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In this paper we address the construction of a time and a frequency domain Reduced Order Model (ROM) for the ALE formulation of the Navier-Stokes equations. The wide variety of fluid dynamics ROMs reported in literature shares the aim of reducing the dimensionality of dynamical systems by performing a projection of the governing equations onto a basis that may be often constructed via the Proper Orthogonal Decomposition (POD). Unfortunately, the applicability of this kind of ROMs in the time domain still remains problematic as non-linear effects induce numerical stability problems, especially for aeroelastic applications. Nevertheless, in many cases, only the periodic steady state is of concern. In this context, spectral methods like the Time Spectral Method (TSM) avoid stability problems by expressing the conservative variables as Fourier series in time with spatially varying coefficients to be computed. In this work, we develop a POD based ROM which aims to reduce the computational cost of the TSM. Numerical tests have been carried out in order to highlight the potentiality of the proposed technique.

INTRODUCTION

Dynamical systems are the basic framework for modelling and control of a large variety of complex systems of scientific interest or industrial value. The aeronautic and aerospace fields are important examples in which some complex physical phenomena, such as fluid-structure interaction, shock interaction, flow separation, limit-cycle oscillations and so on, can be investigated with the aforementioned dynamical systems. Interactions between fluid and moving (deforming) structures are among the most important issues of aircraft design and numerical simulation has been one of the few available means for studying this kind of problems. However, the growing need for an improved accuracy attainable with a high fidelity (or full order) model leads inevitably to an unaffordable computational cost whose reduction represents one of the main motivation of this work. The projection-based reduced order models (ROMs) are physics based methods that can potentially yield very high speedups. These approaches involve IFASD-2019-134 the resolution of the dynamic equations of the system by projecting them on a suitably chosen low-dimensional subspace. The effective dimension reducibility for these methods is usually limited to problems with linear or multi-linear terms. In fact, when a general non-linearity is present, the cost to evaluate the projected non-linear function still depends on the dimension of the original system, resulting in a ROM simulation time of the same order as the original system. This is known as the lifting bottleneck and various approaches exist to tackle this issue. Masked projection approaches, such as DEIM [START_REF] Chaturantabut | Nonlinear model Reduction via Discrete Empirical Interpolation[END_REF], QDEIM [START_REF] Drmac | A New Selection Operator for the Discrete Empirical Interpolation Method -improved a priori error bound and extensions[END_REF], MPE [START_REF] Astrid | Missing Point Estimation in Models Described by Proper Orthogonal Decomposition[END_REF] approximate a given general non-linear term by interpolating (or least square fitting) it on the basis of a certain number of judiciously selected mesh points. Various approaches can be distinguished by the different greedy selection algorithms even though they all minimize the representation error associated to the non-linear terms. Considering aeroelastic dynamical systems solved on a deforming mesh, additional difficulties arise since, on one side, the mesh evolution must be taken into account in the definition of the POD basis and the non-linear operator and, on the other side, the involved highly non-linear responses severely limit the use of approximation techniques like masked projections. The first point has been discussed by Antonnen et al. [START_REF] Anttonen | POD-Based reduced-order models with deforming grids[END_REF] who introduced an index based formulation for the POD. Among the several studies entailed by this POD formulation, the one of Freno et al. [START_REF] Freno | A proper orthogonal decomposition method for nonlinear flows with deforming meshes[END_REF] addresses subsonic and transonic flows around airfoils subject to forced oscillations. They approximated the flow using basis functions which, although not explicitly functions of time, depend on parameters associated with flow unsteadiness. However, the hyper reduction techniques and the long time stability for this kind of flows are not addressed which still remains a limiting factor. Nevertheless, for the simulation of time periodic solutions for internal or external flows only the periodic steady state is of concern. Spectral-methods exploit the time periodicity nature of the flow by expressing the conservative variables as Fourier series in time with spatially varying coefficients. Spectral computations can be performed in either the time domain, the frequency domain, or a combination of the two. Several formulations have been proposed in the literature. The time-spectral method (TSM) introduced by Gopinath and Jameson [START_REF] Gopinath | Time Spectral Method for Periodic Unsteady Computations over Two-and Three-Dimensional Bodies[END_REF][START_REF] Gopinath | Application of the Time Spectral Method to Periodic Unsteady Vortex Shedding[END_REF] is similar to the harmonic balance method of Hall et al. [START_REF] Hall | Computation of Unsteady Nonlinear Flows in Cascades Using a Harmonic Balance Technique[END_REF]. However, the time-spectral method is solved completely in the time domain. This paper presents a reduced order formulation for the TSM (RO-TSM). First, a projectionbased ROM is solved in the time domain. We show with a simple-test case that this kind of ROM fails when long term stability or hyper-reduction is envisaged. Then, the TSM is implemented as presented in [START_REF] Blondeau | A Modular Implementation Of The Time Spectral Method For Aeroelastic Analysis And Optimization On Structured Meshes[END_REF] and represents the full order model (FOM) to reduce. Provided a POD basis for the TSM solution, we propose a non-linear reduction via least-squares minimization which allows to reduce the number of unknowns and shows globally better efficiency and convergence properties. Numerical test cases are investigated to highlight the potentiality of the proposed formulation.

THEORETICAL FRAMEWORK

Full Order Model

The governing equations considered in the present paper for an aeroelastic CFD problem are represented by the Arbitrary Lagrangian-Eulerian (ALE) formulation of the Navier-Stokes equations. We consider the general problem of a laminar or turbulent compressible flow in an entrained and possibly deformable control volume Ω(t) of boundary Σ(t). In the semi-discrete form the ALE formulation for the basic cell of the computational domain reads:

d dt Ω(t) W dΩ = - 6 i=1 i (t) F c (W , s)•ndΣ- 6 i=1 i (t) F d (W )•ndΣ = -R Ω (W , t) (1) 
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where W is the vector of the conservatives variables ρ, ρU and ρE. F c and F d are, respectively, the convective and diffusive fluxes and Σ i represents the i-th face of the hexahedral cell considered in the structured mesh. The arbitrary motion of the computational mesh is taken into account by the definition of c = Us as the convective velocity, where s is the mesh velocity with respect the spatial domain. The flow equations are solved by a finite-volume method with ONERA in-house software elsA [START_REF] Cambier | The Onera elsA CFD software: Input from research and feedback from industry[END_REF] (ONERA-Airbus-Safran property). Once spatially discretized, we can write:

dV(Ω(t))W Ω dt + R Ω (W Ω , t) = 0 (2) 
where W Ω is the average of the conservative variables W in the cell Ω, V(Ω(t)) is the volume of the related cell and R Ω is a non-linear residual operator that computes the flux balance for each cell. For a constant cell volume, we obtain the system of equations:

V dW Ω dt + R Ω (W Ω , t) = 0 (3) 
that represents the FOM. For sake of clarity, from now on, the term W Ω is referred to as W .

Projection based ROM in time domain

The first step of construction of the ROM consists in approximating the conservative field by a base solution W 0 (steady, time-average flow or the initial snapshot) and a linear combination of solution modes Φ i :

W (t) ≈ W 0 + Φ a(t) (4) 
In this work, the solution basis is derived by retaining a small number of the orthogonal modes computed via the Proper Orthogonal Decomposition (POD). Sirovich [START_REF] Sirovich | Turbulence and the dynamics of coherent structures, Parts I-III[END_REF] introduced the socalled "method of snapshots" for computing a POD basis. Assuming that the snapshots are centered with respect to a base solution W 0 (steady or time-average flow) and collected in a matrix [ W ] ∈ R Nx×Nt with N x the number of degrees of freedom and N t the number of collected snapshots, the POD is equivalent to a singular value decomposition (SVD) of the matrix [ W ], so that:

[ W ] = [Φ][Σ][V] T (5) 
where the matrix [Φ] ∈ R Nx×Nr is an orthonormal matrix that contains the POD mode vectors, with N r = rank([ W ]) ≤ min(N x , N t ). The diagonal matrix [Σ] ∈ R Nr×Nr contains the singular values of [ W ] listed in order of decreasing magnitude. If we define the diagonal element of [Σ] as σ i the rate of "energy" captured by the first N m modes is given by

E Nm = Nm i=1 σ 2 i / Nr i=1 σ 2 i .
This quantity is an indicator of the energy neglected by retaining only the first N m POD modes. Then, by substituting eq.( 4) in eq.( 2) and using the Galerkin projection the following system of N m ODEs is obtained:

da dt = Φ T R Ω (W 0 + Φ a(t)) (6) 
It should be noted that, for the compressible Navier-Stokes equations, the operator R Ω is nonlinear and cannot be expressed explicitly in terms of the coordinates a(t) unless specific approximations or formulations are introduced to obtain a multi-linear form. The computation of the entire non-linear term, at each time step, would lead to a computational time for the ROM of the same order of magnitude of the FOM affecting the performance of the reduced order model.

To tackle this issue, masked projection approaches aim to approximate the non-linear term as:

R Ω (W , t) ≈ Ψ c(t) (7) 
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where, analogously to eq.( 5), a POD of the non-linear term snapshots is performed to obtain the basis Ψ of size N x × N l , where N l is the number of retained modes after truncating the POD basis of the non-linear term. The coefficients c j (t) represent the related amplitudes. The system of eq.( 7) is overdetermined because it involves N x equations and N l unknowns. At this stage a so-called mask matrix is introduced to select a certain number N f ≥ N l and N f N x of lines of eq.( 7) so as to obtain a smaller system to solve. More specifically, if e j is the j-th column of the identity operator of size N x × N x , the mask-matrix is the column-orthogonal matrix P = [e 1 , . . . , e N f ] ∈ R Nx×N f so that the following masked subsystem is obtained:

P T R Ω (W , t) ≈ (P T Ψ) c(t) (8) 
In particular, when N f = N l the matrix P T Ψ of size N l × N f can be inverted provided that it is positive definite, otherwise a least-square fitting is required. The lines selected by applying the masked projection correspond to points (or cells) in the discretized domain so that the evaluation of the non-linear term at the interpolation points depends only on a limited number of neighboring grid points (or cells) depending on the order of the adopted space discretization scheme. Different masked projection approaches (DEIM [START_REF] Chaturantabut | Nonlinear model Reduction via Discrete Empirical Interpolation[END_REF], QDEIM [START_REF] Drmac | A New Selection Operator for the Discrete Empirical Interpolation Method -improved a priori error bound and extensions[END_REF] , MPE [START_REF] Astrid | Missing Point Estimation in Models Described by Proper Orthogonal Decomposition[END_REF]) provide different greedy algorithms to compute the mask-matrix P . It is worth noting that the additional approximation resulting from masked projection accumulates an error over each time step of the time integration affecting the long term stability of this kind of ROMs.

Time Spectral Method

Provided that W is periodic with period T = 2π/ω, the Fourier series of eq.( 3) is obtained:

∞ k=-∞ (ikωV Ŵ k + Rk ) exp(ikωt) = 0 (9) 
where Ŵ k and Rk are the Fourier coefficients of W and R Ω corresponding to mode k. The complex exponential family forming an orthogonal basis, the only way for eq.( 9) to be true is that the weight of every mode k is zero. The time spectral method (TSM) [START_REF] Sicot | Block-Jacobi Implicit Algorithms for the Time Spectral Method[END_REF] uses a Inverse Discrete Fourier Transform (IDFT) to cast back in the time domain a set of 2N + 1 equations from eq.( 9). The IDFT induces linear relations between Fouriers coefficients Ŵ k and a uniform sampling of W within the period:

W n = N k=-N Ŵ k exp(iωn∆t) , 0 ≤ n ≤ 2N + 1 (10) 
with W n = W (n∆t) and ∆t = T /(2N + 1). This leads to a time discretization with a new time operator D t as follows:

R Ω (W n ) + VD t W n = 0 , 0 ≤ n ≤ 2N + 1 (11) 
These steady equations correspond to 2N + 1 instants equally spaced within the period. The new time operator connects all time levels and can be expressed analytically as

D t W n = N i=-N d i W n+i (12) 
with

d i = π T (-1) i+1 csc πi 2N +1 , i = 0 0 , i = 0 (13) 
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The resolution of eq.( 11) can be challenging and pseudo-time stepping techniques are used to time march the equations to the steady-state solutions. In this work, explicit and fully implicit TSM implementations approaches are used. The reader interested to the mathematical derivation of the these approaches is referred to [START_REF] Blondeau | A Modular Implementation Of The Time Spectral Method For Aeroelastic Analysis And Optimization On Structured Meshes[END_REF].

Reduced Order Time Spectral Method

The eq.( 11) can be challenging to solve because of stability issues which are more penalizing with an increasing number of harmonics N , that is when the diagonal dominance of the system is reduced [START_REF] Sicot | Block-Jacobi Implicit Algorithms for the Time Spectral Method[END_REF]. In this section we introduce a Reduced Order Time Spectral Method (RO-TSM) which implies a lower computational cost and exhibits better convergence properties than the full order TSM (FO-TSM).

For the construction of the RO-TSM, analogously to eq.( 5), a POD of the snapshots W n is performed without any snapshot matrix centering in order to obtain the basis Φ ∈ R Nx×(2N +1) . The obtained POD modes span a reduced subspace that contains the TSM solutions. In such a case, no energy truncation of the POD basis is done. Then the solution is approximated as:

W n ≈ Φ a n , 0 ≤ n < 2N + 1 (14) 
by substituting eq.( 14) in eq.( 11) the following coupled system of (2N + 1) × N x steady equations involving (2N + 1) × (2N + 1) unknowns is obtained:

R = R Ω (Φ a n ) + VD t Φ a n = 0 , 0 ≤ n < 2N + 1 (15) 
A steady-state solution is typically sought using a pseudo-time stepping technique. This approach is a common choice when starting from a poor initial guess (such as uniform flow). However, when a good starting guess is available it can be more efficient to apply the Newton's method directly. Applying Newton's method to solve the fully coupled system [START_REF] Xie | Data-Driven Filtered Reduced Order Modeling of Fluid Flows[END_REF] with all instance amplitudes gathered in vector a = (a 0 , a 1 , . . . , a 2N +1 ) results in the following iterations. For k = 1 . . . K

A k ∆a k = -R(a k ) (16) 
with K determined by satisfaction of a convergence criterion. The resulting Jacobian matrix is defined as

A k = J k Φ D =       J f k 0 Vd 1 I . . . Vd -1 I Vd -1 I J f k 1 . . . . . . . . . . . . . . . Vd 1 I Vd 1 I . . . Vd -1 I J f k (2N )            Φ 0 . . . 0 0 Φ . . . . . . . . . . . . . . . 0 0 . . . 0 Φ      (17) 
where the Jacobian J f j = ∂R(a j )/∂(Φa j ). The system of equations ( 16) can be solved in a least-square sense by using the Gauss-Newton algorithm:

∆a k = ∆a k ∈ R (2N +1)×(2N +1) : A k ∆a k + R(a) k 2 2 is minimized (18)
that is:

∆a k = -(Φ T D J k T J k Φ D ) -1 (Φ T D J k T ) R(a) k (19) 
It can be noted that the previous resolution of the Gauss-Newton algorithm is equivalent to the resolution of the Petrov-Galerkin projection of the system in eq.( 16) onto the subspace L = (J k Φ D ).
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The presented method is beneficial for two important aspects. First, the solution is sought in a subspace that is a priori suitable as a result of the POD. Second, the matrices involved in the numerical resolution have smaller dimensions. If we consider the Jacobian matrix A k , for the FO-TSM it involves (2N + 1)N x columns, whereas it reduces to only (2N + 1)(2N + 1) for the RO-TSM.

Definition of the initial guess

As mentioned above, the success of the presented RO-TSM depends on the quality of the starting guess a 0 . In this work, the FO-TSM initial guess is set as the uniform flow at the free-stream conditions W f s . If we define W n as the exact solution of system [START_REF] Xie | Data-Driven Filtered Reduced Order Modeling of Fluid Flows[END_REF], the quality of the RO-TSM initial guess is represented by the error:

e = W n -W f s = e + e ⊥ = W n -Φ(Φ T W f s ) e -(I -ΦΦ T )W f s e ⊥ (20) 
where e ∈ span(Φ) and e ⊥ ∈ span(Φ ⊥ ). By construction of the POD basis, the solution W n ∈ span(Φ). As a consequence, if we define the initial guess as the projection of the snapshot W f s onto the POD basis Φ

a 0 n = Φ T W f s (21)
the contribution of e ⊥ is eliminated from the first iteration onwards, resulting in a more suitable initial guess for the Newton algorithm. The mentioned procedure is graphically depicted in Fig. 1. 

NUMERICAL EXPERIMENTS

The projection based ROM resulting from the formulation of eq.( 6) is used to model the inviscid flow around an oscillating NACA0012 airfoil under a prescribed harmonic pitch motion. The motion is sinusoidal with an angle of attack defined by the function

α(t) = α 0 + α sin(ωt) (22) 
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where α 0 = 0.016 • is the mean angle of attack and α = 2.51 • is the amplitude of the pitch motion. The flow parameters are those of the reference CT5 [START_REF] Landon | NACA 0012 Oscillatory and Transient Pitching[END_REF] except for the Mach number set to M = 0.5. Under these conditions the reduced frequency is κ = ωc/2U ∞ = 0.125.

Projection based ROM in the time domain

A finite volume solver for the Euler equations in used as FOM. We employ a sampling of 1000 snapshots over a cycle of oscillation to construct the POD basis for the flow solution and for the non-linear residual term. The energy distribution of the solution POD modes is plotted in Fig. 2. The value of E Nm = Nm i=1 σ i / Nr i=1 σ i for N m = 10 is already over 0.9999. The first 2 density POD modes are depicted in Fig. 3. The ROM is integrated using the DEIM and the QDEIM as masked projection techniques. The test case is apparently not challenging, considering the moderate reduced frequency κ and the regular structures of the POD modes. Nevertheless, using from 5 to 40 non-linear POD modes and the DEIM/QDEIM as masked projection, the ROM has always diverged before the end of the first cycle. Then, the ROM is integrated without using any kind of masked projection.

In such a case, the ROM is integrated successfully for the oscillation cycle but the efficiency is compromised. However, the ROM always diverges when the long term stability (beyond the time sampling interval) is investigated. In Fig. 4 the evolution of the amplitudes related to first 3 (and most energetic) modes is shown. It can be seen that after the first oscillation cycle the ROM diverges after few iterations.

Figure 4: Comparison of the first 3 modal coordinates a i computed as the solution of the projection based ROM and of the reference modal coordinates for the test case defined in reference CT5 [START_REF] Landon | NACA 0012 Oscillatory and Transient Pitching[END_REF].
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Discussion

Freno et al. [START_REF] Freno | A proper orthogonal decomposition method for nonlinear flows with deforming meshes[END_REF] already investigated this kind of ROMs by using dynamic average and dynamic basis functions to model compressible flow using a deforming mesh. These dynamic functions vary continuously with respect to parameters associated with the flow unsteadiness and mesh deformation, and they are optimal, subject to the prescribed form. However, during the integration of the ROM the entire non-linear term is projected without providing any type of hyper-reduction. This would naturally lead to more stable ROMs, but it still implies a highly costly ROM. Also, it is well known that this kind of ROM run into problems of convergence when long-term stability is investigated [START_REF] Sirisup | A spectral viscosity method for correcting the long-term behavior of POD models[END_REF][START_REF] Xie | Data-Driven Filtered Reduced Order Modeling of Fluid Flows[END_REF]. The main issue is related to the approximation error that accumulates over the time integration leading to divergence. To overcome this problem, different solutions like the addition of artificial viscosity or the use of data-driven closure terms have been investigated. Anyway, the stability of fully non-linear ROMs is still an open question.

Classical unsteady techniques can be avoided when considering flows periodic in time. Methods like the TSM seek the periodic state of the solution by approximating the solution as Fourier series in time. These methods are intrinsically immune to the long-term stability problems mentioned above.

RO-TSM

To illustrates the potentialities of the proposed RO-TSM a more challenging test case is studied.

We have selected the test case noted as dynamic index 55 reported by the AGARD group in [START_REF] Davis | NACA 64A010 (NASA Ames model) oscillatory pitching[END_REF]. It corresponds to an oscillating NACA64A010 airfoil under the prescribed pitch motion of eq.( 22), where α 0 = -0.22 • and α = 1.01 • . The Mach number is 0.796 and the excitation frequency 34.4 Hz. Under these conditions the reduced frequency is κ = ωc/2U ∞ = 0.41.

In this case, the FOM is represented by the TSM. The reference solution is obtained by a finite volume solver for the Euler equations. We remind that the number N of harmonics of eq.( 10) and so the number (2N + 1) of coupled steady equations to solve is a parameter of the TSM solver. In Fig. 5 it can be noted that to reproduce correctly the lift coefficient (on the left) 1 harmonic is sufficient. However this choice implies a significant error on the drag coefficient prediction (on the right). Finally, the non-linear effects involved in this test case require a minimum number of harmonics equal to 3 in order to correctly predict the aerodynamic coefficients.

Figure 5: Comparison of the aerodynamic force coefficients between the finite volume solver and the TSM solver.
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1 harmonic test case

Firstly, the RO-TSM is constructed by taking into account only 1 harmonic for the TSM resolution. For this test case an explicit TSM (with a CFL = 1) is used. Then, as already presented in Section 2.4, a POD basis is constructed using the 3 snapshots corresponding to the 3 time instances of the TSM. The 3 density POD modes are depicted in Fig. 6.

POM 1 POM 2 POM 3 In Fig. 7 the rate of convergence of the full order and the reduced order TSM is shown. Firstly, it is obvious that the RO-TSM presents a much faster and more regular rate of convergence (note the different abscissa). The zoomed part of the plot emphasizes the differences between the initial guesses. Indeed, as explained in Section 2.4.1, the projection of the free-stream state vector onto the POD basis provides a different and more suitable initial guess for the RO-TSM. The RO-TSM requires only about 10 iterations to attain a residual comparable to the one reached by the TSM in 1000 iterations. Moreover, each iteration of the RO-TSM required a smaller system to be solved resulting, globally, in a lower computational cost. We remind also that the POD basis is built from the TSM snapshots associated to a given residual norm. This norm is the convergence criterion that monitors the cost of the TSM. Since the RO-TSM seeks a solution in the vector space spanned by the TSM snapshots, it is not possible to reach a better numerical accuracy than the one the TSM simulation. Finally, in Fig. 8 the absolute difference between the density fields related to the RO-TSM and the TSM is shown as a proof of the high accuracy attained by the presented model. 

3 harmonics

As previously introduced, the non-linear effects of the presented test case require at least 3 harmonics for the TSM computation to reach an acceptable accuracy on the aerodynamic drag coefficient prediction. The choice of 3 harmonics implies 7 steady coupled equations to be solved which affects the diagonal dominance of the TSM eq.( 11) and therefore the global complexity of the TSM resolution. This is shown by the convergence issues occurring when an explicit TSM solver is employed. Then, a fully implicit TSM solver (with a block-Jacobi implementation [START_REF] Blondeau | A Modular Implementation Of The Time Spectral Method For Aeroelastic Analysis And Optimization On Structured Meshes[END_REF]) is employed with a CFL number for the pseudo-time integration equal to 2.5.

Once the FO-TSM computation performed, the POD basis is constructed with the resulting 7 solution field snapshots. The density POD modes are depicted in Fig. 9. there are no significant differences in the stability of the model between the cases with 1 and the 3 harmonics. This is not the case for the FO-TSM, which has implied implicitation and a low CFL condition. Instead, provided a POD basis for the involved time instances, the same RO-TSM reaches a monotonic convergence. In Fig. 11 the absolute difference between the density 

CONCLUSION

This paper presented the development of a Reduced Order Time Spectral Model approach. This method was motivated by the stability shortcomings related to the time dependent projectionbased ROMs when nonlinear flows are investigated. In many aeroelastic cases, periodicity is a characteristic of the flow. In this context, spectral methods represent a suitable alternative to the classical unsteady techniques. We formulated a RO-TSM which presents two main features. First, the solution is sought onto a subspace that is a priori suitable as a result of the POD. Second, the computational complexity of the resolution is globally reduced. This method is validated for the inviscid flow around an oscillating NACA64A010 airfoil under prescribed pitch motion at a reduced frequency κ = ωc/2U ∞ = 0.41. Even when considering 3 harmonics for the Fourier series approximation, the model converges monotonically and shows very accurate results.

Future works will extend the present method for a higher number of harmonics for different and more complex test cases. Then this RO-TSM will be extended to take into account parametric changes. In particular, to model an off-reference condition it will be necessary to interpolate the POD basis. To this end, interpolation techniques like the interpolation on a tangent space to a Grassmann manifold will be investigated [START_REF] Farhat | An Interpolation Method for the Adaptation of Reduced-Order Models to Parameter Changes and Its Application to Aeroelasticty[END_REF].
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 1 Figure 1: A graphical description of the initialization of the RO-TSM by projecting onto the POD subspace.
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 6 Figure 6: Density fields of the 3 proper orthogonal modes (POMs) composing the POD basis for the RO-TSM for N = 1.
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 78 Figure 7: Comparison of the Euclidean norm of the density residual for the full order and the reduced order TSM.Note the different abscissa related to the two approaches.
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 9 Figure 9: Density fields of the 7 proper orthogonal modes (POMs) composing the POD bases for the RO-TSM for N = 3.
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 10 Figure 10: The Euclidean norm of the density residual for the 7 steady state fields of the reduced order TSM.

Figure 11 :

 11 Figure 11: On the first line, the density fields at the seven time instances of the TSM. On the second line, the absolute difference between the RO-TSM and the TSM density fields.
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