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Abstract

This paper addresses the problem of efficiently virtual-
izing NUMA architectures. The major challenge comes
from the fact that the hypervisor regularly reconfigures
the placement of a virtual machine (VM) over the NUMA
topology. However, neither guest operating systems (OSes)
nor system runtime libraries (e.g., HotSpot) are designed
to consider NUMA topology changes at runtime, leading
end user applications to unpredictable performance. This
paper presents eXtended Para-Virtualization (XPV), a
new principle to efficiently virtualize a NUMA architec-
ture. XPV consists in revisiting the interface between
the hypervisor and the guest OS, and between the guest
OS and system runtime libraries (SRL) so that they can
dynamically take into account NUMA topology changes.
The paper presents a methodology for systematically
adapting legacy hypervisors, OSes, and SRLs. We have
applied our approach with less than 2k line of codes
in two legacy hypervisors (Xen and KVM), two legacy
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1 Introduction

Virtualization is the cornerstone of today’s computing
infrastructures. It relies on a hypervisor, which abstracts
away a physical machine into a virtual machine (VM).
The concept of hypervisor has been introduced in 1970s
[42], revisited twenty years ago with para-virtualization
techniques to achieve better performance [7, 9], and sim-
plified ten years ago with dedicated hardware support
[28, 31]. However, hypervisors were designed when the
mainstream machines were mostly single core. Since
that time, machines have evolved to NUMA multicore
architectures that offer high performance thanks to a
multi-level cache hierarchy and a complex network to
connect NUMA nodes that each contains a memory bank
and several cores. While the performance promises of
NUMA architectures is nearly achieved in bare-metal
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systems with heuristics that place the memory and the
threads of the processes on the nodes [21, 22, 25, 34],
this is not yet the case in virtualized systems.

On a NUMA architecture, current hypervisors are inef-
ficient because they blindly change the NUMA topology
of the guest virtual machine in order to balance the load.
The hypervisor migrates the virtual CPUs (vCPUs) of a
virtual machine when it balances the load on the physical
CPUs (pCPUs) or when it starts/stops new virtual ma-
chines. The hypervisor also migrates the memory of a vir-
tual machine when it uses ballooning or memory flipping
techniques [50]. These migrations change the NUMA
topology transparently to the VM [6, 46, 52]. However,
guest operating systems (OSes) and their system run-
time libraries (SRLs, such as Java virtual machine) are
optimized for a given static NUMA topology, not for a dy-
namic one [51]. Therefore, when the hypervisor changes
the NUMA topology of the VM, the guest OS and its
SRLs consider a stale NUMA topology, which results in
wrong placements, and thus performance degradation.

Existing approaches for virtualizing the NUMA topol-
ogy fall into two categories, Static and Blackbox. The
static virtual NUMA (vNUMA) approach is offered by the
major hypervisors (Xen, KVM, VMWare and Hyper-V),
and consists in directly exposing to the VM the initial
mapping of its vVCPUs and VM memory to NUMA nodes
when the VM boots. Because the OS and the SRLs are
unable to support topology reconfiguration [17, 51], this
solution can only be used if the hypervisor fully dedicates
a physical CPU (pCPU) to a given vCPU (respectively
a machine memory frame to the same guest memory
frame), and if this mapping never changes during the life-
time of the VM. This solution is not satisfactory because
it wastes energy and hardware resources by preventing
workload consolidation. The Blackbox approach was pro-
posed by Disco [9], KVM [4], Xen, and Voron et al. [52].
It consists in hiding the NUMA topology by exposing a
uniform memory architecture to the VM, and in imple-
menting NUMA policies directly inside the hypervisor.
By this way, the Blackbox approach can be used in case
of consolidated workloads. But, as we experimentally
show in Section 2, this approach is inefficient, especially
with SRLs. A SRL often embeds its own NUMA poli-
cies, which has been proven to be much more efficient
than exclusively relying on the OS level NUMA policies
[24, 25, 30]. The Blackbox approach nullifies this effort
because it hides the NUMA topology from the SRL. An-
other issue with the Blackbox approach comes from the
current implementations of hypervisors, which can make
conflicting placement decisions. For instance, we have
observed that the NUMA policy of the hypervisor may
migrate a vCPU to an overloaded node in order to en-
force locality, while the load balancer of the hypervisor

migrates back that vCPU in order to balance the load
(see Section 6).

In this paper, we propose a new principle called eXtended
Para-Virtualization (XPV) to efficiently virtualize a NUMA
architecture. XPV consists in revisiting the interface be-
tween a hypervisor and a guest OS and between the guest
OS and the SRLSs in order to dynamically adapt NUMA
policies used in the guest OS and the SRLs when the
NUMA topology of the VM changes. XPV extends the
well known Para-Virtualization (PV) principle in two di-
rections. First, in the same way as PV actually abstracts
away I/O devices [12], XPV extends the principle by
also abstracting away the physical NUMA topology into
a virtual NUMA topology that can change at runtime.
Second, while currently PV is only used at the guest
OS level to implement optimized drivers for virtualized
environments, XPV extends this principle to the SRLs:
we propose to adapt the SLRs with para-virtualization
techniques in order to dynamically adapt their NUMA
policy when the virtual NUMA topology changes. By
doing so, XPV allows each layer in the virtualization
stack to implement what it does best: optimization of re-
source utilization for the hypervisor and NUMA resource
placement for the guest OS and the SRLs. Notice that
the extension of the PV principle to the application layer
is quite new.

The paper also presents a methodology for system-
atically adapting legacy hypervisors, OSes, and SRLs.
We demonstrate that implementing the XPV principle
requires modest modifications in these systems. We have
implemented the XPV principle in two legacy hypervi-
sors (Xen with 117 LOC changed, and KVM with 218
LOC), two legacy guest OSes (Linux with 670 LOC,
and FreeBSD with 708 LOC) and three legacy SRLs
(HotSpot Java virtual machine [1] with 53 LOC, jemal-
loc [2] with 86 LOC, and TCMalloc [30] with 65 LOC).
We have evaluated XPV using several reference bench-
marks (SpecJBB 2005 [13], BigBench [23], Spec MPI
2007 [14], Spec OMP 2012 [15], and CloudSuite [19]).
Using a hardware virtualized with Xen, we compared
XPV with four state-of-the-art solutions including Inter-
leaved (the default Xen solution), First-touch (FT) [52],
Automatic NUMA Balancing [26], and static vNUMA
[48, 49]. The evaluation results showed that XPV outper-
forms all of these solutions. Firstly, when no topology
change is triggered by the hypervisor, XPV outperforms
Interleaved, FT and ANB by up to about 130%, 99%
and 88% respectively. For some applications, the benefits
of XPV is magnified by the optimized NUMA policies
embedded into the SRL. For instance, the application
milc performs 64% better when TCMalloc (its SRL) is
XPV aware. Secondly, when VMs are subject to topology
changes, XPV outperforms Interleaved, FT, ANB, and



static VNUMA by up to about 173%, 304%, 88%, and
127% respectively.
In summary, we show that:

e exposing to a VM its actual NUMA topology is the
best way to handle NUMA in virtualized systems.

o an adaptable virtual NUMA topology exposition
is possible using the XPV principle.

e we can implement XPV in legacy hypervisors,
OSes and SRLs with few LOC.

e XPV systematically preserves the performance
of the static VNUMA approach when the virtual
NUMA topology changes.

Thanks to our contributions, we can thus now run several
VMs on a NUMA machine and still use efficient NUMA
policies.

The remainder of the paper is organized as follow. Sec-
tion 2 presents the motivation of our work. Section 3
presents XPV and its implementation methodology. Sec-
tion 4 presents the implementation of XPV in legacy
systems. Section 5 presents the evaluation results. Sec-
tion 6 presents the related work. Section 7 concludes the
paper and presents some future work.

2 Virtual NUMA (vNUMA)

Several research work realized in native environments [21,
22,25, 34] have demonstrated the necessity to special-
ize system software (e.g., OS and SRL) with respect to
the NUMA architecture. The same observations were
made [36, 51, 52] in virtualized environments. Among
the existing solutions (presented in Section 6), VNUMA
is the most promising one. This section presents VNUMA
and the motivations for our work. Although the problem
we address in this paper affects all hypervisors (as far
from our knowledge), we use Xen for the assessment.

2.1 Description

VvNUMA consists in showing to the VM a virtual NUMA
topology which corresponds to the mapping! of its virtual
resources on physical NUMA nodes. By this way, there
is no need for the hypervisor to include a NUMA opti-
mization algorithm. At the time of writing of the paper,
the most popular hypervisors (Xen, VMware, hyper-V
and VMware) implement vNUMA. This is considered
as the ideal approach to handle NUMA in virtualized
environments because it makes guest OS’s NUMA poli-
cies (assumed to be the most optimal ones) effective, as
argued by VMware in [51]°.

INotice that the VM does not see the full machine NUMA topology.

2« . Since the guest is not aware of the underlying NUMA, the place-
ment of a process and its memory allocation is not NUMA aware...
vSphere 5.x solves this problem by exposing virtual NUMA topology
for wide virtual machines.” by VMware in [51]
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Figure 1. Hypervisor’s resource utilization optimizations
may lead to vNUMA changes.

2.2 Limitations

The common implementation approach of VNUMA con-
sists of the hypervisor storing the virtual topology of
the VM in its ACPI tables, so that the guest OS uses
it at boot time as any OS does. This implementation
has the advantage to be straightforward. However, its
main limitation is that a change in the NUMA topol-
ogy cannot be taken into account without rebooting the
VM [51]. In fact, existing OSes are not designed to dy-
namically take into account NUMA topology changes.
Also, a simple solution based on hot-(un)plug of CPU
and memory ressources is not suitable as its might seem,
more details in Section 2.4. Topology changes occur in
a virtualized system because of resource utilization fair-
ness and optimizations (to avoid waste) implemented by
the hypervisor. To achieve these goals, the hypervisor is
allowed to dynamically adapt the mapping between the
vCPUs and the pCPUs, and the mapping between the
guest physical addresses (GPAs) and the NUMA nodes,
by changing the mapping between the GPAs and the host
physical addresses (HPAs). More precisely, the hypervi-
sor can change the NUMA topology of a VM due to the
following decisions (summarized in Fig. 1):

CPU load balancing. Resource overcommitment is the
widely used approach for optimizing resource utilization
in virtualized datacenters. It consists in allowing more
resource reservation than the available resources. For
the CPU, this approach could lead to load imbalance,
thus unfairness. This issue is addressed by the hypervisor
by migrating vCPUs from heavily contended nodes to
less contended ones. Such migrations could be frequent
due to temporary CPU load imbalance as indicated by
VMware [51]. For instance, we have observed that the



execution of three 15vCPUs/12GB SpecJBB 2005 VMs
on a 8-node machine - 6 cores per node (two nodes dedi-
cated to the privileged VM in Xen) - generates about 20
vCPUs migrations between different NUMA nodes per
minute.

Memory Ballooning. Ballooning is the commonly used
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Figure 2. The effect of memory flipping, which oc-
curs on I/O intensive applications. The top curve shows
the proportion of the VM’s memory which has been
remapped on remote nodes after each run. The bottom
curve shows the performance of the application after
each run.

technique to implementing memory overcommitment. It
allows dynamic memory reclaim (when the VM does
not use its entire memory) and allocation (when the VM
needs memory) from/to a VM. Ballooning may induce a
modification of the mapping between GPAs and HPAs.
Pages which are reclaimed (on balloon inflate) can be
given (on balloon deflate) on any NUMA node.

Memory flipping. Memory flipping is the recent ap-
proach used by most hypervisors to implement zero-copy
during I/O (e.g., network) operations [3, 11]. It consists in
exchanging (instead of copying) memory pages between
the driver VM (the one which includes device drivers)

and the user VM which sends/receives packets. When
the driver VM and user VMs are located on different
NUMA nodes (which is commonly the case), user VMs
which perform I/O operations will see a portion of their
memory remapped on the driver VM’s node. To assess
this issue, we ran BigBench [23] on our 8-node machine.
All the VM resources are initially mapped on a single
NUMA node which is distinct from the one used by the
driver VM. Without rebooting the VM, we repeated the
execution of BigBench 8 times. Fig. 2 shows the amount
of remote memory (due to memory flipping) at the be-
ginning of each execution of the benchmark. We can see
that it increases in respect with the number of execution,
up to 45% of the VM’s memory is remote at execution
number 5 due to the memory flipping mechanism. This
degrades the application performance down to 32%.
VM live migration. VM live migration involves mov-
ing a running VM from one physical host to another
one. It is a central technology in today’s datacenters. For
instance, dynamic VM packing (which is a common ap-
proach used to optimize resource utilization), physical
server failure handling, datacenter maintenance, over-
heating power supplies and hardware upgrades rely on
it [44]. All of this makes VM live migrations very fre-
quent in the datacenter, especially large ones (such as
Google Cloud Engine [44]). The migration of a VM may
change the mapping of its vCPUs and GPAs on the des-
tination machine. We assess in Xen the impact of using
a stale topology as follows. We used two memory inten-
sive benchmarks: STREAM [37] (a synthetic benchmark
measuring the sustainable memory bandwidth) and LU
from Spec MPI 2007 [14]. The benchmarks run within
a VM (called the tested VM) configured with 12 vCPUs
and 30GB memory. They use TCMalloc [30] as the SRL.
We compared three situations: (1) the VM sees a UMA
topology but the hypervisor implements interleave (cor-
responds to the default Xen solution); (2) the VM sees a
NUMA topology which corresponds to its exact resource
mapping (noted VYNUMA); (3) and the VM sees a NUMA
topology which is different from its actual mapping: all
of its CPUs are migrated away from the initial nodes
(noted Stale vNUMA). The initial resource mapping of
the VM is as shown in Fig. 1 while the stale topology is
the one caused by the transition labeled "vCPU migra-
tion". The experiment results are shown in Fig. 3. Lower
is better for LU (the left curve) while it is the opposite
for STREAM (the right curve). When we compare In-
terleaved and vNUMA (first two bars), we can observe
that static vNUMA is the most efficient configuration.
For instance, we can notice for LU up to 13% of perfor-
mance difference. However, Interleaved becomes better
than vNUMA when the initial topology becomes stale.
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Figure 3. Assessment of the negative impact of present-
ing a stale topology to the VM when vNUMA is used.
Evaluation realized using LU from Open MPI 2007 (left,
lower is better) and STREAM (right, higher is better).

2.3 Synthesis

Although vNUMA is the ideal approach for taking into
account NUMA in virtualized environments, its current
implementation makes it static, thus inefficient facing
topology changes. Hypervisor vendors like VMware
and Hyper-V have also underlined this limitation. Typ-
ically, the VMware documentation [51] states: “The
idea of exposing virtual NUMA topology is simple and
can improve performance significantly. [...] On a vir-
tual environment, it becomes likely that the underlying
NUMA topology of a virtual machine changes while it
is running. [...] Unless the application is properly re-
configured for the new NUMA topology, the applica-
tion will fail. To avoid such failure, ESXi maintains
the original virtual NUMA topology even if the virtual
machine runs on a system with different NUMA topol-
0gy.”. Today, to prevent the inefficiency of VNUMA,
hypervisor providers make the following recommenda-
tions [16, 20, 29, 32, 40, 45, 47]: (1) either the data
center operator enables VNUMA and disables all hyper-
visor’s resource management optimizations, which leads
to resource waste or unfairness, (2) either she disables
vNUMA and keeps hypervisor’s resource management
optimizations by using Blackbox/hypervisor-level solu-
tions (as shown above and will be detailed in Section 6),
which are not optimal for performance (see Section 5).
None of these two solutions is satisfactory.

2.4 Hot-(un)plug as a solution?

One might imagine the utilization of resource hot-(un)plug
as a solution for providing an adaptable vNUMA solu-
tion. Although this solution is without any doubt elegant,

it is not as straightforward and complete. These are the

main reasons:

1. Resource hot-(un)pluging is only possible for CPUs
or memory which has been discovered and recorded
by the guest OS at boot time [17]. Therefore, the

implementation of a hot-(un)plug based solution
needs to first show to the VM at boot time the en-
tire physical machine topology, knowing that the
actual VM’s resource mapping concerns only a
subset of the topology. This requires deep kernel
code rewriting in both the VM’s OS setup code and
also the hypervisor code which is responsible for
starting a VM. The development cost® of this step
is very high compared to the approach we present
in the next section. Moreover, it would be difficult
to port this code to other systems.

2. Assuming that the above is implemented, memory
hot-(un)plug is only possible at the granularity of
a block (e.g., 512MB in the current Linux kernel
version). Remember that topology changes could
be caused by the relocation of very few memory
pages (e.g., see memory flipping for example).

3. Finally, Hot-(un)plug is not sufficient because the
SRL which runs inside the VM is not aware of the
new topology.

For all these reasons, hot-(un)plug is considered imcom-
patible with vNUMA, which is also the VMware opin-
ion [17, 51]. In this paper, we present eXtended Para-
Virtualization, a principle for implementing an adaptable
VvNUMA.

3 eXtended Para-Virtualization

This section describes the eXtended Para-Virtualization
(noted XPV) principle and our methodology to imple-
ment it in legacy systems.

3.1 Principle

In this paper, we propose to make the static VNUMA
approach dynamic by revisiting the interface between
the hypervisor and the VM. At high level, the hypervi-
sor exposes a dynamic virtual NUMA topology, which
abstracts away the physical NUMA architecture. Be-
cause current OSes and SRLs are unable to handle a dy-
namic NUMA topology, we propose the eXtended Para-
Virtualization (XPV) principle to dynamically adapt the
NUMA policies used in the kernel of the guest OS and in
the SRLs when the NUMA topology of the VM changes.

XPV extends the para-virtualization (PV) principle to
the whole hardware and the SRLs. PV consists in modi-
fying the code of the kernel of the guest OS to efficiently
virtualize I/O devices (the split-driver model), virtualize
the MMU, virtualize the time, enforce protection and han-
dle CPU exceptions. We extend the PV principle to the
whole hardware by also virtualizing the NUMA topology.
Instead of using a driver that considers a static NUMA

3Notice that we tried unsuccessfully this alternative during several
months.



topology #, the guest kernel uses a para-virtualized dri-
ver that considers a dynamic NUMA topology. We also
extend the PV to the SRLs. We propose to modify SRLs
with a para-virtualized NUMA management driver tai-
lored for virtualized environments. Instead of considering
a static NUMA topology, this para-virtualized NUMA
management layer adapts the NUMA policy of the SRL
when the NUMA topology of the VM changes. Notice
that the hypervisor works as usual for non-XPV-aware
VMs, meaning that XPV- and non-XPV aware VMs can
share the same host. This is also true for XPV- and non-
XPV aware applications which run inside a XPV aware
VM.

By definition, XPV requires modifications in both the
guest kernel code and the SRL code. In the remainder
of the section, we present a systematic methodology for
applying XPV to different legacy systems, and we show
that the required modifications remain modest.

3.2 Methodology for making legacy systems XPV
aware

In the hypervisor, we implement XPV by adding a no-
tification to the guest kernel when the NUMA topology
changes. In the guest kernel, we implement XPV mainly
by adapting the NUMA-aware data structures and by
forwarding the notification to the SRL when the guest
kernel receives a notification from the hypervisor. In
the SRL, we implement XPV mainly by adapting the
NUMA-aware data structures when the SRL receives
a notification from the guest kernel. Fig. 4 presents the
components modified to implement XPV, and the remain-
der of the section details these modifications.
Hypervisor layer adaptation. Today, a hypervisor
implements the static VNUMA approach by exposing
the NUMA topology through ACPI tables. Using these
tables is inadequate for a dynamic NUMA topology be-
cause the code that manages these tables in the guest
kernel is often intrinsically static. Instead, we implement
XPV by exposing a UMA topology through the ACPI
tables and by using a new driver, called the topology
manager. This driver follows the split-driver principle:
a part of the driver is implemented in the hypervisor
while the other part is implemented in the guest kernel.
The hypervisor maintains the NUMA topology of each
VM and, when the NUMA topology changes, notifies
the VM with an interrupt. Upon notification, the VM
retrieves, through a shared memory, its actual NUMA
topology (e.g., physical location of the vCPUs).

4The code that handles NUMA in current OSes is often spread in the
kernel. In order to simplify the presentation, we consider that this code
forms a driver.
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Figure 4. Overview of the components involved in the
XPV implementation. Solid black arrows present the dif-
ferent steps (1-5) required to handle a dynamic virtual
NUMA topology in SRLs. Dashed arrows show guest
kernel components involved when the NUMA topology
of the VM changes. Solid red arrows represent the notifi-
cations when the NUMA topology changes.

Exposing a UMA topology does not require any modi-
fication in the hypervisor because exposing a UMA topol-
ogy is the default behavior of any hypervisor. Implement-
ing the topology manager is straightforward. It requires
modifications in the VM life cycle manager of the hy-
pervisor in order to create and destroy the data structure
associated to a VM, in the memory manager in order to
record the physical addresses used by a VM and in the
scheduler in order to record the location of the vCPUs.
These components are easy to identify in any hypervisor
and we were able to implement XPV in Xen and Linux
KVM.

Guest kernel adaptation. Implementing XPV requires
first the implementation of the kernel part of topology
manager driver. The kernel uses this driver at bootstrap
to retrieve the initial topology of the VM and to initialize
its NUMA -aware data structures. Then, when the driver
receives a notification from the hypervisor, it increments
a counter used by the SRLs to know the current ver-
sion of the NUMA topology (see below) and updates the



NUMA -aware data structures of three components of the
guest OS: the page allocator, the NUMA policy manager
and the scheduler. As a consequence of this update, the
kernel considers the new NUMA topology for the newly
allocated pages and the newly created threads. However,
the kernel does not try to relocate the previously allo-
cated pages and threads: instead, we let kernel’s NUMA
policies (such as Automatic NUMA Balancing in Linux)
and the SRL migrate its memory and its thread because
we consider that only they can know how to efficiently
handle the new NUMA topology.

To summarize, implementing XPV in the guest kernel
requires the implementation of the topology manager and
modifications in bootstrap code, in the page allocator,
NUMA policies and the scheduler. These components
are easy to identify in any kernel and we were able to
implement XPV in Linux and FreeBSD.

SRL layer adaptation. For the adaptation of the SLR
layer, we need to consider the system libraries/APIs (i.e.,
the ¢ and numa libraries) and SRL itself (e.g., jemalloc
[2] or HotSpot [1]). For the former, only two modifica-
tions are required: (1) the modification of the functions
that retrieves the NUMA topology in order to use our
topology manager driver instead of the static ACPI ta-
bles, and (2) the addition of a new function retrieving the
topology version number. The latter is useful for SRL to
identify that its internal NUMA topology becomes stale.

Each SRL has to implement its own alogirthm to han-
dle a NUMA topology change. However, we have identi-
fied that, in our three studied SRLs (HotSpot [1], TCMal-
loc [30], and jemalloc [2]), we can apply a systematic
methodology to implement XPV. This methodology con-
sists in modifying the code of three components that are
often found in SRLs: the bootstrap code, the thread man-
ager and the memory manager. In the bootstrap code, the
SRL has to record the initial topology version number
of the topology. In the thread manager, the SRL may mi-
grate the threads when the topology changes, i.e., when
the topology version number changes. In the memory
manager, the SRL has to update its internal data struc-
tures when the topology changes, and, if required, to
adequately migrate the pages that contain the memory
structures already allocated to the application.

4 Technical integration

We applied the methodology described in the previous
section in two legacy hypervisors (Xen and KVM), two
legacy guest OSes (Linux and FreeBSD) and three legacy
SRLs (HotSpot, TCMalloc, and jemalloc).

Table 1 summarizes the efforts required for each legacy
system. All the patches are available at [10]. We only
present modifications for Xen and Linux, in respect with
page length limit.

Systems #files | #LOC
Xen 4.9 8 117
KVM from Linux 4.14 6 218
Linux 4.14 26 670
FreeBSD 11.0 23 |708
HotSpot 8 3 53
TCMalloc 2.6.90 (gperftools-2.6.90) | 3 65
jemalloc 5.0.1 9 86

Table 1. XPV integration in several legacy systems.

4.1 Xen modifications

When Xen creates a VM, given the requested and avail-
able resources, it first determines which NUMA node(s)
to place the VM. If more than one NUMA node are
needed, Xen statically allocates memory to the VM in a
round-robin way (with 1GB granularity by default) over
the selected NUMA nodes. The latter are usually referred
as the VM’s home nodes. Xen also sets the soft affinity of
the VM’s vCPUs to pCPUs of the home nodes. This soft
affinity is a preference and does not prevent the migration
of vCPUs to different nodes when the home nodes are
overloaded.

In order to implement XPV in Xen, the topology man-
ager first records the initial topology of the VM when the
latter boots. This initial topology is stored in a memory
region shared between Xen and the guest kernel. Re-
call that topology changes may happen on the following
cases: vCPU migrations (due to vCPU loadbalancing) in-
side a machine, grants acquisition on new memory pages
(due to memory flipping), memory page migrations in-
side a machine (due to ballooning), and VM migrations
between machines. For the three former cases, the modi-
fication performed in Xen is straightforward. Whenever
a vCPU of a VM is migrated to a different NUMA node,
Xen updates the corresponding VM’s topology in the
shared memory region and notifies the VM by injecting
an interrupt in the guest. Regarding page migrations, the
new location(s) are taken into account as follows: when
the migrated pages return to the guest OS, the latter then
examines on which node each page is located and puts
the pages into the correct free page lists (see Section 4.2,
Memory allocator). The same operation is realized when
the VM acquires grants on pages located on new nodes.
In fact, no modifications at Xen level are needed in these
cases. Concerning changes caused by the migration of
the VM, they can be considered as a combination of
vCPU migrations and memory migrations. Therefore, we
combine the above techniques together for handling such
changes.



4.2 Linux modifications

Memory allocator. The major challenge of implement-
ing XPV in an OS is to adapt the page allocator. The
question we need to answer is: how does the OS respect
the NUMA policy used by applications given that it sees
a UMA architecture?

Memory pages on each node are divided into zones.
Linux relies on the NUMA policy used by the applica-
tion to search for free pages. The page allocator applies
the NUMA policy to select a node and then a zone in
that node for page allocations. Each zone has a compo-
nent called the buddy system [33] which is responsible
for page allocations inside the zone. The buddy system
breaks memory into blocks of pages and maintains a
separate page list for each block size. Most of the time,
allocation requests are for single page frames. In order
to get better performance, a per-cpu page frame cache
is used to quickly serve these requests. Allocations of
multiple contiguous pages are directly handled by the
buddy system.

We modify the memory allocator as follows. Firstly,
we add new variables representing the actual NUMA
information used by application processes. Secondly, we
partition the per-cpu page frame cache and the free page
lists of the buddy system by the number of physical
NUMA nodes. The kernel can know which page comes
from which node because it knows the machine frame
number of each page and the memory range on each phys-
ical node. In contrast with normal systems, with XPV,
the page allocator will apply the NUMA policy (stored
in the newly added variables) to determine the allocated
node after a zone is selected. To improve performance,
the mapping from a page number to a physical node can
be cached and will be updated only at points where page
migrations may occur (e.g. ballooned pages returning to
the memory allocator).

Scheduler. Linux scheduler organizes CPUs into a set of
scheduling domains for load balancing. A scheduling do-
main consists of a set of CPUs having the same hardware
properties regarding their location in the NUMA topol-
ogy. As a result, they form a tree-like structure. With
XPYV, the scheduler only builds a single domain contain-
ing all the CPUs of the VM. We found that this is actually
an acceptable solution as we could avoid the adjustments
in the scheduler when the topology get changed.

Automatic Numa Balancing (ANB) [26]. ANB is the
most advanced NUMA optimization is Linux. Once ac-
tivated, ANB periodically unmaps memory pages and
then traps page faults when the pages are accessed. By
doing this, ANB can know the relation between the tasks
and the accessed memory and determine if it should

move memory closer to the tasks that reference it. Since
migrating memory pages is quite expensive, ANB may
moves tasks closer to the memory they are accessing
instead. The adaptation of ANB to be XPV aware con-
sists mostly in replacing the default topology information
provided by the OS by the actual topology information
provided by the hypervisor. Some page fault metrics used
by ANB may need to be recalculated when the topology
get changed. However, in order to avoid the complexity
and also the fact that we don’t know how long a topology
will last, we decide to not recalculate the metrics in our
implementation. Instead, ANB will just continue to work
with the newer topology.

4.3 Application-level modifications: the HotSpot
Java virtual machine use case

We consider HotSpot 8, which uses the parallel garbage
collector (GC) by default. GC divides the memory heap
into two regions (usually referred as generations): a
young generation and an old generation. New objects
are placed in the young generation. If they survive long
enough, they will be promoted and moved to the old
generation. The young generation partitions its address
spaces into N group spaces with N is the number of
NUMA nodes. Each group space gets memory pages
from the corresponding NUMA node. In order to know
how to allocate memory for a given thread, Hotpost also
keeps track of the CPU-to-node mapping. Regarding the
old generation, it has memory pages allocated in a round-
robin way over the NUMA nodes.

The modification we introduce in HotSpot to make
it XPV aware is as follows. At the end of a collection,
HotSpot examines the topology version counter (intro-
duced in the system library, see Section 3.2) to check if
the NUMA topology is stale. In case of stale topology,
HotSpot creates the new group spaces and/or removes the
invalid ones according to the new topology and updates
the CPU-to-node mapping.

5 Evaluations

The previous section presents XPV, a way to virtualize
NUMA while taking into account topology changes that
may suffer VMs. This previous section reported com-
ponents that should be modified and the corresponding
number of LOC required to implement XPV in differ-
ent legacy systems. This corresponds to the qualitative
evaluation of XPV. The current section presents the quan-
titative evaluation.

5.1 Experimental setup

The evaluations are realized on a DELL server having
8 nodes (6 AMD Opteron 6344 cores per node), each
linked to a 8GB local memory. Otherwise specified, the



used hypervisor is Xen and guest VMs use Linux. One
node (6 cores and 8GB) is dedicated to the privileged
VM (called domO in Xen jargon). Thus, user VMs (called
domU in Xen jargon) can only use the remaining 7
NUMA nodes (42 cores and 56GB). Otherwise speci-
fied, every user VM has 20 vCPUs and 30GB memory.
Note that this configuration is used because we want the
VM occupies at least 4 physical NUMA nodes which,
we think, are big enough to show the NUMA effects.

We experimented two application categories: those
which can use an SRL (Java, C/C++) and those with-
out an SRL (Fortran). For Java, we evaluate Spec]BB
2005 [13] (noted JBB2005) single JVM (the performance
metric is the number of business operations per second
(bops)) and BigBench [23] (the performance metric is
the execution time). These applications use HotSpot as
the SLR. Regarding C/C++ applications, they are pro-
vided with milc and lampps from Spec MPI 2007 [14].
We selected these benchmarks because they are repre-
sentative of the two categories of Spec MPI applications:
medium memory usage and large memory usage. These
applications use TCMalloc as the SRL. We also experi-
ment WebServing from CloudSuite [19], which uses the
two SRLs and performs a lot of I/O. WebServing is a
traditional web service application with four tiers: a web
server, a database server, a memcached server and a client.
The first three tiers are deployed in the evaluated VM
while the client is deployed on a distinct server. The per-
formance metric is the number of operations per second
(ops/sec). Otherwise indicated, HotSpot and TCMalloc
are launched while enabling their NUMA optimizations.
Applications from the second category are bt331, fma3d,
swim, mgrid331, applu331 from Spec OMP 2012 [15]
and pop2 from Spec MPI 2007.

In addition to the static VNUMA solution, which ex-
poses the topology to the VM, we also compared XPV
with four different blackbox solutions. The latter are im-
plemented within the hypervisor with the VM seeing a
UMA topology. These solutions are:

e First-touch (noted FT): this solution is the basic
Linux’s NUMA management solution. It has been
implemented within the hypervisor by Voron et al.
[52].

e Automatic NUMA Balancing (noted ANB) [26]:
It is the most advanced Linux solution for han-
dling NUMA. KVM naturally includes ANB while
VMware implements a similar solution. We imple-
mented ANB in Xen for the purpose of this paper.
We did this by reproducing the Linux implemen-
tation of ANB in Xen. Such a proactive solution
could be seen as the ideal XPV competitor.
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Figure 5. XPV implementation efficiency. XPV is com-
pared with vNUMA (implementer by Xen) when no
topology change occurs. The performance gap comes
from the fact that the implementation of VNUMA by Xen
is less optimized than XPV. Recall that the latter does
not use any VNUMA code.

o Interleaved: the VM’s resources are packed on the
minimum number of NUMA nodes and the mem-
ory is interleaved by pages of 1GB (Xen’s default
policy).

¢ No policy: the VM’s vCPUs and memory are equally
distributed over its allocated nodes, no NUMA pol-
icy is used.

To plot the results of all applications on the same figure
using the same referential, results are normalized, over
the "No policy" solution. For all plots, higher is better.

5.2 XPYV implementation efficiency

Recall that XPV follows the same approach as VNUMA,
which is the presentation of the NUMA topology to VMs.
However, the implementation of XPV follows a differ-
ent strategy, which requires few modifications and make
it adaptable (theoretically thus far). One could ask if
XPV is at least as efficient as VNUMA when the VM
topology stays unchanged. To answer this question, we
compared the performance of several applications when
they run atop vNUMA and XPV. Recall that the im-
plementation of XPV does not use any Xen’s vNUMA
code. Fig. 5 presents the evaluation results, interpreted as
follows. XPV performs similarly to vNUMA only with
JBB2005 and pop2. However, it outperforms vNUMA
for the remaining applications, by up to 75% in the case
of mgrid331, and even for I/O applications (by up to
15% with webserving) This performance gap between
the two solutions, which follow the same static VNUMA
approach in this experiment, is explained by the fact that
we were able to optimize XPV in comparison with Xen’s
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Figure 6. XPV implementation efficiency with small
VMs.

vNUMA implementation. Several comments were posted
in Xen-dev mailing list [18] (a scheduling issue inside
the guest), underlying the inefficient implementation of
vNUMA.

We also performed the same experiments using smaller
VMs (4GB of memory with 4vCPUs). Fig. 6 presents the
obtained results. We can observe that XPV outperforms
vNUMA with most of the benchmarks (by up to 40%
with swim), but the difference is smaller than with bigger
VMs (53% with swim for big VMs).

For the remaining evaluations in this paper, instead of
using Xen’s VNUMA as the static VINUMA baseline, we
will use a static version of XPV. Thus, in the rest of this
evaluation section, VNUMA refers to a static version of
XPV.

5.3 vNUMA vs blackbox solutions

In this section, we compare vVNUMA with the existing
state-of-the-art blackbox solutions described above. Dur-
ing these experiments, no topology change is triggered
by the hypervisor. Every application runs in a VM which
uses three NUMA nodes. Fig. 7 presents the evalua-
tion results, interpreted as follows. (1) vNUMA (see
"vVNUMA with SRL NUMA" bars) outperforms all black-
box solutions. For instance, in the case of swim, vNUMA
outperforms Interleaved, FT, and ANB by about 130%,
99%, and 88% respectively.

Concerning JBB2005, which is the only benchmark
used by Xen [5] and VMware [51] developers for evalu-
ating the benefits of VNUMA, we can observe a perfor-
mance gap of about 12% (which is significant) between
vNUMA and other solutions. This is compliant with the
results obtained by both Xen and VMware developers.
However, as mentioned above, the evaluation of other
benchmarks shows that VNUMA can bring much more
benefits. The main reason which explains the efficiency

of the vNUMA approach (the exposition of the topology
to the VM) is the fact that it allows optimized NUMA
policies implemented by the guest OS and the SRLs
(HotSpot and TCMalloc here) to be effective. (2) For
some applications, the benefits of VNUMA is magnified
by the optimized NUMA policies embedded within the
SRL (compare "vNUMA without NUMA SRL" with
"vNUMA with NUMA SRL" bars). This is the case for
JBB2005, milc and lammps.

For instance, milc performs 64% better when TCMal-
loc (its SRL) is NUMA aware atop vNUMA. Notice
that applications for which "vNUMA without NUMA
SRL" equals "vNUMA with NUMA SRL" do not use an
SRL. (4) One could imagine that by implementing ANB
(which is a Linux NUMA solution) at the hypervisor
level, it could provide the same results as using it in a
NUMA VM. Our results show that this is not true (com-
pare "ANB" with "vVNUMA with NUMA SRL" bars).
vNUMA outperforms ANB by up to 88% in the case of
swim. This is because in the hypervisor, ANB works at
the vCPU granularity, which is not as fine-grained as the
thread granularity inside the guest OS. In fact, what a
vCPU accesses may suddenly change if the guest sched-
ules another task on it. Therefore, the decision to move a
vCPU or a set of memory pages for minimizing remote
memory accesses is not precise as it is dictated by several
tasks, which is not the case when ANB runs in the guest.
(5) Among hypervisor level solutions, ANB is the best
one.

5.4 XPYV facing topology changes

This section presents the evaluation of XPV when re-
source management decisions taken by the hypervisor
lead to NUMA topology changes for the VMs. Recall
that the topology-changing decisions could be: vCPU
loadbalancing, memory ballooning, memory flipping,
and VM live migration. Since memory ballooning and
memory flipping lead to the same consequences® (which
is memory remapping), we only present the evaluation
results of one of them (memory ballooning). Concerning
topology changes due to VM live migration, they can be
seen as a combination of the other topology change types.
Therefore, our evaluations focus on topology changes
caused by vCPU loadbalancing and memory ballooning.

To show the benefits of each XPV feature, we evalu-
ated two XPV versions:

e XPV with topology change notifications confined
within the guest OS. The SRL level is not informed.
This means that only NUMA policies implemented

SWe experimented flipping and observed that negative impact for a
memory intensive app which runs inside the VM which is subject to

flipping.
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Figure 7. vNUMA compared with the state-of-the-art blackbox solutions (higher is better). This experiment also
highlight the importance of NUMA policies embedded within the SRL. No topology change is triggered during this

experiment.

within the guest kernel are aware of topology changes.

This version is noted "OS only XPV".

e XPV with topology change notifications taken into
account by both the guest kernel and the SRL. This
version is simply noted "XPV".

We compared these two versions with blackbox solutions
and a static version of XPV noted vNUMA as stated
above. We present and discuss in this section only the re-
sults for three representative applications since the other
results that we have observed are similar: a representative
Java application (JBB2005), a representative C applica-
tion (milc), and a representative application which does
not use an SRL (swim).
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Figure 8. NUMA nodes occupied by vCPUj, of JBB2005
VM during its lifetime when overcommitment is done on
the CPU resource.

5.4.1 XPYV facing topology changes caused by
vCPU loadbalancing

Recall that vCPU loadbalancing could lead to vCPU
migrations between different nodes, thus changing the
topology of VMs. To create a situation which may lead
the hypervisor performing vCPU loadbalancing, we run
each tested application in three identical VMs (started
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Figure 9. XPV facing vCPU loadbalancing due to the
overcommitment of the CPU resource (higher is better).

at the same time). The total number of vCPUs (for the
three VMs) is 48 while the number of available cores is
42 (recall that 6 cores are dedicated to the domQ). Thus,
the scheduler of the hypervisor is likely to realize vCPU
loadbalancing during the experiment. As an example,
Fig. 8 shows the different nodes occupied by vCPU, of
JBB2005 VM during its execution. For this application,
we counted 1695 topology changes during the execution,
corresponding to about 20 topology changes per minutes
(noted TC/min). The topology change rates for milc and
swim are 5 TC/min and 12 TC/min respectively.

Fig. 9 presents the performance of each application
when different NUMA virtualization solutions are used.
These results are interpreted as follows. (1) We can see
that JBB2005 does not suffer a lot from the issue of
topology changes due to vCPU migrations. Except FT,
the performance gap between XPV and other solutions
(about 12%) is almost the same as when there is no
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Figure 10. XPV facing memory ballooning (higher is
better).

topology change (presented in Fig. 7). FT provides the
lowest performance, 58% lower than XPV. In fact, FT
only considers NUMA for the first memory allocation
operations. Interleaved suffer less because it has inter-
leaved the VM’s memory, thus increasing the probability
for a vCPU to access a local memory.

Concerning ANB, it enforces memory locality by re-
locating either vCPUs or memory chunks. (3) Things are
different concerning milc and swim. The performance
gap between XPV and other solutions is higher in this
case (90% and 55% on average for milc and swim re-
spectively). This means that milc and swim are sensitive
to topology changes caused by vCPU loadbalancing. (4)
The static VINUMA solution significantly degrades the
application performance when topology changes are trig-
gered. The performance gap with the adaptable XPV
solution is about 12%, 127% and 84% in the case of
JBB2005, milc and swim respectively. (5) Making topol-
ogy changes visible to the SRL layer improves the per-
formance of some applications. The gap between "OS
only XPV" and XPV is about 12% for JBB2005 and 65%
for milc (recall that swim does not use an SRL). (6) XPV
keeps all applications almost to their best performance,
which is the one observed when no topology change is
triggered (presented in Fig. 7).

5.4.2 XPYV facing topology changes caused by
memory ballooning

To realize this experiment, we used Badis, a memory
overcommitment system presented in [39]. Badis is able
to dynamically adjust the memory size of VMs which
share the same host in order to give to each VM the exact
amount of memory it needs. We ran Badis and our three
applications (JBB2005, swim and milc) at the same time.
Each VM is launched with 10vCPUs and 20GB which

can be adjusted. There is no CPU overcommitment in
this experiment.

Fig. 10 presents the evaluation results. The interpre-
tation of these results is almost the same as the one pre-
sented in the previous section. The only difference with
the previous experiments if the fact that both Interleaved
and FT provide very bad performance. For instance, in
the case of swim, XPV outperforms Interleaved and FT
by about 173% and 304% respectively.

5.5 Automatic NUMA Balancing (ANB)
limitations

Due to the inability of existing vNUMA solutions to han-
dle VM topology changes, ANB like solutions have been
envisioned as the best compromise thus far. In the per-
formance point of view, our evaluation results confirmed
that ANB is the best blackbox solution, although it is
largely outperformed by XPV. However, ANB has two
side effects which can degrade the performance of the
hypervisor. First, ANB decisions can enter in conflict
with resource management decisions performed by the
hypervisor. For instance, a vCPU loadbalancing decision
can move a vCPU to a node, resulting in remote mem-
ory accesses, thus the intervention of ANB. The latter
will move back the vCPU to its source node, thereby
contradicting the previous resource management deci-
sion. This issue has also been identified by VMware [51].
Second, a malicious VM can manipulate ANB as fol-
lows. Let us consider a VM booted with two vCPUs,
one vCPU per node. Let us consider its memory dis-
tributed on the two nodes. Even if the VM is presented
a UMA topology (as ANB does), an application inside
the VM can dynamically discover the distance between
vCPUs an a memory chunk using read/write latencies
(the STREAM benchmark [37] is the perfect candidate).
Therefore, a malicious application can enforce remote
memory accesses in order to force ANB in the hypervisor
to continually migrate the corresponding VM’s vCPUs.
These migrations would lead to the migration of tenant
VMs, thus impacting their execution. We implemented
such a malicious VM and validated this issue.

5.6 XPV internals

To evaluate the low level overhead introduced by XPV,
we evaluated XPV internal mechanisms. The latter are:

1. the new interrupt handler in the OS used each time
there is a topology update,

2. the new syscall used by the SRL to check the topol-
ogy version and to retrieve the topology informa-
tion from the OS (for instance in our experiments,
it is called each time the GC runs),

3. the search for a free page on a particular node,



4. the update of memory allocator’s data structures
(per-CPU caches and the central buddy allocator),
and

5. the memory flipping rate.

First, the new interrupt handler in XPV runs in about
368 CPU cycles, which is negligible. Regarding, the new
syscalls added to the GC, we found that the GC execution
time is not significantly impacted. We rely on virtual dy-
namic shared object (vDSO) [8], which is a mechanism
provided by the kernel for exporting some frequently
used read-only syscalls to user-space applications. vDSO
routines are called as regular routines, without worrying
about performance overhead. Thus, the time consumed
by the new syscall is negligible. Second, about the search
for a free page, it takes a negligible time to do so as all
pages in the kernel are indexed by node (you can refer to
Section 4.2) . Third, concerning the update of memory
allocator’s data structures, whenever a page is freed and
returns to the allocator, the kernel examines on which
node the page resides and puts it in the correct location.
This hardly has any impact on application performance.
Finally, we observed a rate of 103 page flips per second
for the used benchmarks.

6 Related work

Several work investigated the problem of efficiently han-
dling NUMA architectures in virtualized environments.
Most of them were implemented by hypervisor providers
(Xen, VMware, Hyper-V), and, to the best of our knowl-
edge, only six academic works investigated this issue.

6.1 Industrial solutions

Xen [36]. Xen tries to pack the VM’s resources on a sin-
gle node, called the home node. When the VM requires
more than one node, Xen proposes both Interleaved and
static VINUMA. As shown in this paper, none of these
solutions are efficient as XPV.

Oracle VM Server [41]. Oracle VM server proposes
the policies used by Xen. It suffers thus the same limita-
tions.

VMWare [51]. VMWare works like Xen, but does
not allocate the memory with an interleaved policy. In-
stead, the VM’s memory is simply spread over nodes.
Concerning its static VNUMA based solution, VMware
is able to update the virtual NUMA topology of the VM
by changing the ACPI tables. However, its effectiveness
depends on the capability of the guest OS to adapt itself
on topology changes. This is not currently the case in the
mainstream OSes, which makes the VMware’s solution
inefficient. In this paper, our XPV solution is able to dy-
namically adapt the NUMA policies of both the OS and
the SRLs when the hypervisor changes the topology.

KVM [4]. KVM implements two blackbox solutions
through Linux. These solutions are First-touch (FT) and
Automatic NUMA Balancing (ANB). FT is inefficient
with SRL based applications while ANB has a lot of limi-
tations as presented in the previous section (conflict with
resource management decisions taken by the hypervisor
and vulnerable in the point of view of security).

Hyper-V [38]. Hyper-V uses the static VNUMA ap-
proach. When it creates a VM, Hyper-V exposes the
bootstrap NUMA topology to the VM. Hyper-V does not
handle the issues related to topology changes [20].

6.2 Academic solutions

To the best of our knowledge, all academic solutions
use a blackbox approach, meaning that the VM sees
a UMA topology and the hypervisor implements the
NUMA policy. Disco [9] is a hypervisor that enforces
locality on a NUMA machine by using page migration
and page replication. When the hypervisor observes that a
page is intensively used remotely, it migrates or replicates
the page. Disco hides the NUMA topology, which makes
this solution inefficient for an SRL that implements its
own NUMA policy. Similarly, Rao et al. [43], Wu et
al. [53], Jaeung al. [27] and Liu et al. [35] proposed
new heuristics to place or to migrate the memory or the
vCPUs in order to efficiently use the NUMA architecture.
However, in their work, they hide the NUMA topology
to the VM, which also makes them inefficient for many
SRLs. All these solutions are similar to ANB, which has
been discussed above.

Instead of proposing new NUMA policies, Voron et
al. [52] proposed to implement NUMA policies used in
Linux and the Carrefour policy [22] in the hypervisor.
The VM can then choose the most efficient NUMA pol-
icy. Because a single NUMA policy can not be efficient
for all applications, letting an application selects its pol-
icy is better than using a single fixed policy. However, the
solution proposed by Voron et al. only considers mem-
ory (thread placement is not studied). The solution also
assumes that all applications inside a VM use the same
NUMA policy, which is not the best strategy if a VM
runs several processes. Moreover, the solution hides the
NUMA topology to the VM, which makes it inefficient
for many SRLs. Finally, the solution requires a lot of en-
gineering efforts, while we show that XPV only requires
a modest engineering effort.

6.3 Synthesis

As shown in previous sections, all existing solutions fail
to virtualize NUMA efficiently. With XPV, we propose
to make the static VNUMA approach dynamic. XPV
exposes to the guest OS and its SRLs the exact actual
NUMA topology. By doing so, XPV allows each layer in



the virtualization stack to do what it does best: resource
utilization optimization for the hypervisor and NUMA
management for SRLs, helped by the guest OS.

7 Conclusion

In this paper we presented XPV, a new principle for
virtualizing NUMA. XPV adopts an opposite approach
in comparison with existing solutions. In fact, instead of
managing NUMA at the hypervisor level, XPV presents
to the VM its actual topology while tracking topology
changes. We presented a systematic way to integrate in
less than 2k LOC XPV in two legacy hypervisors (Xen
and KVM), two legacy guest OSes (Linux and FreeBSD),
and three system runtime libraries (HotSpot, TCMalloc,
and jemalloc). We evaluated XPV with different Java and
C benchmarks. The evaluation results showed that XPV
outperforms all existing solutions, by up to 304%.
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