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Abstract 

A Photovoltaic-Thermal (PV-T) module is a solar hybrid collector which converts part of incident solar energy into electricity and 
recovers a fraction of the remainder dissipated as heat. 
A new high efficiency, covered, water PV-T component was developed in the context of a partnership between CETHIL, 
Fraunhofer ISE and EDF R&D. Tested under controlled conditions, the module demonstrated unparalleled electrical and thermal 
efficiencies. Within the framework of the project PHOTOTHERM an array of modules was integrated into a domestic hot water 
system installed on the BESTLab laboratory at EDF R&D, France, so that the performance of a complete system could be monitored 
under real conditions. In parallel, a numerical model was developed taking into account the heterogeneity of PV cell temperature, 
and the geometrical complexity of the Fractherm® heat exchanger developed by Fraunhofer ISE. The model, developed in TRNYS, 
was validated for steady state and transient conditions. The aim of the work now is to assess the energetic and exergetic performance 
of systems integrating this new PV-T module. 
The PV-T prototype, as well as the entire domestic hot water system, and the complete TRNSYS model are presented in this paper. 
Model validation was performed using measurements taken under real conditions. The model allows a rapid energetic analysis of 
the domestic hot water system. 
 
© 2015 The Authors. Published by Elsevier Ltd. 
Peer-review under responsibility of the CENTRO CONGRESSI INTERNAZIONALE SRL. 
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1. Introduction 

Hybrid PV-T collectors have become the object of renewed interest in recent years with the development of low 
or positive energy buildings. New multifunctional envelope types are needed in order to meet all the energetic needs 
of such buildings, and PV-T technologies are interesting because to generate simultaneously heat and electricity for 
various applications (domestic hot water, solar cooling). Moreover, they convert a higher part of the solar energy 
received than standard PV pannels by recovering the heat generated.  

In this context the PHOTOTHERM project was launched upon a collaboration between EDF R&D and the CETHIL 
laboratory. Its first aim is to evaluate the potential of PV-T systems by studying precisely their behaviour as part of a 
solar domestic hot water (SDHW) system in real conditions. The long-term aim is to show the optimal conditions of 
use of PV-T panels. 

 
Nomenclature 

Tcons set point temperature, °C Tw Water temperature, °C   
γ control function t time 
ΔT+ upper dead band, ° C ΔT- lower dead band, °C 
TPV PV cells temperature, °C  Tref reference temperature, °C 
ηref reference PV yield ηT PV yield at temperature T 
β PV yield loss coefficient  

2. Experimental installation 

2.1. Domestic hot water system 

Within the framework of the PHOTOTHERM project, a PV-T SDHW system was constructed and instrumented 
on the site of BESTLab (Building Envelope & Solar Technologies Laboratory), EDF R&D, France (Fig. 1). The sizing 
of the domestic hot water system was been determined following the recommendations of [1] for the paris region for 
a daily consumption of 150 l. 

 

Fig. 1. Hot water domestic Installation. 1) PV-T field- 2) Pump - 3) Hot water tank - 4) Auxiliary heater- 5) micro-inverter 

The installation comprises 6 PV-T panels of 1 m2, facing south, tilted by 45°, 2 by 2 electrically in series and 
connected to micro-inverters to inject the electrical power into the grid. The PV-T panels are placed pair wise in 
parallel in the hydraulic system and a pump works as an on-off controller. The maximum volumetric flow rate of the 
heat transfer fluid is 4 l/min in a closed-circuit. The circuit contains 300 l and has an electrical heating auxiliary of 2.4 
kW so that the heated water follows the set point temperature of 55 °C. A safety controller for the solar array is fixed 
to 100 °C. Lastly, a water consumption profile was imposed corresponding to a classical demand of domestic hot 
water for a family of 4 people based on the L-cycle in accordance with Pr EN255 (Fig. 2).  

Regarding system monitoring, the environmental measures (total in-plane radiation, outdoor temperature and wind 
speed), the flow rate, glycol water temperature along the hydraulic loop, generated electrical power and the energy 
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consumption of the water storage tank auxiliary heater are measured on a minute-wise basis starting from 1st 
September 2012. 

 

 

Fig. 2. Fixed profile of water consumption  (6 September 2013) 

2.2. PV-T Prototype 

The aim of the hot water storage installation presented is to study the behaviour of the PV-T pannels integrated 
into a complete system. For each of the 6 panels, four rows of eight PV monocrystaline cells (156 x 156 x 0.2 mm) 
were electrically connected in series, inserted between two EVA (Ethylene-vinyl acetate) films of thickness 0.46 mm. 
This layer was plced on the flat surface of a fractal rollbond type heat exchanger (of size 1350 x 750 mm) followed 
by a layer of f-polymer film 0.13 mm thick. The resulting sandwich was laminated together under temperature, 
pression and vaccum conditions similar to the lamination conditions of PV conventional modules. The assembled PV-
T absorber was inserted into a metal frame with an insulation layer located on the backside. On the front side, non-
reflecting glass with a transmission coefficient above 0.94 was placed 20 mm in front of the PV cells to provide a 
narrow an air gap (Figure 2). The design of the collectors aswell as the material selection are detailed by Dupeyrat et 
al. [2-4]. 

The thermal performance of the prototype PV-T modules were tested under controlled conditions (radiation, 
ambient temperature, wind) at Fraunhofer ISE. Measurement were undetaken in accordance with the norm EN12975 
adapted to characterize the collector for a hybrid mode [5]. Radiation was simulated by close array of spot lights 
affording an incident radaition intensity of 938 W/m2. Ventilation was maintainedd to simulate a constant wind speed 
of 3 m/s. A thermal reference efficiency of 83.4 % for an open circuit was obtained for a purely thermal use of the 
collector. If a hybrid use of the collector is required(PV + thermal) a reference efficiency of 72.8 % has been obtained 
for an electrical efficiency of 10.5 %. Under real conditions, the performance was evaluated for the first working week 
of the SHDW operation (September 2012). An electrical efficiency of 8.5 % was reported for a overrall thermal 
efficiency of 36 % [6]. 

3. Modeling the domestic hot water system 

3.1. TRNSYS Model 

This SDHW system has been modelled with TRNSYS, following a similar arrangement to previous works [1, 7-
10]. TRNSYS a dynamic simulation tool particularly dedicated to the modelling of energetic complex systems at the 
system scale. The software adopts an approach where a system is reduced to a set of interconnected subsystems 
modelled as TYPES. In our case, the entire system has been modelled using TYPES available in the TRNSYS standard 
library sumarised in table 1 and as illustrated in figure 3.  

The model includes the following numerical limitations and settings:  
 the weather data and the consumption profiles allow minute-wise simulations; 
 the TYPE used to simulate the PV-T modules does not work for a zero flow. A residual flow of 7 l/h was therefore 

imposed; 
 mass conservation at pipe diameter shifts was ensured via “equation” components as shown in the diagram; 
  7 °C et  4 °C delimits the upper and lower bounds of the dead band ot the controller: 
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  (1) 

 
 is the set point temperature (55 °C in our case) and  the water temperature at the bottom of the tank; 

 temperature stratification in the tank was modeled in the TYPE 60d. In our case, a sensitivity study enabled us to 
restrict to 10 the number of nodes defining the temperature profile relative to the height in the tank. 

Table 1. Elements of the loop and TYPES used in the hot 
domestic water model 

Elements Type Comment 
Weather data 9 Weather data on site, at 

a minute time step 

Pipe 31 Complete Hydraulic 
loop  

PV-T pannel 50 Florschuetz model [11] 

Pump 3d Constant flow pump  

Controller 2b Hysteresis controller 

Consumption 9 Profil implemented in 
situ 

Domestic hot water 
tank 

60d With auxiliary heating 

 

Fig. 3. TRNSYS model of a PV-T SDHW system  

3.2. Model validation 

The first six days of data were used validation the model, from the 2nd until the 7th September 2015. Figure 4 
presents the variation in water temperature at different heights in the domestic hot water tank. It also presents the 
spiked demands of the auxiliary tank heater. A significant stratification of the water in the tank is clearly observed. 
Differences of 25 – 30 °C were observed in the water tank between the bottom (inlet tap water) and the top tank (outlet 
heated water) (figure 4). At the top of the tank the water temperature remains steady because the auxiliary heater 
affects the water temperature at the node located 0.96 m above the lowest level of the tank. At this node temperature 
variations between 55 °C and 48 °C are observed in phase with the highest spiked power. The variation in the 
temperature of water at the bottom of the tank (at 0.6 and 0.26 m high) is dominated by the refilling of the tank. The 
other nodes shown in figure 4 are seen to increase during the day: these nodes are impacted by the energetic 
contributions of the water tank heat exchanger where the heated glycol water flows through the PV-T panels during 
the day. The thermal behavior of the water stored in the tank, which is not monitored, seems coherent with these 
results.  

The simulated power were found to follow a similar trend to the measured power. The powers simulated and 
measured take place at closed moments (Fig. 4 bottom). The energy consumption profiles during this test period are 
quite similar but the energy consumed obtained by simulation is higher than the measured energy during the two last 
days (Fig. 5).  

The model was found to predict glycol water temperature at the entrance of the PV-T panels to an accuracy 
better than 1°C. These temperatures represent also the temperatures at the output of the heat exchanger. We can 
confirm that, the energy exchanges at the bottom of the water tank are well modelled (Fig. 7 below). The output and 
input PV-T simulated and measured temperatures are similar, showing that the simulation results agree with the 
measured temperatures. 

The measured glycol water temperature at the output of the collector exhibits large variations over short timescales, 
which are not reproduceded by the simulation (top of Fig. 7). This abrupt bevahiour is linked to the pump control: at 
certain moments of the day the pump stopped, letting the glycol water stagnate for a few minutes in the PV-T 
collectors. During this time the temperature of the water in the PV-T panels rises considerably. The pump was 
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configured to stop running when the bottom temperature of the tank exceeds the output temperature of the PV-T 
collectors. This behaviour is not systematically reproduced by the model. The daily starting and stopping time of the 
pump are similar between the simulation and the data, but the simulation assumes that the pump is switched on 
throughout the day without interruption (Fig. 7 below). 
 

 

Fig. 4. Temperature evolutions at different heights and stratification 
in the tank (at the top) and the power of the auxiliary heating 

 Fig. 5. Consumed electrical energy by the auxiliary heat 
 

 
 

 

 

 

 

 

 
Fig. 6. Input temperatures (bottom figure) and output temperatures 

(top figure) of the glycol fluid PV-T collectors 
Fig. 7. Output PV-T panel temperatures (top) and mass flow rate 

(bellow) the 6th September 2013 

The PV measured and simulated electrical power are presented bellow in figure 8. The electrical model of type 50 
considers a linear decrease of the PV cell electrical efficiency  versus their temperature  according to: 

02/09 03/09 04/09 05/09 06/09 07/09

1

2

P
  [

kW
]

 

 

20

40

60

T
  [

°C
]

 

 

T
top

T
1.3

T
0.96 m

T
0.60 m

T
0.26 m

T
bottom

P
simulated

P
measured

02/09 03/09 04/09 05/09 06/09 07/09

5

15

E
A

U
X  

[k
W

.h
]

 

 

Simulated Measured

02/09 03/09 04/09 05/09 06/09 07/09
0

40

80

T 
 [°

C
]

 

 

02/09 03/09 04/09 05/09 06/09 07/09
0

40

80

T 
 [°

C
]

 

 

T
in,simulated

T
in,measured

T
out,simulated

T
out,measured

6h 12h 18h
0

2

4

dm
/d

t [
l/m

in
]

 

 

Simulated Measured

6h 12h 18
0

40

80
T 

 [°
C

]

 

 

T
out,simulated

T
out,measured



1996   Pierrick Haurant et al.  /  Energy Procedia   78  ( 2015 )  1991 – 1997 

refPVrefT TTβ1ηη    (2) 

With  the reference efficiency of the PV cells PV at reference temperature . 
It is apparent from figure 8 that TYPE 50 does not provide an adequate simulation of electrical power at certain 

times of day. Indeed spurious values are observed at the start and end of most days in the simulation, which 
corresponds to times when the flow rate is close to zero. At other times of day the calculated electrical power falls  
considerably below the measured power generation. For example, at midday on 4th and 6th September, the power 
calculated is 300 W whereas 500 W were actually produced. In summary, even though the presented model using 
TYPE 50 gives coherent results for the thremal behaviour of the PV-T system, the simulation of electrical power is 
unsatisfactory. 
 

 

Fig. 8. Produced electrical power of PV-T collectors 

4. Conclusions 

An experimental domestic solar hot water system integrating hybrid PV-T module prototypes has been installed 
and monitored during 18 months on BESTLab site of EDF R&D. Its aim was to follow the behaviour of these 
prototypes within a complete system in order to evaluate its real performance the value added compared to more 
conventional solutions.  

In this paper, a TRNSYS simulation has been compared to monitoring data from the test rig at BESTLab. The 
thermal behaviour of each sub-system, PV-T modules and tank in particularly, have been validated, showing 
calculated temperatures in general agreement with the data. Comparing power and energy consumed by the auxiliary 
heating suggests the control systems has been correctly simulated by the model. Finally, this model allowed to point 
out the limitations of the PV-T model currently in use, (TYPE 50), in particular with regards electrical power 
generation and for close to zero glycol water flow rates. This confirms the need to implement a TYPE based upon the 
more sophisitcated transient three dimensional thermal model presented in [12].  

Acknowledgements 

The PHOTOTHERM project is supported by the French Environment and Energy Management Agency (ADEME). 

References 

[1] Dupeyrat, P Ménézo, C, et Fortuin, S, Study of the thermal and electrical performances of PVT solar hot water system, Energy and Buildings, 
vol. 68, Part C, p. 751 755, (2014). 

[2] Dupeyrat, P Ménézo, C, Rommel, M, et Henning, HM, Efficient single glazed flat plate photovoltaic–thermal hybrid collector for domestic hot 
water system, Solar Energy, vol. 85, nᵒ 7, p. 1457 1468, (2011). 

[3] Dupeyrat, P Ménézo, C, Wirth, H and Rommel, M, Improvement of PV module optical properties for PV-thermal hybrid collector application, 
Solar Energy Materials and Solar Cells, vol. 95, nᵒ 8, p. 2028 2036, (2011). 

[4] Dupeyrat P, Experimental development and simulation investigation of a Photovoltaic-Thermal hybrid solar collector, INSA Lyon, Lyon, 
France, (2011).  

[5] Hoffman, P, Dupeyrat, P, Kramer, K, Hermann, M and Stryi-Hipp, G, Measurements and Benchmark of PV-T collectors according to EN12975 
and development of a standardized measurement procedure. In Proceedings EuroSun 2010, 28.9-1.10.2010, Graz, Autriche, (2010). 

[6] Haurant, P, Ménézo, C and Dupeyrat, P, The PHOTOTHERM Project: Full Scale Experimentation and Modelling of a Photovoltaic – Thermal 
(PV-T) Hybrid System for Domestic Hot Water Applications, Energy Procedia, vol. 48, p. 581 587, 2014. 

02/09 03/09 04/09 05/09 06/09 07/09
0

200

400

P
p

v  
[W

]

 

 

Simulated Measured



 Pierrick Haurant et al.  /  Energy Procedia   78  ( 2015 )  1991 – 1997 1997

[7] Hobbi, A and Siddiqui, K, Optimal design of a forced circulation solar water heating system for a residential unit in cold climate using TRNSYS, 
Solar Energy, vol. 83, nᵒ 5, p. 700 714, (2009). 

[8] Kalogirou, SA and Tripanagnostopoulos, Y, Hybrid PV/T solar systems for domestic hot water and electricity production, Energy Conversion 
and Management, vol. 47, nᵒ 18 19, p. 3368 3382, (2006). 

[9] Ayompe, LM, Duffy, A, McCormack, SJ and Conlon, M, Validated TRNSYS model for forced circulation solar water heating systems with 
flat plate and heat pipe evacuated tube collectors, Applied Thermal Engineering, vol. 31, nᵒ 8 9, p. 1536 1542, (2011). 

[10] Raffenel, Y, Fabrizio, E, Virgone, J, Blanco, E and Filippi, M, Integrated solar heating systems: From initial sizing procedure to dynamic 
simulation, Solar Energy, vol. 83, nᵒ 5, p. 657 663, mai 2009. 

[11] Florschuetz, LW, Extension of the Hottel-Whillier model to the analysis of combined photovoltaic/thermal flat plate collectors, Solar Energy, 
vol. 22, nᵒ 4, p. 361 366, (1979). 

[12] Haurant, P, Ménézo, C, Gaillard, L and Dupeyrat, P, Dynamic numerical model of a high efficiency PV–T collector integrated into a domestic 
hot water system, Solar Energy, vol. 111, p. 68 81, (2015). 

  


