
HAL Id: hal-02333578
https://hal.science/hal-02333578v1

Submitted on 25 Oct 2019 (v1), last revised 28 Oct 2019 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CyprIoT : Framework for Modelling and Controlling
Network-Based IoT

Imad Berrouyne, Mehdi Adda, Jean-Marie Mottu, Jean-Claude Royer,
Massimo Tisi

To cite this version:
Imad Berrouyne, Mehdi Adda, Jean-Marie Mottu, Jean-Claude Royer, Massimo Tisi. CyprIoT :
Framework for Modelling and Controlling Network-Based IoT. the 34th ACM/SIGAPP Symposium,
Apr 2019, Limassol, Cyprus. �10.1145/3297280�. �hal-02333578v1�

https://hal.science/hal-02333578v1
https://hal.archives-ouvertes.fr

CyprIoT : Framework for Modelling and Controlling
Network-Based IoT Applications

Imad Berrouyne1,3, Mehdi Adda3, Jean-Marie Mottu2, Jean-Claude Royer1, Massimo Tisi1
1Naomod Team, IMT Atlantique, LS2N (UMR CNRS 6004)

2Naomod Team, Université de Nantes, LS2N (UMR CNRS 6004)
Nantes, France

3Mathematics, Computer Science and Engineering Dep. University of Quebec At Rimouski
Rimouski, QC G5L 3A1, Canada

ABSTRACT

Model-Driven Engineering (MDE) is a paradigm that favors
using models to address software engineering problems. Very
few attempts have been made to apply this paradigm to
the Internet of Things (IoT). Most of the existing MDE ap-
proaches focus on abstracting the heterogeneity of IoT things
while neglecting network communication heterogeneity. In
fact, few attempts target network-based IoT applications. In
this paper, we propose a framework, called CyprIoT, to model
and control network-based IoT applications using MDE tech-
niques. Our approach relies on 1) Networking Language, to
model a network of IoT things 2) Rule-Based Policy Lan-
guage, to control and supervise the behavior of the modeled
network 3) Code Generator, to interpret the model and gen-
erate deployable network artifacts and 4) Plug-in System, to
customize, enhance or implement expert knowledge into the
generated artifacts.

KEYWORDS

Internet of Things, Model-Driven Engineering, Domain-Specific
Language, Code Generation

ACM Reference Format:
Imad Berrouyne1,3, Mehdi Adda3, Jean-Marie Mottu2, Jean-
Claude Royer1, Massimo Tisi1. 2019. CyprIoT : Framework for
Modelling and Controlling Network-Based IoT Applications. In

The 34th ACM/SIGAPP Symposium on Applied Computing (SAC
’19), April 8–12, 2019, Limassol, Cyprus. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3297280.3297362

1 INTRODUCTION

The IoT is a modern paradigm disrupting the way how objects
and people communicate. Prominent applications such as
smarthomes [16] make the IoT more and more visible in our
everyday life. It is expected to see even more IoT applications

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the au-
thor(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

SAC ’19, April 8–12, 2019, Limassol, Cyprus

© 2019 Copyright held by the owner/author(s). Publication rights
licensed to ACM.
ACM ISBN 978-1-4503-5933-7/19/04.
https://doi.org/10.1145/3297280.3297362

in the near future. According to Gartner, more than 8 billion
connected IoT devices are already in use, and it is expected
that this number will grow to 20.4 billion by 2020 [10].

Even though the IoT generates a lot of hype, few engineer-
ing models have been proposed to meet its requirements. The
IoT brings about new engineering challenges due to a multi-
faceted heterogeneity in the involved technologies. In a typical
IoT application, many computing platforms, languages and
communication protocols may be used. In addition, everyday
a new IoT device emerges, with often non-standard features.
Although this low-level heterogeneity seems problematic, it
constitutes the differentiating factor between the IoT and the
traditional internet. Indeed, many research studies [15, 34]
suggest that it is even necessary to connect IoT things from
different ranges.

Understandably, this heterogeneity requires more human
resources and expertises at different levels. Most companies,
often with limited human resources fail to consider those
aspects in their IoT applications. This often results into
flawed applications that may lead to large-scale network
attacks such as Mirai and Persirai [31, 33] targeting numerous
IoT things. As a matter of fact, for security experts [27],
existing engineering models based on a quick-fix approach,
have shown their limits w.r.t security. Moreover, the SANS
Institute reports that almost 90% of security professionals
affirm that changes to security controls are required when it
comes to the IoT [25].

MDE is a promising paradigm having the potential to
overcome such issues (i.e. platforms, languages and commu-
nication heterogeneity and control mechanisms implementa-
tion). Using abstractions, MDE eases and automates software
engineering. It can help in designing robust and reliable IoT
systems by abstracting features such as communication means
and by providing model-based mechanisms for control. Using
MDE, an engineer can design a complete IoT application in
a unified manner using abstract concepts, thus glossing over
the low-level details. Afterwards, a code generation procedure
can interpret the model and generate the deployable code.

All the more so that recently MDE has successfully been
applied to adaptive and distributed systems, by the Model
@Runtime approach [6] as well as in model-driven security [3].
Moreover, it can also enable reasoning formally on large IoT
models for various purposes such as security analysis and
threat assessment [22].

https://doi.org/10.1145/3297280.3297362
https://doi.org/10.1145/3297280.3297362

SAC ’19, April 8–12, 2019, Limassol, Cyprus I. Berrouyne et al.

In this paper we introduce a framework, called CyprIoT, for
modelling and controlling a network-based IoT application [2].
By Modelling we refer to the ability to describe a network
of connected IoT things beside its concrete implementation,
while by Controlling, in the other hand, we refer to the ability
to determine and supervise the behavior of the modeled
network and IoT devices beside their implementations. The
proposed framework favors the separation of concerns by
providing two separate languages, one for modelling a network
of IoT things and the second to control it using Rule-Based
Policies. It also provides a Plug-in System to offer a convenient
means of implementing expert knowledge in the generated
artifacts. Finally, a modular Code Generator is meant to
generate the deployable code. The source code and the Xtext
grammar 1 of the concrete textual syntax of the languages
are available on Github 2. To the best of our knowledge this
is the first open-source model-based framework to target
generic network-based IoT applications.

In this paper we propose to investigate the following re-
search questions (RQs) :

∙ RQ1 : Can MDE help to design a Network-Based IoT
application ?

∙ RQ2 : Can MDE help an IoT engineer to abstract
low-level details and expertises ?

∙ RQ3 : Is MDE suitable to control a Network-Based
IoT application using realistic scenarios ?

This paper is structured as follows. Section 2 presents a
typical IoT usecase that will be used throughout the paper to
illustrate our solutions. Section 3 & 4 provides our modelling
solution based on a Domain-Specific Language (DSL) com-
posed of a Networking Language and a Rule-Based Policy
Language, Section 5 introduces our modular Code Generator
that interprets a network model to produce deployable net-
work artifacts. Section 6 provides an overview of the existing
approaches. Finally, Sections 7 & 9 present the discussions
and conclusion.

2 RUNNING CASE

Figure 1 depicts a typical Smarthome (SH). This is a common
network-based IoT application that will be used throughout
the paper to illustrate the utility of our framework. No-
tice that heterogeneous computing platforms (e.g., C, Java,
Python) and communication protocols (e.g, MQTT, UPnP,
Zigbee, HTTP, CoAP) are used.

The gateway is running a Python program on top of a
Raspberry Pi equipped with a Zigbee chip [35]. The latter
establishes a Point to Point (PtP) communication with other
Zigbee-ready IoT things. The Temperature Sensor (TS) and
the Smart Fridge (SF) are programmed using a standards-
compliant C program. The Smart Lock (SL) is running on top
of Arduino and the Smart Heating and Ventilation System
(SHVS) is programmed using a Java program. All these IoT
things are equipped with a Zigbee chip to communicate
wirelessly with the gateway.

1https://www.eclipse.org/Xtext/
2https://github.com/atlanmod/CyprIoT

Messaging
Middleware

Actor

Smart
Heater

Gateway

Smart
Lock

Temperature
Sensor

Monitoring
Big Data

Remote control
...

Wireless
Wire

Legend Sarah

Actor

Mother

Smart
Fridge

Zigbee

Zigbee

Zigb
ee

Zigbee

MQTT

MQTTMQTT

Z-
Wave

Smock
Sensor

CoAP

Fire
Fighter

Smarthome
Manufacturer

HTTP

UPnP

UPnP

Actor

Doctor

UPnP

HTTP

Food Store

name Platform

Javascript

C

Python

Arduino

Java

C

Java

C

C
MedicationLight

Switch

Zi
gb

ee

Java

Figure 1: Smarthome, usecase of an IoT application

Bob, the owner of the SH, has an Android phone that
is running a Java app. Alice, his mother, is an elderly per-
son. She suffers from a Parkinson disease and has to take
medications every day on a regular basis.

The gateway also handles dynamic connections using Uni-
versal Plug and Play (UPnP). When Bob is at home, his
phone communication switches dynamically to connect lo-
cally to the gateway using UPnP. An authorized doctor can
also control the gateway to access the SH and treat Bob’s
mother when Bob is away.

Additionally, the city requires a battery powered Fire and
Smoke Sensor (FSS) in all SHs. Given its constrained re-
sources, the FSS uses a standards-compliant C program and
an energy-efficient communication on top of Constrained Ap-
plication Protocol (CoAP). Furthermore, for security reasons,
it should not be connected to the local network, so that in
case of an outage in the local network, it can still notify the
Fire Station (FS). The c i t y P o l i c y requires that when the
sensed temperature reaches certain threshold, the system
should automatically inform the local authorities.

To benefit from the SH manufacturer maintenance service,
the gateway should post the telemetry data using Hypertext
Transfer Protocol (HTTP), in case an intervention is needed.
The manu f a c t u r e rPo l i c y requires that in case of a mal-
function in the network, the gateway should automatically
notify the manufacturer via a dedicated channel. We presume
that the gateway holds a property containing the status of
the network.

The gateway sends the sensors data to a private Publish
and Subscribe (PubSub) messaging middleware accepting
Message Queuing Telemetry Transport (MQTT). The gate-
way translates the Zigbee data into MQTT or HTTP depend-
ing on the receiver. Using his phone Bob can then control
the SH remotely and monitor the activity of his mother.

CyprIoT : Framework for Modelling and Controlling Network-Based IoT Applications SAC ’19, April 8–12, 2019, Limassol, Cyprus

To make our application ”smart”, we can draw the follow-
ing simple or conditioned scenarios :

Scenario 1 : Bob needs to monitor his mother remotely.
Scenario 2 : An outage in the network requires the inter-

vention of the manufacturer.
Scenario 3 : The SH is on fire, local authorities need to

be notified.
Scenario 4 (conditioned) : The smoke sensor notifies

the firefighters when the temperature sensor is greater than
a given value.

Scenario 5 (conditioned) : If an external phone tries
to connect to the gateway using UPnP between 22:00 and
09:00, then reject its requests.

Scenario 6 (conditioned) : If the fridge contains less
than 2 milk packs, then notify the food store to deliver new
packs.

Scenario 7 (conditioned) : If Bob’s mother forgets to
take her medications before 16:00, then email the doctor.

Scenario 8 (conditioned) : The food store does not
deliver food as usual, even when the fridge is empty, this is
because the presence sensor did not detect any activity for
a while in the house, nobody is at home to take the delivery.

Finally, to provide meaningful insights for Bob about the
activity of its SH, all the sensed data is sent to a web-based
analytics platform designed with Javascript.

In fact, a SH, as many network-based IoT applications,
consists of 1) a network of heterogeneous things connected
using heterogeneous protocols and 2) a set of smart scenar-
ios and policies, defined by some entities, to determine or
supervise the behavior of the network.

Further, the SH application along with these scenarios and
policies will be modeled within CyprIoT framework. It is
worth noting that, in such usecase authentication, privacy
and trustworthiness are essential, however they are beyond
the scope of this paper.

3 NETWORKING LANGUAGE

In this section we present our first main contribution of the
paper, a Networking Language which consists of connecting
various IoT things. Figure 2 depicts the metamodel of the
proposed abstractions of the language. On another note,
to clearly position our work w.r.t the state of the art, we
attached the core concepts of the existing work (White) in
this area. We also created a link with the Policy Language
(Light Gray) that will be the subject of the next section.
Moreover, Listings 2 and 3 present the network model of the
SH application local communications.

3.1 Thing

We assume that an IoT thing behavior is modeled using
ThingML [17]. The latter provides a DSL to model an IoT
thing behavior using a statechart. Each state has a transition
specifying its next state. In addition, a thing can communicate
with the outside world using a port. For instance, as shown
in Figure 3, the TS uses a port in the SendTemperature state
to disseminate its sensed data.

1 // User declaration
2 user Bob
3 user Alice
4 //Role declaration
5 role sensor
6 role actuator
7 // Import of ThingML models
8 thing homeGateway import ’gateway.thingml’ assigned sensor
9 thing temperatureSensor import ’temperature.thingml’ assigned sensor

10 thing smartFridge import ’fridge.thingml’ assigned sensor, actuator
11 thing smartHeater import ’heater.thingml’ assigned actuator
12 thing bobPhone import ’phone.thingml’ assigned sensor, actuator
13 thing smokeDetector import ’smocksensor.thingml’ assigned sensor
14 thing medicationBottle import ’medication.thingml’ assigned sensor
15 thing lightSwitch import UNKNOWN assigned actuator
16 // Import of Arduino code
17 thing smartLock import ’lockmodel.ino’ assigned sensor, actuator

Listing 1: Declaration of things

The Networking Language offers a means of designing a
network in a readable fashion using high-level abstractions.
Listing 1 depicts the declaration of the things in the SH
usecase. For instance, the line thing temperatureSensor import

”temperature.thingml”assigned sensor, imports the model (i.e
ThingML statechart) of the TS.

Notice that the smartLock sensor is sourced from a con-
crete code (i.e Arduino code), while all other models are
sourced from ThingML models. In fact, there are two ways
to source the behavior of an IoT thing. The first way consists
of loading a ThingML model describing the behavior in the
form of a statechart. The second way consists of sourcing the
behavior from a concrete source code (e.g., C, JAVA). The
latter requires a step further that consists of converting the
imported code into a ThingML model (See Section 5.2). That
is because our framework needs to work only with ThingML
models.

For the sake of interoperability, it is also possible to declare
an IoT thing without sourcing it with a behavior, as it is the
case for the lightSwitch actuator that is using the keyword
UNKNOWN, meaning that the behavior is not provided. If
a communication is specified in the network model, ports
of other things are configured to communicate with it. For
instance, lightSwitch thing uses an unknown program that
sends a message to the lightTopic. Thus, if another thing is
configured to retrieve the information from the lightSwitch

sensor, then it will be configured to subscribe to the lightTopic.

3.2 Channel

The utility of a channel concept arises because of the need
to assemble various IoT things without concerns about the
concrete details of their communications such as the protocol
or the message format. In addition, this also helps easing
things collaboration.

We performed a bottom-up analysis on IoT data protocols.
Then, we have drawn their commonalities that we reify in
the concept of channel. Indeed, it is the medium that exists
between two IoT things enabling a communication. We iden-
tified two main channel types : channel:pubsub channels and

SAC ’19, April 8–12, 2019, Limassol, Cyprus I. Berrouyne et al.

Introduced by ThingML Networking Language Metaclasses Policy Language Metaclasses

Figure 2: Networking Language Metamodel

Initiliaze

Sensor
Initialized

SendTemperature
TemperatureSent

SenseTemperature

TemperatureSensed RegulateSamplingRate

Timeout

Uses a port
for sending

Figure 3: Temperature sensor statechart

channel:ptp. Other channels may also be found in some IoT
applications, but they are quite little used.

The former type is often used when IoT things have to
communicate in a decoupled manner and does not necessarily
need to know each other, as it is the case with bobPhone and
the gateway that are communicating through MQTT. Those
things only need to know the information about the broker
that acts as an intermediary between them.

The latter type, in the other hand, is used when the IoT
thing is accessible via a public interface, such as an IP address

or a Uniform Resource Locator (URL) or visible in a local
network, so that another IoT thing can connect to it and
get its data. In effect, this is the case for the smartFridge and
the gateway, that are communicating through a channel:ptp,
namely Zigbee.

As depicted in Figures 2 and 3, ThingML uses ports for
external communications. Typically, two IoT things can com-
municate only if they have compatible ports. In other words,
they can understand each other only if they exchange the
same type of messages. For instance, creating a bind from
the temperatureSensor to the smartLock will not work, as the
smartLock is not expected to understand the temperature
messages, while connecting it to the smartHeater should work
as it has a port that accepts this type of messages.

In our Networking Language, the channel can be typed, so
that we can ensure ports compatibility. A warning is fired in
the user interface whenever a channel is connecting incompat-
ible ports, that way an engineer can prevent communication
incompatibility bugs early in the engineering process. For in-
stance, in Listing 2, presume that the temperatureSensor sends
a message of type temperatureMessage to the smartHeater that
has a port accepting the temperatureMessage, then to ensure
a compatible communication, the intermediary topic needs
to be typed with a temperatureMessage (Line 25 in Listing 2).

CyprIoT : Framework for Modelling and Controlling Network-Based IoT Applications SAC ’19, April 8–12, 2019, Limassol, Cyprus

1 channel:ptp manufacturerChannel {
2 connectionPoint smartHomeState
3 }
4 channel:ptp foodStoreChannel {
5 connectionPoint isFoodMissing (foodMessage)
6 }
7 channel:ptp fireChannel {
8 connectionPoint fireNotification(fireSensorMessage)
9 }

10 channel:ptp zwaveHomeChannel {
11 connectionPoint medication (medicationMessage)
12 }
13 channel:ptp upnpHomeNodes {
14 connectionPoint anyUpnpDevice (upnpMessage)
15 }
16 channel:ptp gatewayChannel {
17 connectionPoint temperature (temperetureMessage)
18 connectionPoint lock (SmartLockMessage)
19 connectionPoint heater (heaterMessage)
20 connectionPoint fridge (smartFridgeMessage)
21 connectionPoint fridge (lightMessage) subtopicOf indoor
22 }
23 channel:pubsub broker {
24 topic indoor
25 topic temperatureTopic (temperetureMessage) subtopicOf indoor
26 topic lockTopic (stateMessage) subtopicOf indoor
27 topic heaterTopic (heaterMessage) subtopicOf indoor
28 topic fridgeTopic (fridgeMessage) subtopicOf indoor
29 topic medicationTopic (medicationMessage) subtopicOf indoor
30 topic lightTopic (lightMessage) subtopicOf indoor
31 }

Listing 2: Declaration of communication
channels

3.3 Network

After declaring things and channels, a network can then be
configured using the keyword network. Listing 3 shows the
configuration of the SH network. The network has a domain

that is unique and serves as a global identifier for the network.
For instance, in our running case we use the domain in the
topic structure as the root topic of the channel. The network

also contains the instantiation of IoT things and channels
as well as their bindings. The platform running an instance

can also be declared. For instance, as stated in Line 7,
the gateway thing is running on top of PYTHON, while the
privateBroker channel, in Line 15, is running on top of MQTT.
A thing instance can have an owner, that is the user holding
all the privileges over the thing. This may be used by the
Policy Language for control purposes (See Section 4). A bind

declaration connects a thing’s port to a PubSub or PtP
channel, respectively through a topic or a connectionPoint.

In many network-based IoT applications, data have to pass
through an intermediary IoT thing before reaching its final
destination. This is the case with the gateway, that forwards
the sensed data to the privatebroker to be received by Bob
via the channel:pubsub. For this specific case, we propose the
concept of bridge. It can forward an existing communication
(i.e bind) to a topic or a connectionPoint. Line 42-46 create a
bridge for each of the sensed data that Bob should receive.
On another note, it is also possible to enforce a bridge as a
rule. This is discussed in Section 4.5.

1 network smarthomeNetwork {
2 // Domain of the network
3 domain fr.nantes.bobSmarthome
4 // Enforfing all policies
5 enforce cityPolicy, homePolicy, manufacturerPolicy, rolePolicy
6 // Instanciating IoT things
7 instance gateway:homeGateway owner Bob platform PYTHON
8 instance ts: temperatureSensor owner Bob platform CPOSIX
9 instance sl: smartLock owner Bob platform ARDUINO

10 instance sh: smartHeather owner Bob platform JAVA
11 instance sf: smartFridge owner Bob platform CPOSIX
12 instance mb: medicationBottle owner Alice platform CPOSIX
13 instance sp: bobPhone owner Bob platform JAVA
14 // Instanciating channels
15 instance privateBroker: broker platform MQTT
16 instance zigbeeHomeNodes: gatewayChannel platform ZIGBEE
17 instance zwaveHomeNodes: zwaveHomeChannel platform ZWAVE
18 instance zwaveHomeNodes: zwaveHomeNodes platform UPNP
19 instance manufacturerHttp: manufacturerChannel platform HTTP
20 instance foodstoreHttp: foodStoreChannel platform HTTP
21 instance firefighterCoap: fireChannel platform COAP
22 // Binding IoT things to their connectionPoints in the smarthome
23 bind ts.sensedData => zigbeeHomeNodes.temperature
24 bind sl.sensedData => zigbeeHomeNodes.lock
25 bind sh.sensedData => zigbeeHomeNodes.heater
26 bind sf.sensedData => zigbeeHomeNodes.fridge
27 bind mb.sensedData => zwaveHomeNodes.medication
28 // Binding all connectionPoints to the gateway in a star fashion
29 bind gateway.ZigbeePort <= zigbeeHomeNodes.*
30 bind gateway.ZwavePort <= zwaveHomeNodes.medication
31 bind gateway.UpnpPort <= zwaveHomeNodes.anyUpnpDevice
32 // Binding to the manufacturer connectionPoint
33 bind gateway.manufacturerPort => manufacturerHttp.

smartHomeState
34 // Binding to the foodStore connectionPoint
35 bind gateway.foodStorePort => foodstoreHttp.isFoodMissing
36 // Monitoring the smarthome from Bob’s phone
37 bind fridgeBind: sp.fridgeData <= privateBroker{fridgeTopic}
38 bind heaterBind: sp.heaterData <= privateBroker{heaterTopic}
39 bind lockBind: sp.lockData <= privateBroker{lockTopic}
40 bind temperatureBind: sp.temperatureData <= privateBroker{

temperatureTopic}
41 // Bridging data from the gateway to the private broker
42 bridge fridgeBind to privateBroker{fridgeTopic}
43 bridge heaterBind to privateBroker{heaterTopic}
44 bridge lockBind to privateBroker{lockTopic}
45 bridge temperatureBind to privateBroker{temperatureTopic}
46 bridge fridgeBind to privateBroker{fridgeTopic}
47 // Fire Fighter notification
48 instance sd: SmockDetector owner Bob platform CPOSIX
49 bind sd.fireFighterPort => firefighterCoap.fireNotification
50 }

Listing 3: Configuration of the Smarthome
network (=> send, <= receive)

4 POLICY LANGUAGE

The second main contribution is a Policy Language which
enables to control the modeled network. Figure 4 depicts
the metamodel of the proposed abstractions. This section
describes how a policy can be expressed. In Section 5 we will
treat how it can be enforced.

4.1 Policy

A policy contains a set of rules that can be enforced by the
Code Generator (CG). We presume that policies are similar
to contracts. They ensure that the IoT application is behaving
as expected from the perspective of a given entity such as
the government, the SH owner or the manufacturer. Within

SAC ’19, April 8–12, 2019, Limassol, Cyprus I. Berrouyne et al.

Networking Language Metaclasses Policy Language Metaclasses

Figure 4: Policy Language Metamodel

our DSL, we presume that the policy can access the declared
IoT thing’s internal behavior, modeled a priori.

Moreover, we permit the enforcement of many policies
in the same network. For instance, in our running case, as
shown in Listing 3 we enforce a cityPolicy, a homePolicy and
a manufacturerPolicy. As of today, rule conflict management
has not been investigated, although it is contemplated in our
future work.

4.2 Rule Structure

Listing 5 depicts the syntax of a rule. It is composed of 5
elements - Subject, Effect, Action, Object and Condition(s).
The latter is optional. Table 1 depicts different attributes
of those elements and how they can be combined with each
other.

1 rule <Subject> <Effect>:<Action> <Object> when <Conditions>

Listing 4: Rule syntax

4.3 Trigger

To implement some of the SH scenarios, we may need to
trigger some actions under some conditions. This if often
referred as the ”smart” dimension of the IoT. Our Policy
Language allows defining such rules.

A trigger rule can activate two actions Transition that per-
forms the transition of a given state on a thing and GoToState

that instruct the thing to go to a specific state. Those actions
can be conditioned by the CurrentState of a subject thing, i.e.
to be able to activate an action when CurrentState of a subject
thing is of a given value, or by NextState, i.e. to be able to
activate the action if is next state is of a given value.

For instance, in Line 15 of Listing 5 the medicationBottle

triggers GoToState in gateway to email the doctor when the
medication has not been taken. We presume that the email
state in the gateway is a routine handling sending the email.

4.4 Permission

By default, we presume that unless a rule is allowing IoT
things to communicate, all the communications are denied. A
permission allow/deny a communication between two entities.
When the subject is a user, it applies to all the things owned
by this user. While when the subject is a role, it applies to
all things being assigned this role.

In the SH application, we apply a basic role-based policy
that allows sensors to send only, and actuators to receive
only, as these are the normal communication actions they
are supposed to achieve. Also, in Line 16 we deny commu-
nicating any information to the httpChannel channel, i.e the
food store, typically for asking for a new milk delivery, when
the presenceSensor does not detect any activity for more than
1 day.

4.5 Bridge

A bridge rule enforces a behavior similar to the one described
previously (See Section 3.3). However, it is not intended to
forward an existing communication in the network. Rather,
it applies a forward globally on types such as a topic or
a connectionPoint. Then, if those types are used within the
network, the bridge will be enforced. For instance, a bridge
rule can specify that any information received by a given
thing or topic, has to be received by a thing, or that any
information received by a thing to be received by another
thing too.

4.6 Control Types

The rules permit to apply two types of control :

∙ Communication Control : This consists of a Deny/Al-
low of sending or receiving messages between two en-
tities. The message content may be used for dynamic
control, i.e controlling the message flow while the net-
work application is running. For instance, we may deny
sending a message when it takes certain value, in a
PubSub communication this is known as content-based
PubSub [28].

CyprIoT : Framework for Modelling and Controlling Network-Based IoT Applications SAC ’19, April 8–12, 2019, Limassol, Cyprus

Table 1: Rule Attributes

Subject Effect Action Object Conditions
Control
Type

Thing
Thing Instance

Role
User

Trigger
Transition
GoToState Thing

CurrentState
NextState

Thing’s
Behavior
Control

Thing
Thing Instance

User
Role

Allow
Deny

Send
Receive

Domain
Thing
Role
User

Channel
Topic

Connection Point

Messages
Property

Communication
Control

Thing
Thing Instance

Topic
Connection Point

Bridge
From
To

Thing
Thing Instance

Topic
Connection Point

CurrentState
NextState
Messages

Communication
Control

∙ Thing’s Behavior Control : As stated earlier, the
behavior of a thing is modeled using a statechart. In
that respect, those rules aim at controlling the behavior
specified in this statechart. For instance, a rule can
trigger that a given thing GoToState A when another
thing’s CurrentState is B.

1 policy roleBasedPolicy { // Role−Based policy
2 rule sensor allow:send channel:gatewayChannel, broker
3 rule actuator allow:receive channel:gatewayChannel, broker
4 }
5 policy cityPolicy{ // Scenarios 3 & 4
6 rule temperatureSensor trigger:goToState
7 smokeDetector.notifyState when
8 property:currentTemperature>25
9 }

10 policy homePolicy{ // Scenarios 5, 6, 7 & 8 (In order)
11 rule homeGateway.UpnpPort deny:send bobPhone when
12 property:(bobPhone.id!=bobIDXXXX || bobPhone.id!=

aliceIDXXXX) and
13 property:(homeGateway.currentHour>22 && homeGateway.

currentHour<9)
14 rule homeGateway trigger:goToState homeGateway.

notifyMilkState when message:homeGateway.milkPack<2
15 rule medicationBottle trigger:goToState homeGateway.emailState

when property:medicationBottle.medicationTaken==false
and property:homeGateway.currentHour>16

16 rule homeGateway.askMilk deny:send channel:httpChannel when
17 message:homeGateway.milkPack<2 and
18 message:homeGateway.presenceSensor==false and
19 property:homeGateway.presenceDay>1
20 }
21 policy manufacturerPolicy{ // Scenario 2
22 rule homeGateway trigger:goToState homeGateway.notifyState

when property:isNetworkWorking==false
23 }

Listing 5: Definition of policies

5 CODE GENERATION

Our last main contribution is a CG along with a plug-in
system to leverage the network model designed with the DSL.
It consists of generating deployable code implementing the
network configuration as well as the enforced policies. In
this section, we explain its main building blocks, how the
network artifacts are generated and how it can be extended
with expert knowledge.

IoT Application
Artifacts

Plugins

Access
Control

Data
consistency Etc...

Code Generator
Domain-specific

language

Policy language

Networking
language

Interpret

Produce

ThingML
models

Import

Concrete Code
(e.g, Arduino)

CG-Core

InitiliazePhases Validate Transform GenerateLoad

Hook

Network
Generator

Command
Line

Interface

Plugins
Loader

Figure 5: CyprIoT Framework building blocks

5.1 Architecture

Figure 5 depicts the main building blocks of CyprIoT frame-
work. Our proposed DSL, composed of the Networking and
Policy Languages, serves to express with high-level abstrac-
tions the model of a network-based IoT application. This
model is then interpreted by the CG that is responsible for
producing deployable network artifacts.

The core of the CG (CG-Core) is composed of three
modules- Network Generator (CG-NG), Plug-in Loader (CG-
PL) and a Command Line Interface (CG-CLI).

The CG-NG processes the network model following a se-
quence of phases executed in order. Those phases are executed
according to this specific order : Initialize, Load, Validate,
Transform, Generate. Each phase has a responsibility that is
depicted in table 2. The CG-NG module renders transformed
ThingML models implementing what was specified in the
network model. Then, using ThingML multi-platform code
generator as a library, deployable code can be generated for
any platform (e.g., Java,C). As of today, we concentrated our
efforts into the five former phases, in the future we plan to
add two more phases : Verify, to test and certify the confor-
mity of the generated artifacts w.r.t the network model and
Deploy, to automatically deploy the generated artifacts into
a running network.

The CG-PL, is responsible of loading plug-ins that are
hooked into CG-Core. In order to be recognized, a plug-in
needs to be declared in a configuration file. This module is
discussed in Section 5.3.

The CG-CLI offers a means to use our CG as a standalone
application. It expects a declaration of the input network
model along with some optional arguments. Then, based
on those elements, the CG is executed to produce the IoT
network artifacts.

This design choice (i.e Modular Design) is motivated by
the need to ease extensibility an separation of concerns. Thus,
our CG does not implement expert knowledge but offer mech-
anisms to implement it by experts using plug-ins.

5.2 Model Loading

Our CG uses ThingML 3, which is also an open source tool,
to load and process the behavior of a thing.

3https://github.com/TelluIoT/ThingML

SAC ’19, April 8–12, 2019, Limassol, Cyprus I. Berrouyne et al.

Table 2: Code generator extension points

Interface Input Output Responsibility

Initialize Void Void
Initialize the application and the
plugins

Load Network Model ThingML Models
Source a thing with a behav-
ior, then convert into a ThingML
model if necessary

Validate ThingML Models Boolean
Validate the conformity of the
ThingML models w.r.t some re-
quirements

Transform
Network Model
ThingML models

ThingML Models
Transform the ThingML models to
conform with the network model

Generate
Network Model
ThingML Models

Network artifacts Generate network artifacts

It is possible to load a behavior from a concrete code, as
long as its can be transformed into a ThingML format. A
plug-in may be needed for that purpose.

As a proof-of-concept, we developed a simple plug-in that
we hook to the Load phase. It loads an Arduino file, finds its
external communication interfaces (e.g., MQTT Publish/Sub-
scribe commands), then renders a ThingML file encapsulating
the behavior intended in the concrete code, and abstracting
its communication interfaces into ports so that they can be
bound to any channel within the Networking Language, as it
is the case for a model-based thing behavior. As of now, we
can only identify the interfaces written in a certain format.
This feature may enable interoperability with traditional
approaches and will be extended in future work.

5.3 Plug-in System

Table 2 shows the available interfaces for plug-ins. Each
interface corresponds to a phase, it accomplishes a specific
task, and impose a specific input and output. A typical
network-based IoT application may involve several expertises
(e.g., Safety, Access Control, Data Consistency), the plug-in
system aims at providing experts a way to create a plug-in
implementing their concerns in the network artifacts. For
instance, as a proof-of-concept, we implemented a simple plug-
in to generate access control rules for a Mosquitto broker. We
hook the plug-in to the Generate phase that provides us with
the network model as well as the things’ internal behavior in
a ThingML format, we leverage those inputs to produce a
consistent access rules to be enforced in the broker.

6 RELATED WORK

ThingML [17] introduces an approach for the IoT based on
established MDE techniques [24]. The approach has shown its
efficiency at abstracting hardware and software aspects of IoT
things [23, 32]. It consists of a statechart-based DSL to design
the internal behavior of an IoT thing and an extensible multi-
platform code generation framework. The latter also provides
a plug-in system to add a network interface to IoT things.
Abstractions w.r.t communication are not developed within
the DSL, we can merely declare the used protocol and its
attributes. In other words, the DSL does not offer abstractions

capturing the network aspects such as the communication
channel.

Salihbegovic et. al [26] present a Visual Domain-Specific
modelling Language (VDSML) based on a JavaScript editor.
It aims at giving an IoT engineer a user interface to virtually
design an IoT system. Only a set of predefined IoT things are
available to use within the editor. The tool is able to generate
a configuration file for IoT platforms, namely OpenHab [21].
However, the formal specification of the language such as the
metamodel is missing. The language is not enough generic
as only a limited set of IoT things can be modeled. By
using a statechart-based solution in our framework, we can
theoretically model any IoT thing behavior.

Node-red [19] is a flow-based visual tool that aims to
connect various interfaces of IoT things. The tool focuses
only on the connection of already-deployed IoT nodes. Its
basic idea is to map the output of an IoT thing to the
input of another, this mapping is made inside the platform
running Node-red. Such method is useful only to create a
”mashup” [5, 18, 20] of existing services. The approach does
not provide a model of the network. Controlling the behavior
of an IoT thing as well as code generation are not provided.
While our framework not only provides a model of the running
network, but it is also capable of controlling the network using
a Policy Language.

Fuch et. al [12] propose to program an IoT thing using
a UML2 Activity Diagram (UAD). The behavior of an IoT
thing is designed in the form of an activity. The latter is
transformed into a script in order to be executed by an inter-
preter running on the IoT thing. Activities can communicate
between each with their input/output interfaces via a pro-
totypical communication protocol. However, the approach
focuses on the advantages of UADs to ease collaboration
between IoT things and does not discuss the heterogeneity of
their communications. Moreover, only one IoT thing platform
(SUN Spot [29]) has been considered in their study.

Amrani et. al [1] introduce a DSL to design a network
of IoT things. The language allows to declare the possible
actions of an IoT thing. Those actions need to be mapped
to concrete events in the target platform. The DSL is ac-
companied by a rule-based policy language to trigger actions
when certain conditions are met. The communication between
IoT things is not conceptualized in the DSL metamodel, it
consists of specifying a connection of an IoT thing to a spe-
cific protocol, which creates a hard coupling between the
abstract representation and the concrete representation. In
our DSL, we aim at bypassing communication heterogeneity
by abstracting commonalities of prominent IoT protocols
in the concept of channel. Moreover, code generation is not
discussed in their work.

Bertran et. al [4] present a tool based on the Sense/Com-
pute/Control (SCC) paradigm [8]. It consists of a DSL, a
generator of Java code, a simulator and a deployment frame-
work. Although, the DSL abstracts the specification of an IoT
thing, we still need to implement its behavior in Java after
code generation. The framework assumes that IoT things are

CyprIoT : Framework for Modelling and Controlling Network-Based IoT Applications SAC ’19, April 8–12, 2019, Limassol, Cyprus

capable of running Java, which is not the ideal choice in most
IoT scenarios.

Glombitza et. al [14] provide an approach to model an
IoT thing as a web service, so that it can interoperate with
existing ones. Using a state machine based DSL, it is possible
to compose these web services. The DSL comes with a code
generator that generates C++ code. Communication hetero-
geneity is not considered, it is assumed that a communication
uses their own protocol [13].

Eclipse Vorto [9] is a solution to abstract an IoT thing
behavior into high-level functions. A function consists of a
set of attributes and a set of operations. The functions are
grouped inside a model to describe the behavior of an IoT
thing. The solution is accompanied by code generators, for
various platforms, that produce code from the model. An
online repository is also proposed to share and reuse existing
models and code generators. It is not as generic as ThingML,
modeling the behavior is rather limited as only few operations
are achievable. Communication is not addressed.

Einarsson et. al [11] propose a DSL dedicated to design
smarthomes applications. It describes the interaction of an
IoT thing with cloud platforms. The authors assume that
all IoT things communicate using a ”uniform communica-
tion interface”. A model-to-text transformation is applied to
the smarthome model to generate code. This procedure is
not extrapolated. Moreover, only interactions with a cloud
platform are considered, meaning that local home network
communications are not covered.

In table 3 we compare the existing MDE approaches for the
IoT. The second column specifies the scope of their modeling
solution, while the fifth column describes the kind of het-
erogeneity covered. Many research studies has been tackling
extensively the heterogeneity of IoT things. Their main con-
tributions in that respect is by providing concepts to model
the internal behavior of an IoT thing. The ability of design-
ing and controlling a network of IoT things is understudied,
only a few of these approaches tackle the heterogeneity of
communication, yet in a limited way.

7 DISCUSSIONS

According to our empiric experimentations, the approach has
proven that we may need less time to generate a working
network of IoT things, however we still need to evaluate this
using measuring instruments. We remark that the generated
network is less error-prone and more robust as it is the result
of an automatic process.

The plug-in system eases the extensibility of the framework,
features that are not provided by the core of our CG can be
easily added. For instance a security layer may be added as
a plug-in to enhance the security of the network.

Using CyprIoT, an IoT engineer needs to learn less low-
level and hard skills to build a network-based IoT application.
Abstracting the heterogeneity of the communication channels
enables better collaboration of IoT things and offers better
control over the communication by leveraging the rule-based
Policy Language.

Table 3: Comparison of existing approaches

Ref
Design
Scope

Network
control

Targeted Use Heterogeneity
Source
code

[17] Thing-level No
Multi-platform
Code Generation

Thing
Open
Source

[26] Thing-level No
OpenHab

configuration file
Thing

Communication*
N/P

[19] Network-level No Thing mashup Communication*
Open
Source

[12] Thing-level No
Sun SPOT [29]
Code Generation

N/A N/P

[1] Network-level Yes* Modelling Communication* N/P

[4] Thing-level Yes
Simulation

Java Framework
N/A

Open
Source

[14] Thing-level No
iSense [7] Code
Generation

Thing N/P

[9] Thing-level No
Multi-platform
Code Generation

Thing
Open
Source

[11] Cloud-level No
IoT platforms

APIs
Thing N/P

CyprIoT
Network-

level
Yes

Modular
Network Code

Generator

Thing (using [17])

Communication
Open
Source

N/A : Not Applicable — N/P : Not Provided — (*) Limited

Besides the usecase presented in this paper, our approach
may have other applications. For instance, it could be lever-
aged for security in collaborative systems such as imple-
menting an advanced access control [30] strategy within the
proposed Policy Language.

Some limitations may disprove our approach, in some
specific cases we still need to look at the low-level details to
understand how we can establish a reliable communication
between two IoT things. We tested our approach only for
few communication channels. This means that our approach
is still not systematic. Also, only ThingML models were
considered as source models, this was the most advanced
DSL we could find to model a thing’s internal generically.
Moreover, as of today IoT things sourced from a concrete
code may still need to have their interfaces written in a
specific format in order to be used in the network model,
which limits the possibilities of bindings.

8 CONCLUSION

An IoT network application involves heterogeneous comput-
ing platforms and communication protocols. Commonly, each
protocol is designed to fit a specific range of IoT things. We
conducted this study to find means to connect heterogeneous
IoT things as well as control mechanisms to design smart and
realistic IoT applications in a unified manner. Thus, exempt-
ing IoT engineers from learning transversal skills in order to
focus only on the business logic of their network-based IoT
application.

MDE is a promising paradigm to tackle the ubiquitous
heterogeneity in the IoT. In this paper, we showed that
by abstracting the common concepts of similar technologies
and separating the engineering knowledge from the technical
knowledge, we exempt the developer from the need to look
at the low-level details, that are often time-consuming and
provide less value compared with the logic of the whole
network-based IoT application.

SAC ’19, April 8–12, 2019, Limassol, Cyprus I. Berrouyne et al.

CyprIoT, the framework introduced in this paper, provides
MDE instruments to develop network-based IoT applications.
It consists of a readable Networking Language to enable
modelling the IoT application globally, a Rule-Based Policy
Language to control the modeled application and a modu-
lar and extensible Code Generator to generate deployable
network artifacts. The code generation process is divided
into phases. Each phase has a specific responsibility to ease
extensibility and separate concerns. In addition, a plug-in
system is conceptualized to allow experts to implement their
knowledge in the generated artifacts.

In future work we aim to make the DSL more readable,
expressive, and interoperable. We will also work on the verifi-
cation of the generated artifacts and we envision easing their
deployment. Finally, we will continue improving the overall
architecture of the framework with better modularity.

9 ACKNOWLEDGEMENTS

We acknowledge the support of Institut Mines-Télécom At-
lantique and the Natural Sciences and Engineering Research
Council of Canada (NSERC), 06351.
Cette recherche a été financée par l’Institut Mines-Télécom
Atlantique et le Conseil de recherches en sciences naturelles
et en génie du Canada (CRSNG), 06351.

REFERENCES
[1] Amrani, M., Gilson, F., Debieche, A., Englebert, V.: Towards

user-centric dsls to manage iot systems. In: MODELSWARD. pp.
569–576 (2017)

[2] Atzori, L., Iera, A., Morabito, G.: The internet of things: A survey.
Computer networks 54(15), 2787–2805 (2010)

[3] Basin, D., Clavel, M., Egea, M.: A decade of model-driven security.
In: Proceedings of the 16th ACM symposium on Access control
models and technologies. pp. 1–10. ACM (2011)

[4] Bertran, B., Bruneau, J., Cassou, D., Loriant, N., Balland, E.,
Consel, C.: Diasuite: A tool suite to develop sense/compute/con-
trol applications. Science of Computer Programming 79, 39–51
(2014)

[5] Blackstock, M., Lea, R.: Iot mashups with the wotkit. In: Internet
of Things (IOT), 2012 3rd International Conference on the. pp.
159–166. IEEE (2012)

[6] Blair, G., Bencomo, N., France, R.B.: Models@ run. time. Com-
puter 42(10) (2009)

[7] Buschmann, C., Pfisterer, D.: isense: A modular hardware and
software platform for wireless sensor networks. 6. Fachgespräch
Sensornetzwerke p. 15 (2007)

[8] Cassou, D., Balland, E., Consel, C., Lawall, J.: Leveraging software
architectures to guide and verify the development of sense/com-
pute/control applications. In: Proceedings of the 33rd Interna-
tional Conference on Software Engineering. pp. 431–440. ACM
(2011)

[9] Eclipse: Eclipse Vorto - IoT Toolset for standardized de-
vice descriptions, http://www.eclipse.org/vorto/documentation/
overview/introduction.html

[10] Egham, U.: Gartner says 8.4 billion connected” things” will be in
use in 2017, up 31 percent from 2016. Gartner, Inc 7 (2017)

[11] Einarsson, A.F., Patreksson, P., Hamdaqa, M., Hamou-Lhadj, A.:
Smarthomeml: Towards a domain-specific modeling language for
creating smart home applications. In: Internet of Things (ICIOT),
2017 IEEE International Congress on. pp. 82–88. IEEE (2017)

[12] Fuchs, G., German, R.: Uml2 activity diagram based program-
ming of wireless sensor networks. In: Proceedings of the 2010
ICSE Workshop on Software Engineering for Sensor Network
Applications. pp. 8–13. ACM (2010)

[13] Glombitza, N., Pfisterer, D., Fischer, S.: Integrating wireless
sensor networks into web service-based business processes. In:
Proceedings of the 4th international Workshop on Middleware

Tools, Services and Run-Time Support For Sensor Networks. pp.
25–30. ACM (2009)

[14] Glombitza, N., Pfisterer, D., Fischer, S.: Using state machines for
a model driven development of web service-based sensor network
applications. In: Proceedings of the 2010 ICSE Workshop on
Software Engineering for Sensor Network Applications. pp. 2–7.
ACM (2010)

[15] Gluhak, A., Krco, S., Nati, M., Pfisterer, D., Mitton, N., Razafind-
ralambo, T.: A survey on facilities for experimental internet of
things research. IEEE Communications Magazine 49(11), 58–67
(2011)

[16] Han, D.M., Lim, J.H.: Design and implementation of smart home
energy management systems based on zigbee. IEEE Transactions
on Consumer Electronics 56(3) (2010)

[17] Harrand, N., Fleurey, F., Morin, B., Husa, K.E.: Thingml: a
language and code generation framework for heterogeneous targets.
In: Proceedings of the ACM/IEEE 19th International Conference
on Model Driven Engineering Languages and Systems. pp. 125–
135. ACM (2016)

[18] Heo, S., Woo, S., Im, J., Kim, D.: Iot-map: Iot mashup application
platform for the flexible iot ecosystem. In: Internet of Things
(IOT), 2015 5th International Conference on the. pp. 163–170.
IEEE (2015)

[19] IBM Emerging Technologies: Node-RED. A visual tool for wiring
the Internet of Things (2016), http://nodered.org/

[20] Im, J., Kim, S., Kim, D.: Iot mashup as a service: cloud-based
mashup service for the internet of things. In: Services Computing
(SCC), 2013 IEEE International Conference on. pp. 462–469. IEEE
(2013)

[21] Kreuzer, K., et al.: Openhab-empowering the smart home. Open-
hab. org, Tech. Rep. (2013)

[22] Mavropoulos, O., Mouratidis, H., Fish, A., Panaousis, E.: Asto: A
tool for security analysis of iot systems. In: Software Engineering
Research, Management and Applications (SERA), 2017 IEEE
15th International Conference on. pp. 395–400. IEEE (2017)

[23] Morin, B., Harrand, N., Fleurey, F.: Model-based software en-
gineering to tame the iot jungle. IEEE Software 34(1), 30–36
(2017)

[24] Mukerji, J., Miller, J.: Mda guide. Object Management Group
(2003)

[25] Pescatore, J., Shpantzer, G.: Securing the internet of things survey.
SANS Institute pp. 1–22 (2014)

[26] Salihbegovic, A., Eterovic, T., Kaljic, E., Ribic, S.: Design of a
domain specific language and ide for internet of things applications.
In: Information and Communication Technology, Electronics and
Microelectronics (MIPRO), 2015 38th International Convention
on. pp. 996–1001. IEEE (2015)

[27] Seralathan, Y., Oh, T.T., Jadhav, S., Myers, J., Jeong, J.P., Kim,
Y.H., Kim, J.N.: Iot security vulnerability: A case study of a web
camera. In: Advanced Communication Technology (ICACT), 2018
20th International Conference on. pp. 172–177. IEEE (2018)

[28] Shen, H.: Content-based publish/subscribe systems. In: Handbook
of Peer-to-Peer Networking, pp. 1333–1366. Springer (2010)

[29] Smith, R.B.: Spotworld and the sun spot. In: Proceedings of the
6th international conference on Information processing in sensor
networks. pp. 565–566. ACM (2007)

[30] Tolone, W., Ahn, G.J., Pai, T., Hong, S.P.: Access control in
collaborative systems. ACM Computing Surveys (CSUR) 37(1),
29–41 (2005)

[31] Trend Micro: TrendLabs Security Intelligence BlogPer-
sirai: New Internet of Things (IoT) Botnet Targets IP
Cameras - TrendLabs Security Intelligence Blog (2017),
http://blog.trendmicro.com/trendlabs-security-intelligence/
persirai-new-internet-things-iot-botnet-targets-ip-cameras/

[32] Vasilevskiy, A., Morin, B., Haugen, Ø., Evensen, P.: Agile devel-
opment of home automation system with thingml. In: Industrial
Informatics (INDIN), 2016 IEEE 14th International Conference
on. IEEE (2016)

[33] Woolf, N.: Ddos attack that disrupted internet was largest of its
kind in history, experts say. The Guardian 26 (2016)

[34] Zhu, Q., Wang, R., Chen, Q., Liu, Y., Qin, W.: Iot gateway:
Bridgingwireless sensor networks into internet of things. In: Em-
bedded and Ubiquitous Computing (EUC), 2010 IEEE/IFIP 8th
International Conference on. pp. 347–352. Ieee (2010)

[35] ZigBee, A.: Zigbee-2006 specification. http://www. zigbee. org/
(2006)

http://www.eclipse.org/vorto/documentation/overview/introduction.html
http://www.eclipse.org/vorto/documentation/overview/introduction.html
http://nodered.org/
http://blog.trendmicro.com/trendlabs-security-intelligence/persirai-new-internet-things-iot-botnet-targets-ip-cameras/
http://blog.trendmicro.com/trendlabs-security-intelligence/persirai-new-internet-things-iot-botnet-targets-ip-cameras/

	Abstract
	1 Introduction
	2 Running Case
	3 Networking Language
	3.1 Thing
	3.2 Channel
	3.3 Network

	4 Policy Language
	4.1 Policy
	4.2 Rule Structure
	4.3 Trigger
	4.4 Permission
	4.5 Bridge
	4.6 Control Types

	5 Code generation
	5.1 Architecture
	5.2 Model Loading
	5.3 Plug-in System

	6 Related work
	7 Discussions
	8 Conclusion
	9 Acknowledgements
	References

