 

35/40 0.89/0.90, t (7.0) 14.6 

36 1.42, m 31.3 

37-39 1.21-1.35, m 23.8 to 33.3 
a Measured at 500 MHz for 1H and 125 MHz for 13C, in methanol-

d4 

Compound 1 was obtained as a yellow oil. It has the molec-

ular formula C40H70O10, as deduced from the HR-ESI
+
-MS 

molecular ion sodium adduct at m/z 733.4881 [M + Na]
+
 

(calcd for C40H70O10Na, 733.4879), corresponding to 6 degrees 

of unsaturation. The examination of the 
1
H, 

13
C, and HSQC 

spectra of 1 allowed the identification of two triplet methyls at 

δH 0.89 and 0.90 and thirteen methines [δH 6.08, 5.46, 5.33, 

4.44, 4.32, 4.13, 3.95, 3.73, 3.51, 3.34, 3.33, 3.15 and 2.85] 

among which two were olefinic protons (δH 6.08, H-13 and δH 

5.46, H-14). Several methylenes were identified under a broad 

signal at δH 1.30. The 
13

C NMR spectrum of 1 showed the 

presence of two quaternary carbons corresponding to ester 

groups at δC 175.7 and 174.0 and nine oxygenated carbons 

between δC 63.1 and 106.1 (Table 1). The presence of a 

pyranose moiety was confirmed by the sequence of 
1
H – 

1
H 

COSY cross-peaks for H-1/H-2/H-3/H-4/H-5 and H-6 along 

with HMBC correlation H-1 to C-5 (Figure 2). An additional 

sequence of 
1
H – 

1
H cross-peak H-7/H-8/H-9/H-10 and H-11 

along with HMBC correlations between H-8/C-9, H-10/C-8 

and C-12, H-11/C-12, and H-12/C-7 and C-10 allowed the 

determination of another six-membered ring linked to the 

pyranose moiety by C-8 as shown by the H-1/C-8 and H-8/C-1 

correlations (Figure 2). Note that the unusual C-11–C-12 bond 

is revealed by the H-11–H-12 COSY correlation, and the 

correlations H-11/C-12, H-10/C-12 and H-12/C-10 in HMBC. 

The
 1

H-
1
H COSY sequence signal from H-12 to H-18 estab-

lished a carbon side chain linked to C-12 and includes the two 

methines H-13 and H-14 in a cis double bond (J = 11.3 Hz, 

Figure 2). HMBC cross signals H-6/C-19 and H-18/C-19 

confirmed the C-6–O–C-19 linkage demonstrating the pres-

ence of a macrolactone. The correlation of H-7 with C-20 and 
1
H-

1
H coupling between H-11 and H-36 allowed us to attach 

an alkyl side chain in C-11 and a fatty acid chain in C-7. The 

relative length of both side chains could not be established by 

NMR due to extensive overlapping of the CH2 signals in 
1
H 

and 
13

C. In LC-ESI
-
-MS

2
, the fragmentation of the pseudo-

molecular ion yielded two characteristic fragments at m/z 

255.2323 ([C16H31O2]
-
) and 471.2584 ([M–C16H31O]

-
). These 

originate from the cleavage of the C-7–O and the O–C-20 

bonds, respectively (Scheme 1). In LC-ESI
+
-MS

2
, the 

[M+Na]
+
 adduct fragmented to give a daughter ion at m/z 

477.2457 ([M+Na-C16H32O2]
+
). All these findings are con-

sistent with the existence of palmitate esters on C-7 and a five-

carbon side chain in C-11.  

Figure 2. A) COSY (bold), and key HMBC (plain arrows) corre-

lations in compound 1; B) key NOE correlations in the glucose 

moiety (dashed arrows). Hydroxyl groups in positions 2-4 have 

not been represented for clarity; C) key NOE correlations in the 

cyclohexane ring (dashed arrows). 

The anomeric proton configuration was assigned based on 

H-1 chemical shift and on the coupling constant value of 7.6 

Hz between H-1 and H-2. This is consistent with a β–

configuration. Based on the same principle, the vicinal cou-

pling constant between the successive pyranose protons pro-

vided information about their relative configuration. Large J 

couplings observed within the sequence H-2 to H-5 confirmed 

the axial configuration of H-2, H-3, H-4 and H-5. These orien-

tations were confirmed by the NOESY spectrum where
 
corre-

lations were observed between the anomeric proton H-1 (δH 

4.32) and H-3 and/or H-5, and between H-2 and H-4. The 
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pyranose was therefore defined as a glucose moiety. The rela-

tive stereochemistry in the cyclohexane ring was determined 

as follows. First, H-8 and H-10 both have 3 small vicinal 

coupling constants (J ≈ 2.5 Hz and J ≈ 2.1 Hz, respectively). 

Since one of the H-9 protons is necessarily axial, then H-8 and 

H-10 must be equatorial. The axial H-9 proton at δ 2.04 could 

be identified due to the NOE correlation with H-11. H-12 has 

one large coupling with H-13 and two small couplings with H-

11 and H-7. Since H-11 is axial, then H-12 has to be equatori-

al. This was confirmed by the NOE correlation between H-11 

and H-12. Finally, the COSY experiment indicated that H-7 

was coupled with H-9eq (W-coupling) and should therefore be 

equatorial. This assumption was reinforced by the NOE cou-

pling between H-7 and H-13. 

Scheme 1. LC-MS
2
 Fragmentation of 1 (up: positive mode; 

down: negative mode) 

 

The only stereochemical information linking the glucose to 

the cyclohexane ring is an NOE correlation between H-1 and 

H-8. However, this was not enough to determine the relative 

configurations of these two moieties (Figure 3). A 
13

C NMR 

chemical shift calculation by the DP4 probability method was 

performed.
16

 Due to the flexibility of the compound, 
13

C NMR 

calculations have been performed on the conformers within 

1kcal.mol
-1

 using Gaussian 09W with the B3LYP method at 

the 6-311+G(d,p) level. The Boltzmann weighted chemical 

shifts have been compared to the experimental ones using an 

in house implementation of the Java source code available on 

the Goodman’s group page (http://www-

jmg.ch.cam.ac.uk/tools/nmr/DP4/). The diastereoisomer a was 

deduced to be correct with a 100% probability. 

The experimental electronic circular dichroism spectrum of 

1 was recorded in t-BuOMe. It shows a broad positive absorp-

tion band centered at 220 nm. The calculated ECD spectrum 

of the enantiomer in Figure 1 agreed well with the experi-

mental data (See supporting information), therefore supporting 

the absolute configuration in which the glucose moiety is D. 

The initial goal was to find new insecticides. Mucorolactone 

was tested on Aedes aegypti larvae and was not active. 

Figure 3. Both possible diastereoisomers of 1 (R = pentyl). 

In conclusion, this letter reports the first description of 

mucorolactone (1), a unique macrocyclic compound isolated 

from a fungus of the genus Mucor. Interestingly, the right side 

of compound 1, from the ester group in C-19 to the pentyl side 

chain (C-36–C-40), seems to be formed by cyclization (for-

mation of the C-11–C-12 bond) and oxidation of -linolenic 

acid to generate the functionalized cyclohexane ring. Bacteria 

from the Alicyclobacillus and Sulfobacillus genera are known 

to produce -cyclohexyl fatty acids,
17

 but simple 6-membered 

rings in the middle of a fatty acid chain are very rare in nature. 

One example is the isolation of rubrenoic acids A–C from the 

marine bacterium Alteromonas rubra.
18

 These compounds 

probably originate from the 7–12 cyclization of a C16 fatty 

acid, but the biosynthetic pathway leading to the formation of 

such compounds is not known. It will be interesting to further 

investigate the biosynthesis of mucorolactone, which can be 

obtained in large amounts from Mucor sp. SNB-VECD13A. 
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