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Abstract 

Microalgal bioprocesses are increasing in multiple industrial sectors for production at large 

scales. Nevertheless, classical sensors are still used but are not adapted for production 

monitoring, leading to monoparametric, invasive and time-consuming solutions. Future 

approaches should eliminate those weaknesses and take advantage of optical methods to 

optimize the monitoring. This work is focussed on the concrete application of Raman 

spectroscopy to characterize the physiological kinetics of a microalgal process. The 

monitoring of Chlamydomonas reinhardtii growth in photobioreactors led us to build its 

specific Raman spectral database. The complex Raman signatures acquired showed 35 

reproducible bands for each day of growth, corresponding to the spectral fingerprints of the 

cell metabolites, such as chlorophyll a, beta-carotene, nucleic acids and lipids. In total, 2688 

spectra were compiled in a database representing the cellular chemical fingerprints in three 

physiological stages and showed progressive variations between the days of acquisition. 

New data acquisitions allowed us to build a trial for blind validation and to characterize the 

bioprocesses with 89.2% accuracy. To complete the study, transcriptomic experiments 

following the transcript expression of two different metabolic pathways of the microalgae 

confirmed the cell physiology attributions made by the Raman spectroscopy. This work 

enables us to query the bioprocess status directly from the cells by attributing a spectrum to 

the current cell physiology. 
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1. Introduction 

Microalgae are at the crossway of multiple resource productions and represent a modern 

solution to supply high-value-added products for the cosmetics, biofuels, health and food 

markets [1,2,3]. In addition to constitutive metabolites, some species of microalgae can 

overproduce diverse molecules of interest, such as astaxanthin, β-phycoerythrin or 

docosahexaenoic acid [4]. With a global market for microalgal products estimated at billions 

of US dollars [5,6], cultures of microalgae for industrial use have been developed at large 

scale and consist of either open pounds, up to hundreds of hectares, or closed 

photobioreactors, up to 700 m3 [7]. The microalgal production sites are generally estimated in 

megaton per hectare per year, and some cultures could last for months, depending on the 

strain used [8,9]. 

Classical approaches are currently applied to monitor these large-scale productions, and 

only classical analytical methods are used [10]. The algal cell physiology is followed through 

time with phenotypic observations (size, shape, colour) and monoparametric disposable 

probes (pH, temperature, biomass, pCO2, pO2) placed into the reactors [11]. The microalgal 

production is then indirectly estimated by correlating the physico-chemical environment with 

the cell physiology. This overall monitoring implies the need to have as many classical 

sensors as pieces of information desired, but numerous parameters are needed to follow this 

highly dynamic bioreaction [12,13]. The large number of sensors needed being difficult to 

pursue for industrial purposes, the cells should be focussed instead on directly collecting 

information for bioprocess monitoring [14]. Ideally, the monitoring should involve the 

minimum number of sensors with the maximum of information, increasing the understanding 

of the system, decreasing the bioprocess cost, and leading to more competitive microalgal 

bioproduction. To improve the bioproduction control, the characterization and quantification 

of the cell components can be assured by multiparametric methods such as chromatography 

and mass spectrometry [15]. Despite their high sensitivity and specificity, these methods 

need repeated sampling for bioprocess control and lead to time-consuming analysis that can 
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be done by only qualified operators confined in a lab. At the process scale, their utilization 

results in a global decrease of the harvest and an increased exposure to contamination by 

multiple sampling [16]. Nuclear magnetic resonance has also been well investigated for 

monitoring biomass and metabolites, but it needs much time and a high cell density for 

analysis, as well as a reactor setup in a magnetic chamber [16]. Technological developments 

in the last few years have adapted optical methods for integration in situ, each one having 

advantages and inconveniences [17,18]. UV-visible spectroscopy offers a low-cost and quick 

spectral representation of a bioprocess monitoring but has a low specificity to cellular 

compounds [10]. Another solution is fluorescence spectroscopy, providing in situ 

measurements, but its use is specific to fluorescence-active compounds [10]. Infrared 

spectroscopy has also been studied, as it enables rich spectral signatures of a sample, but 

its application is limited by the high absorbance of water molecules [10]. Optical methods are 

generally already well established in the pharmaceutical area, monitoring substrates 

produced from microorganisms such as yeast and bacteria (carotenoids, lactate, 

phenylalanine), but they do not focus on the cell itself [19,20]. A time gap is present between 

the moment of metabolites productions by the cells and their measurements by analytical 

methods so focusing on the cells should improve the monitoring. Distinct from other optical 

methods, Raman spectroscopy affords the possibility to directly study cells in a medium and 

to discriminate between microalgal species or stress status by acquiring Raman spectral 

fingerprints [21,22]. The main feature of Raman spectroscopy is non-invasive 

measurements, in a few seconds, of entire cells without metabolite extraction or addition of 

reactive [23,24]. This multiparametric methodology has been identified as a candidate for 

future bioprocess monitoring tools [24]. This technique is based on the inelastic scattering of 

a monochromatic light interacting with a sample. This interaction leads to the spectral 

fingerprint of the sample composition. The bioproducts synthesized by microalgae in 

response to a stress have specific chemical bonds corresponding to specific Raman bands 

[25,26,27]. For lipid production, the single presence and position of an unsaturation may 

change the Raman spectrum and enable the discrimination between different lipids 
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[28,29,30]. The triacylglycerol and starch production of specific species has also been 

investigated [31,32]. From the perspective of a bioprocess, the multiparametric, fast, and 

non-invasive analysis of a bioreaction should have improved efficiency by monitoring cells 

directly and complementing the classical sensors. Currently, however, the correlation 

between Raman spectra and the physiology of microalgae has been poorly investigated in 

such monitoring. Out of all the studies published on Raman spectroscopy, no method is 

available, to our knowledge, to demonstrate the physiological stage monitoring of 

homogeneous populations of microalgae from photobioreactors. The dynamic physiology of 

microalgae has been the focus of fundamental research at low scales and over short periods 

(1 day) in stress conditions [33]. One study presented an approach to monitor diatom growth 

in an unstirred flask by Raman spectroscopy and showed spectra fluctuating through time 

[34]. That study allowed correlations between cell physiology and Raman fingerprints, but 

applications and proof of concept for monitoring an entire bioprocess from spectral 

fingerprints have yet to be demonstrated. A robust spectral database acquired offline could 

indeed be the source of quick and complete culture characterizations. The work presented 

on this paper focusses on concrete application of Raman spectroscopy for predicting the 

physiological stage of a microalgal population with single-blinded trial correlations carried out 

on Chlamydomonas reinhardtii growth in photobioreactors. The recent decades of research 

on microalgal metabolism have led to a better understanding of the genomic [35,36], 

metabolomic [37,38] and lipidomic levels [39,40]. The kinetics of microalgal physiology has 

even been well described for a few species through complex analyses, such as 

metabolomics carried out on Chlamydomonas reinhardtii [41]. The microalga 

Chlamydomonas reinhardtii was selected for our experiments based on its well-studied 

physiology [42]. The quantifications of transcripts associated with the lipid metabolic 

pathways (146945) and with tubby-like proteins production (26047) enabled Chlamydomonas 

reinhardtii physiological stage discrimination. Unlike usual approaches made by Raman 

spectroscopy, the observations made by our method are validated with referential 

transcriptomic experiments to confirm the correct correlation to the cell physiology. This first 
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work is a prerequisite that could lead to predictions on other applications such as metabolites 

productions and online monitoring.  
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2. Materials and methods 

2.1. Microalgal strains and culture conditions 

Chlamydomonas reinhardtii wild-type strain (137 AH) was supplied from the CEA Cadarache 

(France). The axenic strain was cultivated in Sueoka autotrophic medium. The medium was 

composed as follows for 960 mL of solution: NH4Cl 1.45 g (Merck, ref 1.01145); 

MgSO4.7H2O 0.28 g (Sigma-Aldrich, ref 63138); CaCl2.2H2O 0.05 g (Merck, ref 1.02382); 

KH2PO4 0.61 g (Sigma-Aldrich, ref 795496) and 1 mL of Hutner’s trace elements solution 

[43,44]. The medium was autoclaved at 121°C for 21 minutes. A solution of NaHCO3 1.68 g 

(Merck, ref 1.06329) in 40 mL was filtered separately with 0.2-µm filters and added to fill the 

medium to one litre. Preculture growth was sustained at 130 rpm and 25°C under continuous 

light (incident photon flux density of 30 µmol.m-2.s-1) in an incubator (Eppendorf, New 

Brunswick Innova 42r). Two-hundred-millilitre Chlamydomonas reinhardtii precultures were 

carried out in 500 mL Erlenmeyer flask for 21 days until use in photobioreactors. 

Cultivations in photobioreactors were conducted in batch mode. Experiments were carried 

out in airlift photobioreactors with a working volume of one litre and a specific illuminated 

surface area (alight) of 33.3 m-1. The photobioreactor dimensions are 21 x 35 x 4 cm. The 

photobioreactor setup is described in previous publications [43,45]. The photobioreactors’ 

front panels were made of methyl methacrylate, and the rear sides were stainless steel (type 

316L). Photobioreactors were illuminated under continuous light (incident photon flux density 

of 120 µmol·m-2·s-1) by a panel of LEDs (Bionef, Z1 panel, France). A probe continuously 

measured both pH and temperature (Mettler Toledo, 4801i). A cryothermostat (Lauda, RC20) 

fixed the temperature at 25°C (± 0.1°C) through cooling tubes on the rear side of the 

photobioreactor. The pH was fixed at 7.5 and was controlled by injecting CO2 through 

solenoids coupled with a transmitter (Mettler Toledo, M300) (figure 1). The inoculation of 

photobioreactors was fixed at optical density (O.D.) = 0.1 at 750 nm.  
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Fig. 1.(colour) Diagram of analyses done and the schema of Chlamydomonas reinhardtii 

batches in photobioreactors. The experimental plan is subdivided in two steps: creation and 

blind validation experiments. 

Experiments in two steps were carried out. The first one was a database creation in order to 

collect the Raman spectra of Chlamydomonas reinhardtii growth for each day and make a 

model. The second step is a validation experiments setup made to test blind predictions. 

2.2. Culture monitoring 

A set of methods was applied daily to follow the growth of Chlamydomonas reinhardtii for 16 

days. The cell estimations were carried out by monitoring the optical density at 750 nm from 

1 mL of sample with a spectrophotometer (BMG Labtech, SPECTROstarNano, v2.11). The cell 

density was also determined under an optical microscope using Malassez counting cell and 

was expressed in cells per milliliter of culture. Ammonium concentration was monitored by 

colorimetric reactions using a Hach Lange kit LCK303, based on the ISO 7150-1 standard 

[44, 46]. Ammonium was measured by a spectrophotometer (Hach, DR 2800). 

Finally, chlorophyll a and beta-carotene concentrations were monitored after extraction. 

Extractions were performed from 1 mL of microalgal sample with methanol [47]. The 

extraction was done by incubation at 44°C for 30 minutes, followed by centrifugation at 

12,200 g for 5 minutes. The absorption was measured in quartz cuvettes at 480, 652, 665 
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and 750 nm, from which the concentrations of beta-carotene and chlorophyll a were 

calculated [48]. 

2.3. Transcriptomic analysis 

Three samples were harvested from different days of growth (2, 6 and 9) to confirm the 

physiological stage of Chlamydomonas reinhardtii. RNA was extracted by grinding Whatman 

filter paper GF/F into powder with liquid nitrogen. An RNA extraction kit (Macherey Nagel, 

NucleoSpin RNA plant) was used to purify RNA. Afterward, cDNA was retrotranscribed and 

amplified (Promega, GoTaq). Measurements of qPCR were realized with a StepOnePlus 

Real-Time PCR-System (ThermoFisher, v2.1). Oligonucleotides and protocols were 

reproduced from a previous work done by Lv & al [42]. Data were normalized according to 

the Rack1 transcript quantification, used as a constitutive control gene and linked to the 

scaffolding protein receptor for activated C kinase 1. Transcriptomic analyses were done in 

the laboratory of MMS, Le Mans, France. 

2.4. Raman spectroscopy measurements 

The Raman spectra were acquired using a Raman microspectrometer (Bruker Optics, 

Senterra, Germany) driven by Opus software (Bruker Optics, v7.2). This device was 

equipped with a CCD camera cooled at -60°C and a BX51 Olympus microscope. The grating 

(400 lines/mm) and the objective LMPlanFLN100x/0.8 were used for these experiments. The 

analyses were performed offline at 785 nm with a laser power of 10 mW on the sample. The 

spectral resolution was approximatively 8 cm-1. Three acquisitions of 10 seconds each were 

done for each spectrum. The parameters used were tested to ensure that irradiance didn’t 

affect the cells [49]. The Raman spectra were acquired in two steps. A first step consisted in 

a database creation, including 2688 Raman spectra from daily measurements in three 

photobioreactors for 16 days of culture. Then, a second step consisted in blind validation 

experiments and was also carried out with 2688 spectra (figure 1). No discard was 

proceeded on the spectra to be tested as close as possible to real applications. Daily, two 
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samples of 2 mL of microalgae were harvested from each photobioreactor and centrifuged at 

8000 g for 10 minutes, and 2 deposits of 2 µL from the pellets obtained were spread onto 

gold surfaces (Bio-logic Science Instruments, France, ref SE-9AU-M). The sample 

measurements on gold surfaces are adapted from a previous work [50]. A total of 14 spectra 

were acquired for each deposit (3 replicates x 1 photobioreactor x 16 days x 2 samples x 2 

deposits x 14 spectra = 2688 spectra for each step). 

2.5. Pre-processing spectra and data analysis 

Raman spectra were first processed using Opus software. No spectrum was discarded; a 

simple visual checkup was done to ensure no cosmic ray was occurring. The pre-processing 

steps were applied on all spectra independently for statistical comparison. The Raman 

spectra were acquired with a Raman shift range from 300 to 3200 cm-1 and were cut 

between 300 and 1800 cm-1. The spectra were pre-processed by an elastic concave baseline 

correction (64°; 10 iterations). Data were normalized using maximum-minimum bands to 

normalize each spectrum independently. The carotenoid band at 1523 cm-1 was the highest 

signal and was used for normalization. To improve the model recognition in physiological 

stages, a probabilistic quotient normalization (PQN) was applied with MATLAB software, 

using the statistics toolbox (MathWorks, Inc. vR2012b, France) completed by the SAISIR 

package [51]. PQN calculates the median of quotients of each X point on spectra to the 

median point then corrects X. PQN intends to reduces unwanted biases [52]. To optimize the 

discrimination of the database, the spectra were normalized by PQN in 16 groups, 

corresponding to the 16 days of growth. MATLAB software was also used for multivariate 

data analyses. First, the study was focussed on the physiological stage characterization by 

building a database of 2688 Raman spectra. Principal component analysis (PCA) was 

applied for data exploration in the database by using the first three components. A factorial 

discriminant analysis (FDA) was used in parallel, with the “fda2” function, as a supervised 

method to evaluate the spectral data repartition from the three physiological stages, using 

the first five PCA scores and the average of 100-fold iterations. The inter-batch 
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reproducibility of the Raman spectral database was analyzed with an average correlation 

coefficient of 94% for each day of growth. The Kruskal-Wallis test was applied to the 

database, using the “Kruskal-Wallis” function, to analyse the data distribution in the 16 

groups corresponding to the 16 days of growth (p=0.05). Then, in a second independent 

effort, the experiment was focussed on the blind validation of the database by matching a 

maximal number of random Raman spectra against the database with the acquisition of a 

new data set of 2688 Raman spectra. By FDA, the 2688 spectra from the step 2 (validations 

experiments) were matched one by one against the complete database from step 1 and 

attributed to a stage (exponential, deceleration, stationary). This validation corresponded to a 

single blind trial and was carried out through FDA using the function “applyfda1”, based on 

the first five PCA scores.  
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3. Results and discussion 

3.1. Matching the microalgal physiological stages by Raman spectroscopy 

The culture growth of Chlamydomonas reinhardtii cells in the photobioreactors was 

monitored by optical density at 750 nm and ammonium measurements (figure 2.A). As 

expected, the culture’s growth was separated into three different physiological stages. The 

optical density measurements showed three different phases. The optical density from day 0 

at 0.1 log (± 0.01) to day 2 at 1.5 log (± 0.3) determined the exponential stage. A second 

phase is observed from day 3 at 4.7 log (± 1.3) to day 7 at 15.3 log (± 0.8) as the increase of 

the optical density slow down and characterized the deceleration stage. Finally, the 

stationary stage was indicated by the global stabilization of the optical density at 15.6 log (± 

0.6) after day 8. Ammonium measurements showed a complementary behaviour during the 

growth, with a strong decrease between the exponential and deceleration stages, starting on 

day 0 at 605 mg·L-1 (± 4.6) and slowing to 158 mg·L-1 (± 16.1) at day 7. The stabilization of 

ammonium measurements after day 8 at 147 mg·L-1 (± 7.3) helped identify the stationary 

stage and the presumed threshold of limited light transmission through the stagnation of 

metabolism [53]. Optical density and ammonium measurements were done with three 

photobioreactors and both led to R² of 0.99. The offline monitoring setup included, in parallel, 

daily measurements of pigment concentrations to control the general state of the culture, 

showing global increases in chlorophyll a and beta-carotene, from, respectively, 0.41 µg·mL-1 

(± 0.1) and 0.15 µg·mL-1 (± 0.03) on day 0 to 16.91 µg·mL-1 (± 0.6) and 5.56 µg·mL-1 (± 0.06) 

on day 15 (figure 2.B). This increase follows partially the increasing cell density through the 

growth. The carotenoid-chlorophyll a ratios showed thin pigments variations through the 

growth with a decrease from 1.24 to 0.88 on the exponential stage, followed by a progressive 

stabilization towards 0.94 on the day 15, confirming the absence of nutrient limitation as no 

significant variation are observed (fig SD1) [54,55]. 

Alongside these daily analyses, the spectral database creation was carried out. Raman 

spectroscopy was applied to acquire the evolution of the Raman spectral fingerprints through 
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the growth of Chlamydomonas reinhardtii. Averaged Raman spectra were associated with 

each physiological stage and are represented in figure 2.C. Thirty-five Raman bands were 

present on the spectra, with a coefficient of variation under 0.3, and were considered 

reproducible [56]. Those 35 bands were selected for the analysis and were attributed to 

usual chemical molecules from microalgae [57,58,59]. The main Raman bands represented 

(medium and high signals) were attributed to pigment signals, with a strong Raman 

response, according to characteristic bonds vibrations, deformations and stretching. Beta-

carotene signals were associated with Raman bands at 1150 cm-1 (δ(C-C), δ(C-H)), 1390 

cm-1 (δ(C-H3), and 1523 cm-1 ν(C=C) and chlorophyll a with bands at 744 cm-1
 (δ(H-C-O), 

δ(N-C-C), 915 cm-1 (δ(N-C-C) δ(C-C-C)), 988 cm-1 (δ(C-H3)), 1186 cm-1
 (δ(C-H), ν(N-C)), 

1325 cm-1 (ν(C-N), δ(C-H)) and 1390 cm-1 (δ(C-H3), δ(C-H), ν(C-N)) (figure 3.D) [22,57,58]. 

These Raman bands were present on the spectra of each day of growth. From the overall 

Raman spectra, the signals increased during the growth, enabling us to distinguish the 

Raman fingerprints into three different stages. The beta-carotene and chlorophyll a 

concentrations increased through the growth alongside cell density. Their Raman band 

intensities of beta-carotene and chlorophyll a rose by a factor 1.3 (± 0.3) between the 

exponential and deceleration stages and reached a factor 1.8 (± 0.6) and 1.5 (± 0.4), 

respectively, between the exponential and stationary stages. Pigment intensities from Raman 

spectroscopy through growth were well correlated with their chemical dosage, resulting in an 

R² of 0.83 for beta-carotene and 0.85 for chlorophyll a (figure SD.2). Other signatures, such 

as carbohydrates, were present on the spectra with a weaker Raman signal response, such 

as α-D-glucosides at 479 cm-1 (δ(C-C-C)), polysaccharides at 517 cm-1 (δ(CH2), δ(C-OH)) or 

744 cm-1 (ν(H-CO)), and calcium alginate at 1435 cm-1, through symmetric COO- stretching 

[28,58]. Nucleic acids were also present on the spectra with medium Raman bands between 

600 and 800 cm-1, corresponding to ring breathing vibrations, and at 1100 cm-1
 through 

symmetric PO2 stretching vibrations [58,59]. On other part of the spectra, amino acid 

signatures have been associated with Raman bands, such as leucine at 1186 cm-1 or L-

tryptophan at 870 and 1486 cm-1 or hydroxyproline by a shoulder at 850 and 875 cm-1 
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[59,60,61]. Other intermediate signatures can be associated with adhesion proteins, such as 

amide I at 1656 cm-1 and amide III at 1223 cm-1 [28,58]. With even weaker but still prominent 

signatures, lipid molecules can be identified at 1656 cm-1 due to cis C=C stretching and at 

1750 cm-1 through C=O vibrations [31]. The Raman bands presented in the exponential 

stage were still observable in the deceleration and stationary stages, enabling us to analyse 

the spectral database. 
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Fig. 2.(colour) A. Monitoring of Chlamydomonas reinhardtii in Sueoka medium in 

photobioreactors from day 0 to day 15 (n=3). B. Chlorophyll a and beta-carotene 

concentrations increasing with the cell density throughout the growth of Chlamydomonas 

reinhardtii in a photobioreactor (n=3). C. Average raw Raman spectra acquired for the 

exponential, deceleration and stationary stages, represented in a full line. The standard 

deviations are represented in shades around the spectra. Raman bands with strong and 

medium signatures are represented by arrows.  

A
B 

C 
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3.2 Raman spectral database exploration 

Multivariate statistical analyses were carried out to visualize the Raman spectra repartition 

and identify the bands from the spectra influencing the separation into three physiological 

stages. The distribution of the total 2688 Raman spectra included in the database was first 

analysed by PCA, leading to a representation with the three main components that showed 

spectra being distributed according to their days of acquisition towards the left (figure 3.A). 

Depending on the day of acquisition, the Raman spectra were clustered into three different 

groups. The spectra from the two extreme stages were well separated, with the exponential 

stage at the utmost right and the stationary stage at the opposite. On the other hand, the 

deceleration stage overlapped them in the centre of the representation, as expected, and 

thus made the separation into stages more difficult. The three main components displayed in 

the PCA explained 39.5% of the information and represented the loadings responsible for the 

separation observed between stages, including variance shifts between -0.1 and 0.1 (figure 

3.B). The signals above 0.025 were selected as Raman bands contributing the most to the 

shifts between physiological stages and are detailed in figure 3.D. The first loading (L1) 

represented the main component, with 24.4% of the information, and represented the lateral 

distribution on the PCA representation. It included a preeminent signal at 1523 cm-1 attributed 

to carotenoids, which increased with time. The second loading (L2) represented 10.3% of the 

information and displayed multiple signatures above 0.025 with Raman bands from 

pigments, well represented at 1523 and 1150 cm-1 (carotenoids) and at 988 and 1325 cm-1 

(chlorophyll a). Other Raman bands were present at 744 cm-1 with a mixed contribution from 

both chlorophyll a and carbohydrates and at 1186 cm-1 with mixed signals from chlorophyll a 

and amino acids. Weaker signals also contributed to the separation between stages through 

polysaccharides at 517 cm-1, nucleic acids between 600 and 800 cm-1, and finally lipids at 

1656 and 1750 cm-1
. The third main loading (L3) represented only 4.8% of the information 

and indicated the contribution of Raman response bands from carotenoids at 1523 cm-1, 

chlorophyll a at 988, 1186 and 1325 cm-1, carbohydrates at 1186 cm-1, and nucleic acid 
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signatures between 600 and 800 cm-1. The weakest Raman bands presented in figure 2.C 

were also present on the loadings L2 and L3 but made a lesser contribution to the 

physiological stage separation (signals under 0.025). The most contributing bands for stage 

discrimination are attributed to polysaccharides, ribonucleic acids, carbohydrates, chlorophyll 

a, carotenoid, amide I, amino acids and lipids. The eleven main Raman bands identified on 

the three loadings indicated kinetic switches of metabolites during the growth batch as 

having key roles in separating the spectral fingerprints for each physiological stage. 

Metabolomics studies have also established pigments, amino acids, and lipids as key 

metabolites for physiological shifts during Chlamydomonas reinhardtii batch growth [41]. 

To interpret the Raman signature switches during growth, loading 2, including most of the 

signals, was analysed separately over time with the Kruskal-Wallis test (figure 3.C). The 

analysis showed in detail, once again, the spectra from the exponential and stationary stages 

separated well, but the extreme days of the deceleration stage overlapped the other two 

stages, indicating the non-synchronous growth of cells (days 3 and 7). Other studies made 

on Raman spectroscopy of microalgae observed the same trends, without including the days 

between the stages in the database [34]. The spectral fingerprints obtained by the statistical 

model nevertheless confirm trends of separation between the day of acquisition and each 

physiological stage. This database is considered as our model for carrying out blind 

predictions.  
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Raman shift 

(cm-1) 

Main attribution 

 

517 Polysaccharides  δ(C-H2), δ(C-OH) [58] 

600 - 800 DNA and RNA bases  (ring breathing) [58] 

744 Carbohydrates, chlorophyll a  δ(H-C-O), δ(N-C-C) [28] 

915 Chlorophyll a  δ(N-C-C), δ(C-C-C) [22] 

988 Chlorophyll a  δ(C-H3) [22] 

1150 Carotenoid  δ(C-C), δ(C-H) [22,57,58] 

1186 Amino acids leucine, phenylalanine,  

chlorophyll a  δ(C-H), ν(N-C)[22] 

1325 Chlorophyll a  ν(C-N), δ(C-H) [22] 

1523 Carotenoid  ν(C=C) [22,57,60] 

1656 Lipid, amide I  ν(C=C) cis [28,31,57] 

1750 Lipid  ν(C=O) [26,31] 

Fig. 3.(colour) A. Three-dimensional representation of principal component analysis (PCA) 

from the 2688 Raman spectra included in the spectral database (PC1 24.4%; PC2 10.3%; 

PC3 4.8%). B. Three main PCA loadings. Raman bands responsible for stage discrimination 

are highlighted. C. Kruskal-Wallis test, based on loading 2, with the most bands, depicting 

the variance of the 2688 spectra over time. D. Attribution of Raman band loadings (ν for 

stretches; δ for deformation).  

D 

A B 

C 
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3.3 Prediction of the physiological stage of Chlamydomonas reinhardtii 

To test our model, discriminant analyses were applied to a new Raman data set. This 

experiment intended to confront the loadings identified by PCA to the concrete application of 

attributing an unknown Raman spectrum to its correct cell physiological stage. FDA was 

applied as a single blind test to 2688 Raman spectra from new photobioreactors against the 

already compiled database. The spectra acquired from days close to stage transitions were 

included in the model to ensure the most concrete approach by studying the complete 

bioprocess dynamic behaviour. Previous studies adopted the other approach, including the 

spectral borderlines, to optimize the physiological stages interpretation by improving the 

model stability [34]. The FDA showed that the Raman spectra acquired between days 0 and 

2 was well recognized as coming from an exponential stage (figure 4.A) and highlight the 

stage recognition for the first two days, with up to 96% of correct attribution. This highest 

discrimination was in the middle of the stage in (day 1), and day 0 presented 85% of correct 

attribution. Attributions to the exponential stage strongly decreased after day 2, with 36% 

wrong attribution from day 2 to the deceleration stage (figure 4.B). Raman spectra acquired 

between days 3 and 7 were correctly attributed to the deceleration stage with more than 76% 

correct attribution. The Raman spectra falsely attributed to the deceleration stage were 

acquired from days 2 and 8, the closest days to the deceleration stage. Regarding the 

attributions of Raman spectra to the stationary stage, a slow increase in recognition was 

seen after day 2 and showed a sudden and strong increase in correct attribution (from 77% 

to 100%) to the stationary stage after day 8 (figure 4.C). The overall distribution of Raman 

spectra was, as expected, well separated into the three stages. The middle days of each 

stage (days 1, 4-6, and 9-15, respectively) were highly discriminatory, with a correct 

attribution above 80%. Nevertheless, the attribution for days between stages was lower than 

the average, with a prediction under 65% for day 2 and 80% for days 7 and 8. Raman 

spectrum attributions for these days also presented the highest standard deviation. This 

phenomenon confirms the observation from figure 3.C supporting the asynchronous 
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physiology of cells during growth, some cells shifting to the next physiological stage earlier 

than others [62]. 

 

 

 

Fig. 4. (colour) A. B. C. Blind validation of 2688 Raman spectra by factorial discriminant 

analysis against the exponential, deceleration and stationary stages of the spectral database 

of Chlamydomonas reinhardtii growth. D. Global prediction of the Raman validation of the 

three stages. The exponential, deceleration and stationary stages are, respectively, depicted 

in blue, red and green.  
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The capacity of this analysis to predict correctly the physiological stage is summarized in 

figure 4.D. The detailed predictions made indicate a trustworthy method, showing strong 

attribution of spectra in the correct physiological stage and few false positives, mostly for 

days close to the correct stage. On average, the exponential stage was well predicted at 

81.4%, the deceleration stage at 84%, and the stationary stage at 95.3%. For the whole 16 

days, the average prediction rate was 89.2%. This prediction rate can be related to similar 

work done on other cellular models. Discriminant analysis made on Lactobacillus describes, 

for example, a correct prediction of 91% over 30 hours of growth [63]. 

3.4 Transcriptomic validation of the Raman spectroscopy method 

Physiological studies made on Chlamydomonas reinhardtii report that specific transcripts 

fluctuate in expression through the growth and physiological stages [42]. Other studies made 

on microalgae have highlighted the qRT-PCR for physiological state validation as a robust 

methodology [64]. Analyses by qRT-PCR were carried out to confirm the cell attributions in 

the three physiological stages in photobioreactors. Samples of cells from days 2, 6 and 9 

were harvested and analysed, each group representing a physiological stage (figure 5). The 

quantification of transcript 146945, corresponding to the gene G3DPH, is depicted in figure 

5.A. Its expression level increased, with a ratio of 4.5 between the exponential and 

deceleration stages and a ratio of 17.7 between the exponential and stationary stages. This 

transcript is indirectly correlated to lipid metabolic pathways linked to neutral lipid 

accumulation during the stationary phase and is reported to increase over time [42,65]. As a 

contrasting example, the quantification of the transcript 26047, correlated to tubby-like 

protein production, is shown in figure 5.B. The ratio of its expression decreased to 4.3 

between the exponential and deceleration stages and a ratio of 26 between the exponential 

and the stationary stages. This transcript is also well known to decrease with time [42]. The 

quantification of both transcripts confirmed the expected kinetics of microalgal physiology in 

our photobioreactors and validated the Raman-spectral interpretation, separating spectra into 

three distinct physiological stages.  
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Fig. 5. (colour) Expression of two transcripts related to Chlamydomonas reinhardtii 

physiology, as determined by qRT-PCR, normalized to the expression of Rack1 as the 

internal control. The two transcript expression levels were set at 10 for the exponential stage. 

A. Quantification of transcript 146945, associated with the gene G3DPH. B. Quantification of 

transcript 26047, associated with tubby-like proteins.  

A B 
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4. Conclusion 

Raman spectroscopy offers a good alternative for future prospects on fast acquisitions and 

non-invasive physiological stage monitoring for bioprocess cultures. Its multiparametric 

advantages over classical methods lead to a clear observation of all compounds in the 

sample in a few seconds. By making a robust database, this method enables researchers to 

monitor the good conduct of a reactor. Unlike other approaches, the method presented in this 

paper enables us to query the bioprocess state directly from the cell by giving an instant 

prediction of the current physiological stage. The desynchronization and resynchronization of 

cells between physiological stages is also estimable with this method. The predictions 

obtained presented an average accuracy of 89.2% for correct attribution in the three 

physiological stages combined. This method could be improved by increasing the spectral 

database size and could lead to discrimination with the same accuracy into more than three 

stages. For future developments, the automatization of the spectral fingerprint database for 

continuous monitoring and the implementation of a Raman probe inside photobioreactors for 

online monitoring should be direct improvements of the method, making it closer to a final 

system for industrial monitoring.  
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Fig. 1. Ratio of optical density 480 nm (beta-carotene) to 665 nm (chlorophyll a).  
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Fig.2. A. Correlation of the Raman band intensity at 1523 cm-1 with the beta-carotene dosage 

from the growth of Chlamydomonas reinhardtii in photobioreactors (R² = 0.83). Days of 

growth from 0 to 12 are represented for graphic visualization B. Correlation of the Raman 

band at 1325 cm-1 with the chlorophyll a dosage from the growth of Chlamydomonas 

reinhardtii in photobioreactors (R² = 0.85). Days of growth from 0 to 12 are represented for 

graphic visualization. 
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