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ON THE UNIVERSAL ELLIPSITOMIC KZB CONNECTION

We construct a twisted version of the genus one universal Knizhnik-Zamolodchikov-Bernard (KZB) connection introduced by Calaque-Enriquez-Etingof, that we call the ellipsitomic KZB connection. This is a flat connection on a principal bundle over the moduli space of Γ-structured elliptic curves with marked points, where Γ = Z M Z × Z N Z, and M, N ≥ 1 are two integers. It restricts to a flat connection on Γ-twisted configuration spaces of points on elliptic curves, which can be used to construct a filtered-formality isomorphism for some interesting subgroups of the pure braid group on the torus. We show that the universal ellipsitomic KZB connection realizes as the usual KZB connection associated with elliptic dynamical r-matrices with spectral parameter, and finally, also produces representations of cyclotomic Cherednik algebras.

Introduction

In this paper, which fits in a series of works about universal Knizhnik-Zamolodchikov-Bernard (KZB) connections by different authors [START_REF] Calaque | Universal KZB equations: the elliptic case, in Algebra, Arithmetic and Geometry[END_REF][START_REF] Enriquez | Flat connections on configuration spaces and formality of braid groups of surfaces[END_REF], we focus on a twisted version of the genus 1 situation. In his seminal work [START_REF] Drinfeld | On quasitriangular quasi-Hopf algebras and a group closely connected with Gal( Q Q)[END_REF], Drinfeld considers the monodromy representation of the universal Knizhnik-Zamolodchikov (KZ) equation which leads to the formality of the pure braid group (see reminder below) and the so-called theory of associators that makes the link between rich algebraic structures (such as braided monoidal categories) and the Grothendieck-Teichmüller group GT.

Enriquez generalizes in [START_REF] Enriquez | Quasi-reflection algebras and cyclotomic associators[END_REF] Drinfeld's work to the twisted (a-k-a trigonometric, or cyclotomic) situation and relates it to multiple polylogarithms at roots of unity. Namely, he uses the universal trigonometric KZ system to prove the formality of some subgroups of the pure braid group on C × and to move relations between suitable algebraic structures (quasi-reflection algebras, or braided module categories) and analogues of the group GT.

The next step has been made by Enriquez, Etingof and the first author in [START_REF] Calaque | Universal KZB equations: the elliptic case, in Algebra, Arithmetic and Geometry[END_REF], where a universal version of the elliptic KZB system (see [START_REF] Bernard | On the Wess-Zumino-Witten model on the torus[END_REF]) is defined and used to:

• give a new proof (see [START_REF] Bezrukavnikov | Koszul DG-algebras arising from configuration spaces[END_REF] for the original one) of the filtered formality of the pure braid group on the torus, • find a relation between the KZ associator and a generating series for iterated integrals of Eisenstein series (see also [START_REF] Enriquez | Analogues elliptiques des nombres multizétas[END_REF]),

• provide examples of elliptic structures on braided monoidal categories (see also [START_REF] Enriquez | Elliptic associators[END_REF]).

The main goal of the present paper is to introduce a twisted version of the universal elliptic KZB system, called the ellipsitomic KZB connection, and to derive from it the formality of some subgroups of the pure braid group on the torus. In a subsequent work [START_REF] Calaque | Ellipsitomic associators[END_REF], we use it to emphasize a relation between generating series for values of multiple polylogarithms at roots of unity and values of elliptic multiple polylogarithms at torsion points.

Throughout the paper, k is a field of characteristic zero, M, N are fixed positive integers, and Γ ∶= Z M Z × Z N Z.

Genus zero situation (rational KZ). First recall from [START_REF] Kohno | On the holonomy Lie algebra and the nilpotent completion of the fundamental group of the complement of hypersurfaces[END_REF] that the holonomy Lie algebra of the configuration space Conf(C, n) ∶= {z = (z 1 , . . . , z n ) ∈ C n z i ≠ z j if i ≠ j} of n points on the complex line is isomorphic to the graded Lie C-algebra t n generated by t ij , 1 ≤ i ≠ j ≤ n, with relations

t ij = t ji , (S) [t ij , t kl ] = 0 if #{i, j, k, l} = 4 , (L) [t ij , t ik + t jk ] = 0 if #{i, j, k} = 3 . (4T)
Then, on the one hand, denote by PB n the fundamental group of Conf(C, n), also known as the pure braid group with n strands, and by pb n its Malcev Lie algebra (which is filtered by its lower central series, and complete). One can easily check that PB n is generated by elementary pure braids P ij , 1 ≤ i < j ≤ n, which satisfy the following relations:

(P ij , P kl ) = 1 if {i, j} and {k, l} are non crossing , (PB1) (P kj P ij P -1 kj , P kl ) = 1 if i < k < j < l , (PB2) (P ij , P ik P jk ) = (P jk , P ij P ik ) = (P ik , P jk

P ij ) = 1 if i < j < k . (PB3)
We can depict the generator P ij in the following two equivalent ways: Therefore one has a surjective morphism of graded Lie algebras p n ∶ t n ↠ gr(pb n ) sending t ij to σ(log(P ij )), i < j and σ ∶ pb n → gr(pb n ) being the symbol map.

On the other hand, denote by exp( tn ) the exponential group associated with the degree completion tn of t n . The universal KZ connection on the trivial exp( tn )-principal bundle over Conf(C, n) is then given by the holomorphic 1-form

w KZ n ∶= 1⩽i<j⩽n dz i -dz j z i -z j t ij ∈ Ω 1 (Conf(C, n), t n ) ,
which takes its values in t n . It is a fact that the connection associated with this 1-form is flat, and descends to a flat connection on the moduli space M 0,n+1 ≃ Conf(C, n) Aff(C) of rational curves with n + 1 marked points. Firstly, the regularized holonomy of this connection along the real straight path from 0 to 1 in M 0,4 ≃ P 1 -{0, 1, ∞} gives a formal power series Φ KZ in two non-commuting variables, called the KZ associator, that is a generating series for values at 0 and 1 of multiple polylogarithms. Secondly, using the monodromy representation of the universal KZ connection, one obtains:

(1) A morphism of filtered Lie algebras µ n ∶ pb n → tn such that gr(µ n )○p n = id. Hence one concludes that p n and µ n are bijective. This provides a filtered isomorphism from pb n to the degree completion of its associated graded, which is actually tn . This recovers the known fact that the group PB n is 1-formal, meaning that its Malcev Lie algebra is isomorphic to the degree completion of a quadratic Lie algebra. (2) A system of relations (called Pentagon (P ) and two Hexagons (H ± )) satisfied by the KZ associator. Then, if k is a field of characteristic 0, one can define a set of kassociators Ass(k), for which the KZ associator will be a C-point (showing at the same time that the set of such abstract C-associators is indeed non-empty).

A twisted variant (trigonometric/cyclotomic KZ). Similarly, one can consider the configuration space

Conf(C × , n) ∶= {z = (z 1 , . . . , z n ) ∈ (C × ) n z i ≠ z j if i ≠ j}
of n points on C × . Then Conf(C × , n) ≃ Conf(C, n + 1) C and thus its fundamental group PB 1 n is isomorphic to PB n+1 . More generally, for any M ∈ Z -{0} one can consider an M -twisted configuration space

Conf(C × , n, M ) ∶= {z = (z 1 , . . . , z n ) ∈ (C × ) n z M i ≠ z M j for i ≠ j}.

In [START_REF] Enriquez | Quasi-reflection algebras and cyclotomic associators[END_REF] Enriquez exhibits, using the so-called universal trigonometric KZ connection, an isomorphism pb M n → exp( tM n ), where pb M n is the Malcev Lie algebra of the fundamental group PB M n ⊂ PB 1 n of Conf(C × , n, M ), and t M n is the holonomy Lie algebra of Conf(C × , n, M ). The monodromy of this connection along a suitable (non closed) path gives a universal pseudotwist Ψ M KZ ∈ exp( tM 2 ) that is a generating series for values of multiple polylogarithms at M th roots of unity, and satisfies relations with Φ KZ .

Genus one situation (elliptic KZB). The genus one universal Knizhnik-Zamolodchikov-Bernard (KZB) connection ∇ KZB 1,n was introduced in [START_REF] Calaque | Universal KZB equations: the elliptic case, in Algebra, Arithmetic and Geometry[END_REF]. This is a flat connection over the moduli space of elliptic curves with n marked points M 1,n , which was independently discovered by Levin-Racinet [START_REF] Levin | Towards multiple elliptic polylogarithms[END_REF] in the specific cases n = 1, 2. It restricts to a flat connection over the configuration space

Conf(E τ , n) ∶= Λ n τ {z = (z 1 , . . . , z n ) ∈ C n z i -z j ∉ Λ τ if i ≠ j}
of n points on an (uniformized) elliptic curve E τ ∶= Λ τ C, for τ ∈ h and Λ τ = Z + τ Z. More precisely, this connection is defined on a G-principal bundle over M 1,n where the Lie algebra associated with G has as components:

(1) a Lie algebra t 1,n related to Conf(T, n), somehow controlling the variations of the marked points: it has generators x i , y i , for i = 1, ..., n, corresponding to moving z i along the topological cycles generating H 1 (E τ ); (2) a Lie algebra d with as components the Lie algebra sl 2 with standard generators e, f, h and a Lie algebra d + ∶= Lie({δ 2m m ≥ 1}) such that each δ 2m is a highest weight element for sl 2 . The Lie algebra d somehow controls the variation of the curve in M 1,n and is closely related to the one defined in [START_REF] Tsunogai | The stable derivation algebra for higher genera[END_REF]. Now, the connection ∇ KZB 1,n can be locally expressed as ∇ KZB 1,n ∶= d -∆(z τ )dτ -∑ i K i (z τ )dz i where (1) the term K i (τ ) ∶ C n → t1,n is meromorphic on C n , having only simple poles on

Diag n,τ ∶= ⋃ i≠j {z = (z 1 , . . . , z n ) ∈ C n z i -z j ∈ Λ τ } . It is constructed out of a function k(x, z τ ) ∶= θ(z + x τ ) θ(z τ )θ(x τ ) - 1 x .
This relates directly the connection ∇ KZB 1,n with Zagier's work [START_REF] Zagier | Periods of modular forms and Jacobi theta functions[END_REF] on Jacobi forms (see Weil's book [START_REF] Weil | Elliptic functions according to Eisenstein and Kronecker[END_REF]) and to Brown and Levin's work [START_REF] Brown | Multiple elliptic polylogarithms[END_REF].

(2) the term ∆(z τ ) is a meromorphic function C n ×h → Lie(G), with only simple poles on

Diag n ∶= {(z, τ ) ∈ C n × h z ∈ Diag n,τ }. The coefficients of δ 2m in ∆(z τ ) are Eisenstein series.
We also refer to Hain's survey [START_REF] Hain | Notes on the universal elliptic KZB equation[END_REF] and references therein for the Hodge theoretic and motivic aspects of the story. Then, one can construct a holomorphic map sending each τ ∈ h to a couple e(τ ) ∶= (A(τ ), B(τ )) where A(τ ) (resp. B(τ )) is the regularized holonomy of the universal elliptic KZB connection along the straight path from 0 to 1 (resp. from 0 to τ ) in the once punctured elliptic curve Λ τ (C -Λ τ ) ≃ E τ Conf(E τ , 2). Enriquez developed in [START_REF] Enriquez | Elliptic associators[END_REF] the general theory of elliptic associators, whose scheme is denoted Ell and for which the couple e(τ ) is an example of a C-point. Some of the main features of the so-called elliptic KZB associators e(τ ) are the following:

• They satisfy algebraic and modularity relations.

• They satisfy a differential equation in the variable τ expressed only in terms of iterated integrals of Eisenstein series, which will be called iterated Eisenstein integrals. • When taking τ to i∞ (which consists in computing the constant term of the qexpansion of the series A(τ ) and B(τ ), where q = e 2iπτ ), they can be expressed only in terms of the KZ associator Φ KZ . • They provide isomorphisms between the Malcev Lie algebra of the fundamental group PB 1,n of Conf(T, n) and the degree completion of its associated Lie algebra t 1,n .

Observe that, contrary to what happens in genus 0, PB 1,n (also known as the pure elliptic braid group) is not 1-formal (as t 1,n is not quadratic), but only filtered-formal according to the terminology of [START_REF] Suciu | Formality properties of finitely generated groups and Lie algebras[END_REF].

Ellipsitomic KZB. As we wrote above, the purpose of the present work is to define a twisted version of the genus one KZB connection introduced in [START_REF] Calaque | Universal KZB equations: the elliptic case, in Algebra, Arithmetic and Geometry[END_REF]. This is a flat connection on a principal bundle over the moduli space of elliptic curves with a Γ-structure and n marked points. It restricts to a flat connection on the so-called Γ-twisted configuration space of points on an elliptic curve, which can be used for constructing a filtered-formality isomorphism for some interesting subgroups of the pure braid group on the torus. In a subsequent work [START_REF] Calaque | Ellipsitomic associators[END_REF], we will define ellipsitomic KZB associators as renormalized holonomies along certain paths on a once punctured elliptic curve with a Γ-structure, and exhibit a relation between ellipsitomic KZB associators, the KZ associator [START_REF] Drinfeld | On quasitriangular quasi-Hopf algebras and a group closely connected with Gal( Q Q)[END_REF] and the cyclotomic KZ associator [START_REF] Enriquez | Quasi-reflection algebras and cyclotomic associators[END_REF]. Moreover, ellipsitomic associators can be regarded as a generating series for iterated Eisenstein integrals whose coefficients are elliptic multiple zeta values at torsion points. In the case M = N these coefficients are related to Goncharov's work [START_REF] Goncharov | Multiple ζ-values, Galois groups, and geometry of modular varieties[END_REF], and also to the recent work [START_REF] Broedel | Twisted elliptic multiple zeta values and nonplanar one-loop open-string amplitudes[END_REF] of Broedel-Matthes-Richter-Schlotterer.

We finally prove that the universal ellipsitomic KZB connection realizes as the usual KZB connection associated with certain elliptic dynamical r-matrices with spectral parameter, that should be compared with [START_REF] Etingof | Twisted traces of intertwiners for Kac-Moody algebras and classical dynamical r-matrices corresponding to generalized Belavin-Drinfeld triples[END_REF][START_REF] Felder | Conformal field theory and integrable systems associated to elliptic curves[END_REF].

It is worth mentioning the recent work [START_REF] Toledano-Laredo | Universal KZB equations for arbitrary root systems[END_REF], where Toledano-Laredo and Yang define a similar KZB connection. More precisely, they construct a flat KZB connection on moduli spaces of elliptic curves associated with crystallographic root systems. The type A case coincides with the universal elliptic KZB connection defined in [START_REF] Calaque | Universal KZB equations: the elliptic case, in Algebra, Arithmetic and Geometry[END_REF], and we suspect that the type B case coincides with the connection of the present paper for M = N = 2. It is interesting to point out that a common generalization of their work and ours (for M = N ) could be obtained by constructing a universal KZB connection associated with arbitrary complex reflection groups.

Plan of the paper. The paper is organized as follows:

• In Section 1, we introduce Γ-twisted configuration spaces on an elliptic curve and define the universal ellipsitomic KZB connection on them. It takes values in a the Lie algebra t Γ 1,n of infinitesimal ellipsitomic (pure) braids, that we also define. • As in [START_REF] Calaque | Universal KZB equations: the elliptic case, in Algebra, Arithmetic and Geometry[END_REF], the connection extends from the configuration space to the moduli space MΓ 1,[n] of elliptic curves with a Γ-level structure and unordered marked points. This is proven in Section 3 using some technical definitions introduced in Section 2, involving derivations of the Lie algebra t Γ 1,n related to the twisted configuration space in genus 1. As in the untwisted case, the results of this section also apply to the "unordered marked points" situation as well.

• In Section 4, we provide a notion of realizations for the Lie algebras previously introduced, and show that the universal ellipsitomic KZB connection realizes to a flat connection intimately related to elliptic dynamical r-matrices with spectral parameter. • In Section 5, we derive from the monodromy representation the filtered-formality of the fundamental group of the twisted configuration space of the torus, which is a subgroup of PB 1,n . As in the cyclotomic case, it extends to a relative filtered-formality result for the map B 1,n → Γ n ⋊ S n . • Finally, in Section 6, we construct a homomorphism from the Lie algebra tΓ 1,n ⋊ d Γ to the twisted Cherednik algebra H Γ n (k). This allows us to consider the twisted elliptic KZB connection with values in representations of the twisted Cherednik algebra. This study shall be closely related to the recent paper [START_REF] Braverman | Cyclotomic double affine Hecke algebras[END_REF].

• We also include an appendix that summarizes our conventions for fundamental groups, covering maps, principal bundles, and monodromy maps.
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1. Bundles with flat connections on Γ-twisted configuration spaces 1.1. The Lie algebra of infinitisemal ellipsitomic braids. In this paragraph, Γ can be replaced by any finite abelian group (with the additive notation).

For any positive integer n we define t Γ 1,n (k) to be the bigraded k-Lie algebra with generators

x i (1 ≤ i ≤ n) in degree (1, 0), y i (1 ≤ i ≤ n) in degree (0, 1 
), and t α ij (α ∈ Γ, i ≠ j) in degree (1, 1), and relations

t α ij = t -α ji , (tS eℓℓ 1) [x i , y j ] = [x j , y i ] = α∈Γ t α ij , (tS eℓℓ 2) [x i , x j ] = [y i , y j ] = 0 , (tN eℓℓ ) [x i , y i ] = - j∶j≠i α∈Γ t α ij , (tT eℓℓ ) [t α ij , t β kl ] = 0 , (tL eℓℓ 1) [x i , t α jk ] = [y i , t α jk ] = 0, (tL eℓℓ 2) [t α ij , t α+β ik + t β jk ] = 0 , (t4T eℓℓ 1) [x i + x j , t α ij ] = [y i + y j , t α ij ] = 0 , (t4T eℓℓ 2)
where 1 ≤ i, j, k, l ≤ n are pairwise distinct and α, β ∈ Γ. We will call t Γ 1,n (k) the k-Lie algebra of infinitesimal ellipsitomic braids. Observe that ∑ i x i and ∑ i y i are central in t Γ 1,n . Then we denote by tΓ ) can equivalently be presented with the same generators, and the following relations: (tS eℓℓ 1), (tS eℓℓ 2), (tN eℓℓ ), (tL eℓℓ 1), (tL eℓℓ 2), (t4T eℓℓ 1), and, for every

1 ≤ i ≤ n, [ j x j , y i ] = [ j y j , x i ] = 0 (resp. ∑ j x j = ∑ j y j = 0).
Proof. If x i , y i and t α ij satisfy the initial relations, then

[ j x j , y i ] = [x i , y i ] + [ j≠i x j , y i ] = - j∶j≠i α∈Γ t α ij + j∶j≠i α∈Γ t α ij = 0.
Now, if x i , y i and t α ij satisfy the above relations, then relations [∑

j x j , y i ] = 0 and [x j , y i ] = ∑ α∈Γ t α ij , for i ≠ j, imply that [x i , y i ] = -∑ j∶j≠i ∑ α∈Γ t α ij . Now, relations [∑ k x k , y j ] = 0 and [∑ k x k , x i ] = 0 imply that [∑ k x k , ∑ α∈Γ t α ij ] = 0. Thus, as [x i , t α jk ] = 0 if card{i, j, k} = 3, we obtain relation [x i + x j , t α ij ] = 0, for i ≠ j.
In the same way we obtain [y i + y j , t α ij ] = 0, for i ≠ j.

There is an action Γ n → Aut(t Γ 1,n (k)) defined as follows: • it leaves x i 's and y i 's invariant.

• for every i and every α ∈ Γ, α i leaves t β kl 's invariant if k, l ≠ i, and sends t β ij to t β+α ij . Here α i denotes the element of Γ n whose only nonzero component is the ith one and is α.

This action descends to an action on tΓ 

x i ↦ ax i + cy i , y i ↦ bx i + dy i , t α ij ↦ β∈coker(ρ) t ρ(α)+β ij .
Proof. Let us prove that the relation [x i , y j ] = ∑ α∈Γ t α ij , where i ≠ j, is preserved by φ. On the one hand [φ(x i ), φ(y j )] = ker(ρ) ∑ α∈Γ2 t α ij . On the other hand

φ([x i , y j ]) = α∈Γ1 φ(t α ij ) = α∈Γ1 β∈coker(ρ) t ρ(α)+β ij = ker(ρ) α∈Γ2 t α ij .
The fact that the remaining relations are preserved is immediate.

Comparison morphisms are bigraded, and pass to the quotient by ∑ i x i , ∑ i y i . When ρ is surjective, they also are compatible with the operadic module structure of t Γ 1,• (k) from [START_REF] Calaque | Ellipsitomic associators[END_REF] (see Proposition 5.2 in loc. cit.).

1.2. Principal bundles over Γ-twisted configuration spaces. Let E be an elliptic curve over C and consider the connected unramified Γ-covering p ∶ Ẽ → E corresponding to the canonical surjective group morphism ρ ∶ π 1 (E) ≅ Z 2 → Γ where π 1 (E) ≅ Z 2 is the natural choice of such an isomorphism. Let us then define the twisted configuration space

Conf(E, n, Γ) ∶= {z = (z 1 , . . . , z n ) ∈ Ẽn p(z i ) ≠ p(z j ) if i ≠ j} , and C(E, n, Γ) ∶= Conf(E, n, Γ) Ẽ its reduced version. Notice that C(E, n, Γ) is just the inverse image of C(E, n) under the surjection p n ∶ Ẽn → E n .
Let us fix a uniformization Ẽ ≃ E τ , where τ ∈ H:

E τ = Λ τ C, with Λ τ = Z + τ Z. Then E ≃ E τ,Γ , where E τ,Γ = Λ τ,Γ C and Λ τ,Γ ∶= (1 M )Z × (τ N )Z. Therefore Conf(E, n, Γ) ≃ Λ n τ (C n -Diag τ,n,Γ ) , where Diag τ,n,Γ ∶= {(z 1 , . . . , z n ) ∈ C n z ij ∶= z i -z j ∈ Λ τ,Γ for some i ≠ j} .
We now define a principal exp( tΓ 1,n )-bundle P τ,n,Γ over Conf(E, n, Γ) as the quotient

Λ n τ (C n -Diag τ,n,Γ ) × exp( tΓ 1,n ) ,
where the action is determined by the following non-abelian 1-cocycle:

z, (a + bτ ) i → e -2πibxi .
Remark 1.3 (Notation). Whenever there is an element g in a group G, and 1 ≤ i ≤ n, we write g i for the element of G n given by g on the i-th component and the unit on the others.

In other words, it is the restriction on Conf(E, n, Γ) of the bundle over Λ n τ C n for which a section on

U ⊂ Λ n τ C n is a regular map f ∶ π -1 (U ) → exp( tΓ 1,n ) such that • f (z + δ i ) = f (z), • f (z + τ δ i ) = e -2πixi f (z).
Here π ∶ C n → Λ n τ C n is the canonical projection and δ i is the ith vector of the canonical basis of C n .

Since the e -2πixi 's in exp( tΓ 1,n ) pairwise commute and their product is 1, then the image of P τ,n,Γ under the natural morphism exp( tΓ 

σ * (z 1 , . . . , z n ) ∶= (z σ -1 (1) , . . . , z σ -1 (n) ) .
This descends to a free action of S n on C(E, n, Γ). We then defined the unordered twisted configuration spaces

Conf(E, [n], Γ) ∶= S n Conf(E, n, Γ) and C(E, [n], Γ) ∶= S n C(E, n, Γ) .
The symmetric group S n also obviously acts on the Lie algebra t Γ 1,n . One can then define, keeping the notation of the previous paragraph, a principal exp( tΓ

1,n )⋊S n -bundle P τ,[n],Γ over Conf(E, [n], Γ): it is the restriction on Conf(E, [n], Γ) of the bundle over (Λ n τ ⋊ S n ) C n for which a section on U ⊂ Λ n τ C n ⋊ S n is a regular map f ∶ π -1 (U ) → exp( tΓ 1,n ) ⋊ S n such that • f (z + δ i ) = f (z), • f (z + τ δ i ) = e -2π i xi f (z), • f (σ * z) = σf (z).
In more compact form:

P τ,[n],Γ = (Λ n τ ⋊ S n ) (C n -Diag τ,n,Γ ) × exp( tΓ 1,n ) ⋊ S n .
Remark 1.4. As before, P τ,[n],Γ descends to a principal exp( tΓ 1,n ) ⋊ S n -bundle Pτ,[n],Γ over the reduced unordered twisted configuration space C(E, [n], Γ).

The second variation concerns ordinary configuration spaces of the base

E = E τ,Γ of the covering map E τ → E τ,Γ .
Recall from §1.1 that the group Γ n acts on tΓ 1,n . Hence one has a principal exp( tΓ

1,n ) ⋊ Γ n - bundle P(τ,Γ),n ∶= Λ n τ,Γ (C n -Diag τ,n,Γ ) × exp( tΓ 1,n ) ⋊ Γ n over Conf(E, n) ≃ Λ n τ,Γ (C n -Diag τ,n,Γ )
, where the action is determined by the non-abelian cocycle z, (

u M + v N τ ) i → e -2πiv N xi (ū, v) i .
Remark 1.5. The map sending u M + v N τ to (ū, v) exhibits an isomorphism Λ τ,Γ Λ τ ≃ Γ, that we will use on several occasions. Using this, if α = a + bτ ∈ Λ τ,Γ is a lift of α ∈ Γ, then the non-abelian cocycle is (z, α i ) → e -2πibxi α i .

Remark 1.6. In a similar way as before, the above bundle obviously descends to a principal exp( tΓ 1,n ) ⋊ (Γ n Γ)-bundle P(τ,Γ),n over the reduced ordinary configuration space C(E, n).

In concrete terms, a section over

U ⊂ Λ τ,Γ C n of P (τ,Γ),n is a regular map f ∶ π -1 (U ) → exp( tΓ 1,n ) ⋊ Γ n such that • f (z + δ i M ) = ( 1, 0) i f (z), • f (z + τ δ i N ) = ( 0, 1) i e -2π i N xi f (z).
Remark 1.7. We leave to the reader the task of combining the two variations.

1.4. Flat connections on P τ,n,Γ and its variants. A flat connection ∇ τ,n,Γ on P τ,n,Γ is the same as an equivariant flat connection on the trivial exp( tΓ 1,n )-bundle over C n -Diag τ,n,Γ , i.e., a connection of the form

∇ τ,n,Γ ∶= d - n i=1 K i (z τ )dz i , where K i (-τ ) ∶ C n → tΓ
1,n are meromorphic with only poles at Diag τ,n,Γ , and such that for any i, j:

(a) K i (z + δ j τ ) = K i (z τ ), (b) K i (z + τ δ j τ ) = e -2πiad(xj) K i (z τ ), (c) [∂ i -K i (z τ ), ∂ j -K j (z τ )] = 0.
Moreover, the image of ∇ τ,n,Γ under tΓ 1,n → tΓ 1,n is the pull-back of a (necessarily flat) connection ∇τ,n,Γ on Pτ,n,Γ if and only if:

(d) Ki (z τ ) = Ki (z + u ∑ i δ i τ ) for any u ∈ C and ∑ i Ki (z τ ) = 0.
Similarly, the image of ∇ τ,n,Γ under tΓ 1,n → tΓ 1,n ⋊ Γ n is the pull-back of a (necessarily flat) connection ∇ (τ,Γ),n on P (τ,Γ),n if and only if:

(e) K i (z + δ i M τ ) = ( 1, 0) j ⋅ K i (z τ ), (f) K i (z + τ δ i N τ ) = ( 0, 1) j ⋅ e -2πi N ad(xj) K i (z τ ), Remark 1.8.
Observe that (e) implies (a), and that (f) implies (b).

Finally, the image of ∇ τ,n,Γ under tΓ

1,n → tΓ 1,n ⋊ S n is the pull-back of a (necessarily flat) connection ∇ τ,[n],Γ on Pτ,[n],Γ if and only if: (g) K i ((ij) * z) = (ij) ⋅ K i (z).
1.5. Constructing the connection. We now construct a connection satisfying properties (d) to (g). Let us take the same conventions for theta functions as in [START_REF] Calaque | Universal KZB equations: the elliptic case, in Algebra, Arithmetic and Geometry[END_REF]. This is the unique

holomorphic function C × H → C, (z, τ ) ↦ θ(z τ ), such that • {z θ(z τ ) = 0} = Λ τ , • θ(z + 1 τ ) = -θ(z τ ) = θ(-z τ ) • θ(z + τ τ ) = -e -π i τ e -2π i z θ(z τ ) • ∂ z θ(0 τ ) = 1.
In particular, θ(z τ

+ 1) = θ(z τ ), while θ(-z τ -1 τ ) = -(1 τ )e (π i τ )z 2 θ(z τ ). If η(τ ) = q 1 24 ∏ n≥1 (1 -q n
) where q = e 2π i τ , and if we set ϑ(z τ ) ∶= η(τ

) 3 θ(z τ ), then ∂ τ ϑ = (1 4π i)∂ 2 z ϑ. Observe that for any α = (a 0 , a) ∈ Λ τ,Γ lifting α ∈ Γ, the term e -2π i ax (θ(z-α+x)) (θ(z -α)θ(x)) only depends on the class α = (ā 0 , ā) ∈ Γ of α mod Λ τ . Then we set k α (x, z τ ) ∶= e -2π i ax θ(z -α + x τ ) θ(z -α τ )θ(x τ ) - 1 x = e -2π i ax k(x, z -α τ ) + e -2π i ax -1 x ,
where k(x, z τ ) ∶= θ(x+z) θ(x)θ(z) -1 x (as in [START_REF] Calaque | Universal KZB equations: the elliptic case, in Algebra, Arithmetic and Geometry[END_REF]), and

K ij (z τ ) ∶= α∈Γ k α (adx i , z τ )(t α ij ) , K i (z τ ) ∶= -y i + j∶j≠i K ij (z ij τ ) .
In the rest of the section we fix τ ∈ H and drop it from the notation. Recall from [START_REF] Calaque | Universal KZB equations: the elliptic case, in Algebra, Arithmetic and Geometry[END_REF] that

k(x, z ± 1) = k(x, z) and k(x, z ± τ ) = e ∓2π i x k(x, z) + e ∓2π i x -1 x .
We then define the universal ellipsitomic KZB connection on P τ,n,Γ by

∇ KZB τ,n,Γ ∶= d - n i=1 K i (z τ )dz i .
Proposition 1.9. The K ij (z)'s have the following equivariance properties:

K ij (z + 1 M ) =( 1, 0) i ⋅ (K ij (z)), (1) 
K ij (z + τ N ) =( 0, -1) i ⋅ e -2π i N adxj ⋅ (K ij (z)) + ( 0, -1) i ⋅ ( α∈Γ e -2π i N adxi -1 adx i (t α ij )). (2) Proof. Let us choose representatives 0 ≤ u ≤ M -1 and 0 ≤ v ≤ N -1 so that α = u M + τ v N .
The first equation comes from a straightforward verification. Let us show the second relation. On the one hand,

K ij z + τ N = α∈Γ k α ad x i , z + τ N (t α ij ) = α∈Γ e -2π i N v ad(xi) k ad x i , z + τ N -α + e -2π i N v ad xi -1 ad x i (t α ij ) = α∈Γ e -2π i N (v-1) ad xi k(ad x i , z -α) + e -2π i N (v-1) ad xi -1 ad(x i ) (t α-(0, 1) ij ) = (0, -1) i ⋅ α∈Γ e -2π i N (v-1) ad xi k(ad(x i ), z -α) + e -2π i N (v-1) ad xi -1 ad x i (t α ij ).
On the other hand,

e -2π i N ad xj K ij (z) = e -2π i N ad xj α∈Γ k α (ad x i , z) (t α ij ) = e 2π i N ad xi α∈Γ e -2π i N v ad xi k(ad x i , z -α) + e -2π i N v ad xi -1 ad x i (t α ij ) = α∈Γ e -2π i N (v-1) ad xi k(ad x i , z -α) + e -2π i N (v-1) ad xi -e 2π i N ad xi ad x i (t α ij ), so α∈Γ e -2π i N (v-1) ad xi k(ad x i , z -α)(t α ij ) = e -2π i N ad xj K ij (z) - α∈Γ e -2π i N (v-1) ad xi -e 2π i N ad xi ad x i (t α ij ).
By putting these two equations together we finally get 

K ij z + τ N = (0, -1) i ⋅ e -2π i N ad xj K ij (z) + α∈Γ -e -2π i N (v-1) ad xi + e 2π i N ad xi + e -2π i N (v-1) ad xi -1 ad x i (t α ij ) = (0, -1) i ⋅ e -2π i N ad xj K ij (z) + (0, -1) i ⋅ α∈Γ e 2π i N ad xi -1 ad x i (t α ij ) .

Now recall that e

(t ij ) = 1 -e -2π i N ad xj (y i ).
We thus have

K i z + τ N δ j = -y i + j ′ ≠i,j K ij ′ (z ij ′ ) + K ij z ij + τ N
and therefore we get the announced relation

K i z + τ N δ j = (0, 1) j ⋅ e -2π i N ad xj K i (z).
Consequently the K i (z)'s satisfy conditions (e) and (f) above (and thus also (a) and (b)). Moreover, the K i (z)'s also satisfy conditions (d). Indeed, the first part of (d) is immediate and

k α (x, z) + k -α (-x, -z) = 0, therefore K ij (z) + K ji (-z) = 0, and thus ∑ i K i (z) = -∑ i y i .
Finally, from their very definition, the K i (z)'s also satisfy condition (g).

In the next paragraph we show that the flatness condition (c) is satisfied.

1.6. Flatness of the connection.

Proposition 1.10.

[∂ i -K i (z), ∂ j -K j (z)] = 0, i.e., condition (c) is satisfied.
Proof. First we have

∂ i (K j (z)) -∂ j (K i (z)) = ∂ i K ji (z ji ) -∂ j K ij (z ij ) = ∂ i (K ij (z ij ) + K ji (z ji )) = 0 since K ij (z) + K ji (-z) = 0. Therefore we have to prove that [K i (z), K j (z)] = 0.
As in [START_REF] Calaque | Universal KZB equations: the elliptic case, in Algebra, Arithmetic and Geometry[END_REF] it follows from the universal classical dynamical Yang-Baxter equation:

(CDYBE) -[y i , K jk ] + [K ji , K ki ] + c.p.(i, j, k) = 0 ,
which we now prove (here

K ij ∶= K ij (z ij )). For any f (x) ∈ C[[x]], [y k , f (adx i )(t α ij )] = β∈Γ f (adx i ) -f (-adx j ) adx i + adx j [-t β ki , t α ij ], [y i , f (adx j )(t α jk )] = β∈Γ f (adx j ) -f (adx i + adx j ) -adx i [-t β ij , t α jk ], [y j , f (adx k )(t α ki )] = β∈Γ f (-adx i -adx j ) -f (-adx i ) -adx j [-t β jk , t α ki ].
It follows that the l.h.s. of (CDYBE) is now

α,β∈Γ k α (-adx j , z ij )k β (-adx k , z ik ) -k α (adx i , z ij )k β-α (-adx k , z jk ) +k β (adx i , z ik )k β-α (adx j , z jk ) + k β-α (adx j , z jk ) -k β-α (adx i + adx j , z jk ) adx i + k β (adx i , z ik ) -k β (adx i + adx j , z ik ) adx j - k α (adx i , z ij ) -k α (-adx j , z ij ) adx i + adx j [t α ij , t β ik ] ,
and thus (CDYBE) follows from the identity

k α (-v, z)k β (u + v, z ′ ) -k α (u, z)k β-α (u + v, z ′ -z) + k β (u, z ′ )k β-α (v, z ′ -z) + k β-α (v, z ′ -z) -k β-α (u + v, z ′ -z) u + k β (u, z ′ ) -k β (u + v, z ′ ) v - k α (u, z) -k α (-v, z) u + v = 0 .
This last identity can be written as

k α (-v, z) - 1 v k β (u + v, z ′ ) + 1 u + v -k α (u, z) + 1 u k β-α (u + v, z ′ -z) + 1 u + v + k β (u, z ′ ) + 1 u k β-α (v, z ′ -z) + 1 v = 0 , (3) which (taking into account that k α (x, z) + (1 x) = e -2π i ax (k(x, z -α) + (1 x))) is a conse- quence of equation (3) of [6].
We have therefore proved: Theorem 1.11. ∇ τ,n,Γ is a flat connection on P τ,n,Γ , and its image under tΓ 1,n → tΓ 1,n is the pull-back of a flat connection ∇τ,n,Γ on Pτ,n,Γ .

Lie algebras of derivations and associated groups

2.1. The Lie algebras dΓ 0 and dΓ . Let f Γ be the free Lie algebra with generators x, t α (α ∈ Γ). Let p, q > 0. We define dp,q 0 to be the subspace of

f Γ ⊕ (f Γ ) ⊕ Γ consisting of elements (D, C), where C = (C α ) α∈γ , such that deg x (D) + deg t (D) = deg x (C α ) + deg t (C α ) = p and deg t (D) -1 = deg t (C α ) = q
for every α ∈ Γ, and that satisfy the following set of linear equations:

(i) C α (x, t β ) = C -α (-x, t -β ) in f Γ , (ii) [x, D(x, t β )] + ∑ α [t α , C α (x, t β )] = 0 in f Γ , (iii) [D(x 1 , t β 13 ), y 2 ] + c.p.(1, 2, 3) = 0 in t Γ 1,3 , (iv) [D(x 1 , t β 12 ) + D(x 1 , t β 13 ) -[C α (x 2 , t β 23 ), y 1 ], t α 23 ] = 0 in t Γ 1,3 , (v) [C α (x 1 , t γ 12 ), t α+β 13 + t β 23 ] + [t α+β 13 , C α+β (x 1 , t γ 13 )] + [t β 23 , C β (x 2 , t γ 23 )] commutes with t α 12 in t Γ 1,3 . Remark that (i) and (ii) imply another relation (vi) D(x, t β ) = -D(-x, t -β ) ,
which is very useful for computations. Then dΓ 0 ∶= ⊕ p,q ( dΓ 0 ) p,q . We then define a Lie bracket ⟨, ⟩ on f Γ ⊕ (f Γ ) ⊕ Γ as follows:

⟨(D, C), (D ′ , C ′ )⟩ ∶= (δ C (D ′ ) -δ C ′ (D), [C, C ′ ] + δ C (C ′ ) -δ C ′ (C)) ,
where δ C ∈ Der(f Γ ) is the derivation

• x ↦ 0, t α ↦ [t α , C α ], • δ C acts on (f Γ ) ⊕ Γ componentwise on a direct sum : δ C (C ′ ) α = δ C (C ′ α ), • the bracket is understood componentwise as well: [C, C ′ ] α = [C α , C ′ α ].
We let the reader check that dΓ 0 is stable under ⟨, ⟩, and becomes a bigraded Lie algebra 1 . We now define dΓ as the quotient of the free product dΓ 0 * sl 2 by the relations [ẽ, (D,

C)] = 0, [ h, (D, C)] = (p -q)(D, C), and (ad p f )(D, C) = 0 if (D, C) ∈ dΓ 0 is homogeneous of bidegree (p, q). Here ẽ = 0 1 0 0 , h = 1 0 0 -1 and f = 0 0 1 0
form the standard basis of sl 2 . If we respectively give degree (1, -1), (0, 0) and (-1, 1) to ẽ, h and f then dΓ becomes Z 2 -graded.

We then define dΓ + ∶= ker( dΓ → sl 2 ), which is (Z >0 ) 2 -graded. One observes that it is positively graded and finite dimensional in each degree. Thus, it is a direct sum of finite dimensional sl 2 -modules. 1 The proof is straightforward but quite long. We do not give it since we do use another simpler Lie algebra below.

The Lie algebras d Γ

0 and d Γ . We write d Γ 0 for the free bigraded Lie algebra generated by δ s,γ 's (s ≥ 0, γ ∈ Γ) in degree (s + 1, s) with relations δ s,γ = (-1) s δ s,-γ , for all s ≥ 0 and γ ∈ Γ.

We then define d Γ as the quotient of the free product d Γ 0 * sl 2 by the relations 

[ẽ, δ s,γ ] = 0, [ h, δ s,γ ] = sδ s,γ and ad s+1 ( f )(δ s,γ ) = 0; and d Γ + as the kernel of d Γ → sl 2 . As above, d Γ = d Γ + ⋊ sl 2 ,
[(adx) p t β-γ , (-adx) q t β ] and (C s,γ ) α ∶= (adx) s t α-γ + (-adx) s t α+γ .
Observe that

(D s,γ , C s,γ ) = (-1) s (D s,-γ , C s,-γ ).
The following result tells us that δ s,γ ↦ (D s,γ , C s,γ ) defines a bigraded Lie algebra morphism

d Γ 0 → dΓ 0 , that obviously extends to d Γ → dΓ . Proposition 2.1. (D s,γ , C s,γ ) ∈ ( dΓ 0 ) s+1,1 .
Proof. First observe that relations (i) and (vi) are obviously satisfied.

To prove (ii) it suffices to notice that in the free Lie algebra with three generators x, t 1 , t 2 , [t 1 , (ad x)

s t 2 ] + [t 2 , (-ad x) s t 1 ] = p+q=s-1 [x, [(-ad x) q t 1 , (ad x) p t 2 ]] .
Let us prove (iii). In t Γ 1,n we compute for #{i, j, k} = 3, [y k , (ad

x i ) p t α ij ] = - k+l=p-1 β (ad x i ) k [t β ik , (ad x i ) l t α ij ] = k+l=p-1 β (ad x i ) k (-ad x j ) l [t β ik , t α-β kj ] = k+l=p-1 β [(ad x i ) k t β ik , (-ad x j ) l t α-β kj ] . Therefore, in t Γ 1,3 , [y 1 , D(x 2 , t β 23 )] = k+l+m=s-2 α,β [[(ad x 2 ) k t β 21 , (-ad x 3 ) l t α-β-γ 13 ], (-ad x 2 ) m t α 23 ] + k+l+m=s-2 α,β (-1) l+m+1 [(ad x 2 ) k t α-γ 23 , [(ad x 2 ) l t β 21 , (-ad x 3 ) m t α-β 13 ]] . Then [y 1 , D(x 2 , t β 23 )] + c.p.
(1, 2, 3) = 0 follows from the Jacobi identity. Let us prove (iv). On the one hand,

[D(x 1 , t β 12 ) + D(x 1 , t β 13 ), t α 23 ] = = p+q=s-1 β∈Γ [[(adx 1 ) p t β-γ 12 , (-adx 1 ) q t β 12 ] + [(adx 1 ) p t β-γ 13 , (-adx 1 ) q t β 13 ], t α 23 ] = - p+q=s-1 β∈Γ [(adx 1 ) p [t α+β-γ 13 , t α 23 ], (-adx 1 ) q t β 12 ] + [(adx 1 ) p t β-γ 12 , (-adx 1 ) q [t α+β 13 , t α 23 ]] +[(adx 1 ) p [t β-γ 12 , t α 23 ], (-adx 1 ) q t α+β 13 ] + [(adx 1 ) p t α+β-γ 13 , (-adx 1 ) q [t β 12 , t α 23 ]] = [t α 23 , p+q=s-1 β∈Γ (adx 1 ) p [t α+β-γ 13 , (-adx 1 ) q t β 12 ] + (adx 1 ) p [t β 12 , (-adx 1 ) q t α+β+γ 13 ]] = [t α 23 , p+q=s-1 β∈Γ (adx 2 ) p (-adx 3 ) q [t α+β-γ 13 + (-1) s t α+β+γ 13 , t β 12 ]] .
On the other hand, 

[C α (x 2 , t β 23 ), y 1 ] = [(adx 2 ) s t α-γ 23 + (-adx 2 ) s t α+γ 23 , y 1 ] = - p+q=s-1 β∈Γ (ad x 2 ) p (-ad x 3 ) q [t β 12 ,
→ Der(t Γ 1,n ), taking (D, C) ∈ dΓ 0 to the derivation ξ (D,C) ∶ x i → 0, y i → j∶j≠i D(x i , t β ij ), t α ij → [t α ij , C α (x i , t β ij )].
This induces a bigraded Lie algebra morphism dΓ 0 → Der( tΓ 1,n ).

Proof. We have to prove that defining relations of t Γ 1,n are preserved by ξ ∶= ξ (D,C) . First observe that relations

[x i , x j ] = [x i + x j , t α ij ] = [x i , t α jk ] = [t α ij , t α kl ]
= 0 are obviously preserved. Then conditions (i) and (ii) respectively imply that t α ij = t -α ji and [x i , y j ] = ∑ α t α ij are preserved. Condition (vi) implies that [x i , y j ] = [x j , y i ] is preserved, and (vi) together with (iii) imply that [y i , y j ] = 0 is preserved. Therefore it follows from the centrality of ∑ i x i and ξ(∑

i x i ) = 0 that ξ([x i , y i ]) = ξ(- j∶j≠i [x j , y i ]) = ξ( j;j≠i α t α ij ).
Condition (iv) ensures that [y i , t α jk ] = 0 is preserved, and together with (vi) it implies that [y i + y j , t α ij ] = 0 is preserved. Finally condition (v) implies that the twisted infinitesimal braid relations are preserved, and the first part of the statement follows.

For the second part of the statement it remains to prove that the centrality of ∑ i y i is preserved. This follows directly from the identity ξ(∑ i y i ) = 0 that we now prove. Relation (vi) implies that for any i ≠ j one has

D(x i , t β ij ) = -D(-x i , t -β ij ) = -D(x j , t β ji ) in t Γ 1,n (the last equality happens since deg t (D) = deg t (C α ) + 1 > 0), and hence ξ( i y i ) = i≠j D(x i , t β ij ) = i<j D(x i , t β ij ) - j<i D(x j , t β ji ) = 0 .
We are done (the compatibility with bracket and grading are easy to check). The last part of the statementis a consequence of the fact that ξ(∑ i y i ) = ξ(∑ i x i ) = 0, that we have already proved.

We now prove that this morphism extends to a Lie algebra morphism dΓ → Der(t Γ 1,n ): 

ξ g ∶ t α ij ↦ 0, x i y i ↦ x i y i a b c d .
This induces a bigraded Lie algebra morphism dΓ → Der( tΓ

1,n ).
In what follows we write d ∶= h, X ∶= ẽ and ∆ 0 ∶= f and d ∶= ξ h, X ∶= ξ ẽ and ∆0 ∶= ξ f .

Proof. It is obvious that for any g, g ′ ∈ sl 2 , ξ g defines a derivation of the same degree of t Γ 1,n , and that ξ

[g,g ′ ] = [ξ g , ξ g ′ ].
Hence there is a bigraded Lie algebra morphism sl 2 * dΓ 0 → Der(t Γ 1,n ). Let us prove that it factors through the quotient dΓ .

It is relatively clear that [ X, ξ (D,C) ] = 0 and

[ d, ξ (D,C) ] = (p -q)(D, C) if (D, C) ∈ ( dΓ 0 ) p,q . Thus it remains to prove that (ad ∆0 ) p (ξ (D,C) ) = 0 if (D, C) ∈ ( dΓ 0 ) p,q .
We do this now. Let us write ξ ∶= ξ (D,C) and A ∶= (ad ∆0 ) p (ξ). Then after an easy computation one obtains on generators:

A(x i ) = -p ∆p-1 0 ξ(y i ) = -p ∆p-1 0 ( j∶j≠i D(x i , t β ij )), A(y i ) = ∆p 0 ξ(y i ) = ∆p 0 ( j∶j≠i D(x i , t β ij )), A(t α ij ) = ∆p 0 ξ(t α ij ) = ∆p 0 ([t α ij , C α (x i , t β ij )]).
Finally remark that there is an increasing filtration on t Γ 1,n defined by deg(x i ) = 1 and deg(t α ij ) = deg(y i ) = 0. ∆ 0 decreases the degree by 1 and vanishes on degree zero elements. The result then follows from the fact that deg

x (C α ) = p -q < p and deg x (D) = p -q -1 < p -1. Now composing with d Γ 0 → dΓ 0 (resp. d Γ → dΓ ) one obtains a Lie algebra morphism d Γ 0 → Der(t Γ 1,n ) (resp. d Γ → Der(t Γ 1,n ))
. We write ξ s,γ ∶= ξ (Ds,γ ,Cs,γ ) for the image of δ s,γ . We then 

have t Γ 1,n ⋊ d Γ = (t Γ 1,n ⋊ d Γ + ) ⋊ sl 2 ,
G Γ n ∶= exp(t Γ 1,n ⋊ d Γ + ) ∧ ⋊ SL 2 (C),
where exp

(t Γ 1,n ⋊ d Γ + ) ∧ is the exponential group associated to the degree completion of t Γ 1,n ⋊ d Γ + . Similarly, we define ḠΓ n ∶= exp( tΓ 1,n ⋊ d Γ + ) ∧ ⋊ SL 2 (C).
Notice that one can also define semi-direct product groups GΓ

n ∶= exp(t Γ 1,n ⋊ dΓ + ) ∧ ⋊ SL 2 (C) and GΓ n ∶= exp( tΓ 1,n ⋊ dΓ + ) ∧ ⋊ SL 2 (C).
We therefore have the following commutative diagram:

(5)

G Γ n / / GΓ n ḠΓ n / / GΓ n . Lemma 2.5. The kernel of dΓ 0 → Der(t Γ 1,n ) (n ≥ 2)
is the space of elements (0, C) for which C α is proportional to t α , and ker(d

Γ 0 → Der(t Γ 1,n )) = Cδ 0,0 . Proof. Let us first prove it for n = 2. Recall that tΓ 1,2 = t Γ 1,2 (x 1 + x 2 , y 1 + y 2 )
, so it is the Lie algebra generated by x (the class of x 1 ), y (the class of y 1 ) and t α 's (classes of t α 12 's) with the relation [x, y] = ∑ α∈Γ t α . Then the derivation ξ (D,C) associated to (D, C) ∈ dΓ 0 is given by

x ↦ 0, y ↦ D(x, t β ), t α ↦ [t α , C α (x, t β )].
This derivation vanishes if and only if D = 0 and C α is proportional to t α . Finally, the result for n ≥ 2 follows from the fact that

ξ (2) (D,C) = (u ↦ u 1,2,∅,...,∅ ) ○ ξ (n) (D,C) ○ (u ↦ u 1,...,n ),
where ξ

(n) (D,C) denotes the derivation of t Γ 1,n associated to (D, C).

Comparison morphisms.

Let ρ ∶ Γ 1 ↪ Γ 2 an injective morphism of abelian groups.

There is a comparison morphism dΓ1 0 → dΓ2 0 , (D, C) ↦ (D ρ , C ρ ) defined by

D ρ ∶= D ⎛ ⎝ x, γ∈coker(ρ) t ρ(β)+γ ⎞ ⎠ , (C ρ ) α ∶= C α ⎛ ⎝ x, γ∈coker(ρ) t ρ(β)+γ ⎞ ⎠ ,
that depends on the choice of a section coker(ρ) → Γ 2 . It extends to dΓ1 → dΓ2 by sending the generators of sl 2 to themselves. These comparison morphisms are compatible with the morphisms dΓi → Der(t Γi 1,n ), for i = 1, 2. Namely, there is a commutative diagram

dΓ1 ⋉ t Γ1 1,n / / t Γ1 1,n dΓ2 ⋉ t Γ2 1,n / / t Γ2 1,n
where the morphism t Γ1 1,n → t Γ2 1,n is the one defined by

x i ↦ x i , y i ↦ y i , t β ij ↦ γ∈coker(ρ) t ρ(β)+γ ij .
This induces comparison morphisms for the corresponding groups, that fit into a commutative diagram

(6) GΓ1 n / / GΓ2 n GΓ1 n / / GΓ2 n .
In particular we obtain a canonical natural inclusion G 0 n → G Γ n (which descends to an inclusion Ḡ0

n → ḠΓ n ), given by the inclusion 0 ↪ Γ.

Bundles with flat connections on moduli spaces

3.1. On some subgroups of SL 2 (Z) and moduli spaces. Recall that M, N ≥ 1 are integers, and that Γ ∶= Z M Z × Z N Z. We consider the following (finite index) subgroup of SL 2 (Z):

SL Γ 2 (Z) ∶= a b c d ∈ SL 2 (Z) a ≡ 1 mod M, d ≡ 1 mod N, b ≡ 0 mod N and c ≡ 0 mod M .
We define

Y (Γ) ∶= SL Γ 2 (Z)
H , that has the structure of a complex orbifold, which we call the moduli of Γ-structured elliptic curves. Definition 3.1. A Γ-structure on an elliptic curve E is an injective group morphism φ ∶ Γ ↪ E. An equivalence between two Γ-structured elliptic curves, (E, φ) and (E ′ , φ ′ ), is an equivalence

ψ ∶ E →E ′ such that ψ ○ φ = φ ′
On the one hand, every Γ-structured elliptic curve is equivalent to one that is in the following standard form:

• the elliptic curve is E = E τ , with τ ∈ H; • the injective group morphism φ = φ τ sends (ā, b) to the class of a M + bτ N ∈ C. On the other hand, an equivalence E τ1 →E τ2 , determined by an element g ∈ SL 2 (Z), intertwines the standard Γ-structures if and only if g belongs to the congruence subgroup SL Γ 2 (Z).

Remark 3.2. The biggest congruence subgroup on which the connection we will construct in this section is well defined and flat is the subgroup SL Recall the following standard group actions:

• The group SL 2 (Z) acts on the left on C n × H:

a b c d * (z τ ) ∶= z cτ + d aτ + b cτ + d .
This obviously descends to a left action of SL 2 (Z) on (C n × H) C, where C acts diagonally on

C n : u ⋅ (z τ ) ∶= (z + u ∑ i δ i τ ). • The group (Z n ) 2 acts on the left on C n × H: (m, n) * (z τ ) ∶= (z + m + τ n τ ) .

It obvioulsy descends to a left action of

(Z n ) 2 Z 2 on C n ×H C, where Z 2 is the diagonal subgroup in (Z n ) 2 = (Z 2 ) n .
• Finally, there is a right action of SL 2 (Z) on (m, n) ∈ Z 2 by automorphisms:

a b c d ∶ n m → n m a b c d .
We can thus form the semi-direct products

(Z n ) 2 ⋊ SL 2 (Z) and ((Z n ) 2 Z 2 ) ⋊ SL 2 (Z).
A few observations are then in order:

• The above actions are compatible in the sense that there is a left action of

(Z n ) 2 ⋊ SL 2 (Z) on C n × H, which descends to an action of (Z n ) 2 Z 2 ⋊ SL 2 (Z) on (C n × H) C,
where Z 2 is embedded in (Z n ) 2 via the diagonal map. One can think of translation by C as a left or right action as it commutes with the

((Z n ) 2 ⋊ SL 2 (Z))-action. • The action of (Z n ) 2 preserves the subset Diag n,Γ ∶= {(z τ ) ∈ C n × H z ∈ Diag τ,n,Γ } .
• The action of the subgroup SL Γ 2 (Z) ⊂ SL 2 (Z) also preserves Diag n,Γ . We are thus ready to define several variants of Y (Γ) "with marked points":

• We define the quotient MΓ 1,n ∶= (Z n ) 2 ⋊ SL Γ 2 (Z) (C n × H) -Diag n,Γ
C and call it the moduli space of Γ-structured elliptic curves with n ordered marked points.

• It has a non-reduced variant

p ∶ M Γ 1,n ∶= (Z n ) 2 ⋊ SL Γ 2 (Z) (C n × H) -Diag n,Γ ↠ MΓ 1,n .
• One can also define the moduli space of Γ-structured elliptic curves with n unordered marked points

MΓ 1,[n] ∶= S n MΓ 1,n
and its non-reduced variant

M Γ 1,[n] ∶= S n M Γ 1,n . Remark 3.3. We have MΓ 1,1 = MΓ 1,[1] = Y (Γ), and M Γ 1,1 = M Γ 1,[1] is the universal curve over it. The fiber of M Γ 1,n → Y (Γ) (resp. MΓ 1,n → Y (Γ)) at (the class of) τ is precisely the twisted (resp. reduced twisted) configuration space Conf(E τ,Γ , n, Γ) (resp. C(E τ,Γ , n, Γ)). Moreover, the map h ∶ MΓ 1,2 → MΓ 1,1
factors through (and is open in) M Γ 1,1 . We can interpret MΓ 1,2 as the Γ-punctured universal curve over Y (Γ).

Principal bundles over M Γ

1,n and MΓ 1,n . In this paragraph, G Γ n is defined as in (4) and we define a principal G Γ n -bundle P n,Γ over M Γ 1,n whose image under the natural morphism G Γ n → ḠΓ n is the pull-back of a principal ḠΓ n -bundle Pn,Γ over MΓ 1,n . Let us fix the notation first: for u ∈ C × and v, w i ∈ C (i = 1, . . . , n),

u d ∶= u 0 0 u -1 , e vX ∶= 1 v 0 1 .

Since [X,

x i ] = 0 then it makes sense to define e vX+∑ i wixi ∶= e vX e ∑ i wixi . In particular, we have

Ad(u d )(x i ) = ux i and Ad(u d )(y i ) = y i u (∀i), Ad(u d )(X) = u 2 X and Ad(u d )(∆ 0 ) = ∆ 0 u 2 . Let π ∶ C n × H → M 1
,n be the canonical projection.

Proposition 3.4. There exists a unique principal

G Γ n -bundle P n,Γ over M Γ 1,n for which a section on U ⊂ M Γ 1,n is a function f ∶ π -1 (U ) → G Γ n such that f (z + δ i τ ) = f (z τ ), f (z + τ δ i τ ) = e -2πixi f (z τ ), f (z, τ + 1) = f (z τ ), f ( z τ - 1 τ ) = τ d e 2π i τ (X+∑ i zixi) f (z τ ).
Moreover, the image of P n,Γ under G Γ n → ḠΓ n is the pull-back of a unique principal ḠΓ nbundle Pn,Γ over MΓ 1,n for which a section on

U ⊂ MΓ 1,n is a function f ∶ (p ○ π) -1 (U ) → MΓ 1,n
satisfying the above conditions (with x i 's replaced by xi 's) and such that f (z+v

∑ i δ i τ ) = f (z τ ) for any v ∈ C.
Proof. First recall that for Γ = 0 this is precisely [START_REF] Calaque | Universal KZB equations: the elliptic case, in Algebra, Arithmetic and Geometry[END_REF]Proposition 3.4]. Then observe that there is an obvious map ι ∶ M Γ 1,n → M 0 1,n . Therefore we define P n,Γ (resp. Pn,Γ ) to be the image under the natural inclusion G 0 n → G Γ n (resp. Ḡ0 n → ḠΓ n ) of ι * P n,0 (resp. ι * Pn,0 ).

We thus proved existence. Unicity is obvious.

In other words, there exists a unique non-abelian 1-cocycle

(c g ) g∈(Z n ) 2 ⋊SL2(Z) on C n × H with values in G Γ n such that c (δi,0) = 1, c (0,δi) = e -2π i xi , c S = 1 and c T (z τ ) = τ d e (2π i τ )(X+∑ j zjxj ) = e 2π i(τ X+∑ j zjxj ) τ d ,
where S = 1 1 0 1 and T = 0 -1 1 0 are the generators of SL 2 (Z). Here cocycle means (as in [START_REF] Calaque | Universal KZB equations: the elliptic case, in Algebra, Arithmetic and Geometry[END_REF]) that c g 's are holomorphic functions

C n × H → G Γ n satisfying the cocycle condition c gg ′ (z τ ) = c g (g ′ * (z, τ ))c g ′ (z τ ).
Remark 3.5. Notice that we do have a (Z n ) 2 ⋊ SL 2 (Z)-cocycle (since our bundle is define as the pull-back of a bundle on M 0 1,1 ) but the cocycle defining P n,Γ is its restriction to 

(Z n ) 2 ⋊ SL Γ 2 (Z).
∈ (Z n ) 2 ⋊ SL Γ 2 (Z), (7) 
g * η = (dc g (z τ ))c g (z τ ) -1 + Ad(c g (z τ ))(η(z τ )) .

We now construct such a connection. For any γ ∈ Γ, we define g γ (x, z τ

) ∶= ∂ x k γ (x, z τ ) and φγ (x τ ) = s≥0 A s,γ (τ )x s ∶= g -γ (x, 0 τ ) . Then we set ∆(z τ ) ∶= - 1 2π i ⎛ ⎝ ∆ 0 + 1 2 s≥0,γ∈Γ A s,γ (τ )δ s,γ - i<j g ij (z ij τ ) ⎞ ⎠ ,
where g ij (z τ ) ∶= ∑ α∈Γ g α (adx i , z τ )(t α ij ). And finally, with K i (z τ )'s as in §1.4, we define

η(z τ ) ∶= ∆(z τ )dτ + i K i (z τ )dz i .
Remark 3.6. One can see that φ0 (x) = (θ ′ θ) ′ (x) + 1 x 2 and that for any γ ∈ Γ -{0}

φγ (x) = ∂ x e 2π i cx θ(γ + x) θ(γ)θ(x) - 1 x ,
where γ = (c 0 , c) ∈ Λ τ,Γ -Λ τ is any lift of γ.

Proposition 3.7. The equivariance identity [START_REF] Calaque | Ellipsitomic associators[END_REF] is satisfied for any g ∈ (Z n ) 2 ⋊ SL 2 (Z).

Before proving this statement, let us notice that the SL 2 (Z)-equivariance is stronger than what we need (the SL Γ 2 (Z)-equivariance), but easier to prove. The action of SL 2 (Z) moves the poles while SL Γ 2 (Z) fixes them. In both cases, it makes sense to prove this proposition for meromorphic forms on C n × h.

Proof. For g = (δ j , 0), the identity translates into K i (z + δ j τ ) = K i (z τ ) (i = 1, . . . , n) and ∆(z + δ j τ ) = ∆(z τ ), which are immediate.

For g = (0, δ j ), the identity translates into K i (z + τ δ j τ ) = e -2π i ad(xj) K i (z τ ) (∀i) and ( 8)

∆(z + τ δ j τ ) + K j (z + τ δ j τ ) = e -2π i ad(xj) ∆(z τ ).
The first equality is proved in §1.4, and we prove the second one now. First remember that for any τ ∈ H, z ∈ C -

( 1 M Z + τ N Z)) and α ∈ Γ, we have the following identity in C[[x]]: (9) e -2π i x (g α (x, z) -1 x 2 ) + 1 x 2 -2π i(k α (x, z + τ ) + 1 x) = g α (x, z + τ ) .
Then, we can compute 2π i K j (z + τ δ j τ )e -2π i ad(xj) ∆(z τ ) : it is equal to

2π i ⎛ ⎝ k∶k≠j k α (adx j , z jk + τ ) -y j ⎞ ⎠ +∆ 0 + 1 -e -2π i adxj adx j (y j )+ 1 2 s≥0, γ∈Γ A s,γ δ s,γ -e -2π i adxj k<l g kl (z kl ) ,
and, therefore, using 1e -2π i adxj adx j (y j ) -2π i y j = e -2π i adxj -1

(adx j ) 2 + 2π i adx j ⎛ ⎝ α∈Γ k∶k≠j t α jk ⎞ ⎠ ,
together with (9), we obtain

∆ 0 + 1 2 s≥0,γ∈Γ A s,γ δ s,γ - k<l k,l≠j g kl (z kl ) - k∶k≠j α∈Γ g α (adx j , z jk + τ )(t α jk ) ,
which is precisely equal to -2π i ∆(z + τ δ j ).

For g = S, the identity translates into K i (z τ + 1) = K i (z) (∀i) and ∆(z τ + 1) = ∆(z). Both equalities obviously follow from θ(z τ + 1) = θ(z τ ).

For g = T , the identity translates into (10)

1 τ K i ( z τ - 1 τ ) = Ad (c T (z τ )) (K i (z τ )) + 2π i x i ,
for all i ∈ {1, . . . , n} and (11)

1 τ 2 ∆( z τ - 1 τ ) - i z i K i ( z τ - 1 τ ) = Ad (c T (z τ )) (∆(z τ )) + d τ -2π i X .
Let us check (10) first. Ad(e 2π i(∑ j zj xj+τ X) τ d )(-y i )

+ 2π i x i equals -Ad(e 2π i ∑ j zj xj )(y i τ ) = - y i τ - e 2π i ad(∑ j zjxj ) -1 ad(∑ j z j x j ) ([ j z j x j , y i τ ]) = - y i τ - e 2π i ∑ j zj adxj -1 ∑ j z j adx j ( j∶j≠i α∈Γ z ji τ t α ij ) = - y i τ - j∶j≠i e 2π i zij adxi z ij adx i ( α∈Γ z ji τ t α ij ) . Therefore (12) - y i τ = Ad(c T (z τ ))(-y i ) + 2π i x i - j∶j≠i e 2π i zijadxi adx i ( α∈Γ t α ij τ ) . Now, since θ - z τ - 1 τ = - 1 τ e π i τ z 2 θ(z τ ),
we obtain

k α x, z τ - 1 τ = e -2πiax θ z τ -a 0 - a τ + x τ θ z τ -a 0 - a τ τ θ(x τ ) - 1 x = -τ e 2πizx-2πia0τ x θ(τ x + z + a -τ a 0 τ ) θ(z + a -τ a 0 τ )θ(τ x τ ) - 1 x = τ e 2πizx k T α (τ x, z τ ) + e 2π i zx -1 τ x ,
where T (ā 0 , ā) = (-ā, ā0 ). Now substituting (x, z) = (adx j , z j ) in

(13) 1 τ (k α (x, z τ - 1 τ ) = e 2π i zx k T α (τ x, z τ ) + e 2π i zx -1 τ x ,
then applying to t α ij , summing over j ≠ i and α ∈ Γ and adding up [START_REF] Enriquez | Flat connections on configuration spaces and formality of braid groups of surfaces[END_REF], we obtain (10) by using that

e 2π i zij adxi k α (τ adx i , z ij τ )(t α ij ) = Ad(e 2π i(τ X+∑ j zjxj ) τ d )(k α (adx i , z ij τ )(t α ij )).
We now check [START_REF] Enriquez | Analogues elliptiques des nombres multizétas[END_REF]. Differentiating (13) w.r.t. x and dividing by τ , we get

1 τ 2 g α (x, z τ - 1 τ ) = e 2π i zx g T α (τ x, z τ ) + 2π i z τ 2 k α (x, z τ - 1 τ ) + 1 + 2π i zx -e 2π i zx τ 2 x 2 .
Now substituting (x, z) = (adx i , z ij ), applying to t α ij , and summing over α ∈ Γ we obtain 1

τ 2 g ij ( z τ - 1 τ ) = Ad(c T (z τ )) (g ij (z τ )) + 2π i z ij τ 2 K ij ( z ij τ - 1 τ ) + 1 + 2π i z ij adx i -e 2π i zij adxi τ 2 (adx i ) 2 ( α∈Γ t α ij ) .
Then taking the sum over i < j one gets

(14) 1 τ 2 i<j g ij ( z τ - 1 τ ) = Ad(c T (z τ )) ⎛ ⎝ i<j g ij (z τ ) ⎞ ⎠ + 2π i τ 2 i z i K i ( z τ - 1 τ ) + B(z) ,
where

B(z) ∶= i 2π i z i y i τ 2 + i<j 1 + 2π i z ij adx i -e 2π i zij adxi τ 2 (adx i ) 2 ( α t α ij ). Lemma 3.8. Ad (c T (z τ )) (∆ 0 ) = ∆0 τ 2 + 2π i d τ -(2π i) 2 ( 1 τ ∑ i z i x i + X) + B(z).
Proof of the lemma. We first compute

Ad (c T (z τ )) (∆ 0 ) = Ad(e 2π i(τ X+∑ i zixi) )( ∆ 0 τ 2 ) = Ad(e 2π i ∑ i zixi )( ∆ 0 τ 2 + 2π i d τ -(2π i) 2 X) = Ad(e 2π i ∑ i zixi )( ∆ 0 τ 2 ) + 2π i d τ -(2π i) 2 ( 1 τ i z i x i + X) .
It remains to show that Ad(e

2π i ∑ i zixi )( ∆0 τ 2 ) = ∆0 τ 2 + B(z).
The proof of this fact goes along the same lines of computation as in [6, pp.16-17].

Using the above lemma and equation ( 14), one sees that equation ( 11) follows from

Ad(c T (z τ )( s,γ A s,γ (τ )δ s,γ ) = s,γ A s,γ (- 1 τ )δ s,γ .
This last equality is proved using

[x i , δ s,γ ] = 0 = [X, δ s,γ ], [d, δ s,γ ] = sδ s,γ , and, since φγ (x - 1 τ ) = τ 2 φT γ (τ x τ ), we get A s,γ (-1 τ ) = τ s+2 A s,T γ (τ
We therefore have:

Theorem 3.9. ∇ n,Γ defines a connection on P n,Γ . Moreover, its image under G Γ n → ḠΓ n is the pull-back of a connection ∇n,Γ on Pn,Γ .

Proof. The first part follows from Proposition 3.7 above. For the second part, we need to prove the three following identities:

• ∑ i Ki (z τ ) = 0; • Ki (z + u ∑ j δ j τ ) = Ki (z τ ), for all i; • ∆(z + u ∑ j δ j τ ) = ∆(z τ ).
The first two equalities have already been proven, and the last one is obvious.

3.4. Flatness. In this paragraph we prove the flatness of ∇ n,Γ (and thus of ∇n,Γ ).

Proposition 3.10. For any i ∈ {1, . . . , n},

[∂ τ -∆(z τ ), ∂ i -K i (z τ )] = 0.
In what follows, we often drop τ from the notation when it does not lead to any confusion.

Proof. Let us first prove that

∂ τ K i (z) = ∂ i ∆(z). This follows from the identity ∂ z g α (x, z) = 2π i ∂ τ k α (x, z)
, which is proved as follows (here α = (a 0 , a) is any lift of α):

∂ z g α (x, z) = ∂ z ∂ x k α (x, z) = ∂ z ∂ x e -2π i ax k(x, z -α) + e -2π i ax -1 x = e -2π i ax ∂ z ∂ x k(x, z -α) -2π i ae -2π i ax ∂ z k(x, z -α) = 2π i e -2π i ax ∂ τ k(x, z -α) -2π i ae -2π i ax ∂ z k(x, z -α) = 2π i ∂ τ e -2π i ax k(x, z -α) = 2π i ∂ τ k α (x, z).
It remains to prove that [∆(z), K i (z)] = 0.

Proof of the lemma. The case α = β = 0 follows from an explicit computation. Then we choose lifts α = (a 0 , a) and β = (b 0 , b) of α and β, respectively. One has

k α (x, z) + 1 x = e -2iπax (k(x, z -α) + 1 x) and g α (x, z) -1 x 2 = e -2iπax g(x, z -α) -1 x 2 -2iπb (k α (x, z) + 1 x) .
Therefore ( 16) equals

-2iπ(a -b) k α (v, z ′ ) + 1 v k β (u, z) + 1 u + k β-α (u, z -z ′ ) + 1 u k α (u + v, z ′ ) + 1 u + v + k α-β (v, z ′ -z) - 1 v k β (u + v, z) + 1 u + v ,
which vanishes because of (3).

Let us now assume that n > 2. Let t Γ n,+ ⊂ t Γ 1,n be the subalgebra generated by x i , t α jk (i, j, k = 1, . . . , n, j ≠ k, α ∈ Γ). There are functions E ij (z) with values in t Γ n,+ defined by

E ij (z) = [∆ 0 , k ij ] -[y i , g ij ],
which decomposes as e ij (z) + ∑ k≠i,j e ijk (z), where e ij (z) takes its values in

Span p,q,α,β [(adx i ) p (t α ij ), (adx j ) q (t β ij )]
and e ijk (z) takes its values in Span

α,β C[adx i , adx j ][t α ij , t β jk ]. Explicitely, e ij (z) = α,β p,q b α,β p,q (z ij )[ad p x i (t α ij ), ad q x i (t β ij )] ,
where b α,β p,q (z) is as before, and

e ijk (z) = α,β k α (adx i , z ij ) -k α (-adx j , z ij ) (adx i + adx j ) 2 - g α (-adx j , z ij ) adx i + adx j [t α ij , t β ik ].
We then define Y ijk (z) = [y i , g jk ], which takes its values in Span

α,β C[adx i , adx j ][t α ij , t β jk ]. Explicitly, Y ijk (z) = - α,β g β (adx j , z jk ) -g -β (adx k , -z jk ) adx j + adx k [t α ij , t β jk ]
(remember that g α (u, z) = g -α (-u, -z)). We obtain

[∆(z), K 1 (z)] = i>1 [∆ 0 , k 1i ] -[y 1 , g 1i ] + [ 1 2 α δ φα , k 1i ] -[g 1i , k 1i ] -[ 1 2 α δ φα , y 1 ] - 1<i<j ([g 1i , k 1j ] + [g 1j , k 1i ] + [g ij , k 1i + k 1j ]) = i>1 e 12 + [ 1 2 α δ φα , k 12 ] -[g 12 , k 12 ] -[ 1 2 α δ φα , y 1 ] 1i (17) 
+ 1<i<j (e 1ij + e 1ji -Y 1ij -[g ij , k 1i + k 1j ] -[g 1i , k 1j ] -[g 1j , k 1i ]) , where {-} 1i is the natural morphism t Γ 1,2 → t Γ 1,n , u 1 ↦ u 1 , u 2 ↦ u i (u = x, y), t α 12 ↦ t α 1i . It is easy to see that the line (17) equals ∑ i>1 ([∆(z 1i ), K 1 (z 1i )]) 1i which is zero as we have seen before (case n = 2). Therefore [∆(z), K 1 (z)] equals 1<i<j α,β k α (adx 1 , z 1i ) -k α (-adx i , z 1i ) -g α (-adx i , z 1i )(adx 1 + adx i ) (adx 1 + adx i ) 2 [t α 1i , t β 1j ] - k β (adx 1 , z 1j ) -k β (-adx j , z 1j ) -g β (-adx j , z 1j )(adx 1 + adx j ) (adx 1 + adx j ) 2 [t α 1i , t β 1j ] - g β-α (adx i , z ij ) -g α-β (adx j , -z ij ) adx i + adx j [t α 1i , t β 1j ] -(k α (adx 1 , z 1i )g β-α (-adx j , z ij ) -k β (adx 1 , z 1j )g β-α (adx i , z ij )) [t α 1i , t β 1j ] -(k β (-adx j , z 1j )g α (-adx i , z 1i ) -k α (-adx i , z 1i )g β (-adx j , z 1j )) [t α 1i , t β 1j ]
, which is zero because of Lemma 3.11.

We have therefore proved (Proposition 1.10 and Proposition 3.10 above): Theorem 3.12. The connection ∇ n,Γ is flat, and thus so is ∇n,Γ .

Let us now show how the universal KZB connexion over moduli spaces coincides with the one defined over configuration spaces.

Remark 3.13. The connection ∇ n,Γ defined above is an extension to the twisted moduli space M Γ 1,n of the connection ∇ n,τ,Γ defined over the twisted configuration space Conf(E τ,Γ , n, Γ) from Subsection 1.4.

Indeed, the pull-back of the principal G Γ n -bundle with flat connection

(P n,Γ , ∇ n,Γ ) along the inclusion Conf(E τ,Γ , n, Γ) ↪ M Γ 1,n
of the fiber at (the class of) τ in Y (Γ) admits a reduction of structure group to exp(t Γ 1,n ) ⊂ G Γ n , and one easily sees from our explicit formulaethat it coincides with (P τ,n,Γ , ∇ τ,n,Γ ) constructed in Subsection 1.4.

Similarly, the connection ∇n,Γ is an extension to the twisted moduli space MΓ 1,n of the connection ∇n,τ,Γ defined over the reduced twisted configuration space C(E τ,Γ , n, Γ).

Variations. Let us first consider the unordered variants

M Γ 1,[n] = S n M Γ 1,n and MΓ 1,[n] = S n MΓ 1,n
, where, as before, the action of S n is again by permutation on C n .

Proposition 3.14. 1. There exists a unique principal G

Γ n ⋊ S n -bundle P [n],Γ over M Γ 1,[n] , such that a section over U ⊂ M Γ 1,[n] is a function f ∶ π-1 (U ) → G Γ n ⋊ S n
satisfying the conditions of Proposition 3.4 as well as f

(σz τ ) = σ -1 f (z τ ) for σ ∈ S n (here π ∶ (C n × H) -Diag n,Γ → M Γ 1,[n]
is the canonical projection).

There exists a unique flat connection ∇

[n],Γ on P [n],Γ , whose pull-back to (C n × H) - Diag n,Γ is the connection d -∆(z τ ) d τ - i K i (z τ ) d z i on the trivial G Γ n ⋊ S n -bundle. 3. The image of (P [n],Γ , ∇ [n],Γ ) under G Γ n ⋊S n → ḠΓ n ⋊S n is the pull-back of a flat principal ḠΓ n ⋊ S n -bundle ( P[n],Γ , ∇[n],Γ ) on MΓ 1,[n] .
Proof. For the proof of the first point, one easily checks that σc g (z

τ )σ -1 = c σgσ -1 (σ -1 z), where g ∈ (Z n ) 2 ⋊ SL Γ 2 (Z), σ ∈ S n . It follows that there is a unique cocycle c (g,σ) ∶ C n × H → ḠΓ n ⋊ S n such that c (g,1) = c g and c (1,σ) (z τ ) = σ.
For the proof of the second point, taking into account Theorem 3.12, one only has to show that this connection is S n -equivariant. We have already mentioned that ∑ i Ki (z τ ) d z i is equivariant, and ∆(z τ ) is also checked to be so.

The third point is obvious.

For every (class of) τ in Y (Γ), one has an action of Γ n on the fiber Conf(E τ,Γ , n,

Γ) at τ of M Γ 1,n ↠ Y (Γ), resp. an action of Γ n Γ on the fiber C(E τ,Γ , n, Γ) at τ of MΓ 1,n ↠ Y (Γ). Recall that Γ n Conf(E τ,Γ , n, Γ) = Conf(E τ,Γ , n) and (Γ n Γ) C(E τ,Γ , n, Γ) = C(E τ,Γ , n) .
This action depends holomorphically of τ , so that there is an action of Γ n on M Γ 1,n , resp. an action of Γ n Γ on MΓ 1,n .

Proposition 3.15. 1. There exists a unique principal

G Γ n ⋊ Γ n -bundle P (Γ),n over Γ n M Γ 1,n , such that a section over U ⊂ Γ n M Γ 1,n is a function f ∶ π-1 (U ) → G Γ n ⋊ Γ n satisfying the following conditions: f (z + δ i M τ ) = ( 1, 0) i f (z τ ), f (z + τ δ i N τ ) = e -2π i N xi ( 0, 1) i f (z τ ), f (z, τ + 1) = f (z τ ), f ( z τ - 1 τ ) = τ d e 2π i τ (X+∑ i zixi) f (z τ ).
Here

, π ∶ (C n × H) -Diag n,Γ → Γ n M Γ 1,

n is the canonical projection. 2. There exists a unique flat connection on this bundle whose pull-back to

(C n ×H)-Diag n,Γ is the connection d -∆(z τ ) d τ - i K i (z τ ) d z i on the trivial G Γ n ⋊ Γ n -bundle.

The image of the above flat bundle under G

Γ n ⋊ Γ n → ḠΓ n ⋊ (Γ n Γ) is the pull-back of a flat principal ḠΓ n ⋊ (Γ n Γ)-bundle on (Γ n Γ) MΓ 1,n .
Proof. The first assertion is left to the reader. Assertion 3 is evident. Let us prove assertion 2. By Proposition 1.9, we know that the K i satisfy (e) K i (z

+ δj M τ ) = ( 1, 0) j ⋅ K i (z τ ), (f) K i (z + τ δj N τ ) = ( 0, 1) j ⋅ e -2π i N ad(xj) K i (z τ ).
The fact that ∆(z

+ δj M τ ) = ( 1, 0) j ⋅ ∆(z τ ) is immediate. Thus, it remains to show that ∆(z + τ δj N τ ) = e -2π i N ad(xj) ( 0, 1) j ⋅ (∆(z τ ) -K j (z τ ))
which is proved in Lemma 3.16 below.

Lemma 3.16. We have

(18) ∆(z + τ δ j N τ ) = e -2π i N ad(xj ) ( 0, 1) j ⋅ (∆(z τ ) -K j (z τ )).
Proof. On the one hand,

-2π i ∆(z + τ δ j N ) = ∆ 0 + 1 2 s≥0,γ∈Γ A s,γ δ s,γ - k<l k,l≠j g kl (z kl ) - k∶k≠j α∈Γ g α (adx j , z jk + τ N )(t α jk ).
On the other hand, as

e -2π i N ad(xj ) (∆ 0 ) = (1 -(1 -e -2π i N ad(xj) )(∆ 0 ) = (∆ 0 ) + 1 -e -2π i N adxj adx j (y j ) = e -2π i N adxj -1 (adx j ) 2 ⎛ ⎝ α∈Γ k∶k≠j t α jk ⎞ ⎠
and the δ s,γ commute with the x j , we compute

2π i K j (z + τ N δ j τ ) -e -2π i N ad(xj) ( 0, 1) j ⋅ ∆(z τ ) = 2π i ( 0, -1) j ⋅ K j (z + τ N δ j τ ) -e -2π i N ad(xj) ∆(z τ ) = 2π i( 0, -1) j ⋅ ⎛ ⎝ k∶k≠j k α (adx j , z jk + τ N ) -y j ⎞ ⎠ + ∆ 0 + 1 -e -2π i N adxj adx j (y j ) + 1 2 s≥0, γ∈Γ A s,γ δ s,γ -e -2π i N adxj k<l g kl (z kl ).
Next, by combining

K ij (z + τ N ) = ( 0, -1) i ⋅ e -2π i N adxj ⋅ (K ij (z)) + ( 0, -1) i ⋅ ( α∈Γ e -2π i N adxi -1 adx i (t α ij )) ,
with equation

g α (x, z) -1 x 2 = e -2iπax g(x, z -α) -1 x 2 -2iπa 0 (k α (x, z) + 1 x) ,
we can follow the same lines as in the proof of relation [START_REF] Drinfeld | On quasitriangular quasi-Hopf algebras and a group closely connected with Gal( Q Q)[END_REF] to obtain the wanted equation.

We also leave to the reader the task of combining several variants.

Realizations

4.1. Realizations of tΓ 1,n and tΓ n,+ . Let g be a Lie algebra and t g ∈ S 2 (g) g be nongenerate. Assume that there is a group morphism Γ → Aut(g, t g ) and set l ∶= g Γ and u ∶= ⊕ χ∈ Γ-{0} g χ , where g χ is the eigenspace of g corresponding to the character χ ∶ Γ → C ⋆ . Then g = l ⊕ u with [l, u] ⊂ u, and t = t l + t u with t l ∈ S 2 (l) l and t u ∈ S 2 (u) l . We denote by (a, b) ↦ ⟨a, b⟩ the invariant pairing on l corresponding to t l and write t l = ∑ ν e ν ⊗ e ν .

Let Diff(l * ) be the algebra of algebraic differential operators on l * . It has generators x l , ∂ l (l ∈ l) and relations x tl+l

′ = t x l + x l ′ , ∂ tl+l ′ = t∂ l + ∂ l ′ , [x l , x l ′ ] = 0 = [∂ l , ∂ l ′ ] and [∂ l , x l ′ ] = ⟨l, l ′ ⟩.
Moreover, one has a Lie algebra morphism l → Diff(l * ); l ↦ X l ∶= ∑ ν x [l,eν ] ∂ eν . We denote by l diag the image of the induced morphism

l ∋ l ↦ Y l ∶= X l ⊗ 1 + 1 ⊗ n i=1 l (i) ∈ Diff(l * ) ⊗ U (g) ⊗n ,
and define H n (g, l * ) as the Hecke algebra of A n ∶= Diff(l * ) ⊗ U (g) ⊗n with respect to l diag . Namely, H n (g, l * ) ∶= (A n ) l (A n l diag ) l . It acts in an obvious way on

(O l * ⊗ (⊗ n i=1 V i )) l if (V i ) 1≤i≤n is a collection of g-modules.
Let us set x ν ∶= x eν and ∂ ν ∶= ∂ eν , and write α (i) ⋅ for the action of α ∈ Γ on the i-th component in U (g) ⊗n .

Proposition 4.1. There is a unique Lie algebra morphism

ρ g ∶ tΓ 1,n → H n (g, l * ) defined by xi → M ν x ν ⊗e (i) ν , ȳi → -N ν ∂ ν ⊗ e (i) ν , tα ij → 1 ⊗ (α (1) ⋅ t g ) (ij) .
Proof. Let us use the presentation of tΓ 1,n coming from Lemma 1.1. The only non trivial check is that the relation ∑ j xj = 0 is preserved. We have

ρ g n i=1 x i = M ν x ν ⊗ n i=1 e (i) ν = M ν (x ν ⊗ 1) 1 ⊗ n i=1 e (i) ν ≡ M ν (x ν ⊗ 1) (Y ν -X ν ⊗ 1) ≡ M - ν x ν X ν ⊗ 1 = M ν1,ν2 x eν 1 x [eν 1 ,eν 2 ] ∂ ν2 ⊗ 1 = 0 as x eν 1 commutes with x [eν 1 ,eν 2 ]
and t l is invariant. Here the sign ≡ means that both terms define the same equivalence class in H n (g, l).

The proof that ∑ j ȳj = 0 is preserved is a consequence of the fact that ρ g ∑ j ȳj = 0, which was proven in [6, Proposition 6.1].

Let tΓ

n,+ ⊂ tΓ 1,n be the Lie subalgebra generated by xi 's and tα jk 's. Then the restriction of ρ g to tΓ n,+ lifts to a Lie algebra morphism tΓ n,+ → (O l * ⊗ U (g) ⊗n ) l . Moreover, (O l * ⊗ U (g) ⊗n ) l is a subalgebra of H n (g, l * ) that is a Lie ideal for the commutator, and one has a commutative

diagram tΓ 1,n × tΓ n,+ (u,v)↦[u,v] / / tΓ n,+ H n (g, l * ) × (O l * ⊗ U (g) ⊗n ) l / / (O l * ⊗ U (g) ⊗n ) l . 4.2. Realizations of tΓ 1,n ⋊ d Γ . Let us write t g = ∑ u a u ⊗ a u .
Proposition 4.2. The Lie algebra morphism ρ g of Proposition 4.1 extends to a Lie algebra morphism tΓ

1,n ⋊ d Γ → H n (g, l * ) defined by d → - 1 2 ( ν x ν ∂ ν + ∂ ν x ν ) ⊗ 1, X → 1 2 ( ν x 2 ν ) ⊗ 1, ∆ 0 → - 1 2 ( ν ∂ 2 ν ) ⊗ 1, ξ s,γ → 1 Γ ν1,⋯,νs,u x ν1 ⋯ x νs ⊗ n i=1 (ad(e ν1 )⋯ad(e νs )(a u ) ⊙ (γ ⋅ a u )) (i) .
Here ⊙ denotes the symmetric product: A ⊙ B ∶= AB + BA.

Proof. Since t g is invariant under the commuting actions of Γ and l then the relation ξ s,γ = (-1) s ξ s,-γ is also preserved. This invariance argument also implies that [ρ g (ξ s,γ ), ρ g (x i )]

equals 1 Γ ν1,⋯,νs,ν,u x ν1 ⋯ x νs x ν ⊗ s t=1
(ad(e ν1 )⋯ad([e ν , e νt ])⋯ad(e νs )(a u ) ⊙ (γ ⋅ a u )) (i) ,

which is zero since the first and second factors are respectively symmetric and antisymmetric in (ν, ν t ). Let us now prove that the relation

[ξ s,γ , tα ij ] = [ tα ij , (adx i ) s ( tα-γ ij ) + (adx j ) s ( tα+γ ij )] is preserved. It is sufficient to do it for n = 2: ρ g (ξ s,γ + (adx 1 ) s (t α-γ 12 ) + (adx 2 ) s (t α+γ 12 )) = ν1,⋯,νs x ν1 ⋯ x νs ⊗(α (1) ⋅ ∆(B ν1,⋯,νs )) ,
where ∆ is the standard coproduct of U g and B ν1,⋯,νs ∶= ∑ u ad(e ν1 )⋯ad(e νs )(a u ) ⊙ (γ ⋅ a u ); therefore ρ g (ξ s,γ + (adx 1 ) s (t α-γ 12 ) + (adx 2 ) s (t α+γ 12 )) commutes with ρ g (t α 12 ). Hence it remains to prove that the relation

[ξ s,γ , yi N ] = ∑ j∶j≠i D s,γ ( xi M , t β ij Γ ) is preserved. For this we compute [ρ g (ξ s,γ ), ρ g ( yi N )]: it equals 1 Γ ν1,⋯,νs ν,u n j=1 [∂ ν , x ν1 ⋯ x νs ] ⊗ e (i) ν ad(e ν1 )⋯ad(e νs )(a u ) ⊙ (γ ⋅ a u ) (j) + x ν1 ⋯ x νs ∂ ν ⊗ [e ν , ad(e ν1 )⋯ad(e νs )(a u ) ⊙ (γ ⋅ a u )] (i) = 1 Γ s l=1 ν1,...,νs,ν x ν1 ⋯x ν l ⋯ x νs ⊗ n j=1 e (i) ν ad(e ν1 )⋯ad(e νs )(a u ) ⊙ (γ ⋅ a u ) (j) -(i ↔ j) .
The term corresponding to j = i is the linear map S s-1 (l) → U (g) ⊗n such that for x ∈ l

x s-1 → 1 Γ p+q=s-1 ν,u
[e ν , ad(x) p ad(e ν )ad(x) q (a u ) ⊙ (γ ⋅ a u )] (i) .

Using l-invariance of ∑ u a u ⊙ (γ ⋅ a u ) one obtains that this last expression equals

= 1 Γ p+q+r=s-1 ν,u ad(x) p ad([e ν , x])ad(x) q ad(e ν )(adx) r (a u ) ⊙ (γ ⋅ a u ) +ad(x) p ad(e ν )ad(x) q ad([e ν , x])ad(x) r (a u ) ⊙ (γ ⋅ a u ) (i) ,
which is zero from the l-invariance of t l = ∑ ν e ν ⊗ e ν . The term corresponding to j ≠ i is the linear map S s-1 (l) → U (g) ⊗n such that for x ∈ l

x s-1 → 1 Γ p+q=s-1 ν,u (ad(x) p ad(e ν )ad(x) q (a u ) ⊙ (γ ⋅ a u )) (j) e (i) ν -(i ↔ j) = 1 Γ p+q=s-1 ν,u (ad(x) p ([e ν , a u ]) ⊙ (-ad(x)) q (γ ⋅ a u )) (j) e (i) ν -(i ↔ j) = 1 Γ p+q=s-1 ν,u (-1) q (ad(x) p ([e ν , a u ]) ⊙ (ad(x)) q (γ ⋅ a u )) (j) e (i) ν -(i ↔ j) = 1 Γ p+q=s-1 ν,u (-1) q (ad(x) p ([e ν , a u ]) ⊙ (ad(x)) q (γ ⋅ a u )) (j) e (i) ν -(i ↔ j) = 1 Γ 2 β∈Γ p+q=s-1 v,u
(-1) q (ad(x) p ([a v , a u ]) ⊙ (ad(x)) q (γ ⋅ a u ))

(j) (β ⋅ a v ) (i) -(i ↔ j) = 1 Γ 2 β∈Γ p+q=s-1 (-1) q ν,u (ad(x) p (a v ) ⊙ ad(x) q (γ ⋅ a u )) (i) (β ⋅ [a u , a v ]) (j) -(i ↔ j) = 1 Γ 2 β∈Γ p+q=s-1 (-1) q ν,u (ad(x) p (β ⋅ a v ) ⊙ ad(x) q ((β + γ) ⋅ a u )) (i) [a u , a v ] (j) -(i ↔ j) = 1 Γ 2 β∈Γ p+q=s-1 (-1) q ν,u (ad(x) p ((β -γ) ⋅ a v ) ⊙ ad(x) q ((β) ⋅ a u )) (i) [a u , a v ] (j) -(i ↔ j)
which coincides with the image of

D s,γ ⎛ ⎝ x i M , t β ij Γ ⎞ ⎠ = p+q=s-1 β∈Γ ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ ad x i M p ⎛ ⎝ t β ij Γ ⎞ ⎠ , -ad x i M q ⎛ ⎝ t β ij Γ ⎞ ⎠ ⎤ ⎥ ⎥ ⎥ ⎥ ⎦
under ρ g . In conclusion we get the relation

ρ g ξ s,γ , y i N = ρ g (ξ s,γ ), ρ g y i N .
A direct computation shows that the commutation relations of [X, ξ s,γ ] = 0, [d, ξ s,γ ] = sξ s,γ and ad s+1 (∆ 0 )(ξ s,γ ) = 0 are preserved, which finishes the proof.

4.3.

Reductions. Assume that l is finite dimensional and there is a reductive decomposition l = h ⊕ m, i.e. h ⊂ l is a subalgebra and m ⊂ l is a vector subspace such that [h, m] ⊂ m. We also assume that t l = t h + t m with t h = ∑ ν e ν ⊗ e ν ∈ S 2 (h) h and t m ∈ S 2 (m) h , and that for a generic h ∈ h, ad(h) m ∈ End(m) is invertible. This last condition means that

P (λ) ∶= det(ad(λ ∨ )) m ) ∈ S dim(m) (h)
is nonzero, where λ ∨ ∶= (λ ⊗ id)(t h ) for any λ ∈ h * . We now define H n (g, h * reg ). As in the previous paragraph, Diff(h * ) has generators xh , ∂h (h ∈ h) and relations

xth+h ′ = tx h + xh ′ , ∂th+h ′ = t ∂h + ∂h ′ , [x h , xh ′ ] = 0 = [ ∂h , ∂h ′ ], [ ∂h , xh ′ ] = ⟨h, h ′ ⟩, and Diff(h * reg ) = Diff(h * )[ 1 P ] with [ ∂l , 1 P ] = -[ ∂l ,P ] P 2 .
One has a Lie algebra morphism

h → Diff(h * ); h → Xh ∶= ν x [h,eν ] ∂ eν .
We denote by h diag the image of the map

h ∋ h → Ȳh ∶= Xh + n i=1 l (i) ∈ Diff(h * reg ) ⊗ U (g) ⊗n =∶ B n ,
and define H n (g, h * reg ) as the Hecke algebra of B n with respect to h diag :

H n (g, h * reg ) ∶= (B n ) h (B n h diag ) h .

It acts in an obvious way on

(O h * reg ⊗ (⊗ n i=1 V i )) h if (V i ) 1≤i≤n is a collection of g-modules. Finally, let us set, for λ ∈ h * , r(λ) ∶= (id ⊗(ad λ ∨ ) -1 m )(t m ).
Then, following [START_REF] Enriquez | Quantization of classical dynamical r-matrices with nonabelian base[END_REF], r ∶ h * reg → ∧ 2 (m) is an h-equivariant map satisfying the classical dynamical Yang-Baxter equation (CDYBE) ν e

(1) ν ∂ ν r (23) + [r (12) , r (13) ] + c.p.(1, 2, 3) = 0 ,

and we write r = ∑ δ a δ ⊗ b δ ⊗ ℓ δ ∈ (m ⊗2 ⊗ S(h)[1 P ]) h . Proposition 4.3. There is a unique Lie algebra morphism ρ g,h ∶ tΓ 1,n → H n (g, h * reg ) given by xi → M ν xν ⊗ h (i) ν , ȳi → -N ν ∂ν ⊗ h (i) ν + j δ ℓ δ ⊗ a (i) δ b (j) δ , tα ij → 1 ⊗ (α (1) ⋅ t g ) (ij) .
Proof. First of all, the images of the above elements are all h-invariant. As in [START_REF] Calaque | Universal KZB equations: the elliptic case, in Algebra, Arithmetic and Geometry[END_REF], we will imply summation over repeated indices, and adopt the following conventions: ∂eν = ∂ν , xeν = xν , and 1 ⊗ -'s and -⊗ 1's may be dropped from the notation.

In particular, ρ g,h

(x i ) = h (i) ν xν , ρ g,h (ȳ i ) = -h (i) ν ∂ν + ∑ n j=1 r(λ) (ij) (here, for x ⊗ y ∈ g ⊗2 , (x ⊗ y) (ii) ∶= x (i) y (i) ).
We will use the same presentation of tΓ 

, ȳj ] = ∑ tα ij is preserved. Indeed, for i ≠ j, 1 M N [ρ g,h (x i ), ρ g,h (ȳ j )] = - ν1,ν2 [x ν1 , ∂ ν2 ]h (i) ν1 h (j) ν2 + ν, δ, kx ν [h (i) ν , ℓ δ ⊗ a (j) δ b (k) δ ] = t (ij) h + t (ij) m = t (ij) l = 1 M N α∈Γ α (i) ⋅ t (ij) g
by the same argument as in Proposition 4.1. Let us check that ∑ i xi = ∑ i ȳi = 0 are preserved. We have

∑ i ρ g,h (x i ) = 0 and ∑ i ρ g,h (ȳ i ) = ∑ ν,i h (i)
ν ∂ ν (by the antisymmetry of r), which equals zero as in Proposition 4.1. The fact that the relation [ȳ i , ȳj ] = 0 is satisfied for i ≠ j is a consequence of the dynamical Yang-Baxter equation (this follows from the exact same argument as in the proof of [START_REF] Calaque | Universal KZB equations: the elliptic case, in Algebra, Arithmetic and Geometry[END_REF]Proposition 63]).

Next,

[x i , tα jk ] = 0 is preserved (i, j, k distinct). Indeed, [ρ g,h (x i ), ρ g,h ( tα jk )] = ν xν [h (i) ν , α (i) ⋅ t (jk) g ] = 0 . Finally [ȳ i , tα jk ] = 0 is preserved (i, j, k distinct): [ρ g,h (ȳ i ), ρ g,h ( tα jk )] =[- ν h (i) ν ∂ν + l r (il) , α (j) ⋅ t (jk) g )] =[r(λ) (ij) + r(λ) (ik) , α (j) ⋅ t (jk) g )] = 0 ,
where the last equality follows the the g-invariance of t g .

Remark 4.4. We expect that there exists a Lie algebra morphism

red l,h ∶ H n (g, l * ) → H n (g, h * reg )
such that the following diagram commutes

t Γ 1,n ρg / / ρ g,h $ $ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ H n (g, l * ) red l,h H n (g, h * reg )
4.4. Elliptic dynamical r-matrix systems as realizations of the universal Γ-KZB system on twisted configuration spaces. Let K(z) be a meromorphic function on C with values in the subalgebra tΓ 2,+ ⊂ tΓ 1,2 generated by x 1 , x 2 , t α 12 (α ∈ Γ), such that K(-z) = -K(z) 2,1 and satisfying the universal CDYBE with a spectral parameter

-[y 1 , K(z 23 ) 2,3 ] + [K(z 12 ) 1,2 , K(z 13 ) 1,3 ] + c.p.(1, 2, 3) = 0 .
On the one hand, it follows from §4.1 that the image r(x, z) ∶= ρ g (K(z)) of K(z) under ρ g ∶ tΓ 2,+ → ( Ôl * ⊗ g ⊗2 ) l is a dynamical r-matrix 2 with spectral parameter, i.e. a solution of the CDYBE with a spectral parameter for the pair (l, g) ν e (1) ν ∂ ν r(x, z 23 ) (23) + [r(x, z 12 ) (12) , r(x, z 13 ) (13) ] + c.p.(1, 2, 3) = 0 , which satisfies r(x, -z) = -r(x, z) (21) . On the other hand, the image of

K(z) under ρ g,h ∶ tΓ 2,+ → ( Ôh * reg ⊗ g ⊗2 ) h is precisely equal to the restriction ρ g (K(z)) h * ∈ ( Ôh * reg ⊗ g ⊗2 ) h of ρ g (K(z)) to h * . Then applying [13, Proposition 0.1], we conclude that r(x, z) ∶= ρ g,h (K(z)) + r(λ)
is a solution of the CDYBE with spectral parameter for (h, g):

ν e (1)
ν ∂ ν r(x, z 23 ) (23) + [r(x, z 12 ) (12) , r(x, z 13 ) (13) ] + c.p.(1, 2, 3) = 0 .

Then for any

n-tuple V = (V 1 , . . . , V n ) of g-modules one has a flat connection ∇ (V )
τ,n,Γ on the trivial vector bundle over C n -Diag τ,nΓ with fiber (O h * reg ⊗ (⊗ i V i )) h , defined by the following compatible system of first order differential equations:

(19) ∂ zi F (x, z) = ν e (i) ν ⋅ ∂ν F (x, z) + j∶j≠i r(ij) (x, z ij ) ⋅ F (x, z) .
Here

z ↦ F (x, z) is a function with values in (O h * reg ⊗ (⊗ i V i )) h .
Starting from K(z) = K 12 (z) as in §1.4, it would be interesting to know if one can recover (up to gauge equivalence), using the above realization morphisms, the generalization of Felder's elliptic dynamical r-matrices [START_REF] Felder | Conformal field theory and integrable systems associated to elliptic curves[END_REF] constructed in [START_REF] Etingof | Twisted traces of intertwiners for Kac-Moody algebras and classical dynamical r-matrices corresponding to generalized Belavin-Drinfeld triples[END_REF][START_REF] Feher | Generalizations of Felder's elliptic dynamical r-matrices associated with twisted loop algebras of self-dual Lie algebras[END_REF].

5. Formality of subgroups of the pure braid group on the torus 5.1. Relative formality. Let G and S be two groups, with S finite, and let ϕ ∶ G → S be a surjective group morphism with finitely generated kernel Ker ϕ. We then consider the category of commuting triangles

G / / ϕ ❆ ❆ ❆ ❆ ❆ ❆ ❆ ❆ G ′ ϕ ′ S
where G ′ is pro-algebraic, and ϕ ′ is surjective with k-prounipotent kernel. This category has an initial object, denoted ϕ(k) ∶ G(ϕ, k) → S, which we call the relative (k-prounipotent) completion of G with respect to ϕ.

Observe that, if we regard the finite group S as an affine algebraic group, then this is a particular case of the relative completion defined in [START_REF] Hain | The Hodge de Rham theory of relative Malcev completion[END_REF]. It also coincides with the partial completion defined in [9, §1.1] (which seems to force S to be finite).

Right exactness of relative completion (see e.g. [START_REF] Hain | Relative pro-ℓ completions of mapping class groups[END_REF]Proposition 2.4]), together with standard characterization of obstructions to left exactness, provides us with an exact sequence3 

H 2 (S, k) → Ker ϕ (k) → G(ϕ, k) → S → 1.
Since S is finite, H 2 (S, k) = 0, and thus we get that the kernel Ker ϕ(k) of ϕ(k) is the usual kprounipotent completion Ker ϕ (k) of the kernel of ϕ, which we can therefore unambiguously denote Ker ϕ(k). Proof. We consider the filtration (F i ) i given by the lower central series of U , and prove by induction that

1 → U F i → H F i → S → 1 splits. Initial step (i = 2): Recall that F 1 = U , and that F 1 F 2 is abelian and finitely generated, so that 1 → U F 2 → H F 2 → S → 1 
splits, as every extension of a finite group by a finite dimensional representation splits (this is because the cohomology of a finite group with coefficients in a divisible module vanishes). Induction step: There is a (surjective) morphism of extensions

1 / / U F i+1 / / H F i+1 / / S / / 1. 1 / / U F i / / H F i / / S / / 1
Assuming (by induction) that the bottom extension splits, we obtain that the corresponding obstruction class in the first non-abelian cohomology H 1 S, U F i is trivial. Hence, by exactness of

H 1 S, F i F i+1 → H 1 S, U F i+1 → H 1 S, U F i ,
we get that the obstruction class for the splitting of the top extension lies in the image of

H 1 S, F i F i+1 → H 1 S, U F i+1 .
We conclude by using the vanishing of group cohomology of a finite group in a finite dimensional representation.

The above Lemma tells us in particular that G(ϕ, k) ≃ Ker(ϕ)(k) ⋊ S, and justifies the following definition from [9, §1.2] 4 . Definition 5.2. If S is finite, we say that the surjective group morphism ϕ ∶ G → S with finitely generated kernel is (relatively) filtered-formal if there exists a group isomorphism G(k, ϕ) ˜ → exp ĝr Lie Ker ϕ(k) ⋊ S over S. This is equivalent to having an S-equivariant filtered-formality isomorphism Ker ϕ(k) ˜ → ĝr Lie Ker ϕ(k) .

Example 5.3. The surjective morphism B n ↠ S n , where B n is the standard n strands braid group is filtered-formal. This morphism, or rather the exact sequence

1 → PB n → B n → S n → 1 ,
can be deduced from the covering map Conf(C, n) → Conf(C, n) S n . Note that filteredformality of smooth complex algebraic varieties is proven in [START_REF] Morgan | The algebraic topology of smooth algebraic varieties[END_REF] in a functorial way, which implies in particular the wanted relative filtered-formality. An explicit filtered-formality isomorphism was first given in [START_REF] Kohno | Monodromy representations of braid groups and Yang-Baxter equations[END_REF] when k = C (in terms of the monodromy of the KZ connection) and then in [START_REF] Drinfeld | On quasitriangular quasi-Hopf algebras and a group closely connected with Gal( Q Q)[END_REF] for k = Q (using an associator). We also refer to [START_REF] Hain | The Hodge de Rham theory of relative Malcev completion[END_REF]Example 1.5] for interesting considerations about this example. More precisely, one has an S n -equivariant isomorphism PB n (k) → exp( tn ). 

Subgroups of

B 1,n . For τ ∈ H, let U τ,n,Γ ⊂ C n -Diag τ,n,Γ be the open subset of all z = (z 1 , . . . , z n ) of the form z i = a i +τ b i , where 0 < a 1 < ⋯ < a n < 1 M and 0 < b n < ⋯ < b 1 < 1 N . If z 0 ∈ U τ,
(E τ,Γ , n, Γ) ↠ Conf(E τ,Γ , [n])
is a covering map with structure group Γ n ⋊ S n . Hence we get a short exact sequence

1 → PB Γ 1,n → B 1,n ϕn → Γ n ⋊ S n → 1 , where PB Γ 1,n ∶= π 1 (Conf(E τ,Γ , n, Γ), z 0 ) and B 1,n ∶= π 1 Conf(E τ,Γ , [n]
), z 0 . We will also consider PB 1,n = π 1 Conf(E τ,Γ , n), z 0 , and the short exact sequence

1 → PB Γ 1,n → PB 1,n → Γ n → 1 
4 In [START_REF] Enriquez | Quasi-reflection algebras and cyclotomic associators[END_REF], Enriquez speaks about relative formality. We prefer to speak about relative filtered-formality in order to remain consistent with our conventions in the absolute case S = 1 (recall that we were following the convention from [START_REF] Suciu | Formality properties of finitely generated groups and Lie algebras[END_REF] in the absolute case).

In the remainder of this Section we will prove that these completed monodromy morphisms are isomorphisms, exhibiting in particular a relative filtered-formality isomorphism for B 1,n → Γ n ⋊ S n .

Theorem 5.5. The completed monodromy morphism

B1,n (ϕ n , C) → exp( tΓ 1,n ) ⋊ (Γ n ⋊ S n ) is an isomorphism. Equivalently, the completed monodromy morphism μz0,τ,n,Γ (C) ∶ PB Γ 1,n (C) → exp( tΓ 1,n ) is an isomorphism.
Our aim now is to prove Theorem 5.5. For this we will prove, as usual, that the induced morphism on Malcev Lie algebras Lie(µ z0,τ,n,Γ ) ∶ pb Γ 1,n → tΓ 

i 's (i = 1, . . . , n), where X i (resp. Y i ) is the class of the path given by [0, 1] ∋ t ↦ z 0 + tδ i M (resp. [0, 1] ∋ t ↦ z 0 + tτ δ i N ). One sees easily that X M i (resp. Y N i ) is the class of the path given by [0, 1] ∋ t ↦ z 0 + tδ i (resp. [0, 1] ∋ t ↦ z 0 + tτ δ i ), so that X M i and Y N i are elements of PB Γ 1,n . Y 1 N z 1 0 z 2 0 X 2 M z 2 (-1,0 ¯) z 1 (0 ¯,1 ¯)
One has an obvious inclusion PB n ↪ PB Γ 1,n coming from the identification of C with the fundamental domain

{z = a + bτ ∈ C 0 < a < 1 M , 0 < b < 1 N } of E τ,Γ .
Recall that we write the composition of paths from left to right. Then one can check (by simply drawing) that the following relations are satisfied in PB 1,n : (T1) (X i , X j ) = 1 = (Y i , Y j ) (i < j), (T2) (X i , Y j ) = P ij , and is conjugated to (X -1 j , Y -1 i ) (i < j), (T3) (X 1 , Y -1 1 ) = P 1n ⋯P 13 P 12 , (T4) (X i , P jk ) = 1 = (Y i , P jk ) (∀i, j < k), (T5) (X i X j , P ij ) = 1 = (Y i Y j , P ij ) (i < j).

One also observes that X 1 ⋯X n and Y 1 ⋯Y n are central in PB 1,n . Now it follows from the geometric description of PB Γ 1,n that it is generated by X M i , Y N i (i = 1, . . . , n), and P α ij ∶= X -p j Y -q j P ij Y q j X p j (i < j, 1 ≤ p ≤ M , 1 ≤ q ≤ N and α = (p, q)). One can for instance represent lifts of X 3 , Y 3 and P Observe that the standard descending filtration on tΓ 1,n coincides with the descending filtration coming from the grading of t Γ 1,n defined in §1.1. Proposition 5.6. There is a surjective graded Lie algebra morphism p n ∶ t Γ 1,n → gr(pb Γ 1,n ), sending

• x i → σ log(X M i ) for i = 1, . . . , n, • y i → σ log(Y N i ) for i = 1, . . . , n, • t α ij → σ log(P α ij ) for i < j, where σ denotes the symbol map pb Γ 1,n → gr(pb Γ 1,n ). Proof. It is sufficient to check that the defining relations of t Γ 1,n are preserved by the above assignment. The relation [x i , x j ] = 0 = [y i , y j ] is obviously preserved, thanks to (T1). Now using (T2) and the identity

(X M , Y N ) = M-1 i=0 X M-i+1 ( N -1 j=0 Y j (X, Y )Y -j )X i-M-1
(which is true in the free group F 2 , and thus in any group) with X = X i and Y = Y j (i < j), one obtains that [x j , y i ] = ∑ α t α ij is preserved. The same reasoning with X = X i and Y = Y -1 j (i ≠ j) shows that [x i , y j ] = ∑ α t α ij is preserved as well. Using (T3) and the above identity with X = X 1 and Y = Y -1 1 , one also obtains that [x 1 , y 1 ] = -∑ α ∑ j∶1≠j t α 1j is preserved. Now it is obvious that the centrality of ∑ i x i and ∑ i y i is preserved, and thus it follows that [x i , y i ] = -∑ α ∑ j∶j≠i t α ij is also preserved for any i ∈ {1, . . . , n}.

For any α = (p, q) we compute

(X M i , P α jk ) = X M i X -p k Y -q k P jk Y q k X p k X -M i X -p k Y -q k P -1 jk Y q k X p k = X -p k (X M i , Y -q k )Y -q k X M i P jk X -M i Y q k (X M i , Y -q k ) -1 Y -q k P -1 jk Y q k X p k = X -p k (X M i , Y -q k )Y -q k P jk Y q k (X M i , Y -q k ) -1 Y -q k P -1 jk Y q k X p k .
One can then prove that there is a unique isomorphism of algebras H Γ n (k) → H 1,k,0 (X, G) defined by x i →z i ,

y i →D i - 1 n j D j ,
G ∋ g →g. Let us recall from [START_REF] Etingof | Cherednik and Hecke algebras of varieties with a finite group action[END_REF] the construction of the Hecke algebra H Γ n (q, t) of X G. It is the quotient of the group algebra of the orbifold fundamental group BΓ 1,n of C(E, [n], Γ) by the additional relations (T αq -1 t α )(T α + q -1 t -1 α ) = 0, where T α is an element of BΓ 1,n homotopic as a free loop to a small loop around the divisor Y α ∶= ∪ i≠j {z i = α ⋅ z j } in X G, in the counterclockwise direction. 5Let us consider the flat connection ∇ (V ) a,b and set q = e -2π i ab n , t α = e -2π i kαab .

Then the monodromy representation BΓ

1,n → GL(V ) of ∇ (V )
a,b obviously gives a representation of H Γ n (q, t) either if V is finite dimensional or if a, b are formal parameters. In particular, taking a = b a formal parameter and V = H Γ n (k), one obtains an algebra morphism

H Γ n (q, t) → H Γ n (k)[[a]] .
We do not know if this morphism is an isomorphism upon inverting a.

A.3. Principal bundles and descent. Let G be a group. All principal G-bundles (apart from covering spaces, see above) are right principal G-bundles. Let P be a principal G-bundle over X, so that P G = X.

Let us assume that X = H Y , where H is a discrete group acting on Y . We now describe a way of constructing a G-bundle on the quotient space X from the trivial G-bundle P ∶= Y × G on Y , by means of non-abelian 1-cocycles.

A left H-action on P, compatible with the one on Y , is given as follows:

h ⋅ (y, g) = h ⋅ y, c h (y)g , c h (y) ∈ G

The property of being a left action is equivalent to the non-abelian 1-cocycle identity c h1h2 (y) = h1 (h 2 ⋅ y)c h2 (y) . Here ω is a one-form on Y with values in g = Lie(G), and G is assumed to be prounipotent.

Let γ ∶ [0, 1] → Y be a differentiable path, and consider its (unique) horizontal lift γ = (γ, g) ∶ [0, 1] → P such that g(0) = 1 G . We define the monodromy µ(γ) ∶= g(1) -1 .

Remark A.1. Observe that if (γ, g) is another lift so that g = g 0 ∈ G, then g(t) = g(t)g 0 (by unicity of horizontal lifts), and thus µ(γ) = g(0)g(1) -1 .

Again, for the sake of completeness, we check that µ is a morphism, in the sense that it sends the concatenation of paths to the product in G.

Proof. Let γ 1 , γ 2 be composable paths in Y , and let g 1 , g 2 determine composable horizontal lifts. Then µ(γ 1 γ 2 ) = (g 1 g 2 )(0)(g 1 g 2 )(1) -1 = g 1 (0)g 2 (1) -1 = g 1 (0)g 1 (1) -1 g 2 (0)g 2 (1) -1 = µ(γ 1 )µ(γ 2 ) .

Let us now assume that Y is acted on properly discontinuously from the left by a discrete group H, that also acts in a compatible way on P thanks to a non-abelian 1-cocycle c ∶ H ×Y → G (see previous § above). We borrow the notation from §A.2, and assume that P is equipped with an H-equivariant flat connection, that therefore descends to a flat connection on P We define a monodromy morphism

µ x ∶ π 1 (X, x) → G γ → µ(γ)c hγ (y) ,
where γ is the lift of γ along the quotient map Y → X such that γ(0) = y. Let us again check, for the sake of completeness, that µ x is indeed a group morphism.

Proof. Recall that for every loop γ based at x, γ(1) = h γ ⋅ y. Hence, if γ 1 , γ 2 are loops based at x, then γ 1 γ 2 = γ1 γ2 , with γ2 = h γ1 ⋅ γ2 . Therefore Here we made used of the (easy) fact that, if the flat connection is equivariant, then so is the monodromy map µ: µ(h ⋅ γ) = c h (γ(0))µ(γ)c h (γ(1)) -1 .
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 24 There is a bigraded Lie algebra morphism dΓ → Der(t Γ 1,n ) taking (D, C) ∈ dΓ 0 to ξ (D,C) and g = a b c d ∈ sl 2 to the derivation

Γ 2 (

 2 Z) of SL 2 (Z) consisting of matrices a b c d ∈ SL 2 (Z) such that M b ≡ 0 mod N and N c ≡ 0 mod M . Nevertheless, in order to retrieve the twisted elliptic KZB connection defined at the level of configuration spaces, it suffices to consider the usual congruence subgroup SL Γ 2 (Z) ⊂ SL Γ 2 (Z).

3. 3 .

 3 Connections on P n,Γ and Pn,Γ . A connection on P n,Γ is the same as an equivariant connection on the trivial G Γ n -bundle over C n × H -Diag n,Γ . Namely, it is of the form ∇ n,Γ ∶= dη(z τ ), where η is a t Γ 1,n ⋊ d Γ -valued meromorphic one-form on C n × H with only poles on Diag n,Γ , and the equivariance condition reads: for any g
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 51 Every extension1 → U → H → S → 1of a finite group by a k-prounipotent one splits.
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 54 Let M ∈ N be a positive integer. From the covering map Conf(C × , n, M ) → Conf(C × , n) S n one also gets an exact sequence 1 → PB M n → B 1 n → S → 1 , where S ∶= (Z M Z) n ⋊S n . It follows from [9, §1.3-1.6] that the surjective morphism B 1 n ↠ S is filtered-formal. More precisely, Enriquez exhibits an S-equivariant isomorphism PB M n (k) → exp( tM n ).
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 26263 Morphisms from tΓ 1,n to the Cherednik algebra. For any a, b ∈ C there is a morphism of Lie algebras φ a,b ∶ tΓ1,n → H Γ n (k) defined by xi → a x i ȳi → b y i , tα ij → ab 1 n k α s α ij .Proof. Straightforward from the alternative presentation of tΓ 1,n in Lemma 1.1.Hence any representationV of H Γ n (k) yields a family of flat connections ∇ (V )a,b over the configuration space C(E, [n], Γ). Monodromy representations of Hecke algebras. Let E be an elliptic curve and Ẽ → E the Γ-covering as in §1.2. Define X = Ẽn Ẽ and G = (Γ ≀ S n ) Γ diag . Then the set X ′ ⊂ X of points with trivial stabilizer is such that X ′ G = C(E, [n], Γ).

A. 4 .

 4 Monodromy and group actions. Let us start with the monodromy in the case of a trivial principal G-bundle P = Y ×G on a manifold Y equipped with a flat connection ∇ = d-ω.

µ x (γ 1 γ 2 )

 2 = µ( γ 1 γ 2 )c hγ 1 γ 2 (y) = µ( γ 1 γ 2 )c hγ 1 hγ 2 (y) = µ( γ1 )µ(h γ1 ⋅ γ2 )c hγ 1 (h γ2 ⋅ y)c hγ 2 (y) = µ( γ1 )c hγ 1 (y)µ( γ2 )c hγ 1 (h γ2 ⋅ y) -1 c hγ 1 (h γ2 ⋅ y)c hγ 2 (y) = µ x (γ 1 )µ x (γ 2 )

  Variations. The first variation we are interested in concerns unordered configuration spaces. The symmetric group S n acts on the left freely by automorphisms of Conf(E, n, Γ) by

	exp( tΓ 1,n )-bundle Pτ,n,Γ over C(E, n, Γ).	1,n ) → exp( tΓ 1,n ) is the pull-back of a principal
	1.3.	

  and d Γ + is positively graded (actually (Z >0 ) 2 -graded).

	We now give examples of elements in dΓ 0 that are of some use below. For any s ∈ N and
	γ ∈ Γ, we set
	D s,γ ∶=
	p+q=s-1 β∈Γ

  This finishes the proof.

	t α+β-γ 31	+ (-1) s t α+β+γ 31	] .
	Therefore (iv) is satisfied.		
	Let us prove (v). We compute		
	[C Remark 2.2. We do not know if d Γ 0 → dΓ 0 is injective or not.	
	2.3. Derivations of t Γ 1,n and tΓ 1,n .		
	Lemma 2.3. There is a bigraded Lie algebra morphism dΓ 0		

α (x 1 , t γ 12 ), t α+β 13 + t β 23 ] = [(ad x 1 ) s t α-γ 12 + (ad x 1 ) s t α+γ 12 , t α+β 13 + t β 23 ] = (ad x 2 ) s [t α+γ 12 + (-1) s t α-γ 12 , t α+β 13 ] + (ad x 1 ) s [t α-γ 12 + (-1) s t α+γ 12 , t β 23 ] = (ad x 2 ) s [t α+β 13 , t β-γ 23 + (-1) s t β+γ 23 ] + (ad x 1 ) s [t β 23 , t α+β-γ 13 + (-1) s t α+β+γ 13 ] . Therefore, by defining A = t β-γ 23 + (-1) s t β+γ 23 and B = t α+β-γ 13 + (-1) s t α+β+γ 13 we obtain [t α 12 , [C α (x 1 , t γ 12 ), t α+β 13 + t β 23 ]] = [t α 12 , [t α+β 13 , (ad x 2 ) s A] + [t β 23 , (ad x 1 ) s B]] = [[t α 12 , t α+β 13 ], (ad x 3 ) s A] + [t α+β 13 , (ad x 3 ) s [t α 12 , A]] +[[t α 12 , t β 23 ], (ad x 3 ) s B] + [t β 23 , (ad x 3 ) s [t α 12 , B]] = [[t β 23 , t α 12 ], (ad x 3 ) s A] + [t α+β 13 , (ad x 3 ) s [B, t α 12 ]] +[[t α+β 13 , t α 12 ], (ad x 3 ) s B] + [t β 23 , (ad x 3 ) s [A, t α 12 ]] = [[t β 23 , (ad x 2 ) s A] + [t α+β 13 , (ad x 1 ) s B], t α 12 ] .

  with t Γ 1,n ⋊ d Γ + positively graded (since both t Γ 1,n and d Γ + are (Z ≥0 ) 2 -graded) and a sum of finite dimensional sl 2 -modules. Therefore we can construct the

	semi-direct product group
	(4)

  1,n as in Lemma 1.1. The relations [x i , xj ] = 0 and tα ij = t-α ji are obviously preserved. Let us check that [x i

This can also be seen as the end of the long exact sequence from[START_REF] Pridham | On ℓ-adic pro-algebraic and relative pro-ℓ fundamental groups[END_REF] Theorem 1.17].

Here the sugroup of G acting trivially on Yα is the order 2 cyclic subgroup generated by s α ij .

Let us first prove it in the case n = 2. Namely, we will prove that [START_REF] Etingof | Twisted traces of intertwiners for Kac-Moody algebras and classical dynamical r-matrices corresponding to generalized Belavin-Drinfeld triples[END_REF] [∆ 0 + 1 2 s≥0,γ∈Γ A s,γ δ s,γ -α∈Γ g α (ad x 1 , z)(t α 12 ) , y 2 + β∈Γ k β (ad x 1 , z)(t β 12 )] = 0.

One the one hand,

2 α,γ∈Γ p,q a γ p,q [ad p x 1 (t α-γ 12 ), ad q x 1 (t α 12 )] ,

where φγ (u)φ-γ (v) u + v = p,q a γ p,q u p v q .

On the other hand,

+ p,q α,β∈Γ b α,β p,q (z)[ad p x 1 (t α 12 ), ad q x 1 (t β 12 )] ,

where the series ∑ p,q b α,β p,q (z)u p v q is given by 1 2

Therefore the l.h.s. of (15) equals 1 2 ⎛ ⎝ p,q α,β∈Γ c α,β p,q (z)[ad p x 1 (t α 12 ), ad q x 1 (t β 12 )] ⎞ ⎠ ,

where ∑ p,q c α,β p,q u p v q (z) is given by 1

which can be rewritten as

with z = z ′ . Thus, to end the proof of equation [START_REF] Etingof | Twisted traces of intertwiners for Kac-Moody algebras and classical dynamical r-matrices corresponding to generalized Belavin-Drinfeld triples[END_REF], the following lemma is sufficient: Lemma 3.11. Expression [START_REF] Feher | Generalizations of Felder's elliptic dynamical r-matrices associated with twisted loop algebras of self-dual Lie algebras[END_REF] equals zero.

Our main aim in this Section is to construct a relative filtered-formality isomorphism for

Moreover, we will have an explicit description of the relative completion in terms of the Lie algebra t Γ 1,n . 5.3. The monodromy morphism B 1,n → exp( tΓ

The monodromy of the flat exp( tΓ

This actually fits into a morphism of short exact sequences

, where the first vertical morphism is the monodromy morphism

) of associated with the flat exp( tΓ 1,n )-bundle (P τ,n,Γ , ∇ τ,n,Γ ) on Conf(E τ,Γ , n, Γ). Indeed, this comes from the fact that ∇ (τ,Γ),[n] is obtained by descent, from ∇ τ,n,Γ and using its equivariance properties (see §1.3). More precisely, the monodromy of ∇ (τ,Γ),[n] along a loop γ based at z 0 in Conf(E τ,Γ , [n]) can be computed along the following steps:

• First consider the unique lift γ of γ departing from z 0 ∈ Conf(E τ,Γ , n, Γ). Note that it ends at g ⋅ z 0 , g ∈ Γ n ⋊ S n . If g = (g 1 , . . . , g n ) ∈ Γ n and z 0 = (z 1 , . . . , z n ) we will simply write g ⋅ z 0 ∶= (z g1 1 , . . . z gn n ). • Then compute the holonomy of ∇ τ,n,Γ along γ: this is an element in exp( tΓ 1,n ), as ∇ τ,n,Γ is defined on a principal exp( tΓ 1,n )-bundle obtained as a quotient of the trivial one on C n -Diag τ,n,Γ (see §1.2), that we abusively denote µ z0,τ,n,Γ (γ).

Having such a morphism of exact sequences guarantees that it factors through a morphism

and PB Γ 1,n (C) is the prounipotent completion of PB Γ 1,n . We will call the vertical maps the completed monodromy morphisms.

On the one hand, σ log(X M i , P α jk ) = [σ(log(X M i )), σ(log(P α jk ))], and one the other hand, the leading term of the log of the r.h.s. lies in higher degree. Hence one obtains that [x i , t α jk ] = 0 is preserved. The proof that [y i , t α jk ] = 0 is preserved is identical, and the proof that

5.5. The filtered-formality of PB Γ 1,n (end of the proof of Theorem 5.5). To prove that Lie(µ z0,τ,n,Γ ) is an isomorphism, it is sufficient to prove that it is an isomorphism on associated graded. According to Proposition 5.6, we simply have to prove that φ ∶= grLie(µ z0,τ,n,Γ ) ○ p n is an isomorphism of graded Lie algebras.

We will actually be more specific and prove the following:

In particular, φ is an automorphism.

Proof. Recall (see the appendix for more details) that µ z0,τ,n,Γ can be computed as follows.

Let

Then consider

Let F H z0 (resp. F V z0 ) be the analytic prolongations of

In order to compute log µ z0,τ,n,Γ (P α ij ), which is also equal to log µ z0,(τ,Γ),n (P α ij ), we will need to compute µ z0,(τ,Γ),n (X i ), µ z0,(τ,Γ),n (Y i ) and µ z0,(τ,Γ),n (P ij ):

• As usual, and with our conventions, µ z0,(τ,Γ),n (P ij ) = exp(2π i t 0 ij + terms of degree ≥ 3) , where 0 = ( 0, 0).

• We also have

which implies that

• We finally have

which implies that

Hence, if α = (p, q) ∈ Γ, then

Therefore µ z0,(τ,Γ),n (P α ij ) = g(p, q) i exp(2π i t 0 ij + terms of degree ≥ 3)( -p, -q) i g -1 = g exp(2π i t α ij + terms of degree ≥ 3)g -1 .

This shows that log µ z0,(τ,Γ),n (P α ij ) = 2π i t α ij + terms of degree ≥ 3, so that φ(t α ij ) = 2π i t α ij . This ends the proof of the Lemma.

Finally, if we denote PB

is also relatively filtered-formal. In conclusion, we obtain the summarizing commutative cube

6. Representations of Cherednik algebras 6.1. The Cherednik algebra of a wreath product. In this paragraph Γ is any finite

We define the Cherednik algebra H Γ n (k) as the quotient of the algebra C⟨x 1 , . . . , x n , y 1 , . . . , y n ⟩ ⋊ C[G] by the relations

where s α ij = (α iα j )s ij , and s ij is the permutation of i and j.

Remark 6.1. Since Γ ⊂ Aut(C), H Γ n (k) admits a geometric construction. Define X ∶= {z ∈ C n ∑ i z i = 0} and consider the following action of G on it: S n acts in an obvious way and

where α (k) is the action of α ∈ Γ on the k-th factor of C n . Following [START_REF] Etingof | Cherednik and Hecke algebras of varieties with a finite group action[END_REF] one can construct a Cherednik algebra H 1,k,0 (X, G) on X G. It can be defined as the subalgebra of Diff(X)⋊C[G] generated by the function algebra O X , the group G and the Dunkl-Opdam operators D i -D j , where

6.4. The modular extension of φ a,b . Now assume that a, b ≠ 0.

Proposition 6.3. The Lie algebra morphism φ a,b can be extended to the algebra U ( tΓ 1,n ⋊d Γ )⋊ G by the following formulae:

Thus, the flat connections

Proof. The proof is a straightforward calculation.

Appendix A. Conventions

In this appendix we spell out our conventions regarding, fundamental groups, covering spaces, principal bundles, and monodromy morphisms.

A.1. Fundamental groups. Our convention is that we read the concatenation of paths from left to right. For instance, if X is a space, p is a path from x to y in X, and q is a path from y to z in X, then we write pq for the concatenated path, going from x to z.

A.2. Covering spaces and group actions. Our convention is that the group of deck transformations acts from the left. Apart from the case of principal bundles (see next §), group actions will always be from the left. We will often use ⋅ for such a left action.

The situation we are interested in is the one of a discrete group H acting properly discontinuously from the left on a space Y , with quotient space X = H Y , so that the quotient map Y → X is a covering map.

We thus have a short exact sequence

of groups, where y ∈ Y and x = H ⋅ y ∈ X is its projection. Note that the surjective map π 1 (X, x) → H sends (the class of) a loop γ based at x to h γ , which is defined as follows: γ(1) = h γ ⋅ γ(0), where γ is a path lifting (uniquely) γ to Y and such that γ(0) = y. For the sake of completeness, let us check that this is indeed a group homomorphism.

Proof. We have

List of notation

Groups.

PB n : Pure braid group on the complex plane.