
HAL Id: hal-02333553
https://hal.science/hal-02333553v2

Preprint submitted on 26 Oct 2019 (v2), last revised 8 Jan 2020 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Completeness of an Axiomatization of Graph
Isomorphism via Graph Rewriting in Coq

Christian Doczkal, Damien Pous

To cite this version:
Christian Doczkal, Damien Pous. Completeness of an Axiomatization of Graph Isomorphism via
Graph Rewriting in Coq. 2019. �hal-02333553v2�

https://hal.science/hal-02333553v2
https://hal.archives-ouvertes.fr

Completeness of an Axiomatization of Graph
Isomorphism via Graph Rewriting in Coq

Christian Doczkal

Université Côte d’Azur, Inria Sophia Antipolis - Marelle

Damien Pous

Plume team, CNRS, LIP, ENS de Lyon

Abstract
The labeled multigraphs of treewidth at most two can be

described using a simple term language over which isomor-

phism of the denoted graphs can be finitely axiomatized.

We formally verify soundness and completeness of such an

axiomatization using Coq and the mathematical components

library. The completeness proof is based on a normalizing

and confluent rewrite system on term-labeled graphs. While

for most of the development a dependently typed represen-

tation of graphs based on finite types of vertices and edges

is most convenient, we switch to a graph representation em-

ploying a fixed type of vertices shared among all graphs for

establishing confluence of the rewrite system. The complete-

ness result is then obtained by transferring confluence from

the fixed-type setting to the dependently typed setting.

The library is available from

http://perso.ens-lyon.fr/damien.pous/covece/graphs/

1 Introduction
In graph theory, the notion of treewidth [6] of a graph mea-

sures how close a graph is to a forest. In particular, the graphs

of treewidth at most one are just the forests. Among the open

problems related to treewidth, there is the question of find-

ing finite axiomatisations of isomorphism for graphs of a

given treewidth [5, page 118]. This question was recently an-

swered positively for treewidth two [4], in the following way.

A 2pdom-algebra is an algebra over the following signature,

subject to eleven equational axioms:

Σ = {·2, ∥ 2, (_
◦)

1
, dom1, 10}

Graphs can be shown to form an algebra for this signature, so

that a term u over this signature makes it possible to denote

a graph g(u). For instance, the graphs of (a·b◦) ∥ c (left) and
(a·dom(b)·c) ∥ d (right) are:

a b

c

a b c

d

A first important result is that Σ-terms make it possible to

denote precisely the class of connected graphs of treewidth

at most two. That the graph of a term is connected and

has treewidth at most two is relatively easy; the converse

direction—every connected graph of treewidth at most two

can be represented by a term—is much harder [4]. This result

was recently formalized in Coq [7], by going through the

well-known characterization of treewidth at most two graphs

as those excluding K4 as a minor [10].

We also have that graphs modulo isomorphism form a

2pdom-algebra: the eleven axioms of 2pdom-algebra are all

valid in the algebra of graphs. While a pen and paper proof of

this result is relatively easy, formalizing it in a proof assistant

is non-trivial: it requires proper tools for combining graphs

(to get the algebra of graphs) and for establishing graph

isomorphisms between graphs obtained by nested quotients

and disjoint unions (to get the laws). This was also formalized

in Coq, in [9].

As a consequence, for all terms u,v which are provably

equal from the 2pdom-axioms, g(u) and g(v) are isomor-

phic. The converse implication also holds: 2pdom-axioms

are complete w.r.t. graph isomorphisms, so that (connected,

treewidth at most two) graphs actually form the free 2pdom-

algebra. Formalizing this completeness theorem in Coq is

the main contribution of the present paper.

This theorem is difficult because it must translate a rather

global notion (an isomorphism between two graphs) into a

sequence of local reasoning steps (an equational proof from

2pdom-axioms). A first proof of this result was given in [4],

which Doczkal and Pous hoped to formalize in Coq [7] until

they realized an alternative proof could be used [8]. This

latter proof is much easier from the graph-theoretical point

of view: it does not require a precise analysis of the struc-

ture of treewidth at most two graphs. Instead, it relies on a

graph rewrite system which happens to be confluent modulo

2pdom-axioms. By using Newman’s lemma to prove conflu-

ence via local confluence, the starting global isomorphism

is only analyzed locally in the proof. This is the proof we

follow in the present formalization; we give a more precise

sketch of it in Section 3.

That this proof is simpler does not mean it is easy to

formalize in a proof assistant: it involves both local and

global operations on graphs, and the local confluence proof,

which is already long on paper, requires good abstractions

in order not to get lost in the details.

In order to define the rewrite system and prove most of

the required results about it (Sections 4 to 7), we need to

slightly generalize the letter-labeled graphs from [7, 9] to

allow for a uniform treatment of both letter-labeled graphs

(used in the statement) and 2pdom-labeled graphs (used for

the rewrite system). However, even the generalized repre-

sentation turned out to be inappropriate for getting a formal

proof of local confluence. We circumvent this difficulty by

1

http://perso.ens-lyon.fr/damien.pous/covece/graphs/

Christian Doczkal and Damien Pous

x ∥ (y ∥ z) = (x ∥ y) ∥ z x ∥ y = y ∥ x 1 ∥ 1 = 1

x · (y · z) = (x · y) · z x · 1 = x

x◦◦ = x (x ∥ y)◦ = x◦ ∥ y◦ (x · y)◦ = y◦ · x◦

dom(x ∥ y) = 1 ∥ x ·y◦ dom(x · y) = dom(x · dom(y))

dom(x) · (y ∥ z) = dom(x)·y ∥ z

Figure 1. Axioms of 2pdom-algebras.

using a second representation for graphs and rewrite steps

for this part of the proof. This second representation makes

it possible to prove local confluence in a natural way, as with

pen and paper, by organizing case distinctions as most ap-

propriate and using ‘without-loss-of-generality’ reasoning

to factor out similar cases (Section 8). We then establish cor-

respondence between our two representations (Section 9),

allowing us to transfer local confluence from the second

representation to the first and wrap everything together.

2 2pdom-algebras
We first recall the definition and basic properties of 2pdom-

algebra [4, 16]. We consider the signature from the introduc-

tion for terms and algebras. We sometimes omit the · symbol

and we assign priorities so that the expression (x · (y◦)) ∥ z
can be written just as xy◦ ∥ z.

Definition 2.1. A 2pdom-algebra is a Σ-algebra satisfying
the axioms from Fig. 1.

Definition 2.2. An element x of a 2pdom-algebra is called

a test if x ∥ 1 = x . We let α, β, . . . range over such tests.

Note that 1 is a test, as well as dom(x), for all x .

Lemma 2.3. For all tests α, β in a 2pdom-algebra, we have

α◦ = α αβ = α ∥ β = βα

We deduce from the second equation that αβ is a test, and

that tests with · and 1 form a commutative monoid.

We fix an alphabetA in the remainder, with lettersa,b,
We letu,v . . . range over Σ-termswith variables inA, which

we call terms in the sequel. Given two such terms u,v , we
write u ≡ v when the equation is derivable from the axioms

of 2pdom-algebras (equivalently, when the equation univer-

sally holds in all 2pdom-algebras). Terms quotiented by this

relation form the free 2pdom-algebra over A.

3 Sketch of completeness proof
We now sketch the completeness proof from [8], delegating

most of the formal definitions to the subsequent sections.

We consider directed multigraphs with two designated

vertices respectively called input and output, and edges la-

beled in A. We just call them graphs. Examples of such

G · H := G H

G ∥H :=
G

H

G◦ := G a := a

dom(G) := G 1 :=

Figure 2. Graph operations.

graphs were given in Section 1, where inputs and outputs

were depicted using unlabeled ingoing and outgoing arrows.

Graphs form a 2pdom-algebra by considering the opera-

tions in Fig. 2. The binary operations (·) and (∥) respectively

correspond to series and parallel composition, converse (_◦)
just exchanges input and output, and domain (dom) relocates
the output to the input.

Proposition 3.1 (Soundness). Graphs form a 2pdom-algebra.

By interpreting a letter a ∈ A as the graph a in Fig. 2, we

can associate a graph g(u) to every term u (cf. rest of Fig. 2).

Note that the parallel composition of a graph with the

graph 1 merges the input and output of the former graph.

For instance, the graph a ∥ 1 consists of a single vertex with a
self-loop labeled with a. We have that a term u is a test if and

only if the input and output of g(u) coincide [8, Lemma 10].

By Proposition 3.1, g(u) and g(v) are isomorphic when-

ever u ≡ v . A formal proof of this soundness result is de-

scribed in [9]. We slightly generalize it in the present work

(Proposition 5.2 below), but our main contribution is a formal

proof that the converse implication also holds: the axioms

of 2pdom-algebra are complete w.r.t. graph isomorphism:

Theorem 3.2 (Completeness). For all terms u,v such that
g(u) and g(v) are isomorphic, we have u ≡ v .

As explained in the introduction, the key idea in the proof

from [8] consists in using a graph rewrite system. This sys-

tem is not used to obtain canonical normal forms. Instead, it

makes it possible to recover various terms denoting a given

graph, and its confluence makes it possible to relate those

terms via the axioms.

The rewrite system works on a generalization of the pre-

vious graphs, where vertices are labeled with tests and edges

are labeled by terms rather than letters. Its main rules are

the following ones:

u vα
7→ uαv

uα β
7→

αdom(uβ)

u

v
7→

u ∥v

2

Completeness of an Axiomatization of Graph Isomorphism

(The circular vertices, i.e., those that are removed, must be

distinct from input and output and must not have other

incident edges.) Its behavior is reminiscent from the state-

removal algorithm used to construct a regular expression

from an automaton: vertices and edges are removed until we

obtain a small graph, from which we can read back a term.

For instance, we have the following sequence of rewrite

steps, which witnesses the fact that a·dom(b)·c ∥ d is a term

denoting the starting graph.

a b c

d

7→
a c

d

dom(b)

7→
adom(b)c

d

7→
adom(b)c ∥ d

Note that the rewrite system is non-deterministic: one of the

most trivial examples is that we could also obtain the term

d ∥ a·dom(b)·c from the above graph. It is however confluent

modulo a generalized notion of isomorphism where labels

are compared using the relation ≡. Proving this property is

one of the key steps of the completeness proof.

Also note that there are terms which cannot be reached

via the rewrite system. Consider for instance, the reduction

below, which gives us the term (dom(a)·dom(b))·c for the
graph on the left:

a b
c 7→

b
cdom(a)

7→ c

dom(a)dom(b)

A similar reductionwould give us the term (dom(b)·dom(a))·c ;
but no reduction would give us dom(a)·(dom(b)·c), which is

also a term denoting the same graph. To deal with this issue,

we use a syntactic normalization function u 7→ u↓ in order

to isolate the tests occurring on both sides of a term. (Nor-

malized terms are not canonical, though: the normalization

function is far from equating all provably equal terms.)

All in all, the completeness proof is obtained by combining

the following three key properties:

(i) for all u, u ≡ u↓
(ii) for all u, g(u) 7→∗ g′(u↓), where for a normalized term

v , g′(v) is the small irreducible graph labeled with v .
(iii) 7→ is confluent modulo generalized isomorphism

The first one is a syntactic property proved by induction

on u, whose formalization requires some work but does not

raise any problem (induction and equational reasoning have

very good support in proof assistants).

The second one, reducibility, is also proved by induction

on u, but requires much more work: we have to prove that

rewrite steps are preserved under the various algebraic oper-

ations, and that there are enough rewrite rules to effectively

reduce every graph of a term into a small irreducible graph.

We use Newman’s lemma to reduce confluence to local

confluence. Then we have to analyze all critical pairs, and

show that they can all be joined modulo isomorphism and

2pdom axioms. This is the most delicate step for the formal-

ization: we have to analyze many cases, and in each case we

need to produce appropriate rewrite steps and isomorphisms.

Once we have proved those three properties, completeness

is obtained as follows. Starting from two terms such that g(u)
and g(v) are isomorphic, we know by reducibility (ii) that

g(u) 7→∗ g′(u↓) and g(v) 7→∗ g′(v↓). Since the graphs g′(u↓)
and g′(v↓) are irreducible, we deduce by confluence (iii) that

they are isomorphic (modulo the axioms), from which we

deduce u↓ ≡ v↓. We conclude that u ≡ v by transitivity,

using (i) twice.

4 Packaged Labeled Multigraphs
Wenow describe the formalization of labeledmultigraphs. As

explained above, we need two kinds of graphs: graphs with

unlabeled vertices and edges labeled inA for the overall com-

pleteness result, as well as graphs with tests-labeled vertices

and term-labeled edges as an intermediate data-structure.

In order to share code and define the various operations

on those two classes of graphs at once, we introduce the

following abstraction for labels, which we explain below:

Definition 4.1 (Label Structure). A setoid is a pair (X ,≡) of
a typeX and an equivalence relation≡ onX . A label structure
consists of the following

• two setoids (Lv ,≡v) and (Le ,≡e);
• a binary operation ⊗ and an element 1 : Lv such that

(Lv ,≡v , ⊗, 1) forms a commutative monoid up to ≡v ;

• a symmetric relation ≡′e on Le such that ≡e≡
′
e ⊆ ≡

′
e

and ≡′e≡
′
e ⊆ ≡e .

We usually omit the indices on equivalence relations, if

they can be inferred from the context. We use setoids for

labels since we want to instantiated these labels with tests

and terms, compared modulo the axioms of 2pdom-algebra.

We require a commutative monoid on vertex labels be-

cause one of the most crucial operations in our development

is that of forming vertex-quotients of graphs (i.e., collapsing

the vertices of a graph with respect to some equivalence

relation): collapsed vertices get labeled with the composition

in the monoid of their initial labels.

The last requirement is motivated as follows. In order to

express the rewrite system succinctly and to enable more

opportunities to reason by symmetry, it is convenient to

consider a notion of isomorphism on term-labeled graphs

where edges can be flipped, using the converse operation to

update the label: an edge from x to y labeled with u can be

seen as an edge from y to x labeled with u◦. In contrast, such

an operation should not be allowed on letter-labeled graphs

(there is no converse operation on the alphabet).

Using the relation ≡′e makes it possible to capture those

two cases. We will define isomorphisms such that au labeled

edge from x to y can be mapped to a v labeled edge from

y to x provided u ≡′e v . The requirements on this relation

ensure that we obtain an equivalence relation on graphs

3

Christian Doczkal and Damien Pous

when doing so. The two label structures below capture the

two aforementioned cases.

Definition 4.2 (The alphabet A as a label structure). The
trivial monoid (on the single element type unit), together
with the discrete setoid on A (i.e., with Leibniz equality),

and the empty relation on A for ≡′, form a label structure.

Definition 4.3 (2pdom-algebras as label structures). For
every 2pdom-algebra X , we have a label structure with X as

edge-labels, tests as vertex-labels, and x ≡′e y := x ≡ y◦.

We assume a label structure L for the rest of this section

and the following one, with setoids (Lv ,≡) and (Le ,≡).

Definition 4.4 (Graph). An (L-labeled directed multi-) graph
is a structure G = ⟨V , E,p, lv , le ⟩, where

• V is a finite type of vertices
• E is a finite type of edges
• p : B→ E → V is a function where p false e indicates
the source of the edge e and p true e indicates the target
of the edge e
• lv : V → Lv indicates the label of each vertex

• le : E → Le indicates the label of each edge

We write x : G to denote that x is a vertex of G.

Note that self-loops are allowed, as well as parallel edges

with the same label. Representing the source and target func-

tions for edges using a single function allows us to avoid

code duplication at several places: this pieces of information

are often handled in a uniform way.

In order to define sequential and parallel composition

(cf. Fig. 2), we rely, as in [7, 9] on the following two opera-

tions: disjoint union and (vertex-)quotients.

Definition 4.5. LetG=⟨V , E,p, lv , le ⟩ andG ′=⟨V ′, E ′,p ′, lv ′,
le ′⟩. The disjoint union of G and G ′, is the graph

G +G ′ := ⟨V +V ′, E + E ′,p + p ′, lv + lv ′, le + le ′⟩

Here, f + f ′ (for f ∈ {p, lv , le }) is the pointwise lifting of

f and f ′ to the sum type E + E ′ or V + V ′ with results in

V +V ′, Lv , or Le).

In order to define quotients on graphs we exploit that finite

types are closed under taking quotients. If ≈ : X → X → B
is a boolean equivalence relation on some finite type X , the

quotient [2] ofX with respect to≈, writtenX/≈, is a finite type
as well. The type X/≈ comes with functions π : X → X/≈
and π : X/≈ → X such that π (π x) = x for all x : X/≈ and
π (π x) ≈ x for all x : X .

Definition 4.6. LetG=⟨V , E,p, lv , le ⟩ and let ≈ : G → G →
B be an equivalence relation. The quotient of G modulo ≈,
written G/≈, is the graph

⟨V/≈, E, λbe . π (p b e), l
v ′, le ⟩

where lv ′ := λx .
⊗
(y :V |πy=x) l

v y gathers in every equiva-

lence class (i.e., every vertex of the new graph) all the vertex

labels of the vertices in the class.

In addition to those global operations for the algebra of

graphs, we need the following local operations to define the

rewrite system:

Definition 4.7. Let G be a graph and let x,y : G, α, β : Lv ,
and u : Le . We write:

• 1α for the edge-free graph with one α-labeled vertex.

• 2
β
α := 1α + 1β (a graph with only two vertices).

• G ∔ α := G + 1α (G with an additional vertex).

• G ∔ [x,u,y] for G with an additional u-labeled edge

from x to y.

• u
β
α := 2

β
α ∔ [inl ∗,u, inr ∗] (a graph with a single edge

between two distinct vertices).

• G[x ← α] for G where x is labeled with α ⊗ lvx (i.e,

α is combined with the existing label of x).

Note that for all these graph operations (both the local

ones and the global ones), working in Coq with a repre-

sentation of graphs closely following Definition 4.4 is ex-

tremely convenient: it is compact, and all basic invariants

are nicely enforced via (dependent) types. Moreover, the

MathComp [18] library provides all the required infrastruc-

ture for taking disjoint unions and quotients on finite types.

Given a boolean b : B, we write u ≡[b] v for u ≡ v if

is b = false, or u ≡′ v otherwise. This allows us to define

isomorphisms as follows:

Definition 4.8. Let F=⟨V , E,p, lv , le ⟩ andG=⟨V ′, E ′,p ′, lv ′,
le ′⟩ be graphs. A homomorphism from F toG consists of three

functions hv : V → V ′, he : E → E ′, and hd : E → B s.t.

1. for all e : E, b : B, p ′b (he e) = hv (p (hd e ⊕ b) e).
2. for all x : V , lv ′(hv x) ≡ hv x .
3. for all e : E, le ′(he e) ≡[hd e] l

e e .

An isomorphism is a homomorphism where hv and he are
bijections. We denote the type of isomorphisms between

graphs F and G by F ≃ G.

Intuitively, the hd predicate in a homomorphism indicates

whether the homomorphism flips a given edge or not. If

an edge e is flipped, the vertex component hv should map

the source of e to the target of he e and vice versa, whence

the use of a boolean xor operation in the first requirement.

Accordingly, the labels of the two edges should be related by

≡′ rather than ≡ when an edge is flipped (third requirement).

Note that the notion of isomorphism depends on the label

structure. When the label structure L is the one from Defini-

tion 4.2, hd must be the constantly false function (because

of the third condition), and the second condition vanishes

since all vertices are labeled with the unique value of type

unit; therefore, we recover in this case a standard definition

of non-edge-flipping isomorphism on edge-labeled multi-

graphs [7, 9].

Fact 4.9. Graph isomorphism is an equivalence relation.
4

Completeness of an Axiomatization of Graph Isomorphism

We remark that Definition 4.8 formalizes the computa-

tional notion of isomorphism rather the property of two

graphs being isomorphic. This is crucial for a compositional

treatment of isomorphisms. To see this, consider the graph

expression F ∔ [x,u,y] and the operation of replacing F with

an isomorphic graph G. This requires to also replace the

vertices x and y with their respective images under the ver-

tex component of the isomorphism. This approach is thus

required in order to state (and prove) the two congruence

properties below. (In the following, when an isomorphism

h : F ≃ G appears as a function, it is to be taken as the

underlying vertex component hv .)

Lemma 4.10. Let F ,G be graphs and let h : F ≃ G.

• F ∔ [x,u,y] ≃ G ∔ [h x,u,hy]
• F [x ← α] ≃ G[h x ← α]

Concretely in Coq, formalizing the isomorphisms in such a

computational way requires us

• to place the definition in Type rather than Prop,
• to express that functions are bijective using explicit

inverses (here we build on a small library where we

encapsulate computational bijections between types),

• to make sure that whenever we define an isomorphism,

we make it either transparent so that its computational

content is immediately available, via reduction, or we

prove appropriate equations about it before making it

opaque for reduction.

Like in [9], we prove the following properties about the

global operations of union and quotient:

Lemma 4.11 (Generalization of [9, Lem. 6.6]). For all multi-
graphs F , F ′,G,G ′,H , we have:

1. F +G ≃ G + F and F + (G + H) ≃ (F +G) + H .
2. If F ≃ G and F ′ ≃ G ′, then F + F ′ ≃ G +G ′.
3. If ≈, ≈′ are two pointwise equivalent equivalence rela-

tions on (the vertices) of F , then F/≈ ≃ F/≈′ .
4. If F ≃ G then F/≈ ≃ G/≈′ , where ≈′ is the equivalence

relation on G induced through the given isomorphism
by a given equivalence relation ≈ on F .

5. F +G/≈ ≃ (F +G)/≈′ where ≈ is an equivalence relation
onG and ≈′ is its extension to F +G (leaving all vertices
of F in singleton classes).

6.
(
F/≈

)
/≈′
≃ F/≈′′ , with ≈ an equivalence relation on F , ≈′

an equivalence relation on F/≈, and ≈′′ the equivalence
relation on F obtained by composing ≈ and ≈′.

7. (F + G)/≈ ≃ F/≈′ when G has no edge and all vertices
labeled with 1, ≈ is an equivalence relation on F +G , ≈′

is its restriction to F , and for all x : G there exists y : F
with inr x ≈ inl y.

These lemmas allow us to extrude quotients out of unions

and to simplify quotients [9]. The generalization to vertex-

labeled graphs requires us to verify that vertex labels are

collected in a consistent way by the quotient operation (Def-

inition 4.6). While we use ssreflect notations for the ‘bigops’

operation appearing in this definition, we have to reprove

various laws since we only have a monoid structure up to

a setoid equality. The generalization to edge-flipping iso-

morphisms is harmless: the concrete isomorphisms (the first,

third, and last three items) do not use this opportunity, and

the remaining congruence properties just forward this piece

of information.

In addition, we prove a series of basic isomorphisms about

interactions between the various operations. We list a few of

them below. Together with Lemma 4.11 these properties al-

low us to reason algebraically and compositionally when we

have to prove isomorphisms between graphs. The situation

is however not as satisfactory as with standard equational

reasoning: the type dependency in congruence lemmas (e.g.,

Lemma 4.10) prevents us from using standard tools like ‘se-

toid rewriting’ so that we generally have to apply these

congruence lemmas manually.

Lemma 4.12. For all graphs F ,G, we have
• F ∔ [x,u,y] ≃ F ∔ [y,v, x] whenever u ≡′ v ,
• F ∔ [x,u,y]∔ [z,v, t] ≃ F ∔ [z,v, t]∔ [x,u,y],
• F ∔ [x,u,y][z ← α] ≃ F [z ← α]∔ [x,u,y],
• F ∔ [x,u,y] +G ≃ (F +G)∔ [inl x,u, inl y],
• (F ∔ [x,u,y])/≈ ≃ F/≈ ∔ [πx,u, πy].

We also prove the following lemma, allowing us to provide

an explicit representation for a given quotient graph. We

shall see in Section 7 that this makes it possible to prove

some concrete isomorphisms by reasoning globally at places

where the compositional approach is less convenient.

Lemma4.13. LetG = ⟨V , E,p, lv , le ⟩ andH = ⟨V ′, E ′,p ′, lv ′,
le ′⟩ be graphs; let ≈ be an equivalence relation onV . Let hv be
a surjection from V to V ′. Let he be a bijection from E to E ′. If

1. for all e : E, b : B, p ′b (he e) = hv (p (hd e ⊕ b) e);
2. for all y : V ′, lv ′y ≡

⊗
y=hv x l

v x ;
3. for all e : E, le ′(he e) ≡ le e .

Then G/≈ ≃ H .

(The three conditions are almost those of being a homo-

morphism, except that the condition on vertices labels ac-

counts for the fact that hv is not injective.)

5 The 2pdom-algebra of graphs
In order to obtain a Σ-algebra, we need to work with two-

pointed graphs:

Definition 5.1. A two-pointed graph (or 2p-graph for short)

is a structure ⟨G, ι,o⟩ where G is a graph and ι : G and o : G
are two vertices called input and output respectively.

The notions of homomorphism and isomorphism are ex-

tended accordingly: on 2p-graphs, they should map the input

to the input, and likewise for the outputs. We write F ≃2 G
5

Christian Doczkal and Damien Pous

⟨G, ι,o⟩◦ := ⟨G,o, ι⟩ 1 := ⟨11, ∗, ∗⟩ dom(⟨G, ι,o⟩) := ⟨G, ι, ι⟩

⟨G, ι,o⟩ · ⟨G ′, ι′,o′⟩ := ⟨(G +G ′)/≈, π (inl ι), π (inr o′)⟩
where ≈ := {(inl o, inr ι′)}

eqv

⟨G, ι,o⟩ ∥ ⟨G ′, ι′,o′⟩ := ⟨(G +G ′)/≈, π (inl ι), π (inr o′)⟩
where ≈ := {(inl ι, inr ι′), (inl o, inr o′)}

eqv

Figure 3. Σ-operations on 2p-graphs.

when two 2p-graphs F and G are isomorphic. The local op-

erations are extended to 2p-graphs in the obvious way, and

we overload the notations for these operations.

We can now give a formal definition for the Σ-operations
on 2p-graphs (Fig. 3, where Reqv

is the equivalence closure

of a binary relation R). This is the same definition as in [7, 9]

except that it is generalized to graphs over an arbitrary

label structure; the way vertex labels are handled is com-

pletely hidden in the definition of the quotient operation on

graphs (Definition 4.6). Accordingly, since we have gener-

alized [9, Lem. 6.6] to L-labeled graphs (Lemma 4.11), the

formal proof [9] of Proposition 3.1 smoothly scales into a

proof of the following generalization:

Proposition 5.2. For every label structure L, 2p-graphs over
L form a 2pdom-algebra.

We finally define the function g interpreting terms into

graphs. There are actually two such functions:

• the one from Theorem 3.2, which interpret a term

as a letter-labeled graph, i.e., a graph over the label

structure from Definition 4.2. This is the unique Σ-
homomorphism gA such that gA(a) = a∗∗ for all letters
a ∈ A, where ∗ : unit is the only allowed vertex-label.
• the one used in the reducibility statement for the rewrite

system, which produces a term-labeled graph, i.e., a

graph over the label structure from Definition 4.3 ap-

plied to the 2pdom-algebra of terms. This is the unique

Σ-homomorphism gT such that gT(a) = â1̂
1̂

for all let-

ters a ∈ A, where 1̂ is the term 1 seen as a test, and â
is the letter a seen as a term.

Since we proved that both algebras of graphs are 2pdom-

algebras (Proposition 5.2), we get that u ≡ v entails g(u) ≃2
g(v) for both functions. Instead, the completeness proof we

sketched in Section 3 only gives us a proof of completeness

w.r.t. gT . To get completeness w.r.t. gA , we build on the

following lemma:

Lemma 5.3. If gA(u) ≃2 gA(v) then gT(u) ≃2 gT(v).

Proof. Follows from relabelings between two label structures

being Σ-homomorphisms and preserving isomorphisms. □

We only work with gT in the sequel; we abbreviate it as g.

6 Rewrite System
We now present the graph rewrite system we use to establish

completeness of the axioms in Fig. 1. The rewrite system

rewrites 2p-graphs labeled with elements of an arbitrary

2pdom-algebra X 1
which we fix in this section.

An informal description the rules is given in Fig. 4. A

key intuition about these rules, which does not need to be

formalized, is the following. First observe that ifX is itself an

algebra of ‘basic’ graphs, so that we have graphs labeled with

basic graphs, then one can expand a graph into a basic graph

by ‘replacing’ the edges and vertices by their labels. (In fact,

the construction of the previous section is a monad in the

category of 2pdom-algebras, where multiplication is given

by expansion.) The key intuition is that isomorphisms and

rewrite rules preserve expansions: if F ≃2 G or F 7→ G then

the expansions of F and G are isomorphic (as basic graphs)
2
.

This is consistent with the analogy given in Section 3 about

state-removal procedures for extracting regular expressions

out of finite automata: there, the automata are rewritten

through local operations that preserve the overall language.

It is important here that we work modulo edge-flipping

isomorphisms. For instance, the following step is an instance

of rule (V2) modulo such isomorphisms:

u vα
7→ u◦αv

If we were not doing so, we would need two variants of rule

(V2) (the one above and the symmetric one), as well as a

variant of rule (V1) and a variant of rule (E2). We would

thus move from five to nine cases in each case analysis on

steps, and from 15 to 45 cases in the local confluence proof.

Alternatively, we could add a rule to flip an arbitrary edge.

But such a rule is not terminating so that it would prevent

us from using Newman’s lemma for proving confluence. (All

other rules remove either an edge or a vertex, so that the

system we use is obviously terminating.)

Remark 6.1. Rule (V0) deserves some explanation, as it is not

included in [8]. Note that graphs of the shapeд(u) are always
connected and that the rewrite system never disconnects

connected graphs. Consequently, rule (V0) will never apply

when starting from the graph of a term. We include the

rule because it makes the rewrite system confluent also on

possibly disconnected graphs, without changing its behavior

on the connected graphs we care about. This allows us to

avoid talking about connectivity, at the cost of five easy

additional cases in the confluence proof.

Unlike for the construction of the 2pdom-algebra of graphs,

which mainly uses global operations on graphs, the rewrite

system is defined using various local operations. There are

1
Through the label structure from Definition 4.3.

2
The only exception to this intuition is the rule (V0), which is used in a

special way in the present development; see Remark 6.1 below.

6

Completeness of an Axiomatization of Graph Isomorphism

(V0)

α
7→

(V1)
uα β

7→
α dom(uβ)

(V2)
u vα

7→ uαv

(E1)

u

α
7→

α (u ∥ 1)

(E2)

u

v
7→

u ∥v

Figure 4. Rewrite rules for term-labeled graphs. The square

vertices may have additional incident edges. The circular

vertices (i.e., those that are removed) must be distinct from

input and output and must not have other incident edges.

moreover at least two fundamentally different ways to for-

malize this rewrite system: a subtractive version and an ad-

ditive one. Assume an operationG \ x that removes a vertex

x : G (and any incident edges) from the graph G. Then rule

(V0) can be expressed as rewriting G to G \ z, provided that

z < {ι,o} and that z has no incident edges. Alternatively, this
rule can be expressed as rewritingG ∔ α toG . Note that the
latter formulation does not require any side condition: the

fact that the new vertex is isolated and distinct from input

and output is implicit in definition ofG ∔ α . This makes the

additive formulation rather appealing, especially with the

graph representation employed so far. Indeed, the subtrac-

tive formulation not only requires explicit side conditions,

but also an operation for deleting vertices, which is painful

to account for with this representation: deleting z : G from

G is only possible if z is neither input nor output, so that

vertex deletion on 2p-graphs must take a proof of this fact

as additional argument.
3

Recall from Section 3 that the two most important proper-

ties of the rewrite system are:

(ii) Reducibility of g(u) into a small irreducible graph;

(iii) Confluence up to isomorphism.

It turns out that (ii) can be proved with reasonable effort

using an additive formulation of the rewrite system and

the packaged representation of graphs. However, as we will

argue in Section 8, a subtractive formulation is much more

convenient for (iii) and requires us to temporarily use a

second representation of graphs.

We now give the formal definition of the rewrite system

we use to prove the reducibility property. The rules are given

in Fig. 5. Recall that G ∔ α is defined as the disjoint union

of G and the single-vertex graph 1α whose only vertex is ∗.

Hence, its vertices are inl x for x : G and inr ∗.

3
Another possibility would be to do nothing if the passed vertex is the

input or the output. However, this would make the type of vertices of G \ z
dependent on the value of z and therefore would not solve the problem.

Note that, by design, the rules to not yield a graph property

(i.e., steps are not preserved under isomorphisms). Thus, we

need to close under both isomorphism and transitivity in

order to obtain a well-behaved rewrite system. We do so

through the following inductive definition:

F ≃2 G

F Z⇒ G

F ≃2 F
′ F ′ 7→ G G Z⇒ H

F Z⇒ H

Since ≃2 is reflexive and transitive, so is Z⇒.

To obtain reducibility in the following section, we need to

show that rewrite steps are preserved by the Σ-operations
on 2p-graphs:

Lemma 6.2 (Preservation of steps). If G Z⇒ G ′, then

1. G ∥H Z⇒ G ′ ∥H and H ∥G Z⇒ H ∥G ′,
2. G · H Z⇒ G ′ · H and H ·G Z⇒ H ·G ′,
3. G◦ Z⇒ G ′◦ and dom(G) Z⇒ dom(G ′).

Since the operations are already known to preserve iso-

morphisms (part of Proposition 5.2), it suffices by induction

on the rewrite sequence to prove the lemma when G 7→ G ′.
The last item is straightforward since converse and domain

do not modify the (non-pointed) graph of their argument. It

moreover suffices to do only one side of the first two items

since parallel composition is commutative, and since we can

use converse to swap the arguments of sequential composi-

tions (again, by Proposition 5.2).

Since both parallel and sequential composition are defined

as a quotient of a disjoint union, we factorize most of the

work by proving the following technical lemma:

Lemma 6.3. LetG,G ′,H be 2p-graphs and let ≈ be an equiv-
alence relation on the vertices of G +H such that vertices ofG
which are neither input nor output are not equivalent to any
other vertex. Let ≈′ be the equivalence relation mimicking ≈
on G ′ + H . If G 7→ G ′, then ⟨(G + H)/≈, π inl ιG , π inr oH ⟩ Z⇒
⟨(G ′ + H)/≈′, π inl ιG′, π inr oH ⟩.

Proof. The lemma intuitively holds because every vertex that

can potentially be removed in G by the given rewrite step

to G ′ cannot be the input or the output. Since the quotient
touches at most the input and output ofG , such a vertex can

still be removed in ⟨(G + H)/≈, π inl ιG , π inr oH ⟩.
In practice, this lemma is proved compositionally: after a

case analysis on the rule used to derive G 7→ G ′, we use the
commutation properties established between the local oper-

ations and the global ones (Lemma 4.12) in order to rewrite

⟨(G + H)/≈, π inl ιG , π inr oH ⟩ into an isomorphic graph for

which the same rewrite rule syntactically applies, and we

prove that the resulting graph is isomorphic to the expected

one by using the commutation properties again. □

Note that the use of Z⇒ in the lemma above is solely to

allow for isomorphism steps around a single proper step;

this pattern is occurs at several places in our development

7

Christian Doczkal and Damien Pous

(V0) G∔α 7→ G
(V1) G∔α∔[inl x,u, inr ∗] 7→ G[x ← dom(uα)] (E1) G∔[x,u, x] 7→ G[x ← u ∥ 1]
(V2) G∔α∔[inl x,u, inr ∗]∔[inr ∗,v, inl y] 7→ G∔[x,uαv,y] (E2) G∔[x,u,y]∔[x,v,y] 7→ G∔[x,u ∥v,y]

Figure 5. Additive presentation of the rewrite system.

7 Reducibility
We work in this section with the 2pdom-algebra of terms

over A, and with 2p-graphs labeled using this algebra.

To get a formal reducibility statement, we need to define

the normalization function discussed in Section 3, as well as

the function g′ from normal terms to graphs.

A normal term is either a test (α), or a triple (α,u, β)where
u is intuitively not a test, although we do not need to keep

track of this information. We get small irreducible graphs

from normal terms by setting g′(α) := 1α and g′(α,u, β) :=
u
β
α . We recover a term from a normal term by setting ⌊(α)⌋ :=

α and ⌊(α,u, β)⌋ := αuβ .
The role of the normalization function _↓ consists in recur-

sively isolating the tests appearing in a given term. It is de-

fined as the unique Σ-homomorphism such that a↓ = (1,a, 1),
after having defined a Σ-algebra on normal terms. For in-

stance, we set

(α,u, β) · (γ ,v, δ) := (α,uβγv, δ)

(α) ∥ (β) := (αβ)

(α,u, β) ∥ (γ ,v, δ) := (αγ ,u ∥v, βδ)

(α,u, β) ∥ (γ) := (αuβ ∥ γ)

dom((α,u, β)) := (αdom(uβ))

(see [8, Fig. 5] for the other cases.)

As explained in Section 3, this syntactic normalization

function is valid w.r.t. 2pdom axioms.

Proposition 7.1 (Normalization). For all terms u, ⌊u↓⌋ ≡ u.

Proof. This amounts to proving that the above equations

defining the Σ-algebra on normal terms are all derivable

from 2pdom axioms after applying ⌊_⌋ on both sides. □

Formalizing reducibility is more challenging:

Proposition 7.2 (Reducibility). For all termsu, g(u) Z⇒ g′(u↓).

Proof. We proceed by induction onu. In each case, we obtain

reduction sequences by induction, which we can combine

using the preservation lemma; then it suffices to do a case

analysis on the shape of the normal terms, and to perform a

last rewrite step if necessary.

Suppose for instance that u = v ∥w . By induction we get

reduction sequences g(v) Z⇒ g′(v↓) and g(w) Z⇒ g′(w↓), from
which we deduce by Lemma 6.2 that g(u) = g(u) ∥ g(v) Z⇒
g′(v↓) ∥ g′(w↓). Then there are three cases to consider:

• either bothv↓ andw↓ are tests, say (α) and (β), so that
u↓ = (αβ). In this case it suffices to check that

g′(v↓) ∥ g′(w↓) = 1α ∥ 1β ≃2 1α β = g′(u↓)

• or none of them is a test:v↓ = (α,v
′, β),w↓ = (γ ,w

′, δ),
u↓ = (αγ ,v

′ ∥w ′, βδ), and we check that

g′(v↓) ∥ g′(w↓) = v ′
β
α ∥w

′δ
γ

≃2 2
βδ
αγ ∔ [inl ∗,v ′, inr ∗]∔ [inl ∗,w ′, inr ∗]

7→ 2
βδ
αγ ∔ [inl ∗,v ′ ∥w ′, inr ∗] (E2)

= (v ′ ∥w ′)
βδ
αγ = g′(u↓)

• or one of them is a test and the other is not, say v↓ =
(α,v ′, β) andw↓ = (γ), so that u↓ = (αv

′β ∥ γ). There
we have

g′(v↓) ∥ g′(w↓) = v ′
β
α ∥ 1γ

≃2 1α βγ ∔ [∗,v ′, ∗]

7→ 1α βγ (v ′ ∥ 1) (E0)

≃2 1αv ′β ∥ γ = g′(u↓)

The last isomorphism comes from the lawαβγ (v ′ ∥ 1) ≡
αv ′β ∥ γ , which is indeed derivable.

In those three cases for parallel composition, the first isomor-

phismwe have to provide is between the graph g′(v↓) ∥ g′(w↓),
which is a quotient of a graph with two to four vertices, and

a concrete graph with one or two vertices. We could prove

those isomorphisms compositionally, but it turned out to

be more convenient to prove them using Lemma 4.13, by

providing surjective homomorphisms explicitly.

The other Σ-operations are handled similarly, domain and

converse of course being simpler. □

8 Confluence
We use Newman’s lemma to prove confluence of Z⇒ via local

confluence of the single step relation 7→. Since we work

modulo isomorphisms and our single step relation is not a

graph property, the appropriate local confluence property is

the following one:

Proposition 8.1 (Local confluence modulo isomorphisms).
If F ′←[F ≃2 G 7→ G ′, then there existsH such that F ′,G ′ Z⇒ H .

Thanks to the inductive definition we used for Z⇒, we

easily formalize the required variant of Newman’s lemma to

deduce confluence of Z⇒.

Formalizing the above local confluence lemma however

turns out to be extremely tedious using packaged graphs

and our additive definition of the rewrite rules. To see why,

consider one of the simplest cases, the interaction of two

instances of the (V1) rule. Our assumptions in this case are:

• F ∔ α ∔ [inl x,u, inr ∗] ≃2 G ∔ β ∔ [inl y,v, inr ∗]
8

Completeness of an Axiomatization of Graph Isomorphism

• F ∔ α ∔ [inl x,u, inr ∗] 7→ F [x ← dom(uα)]
• G ∔ β ∔ [inl y,v, inr ∗] 7→ G[y ← dom(vα)]

In order to close this pair, we first have to check whether

the isomorphism maps inr ∗ to inr ∗ (in which case the two

instances are the same). Otherwise, we need to trace the

vertex removed on the right through the isomorphism in

order to expand F accordingly and vice versa. Moreover, one

needs to exhibit an isomorphism between the untouched

parts of F andG . This happens in a dependently typed setting
and our attempts to carry out these constructions failed due

to circular dependencies between the involved statements.

Moreover, even if this problem could be solved, it would not

lead to a natural proof of local confluence: the vertices of

interest each have two names (in F and in G), keeping track

of their correspondences rapidly grows out of hands, and we

cannot organize case distinctions in the most efficient way.

Instead, we prove local confluence using an alternative

representation of both graphs and the step relation. As it

comes to graphs, we employ open graphs: graphs where both
vertices and edges are just natural numbers. Although such

a formal representation is commonplace [1, 13–15, 17], we

are not aware of any work where a correspondence with a

packaged representation was established and exploited. For

the step relation, we employ a subtractive characterization

such that single steps can be performed independently from

the concrete shape of the considered graph.

Definition 8.2 (Open graph). We fix two copiesV and E

of the countably infinite type N of natural numbers and call

them vertices and edges respectively. An (open) pre-graph is

a tupleU = ⟨VU , EU ,pU , l
v
U , l

e
U , ιU ,oU ⟩ where

• VU is a finite set of vertices

• EU is a finite set of edges

• pU : B→ E → V indicates the source and target of

edges

• lvU : V → Lv indicates the labels of vertices

• leU : E → Le indicates the labels of edges
• ιU and oU indicate the input and the output

A pre-graph is well-formed (i.e, an open graph) if the follow-

ing conditions hold:

• pU b e ∈ VU for all b : B and e ∈ EU .
• ιU ,oU ∈ VU .

We let O,U ,V . . . range over open pre-graphs. The sepa-

ration into pre-graphs and well-formedness is crucial here.

It allows us to separate the task of proving that a graph has

the desired shape from proving that it is actually a graph.

In Coq, we use the finmap library [3] to represent finite

sets over the countable typesV and E. Moreover, we turn

the well-formedness predicate into a class, allowing it to be

inferred it automatically in many situations.

We then define operations corresponding to those defined

on 2p-graphs. In the case of open graphs, where edges and

vertices are external, the operations adding vertices and

edges take the edge to be added as additional argument.

That is, we have the following operations:

• U ∔ [x,α] denotesU with vertex x labeled with α
• U ∔ [e, x,u,y] denotes U with e u-labeled edge from

x to y.
• U [x ← a] denotesU where x is labeled with a⊗lv U x .
• U \ x denotes U with x and all edges incident to x
removed.

• U − E denotesU with all the edges in E removed.

All these operations are easily defined as operations on pre-

graphs. They yield graphs under the expected side conditions

(e.g., adding an edge requires that the vertices are part of

the graph and deleting a vertex requires that the deleted

vertex is distinct from input and output). In particular, vertex

deletion, which we will use extensively below, is a benign

operation on open graphs. In contrast, the quotient and dis-

joint union operations we extensively used in the previous

sections would be painful to deal with on open graphs.

We have the following notion of strong equivalence: two

pre-graphs are strongly equivalent if they only differ by their

labels, up to the setoid relations on Lv and Le .

Definition 8.3 (Strong equivalence). Let O and U be pre-

graphs. We call O and U strongly equivalent, written O ≡ U ,

if the following conditions are satisfied

1. VO = VU and EO = EU .
2. the functions pO and pU agree on VO
3. lvOx ≡ l

v
U x for all x ∈ VO

4. leOe ≡ l
e
U e for all e ∈ EO

5. ιO = ιU and oO = oU

In other words, strong equivalences correspond to non-

edge flipping isomorphisms which are the identity on both

vertices and edges. This relation enjoys a number of useful

properties, of which we list only a few:

Lemma 8.4. 1. ≡ is an equivalence relation on pre-graphs
2. U [x ← α][y ← β] ≡ U [y ← β][x ← α]
3. U \ x \ y = U \ y \ x
4. U ∔ [e, x,u,y] \ z ≡ (U \ z)∔ [e, x,u,y]

if z < {x,y} and e < EU
5. U ∔ [e, x,u,y] \ y ≡ U \ y
6. U ∔ [x,a] \ x ≡ U ifU is well-formed and x < VU .
7. U [x ← α] ≡ V [x ← β] ifU ≡ V and α ≡ β
8. U ∔ [e, x,u,y] ≡ V ∔ [e, x,v,y] ifU ≡ V and u ≡ v

Note that most of these equivalences hold irrespective

of whether the graph G is well-formed or not. A notable

exception is (6), where the addition of x to a graph that is

not well-formed could turn a formerly “dangling” edge into

one that is incident to x and would therefore be removed by

the deletion of x . That the last two items hold is extremely

convenient as it allows us to use ‘setoid rewriting’, something

we cannot use for isomorphisms on packaged graphs due

to the dependency between the replaced graphs and their

vertices (cf. Lemma 4.10).

9

Christian Doczkal and Damien Pous

(V0)

z ∈ VU IU (z) = ∅ z < IOU

U Û7→ U \ z

(V1)

IU (z) = {e} arcU e x u z x , z z < IOU

U Û7→ U [x ← dom(u · lvU z)] \ z

(V2)

IU (z) = {e1, e2} e1 , e2 z < {x,y}
z < IOU arcU e1 x u z arcU e2 z v y

U Û7→ U \ z ∔ [max(e1, e2), x,u · l
v
U z · v,y]

(E1)

arcU e x _x

U Û7→ (U − {e})[x ← leU e]

(E2)

arcU e1 x u y arcU e2 x v y e1 , e2

U Û7→ (U − {e1, e2})∔ [max(e1, e2), x,u ∥v,y]

Figure 6. Open step relation.

We now turn to the definition of the step relation. We

want steps to be preserved under isomorphism so that the

local confluence property can be stated using a single graph

as a left-hand side of two reduction steps. This forces us to

handle the edge-flipping behavior in the definition of the

rules. To this end, we define a predicate expressing whether

an edge can, up to reversal, be seen as a given edge, and then

use this predicate in the definition of the step relation.

arcU e x u y :=

e ∈ EU ∧ ∃b .pU b e = x ∧ pU (¬b) e = y ∧ l
e
U e ≡[b] u

We moreover write IG (x) for the set of edges incident to x
in G. The rules of our subtractive variant of the step rela-

tion are given in Fig. 6. We use a max operation on edges

(natural numbers) in rules (V2) and (E2): by doing so, the

name of the edge which is kept depends only on the edges

being removed and not on the order in which the edges are

matched. This is convenient in that it allows us to close local

confluence critical pairs using strong equivalences rather

than isomorphisms.

We define the multi-step rewrite relation ÛZ⇒ as the least

transitive relation containing strong equivalence, single steps,

but also the relation that flips a single edge in a graph. This is

fine since we reason modulo edge-flipping isomorphisms on

packaged graphs; doing so makes it possible to use symmetry

reasoning in the analysis of the critical pairs.

Nowwe have everything in place to prove local confluence

Proposition 8.5. Let O , U , V be open graphs such that
U Û← [O Û7→ V . Then there exist graphs U ′ and V ′ such that
U ÛZ⇒ U ′, V ÛZ⇒ V ′ andU ′ ≡ V ′.

Since ÛZ⇒ is closed under strong equivalence, the statement

is equivalent to the one where U ′ is syntactically equal to

V ′. We prefer this formulation because it matches the way

we prove the lemma.

Proof. The proof boils down to a case distinction between

all the possible pairs of rules that could have been applied to

obtain U Û←[O Û7→ V . We can reduce the number of cases by

assuming, without loss of generality, that the rule applied on

the left has a lower index (with respect to the textual order

in Fig. 6). In Coq, this is realized by defining the relation

Û7→ as a relation in Type and defining a function numbering

the rules. There are still fifteen cases left, and each of them

comes with its own case distinctions. We discuss only some

illustrative cases below.

• Consider an interaction of the rule (V1) with

arcO e x u z and rule (V2) with arcO e1 x
′u ′ z ′ and

arcO e2 z
′v ′y ′. We have z , z ′ due to the different

number of incident edges. If z < {x ′,y ′} the instances
are independent, so assume z ∈ {x ′,y ′}. Without loss

of generality, we can assume z = x ′, for otherwise we
exchange the roles of x ′ and y ′ as well as e1 and e2,
setting u ′ := v ′◦ andv ′ := u ′◦ and flipping the edge in-
troduced through the application of (V2). Hence, e2 = e ,
z ′ = x , and v ′ = u, exhibiting the situation below:

u′ αdom(vβ)
← [u′ uα β

7→ u′αu β

After applying rule (V1) on both sides and using the

equivalences from Lemma 8.4, it suffices to show

dom(uαvβ) ≡ dom(uαdom(vβ)).
• Rules (V2) and (E2) can interact as follows:

uαv◦

γ ←[
u

v

γ α
7→

u ∥vγ α

This pair can be joined by applying rule (E1) in the

left and rule (V1) on the right, yielding the derivable

equation uαv◦ ∥ 1 ≡ dom((u ∥v)α).
• Rule (V1) can interact with itself as follows:

αdom(uβ)
← [

uα β
7→

βdom(u◦α)

This pair can be joined by applying Rule (V0) on both

sides, not requiring any equation. □

Note that we need to allow edge-flips in the definition of

ÛZ⇒ in order to factor the proof by reasoning without loss

of generality in the first case discussed in the proof. This

is important: we use this pattern thirteen times in the full

proof, which is 500 lines long.

Also remark that the last case mentioned above does not

arise in [8] where the graphs are assumed to be connected.

9 Transferring Local Confluence
Proposition 8.5 proves local confluence, but not using the

representation employed in the rest of the formalization. In

10

Completeness of an Axiomatization of Graph Isomorphism

this section, we outline what is needed in order to transfer

this result and obtain a proof of Proposition 8.1.

We first need translation functions between the two rep-

resentations of graphs. We start with the translation from

open graphs to packaged graphs.

Definition 9.1 (Packing). Let U be an open graph. We de-

fine the packing of U , written pckU , to be the 2p-graph

whose finite type of vertices is the finite type of elements of

VU (also denoted byVU
4
) and likewise for edges. The remain-

ing components are obtained by casting the components of

U to the appropriate types (e.g., p : B→ EU → VU for the

endpoints of edges).

Since finite sets over countable types coerce to finite types

in Coq, this packing operation is easy to define.

For the converse translation, from packaged graphs to

open graphs, the main issue is in embedding the finite types

of edges and vertices of a given packaged graph into the

generic vertex and edge types. For these, we employ two

generic injections

injv : ∀T : finType.T →V

inje : ∀T : finType.T → E

Both of these come only with partial inverses in general,

since T may be empty. This is never the case for the vertex

type of 2p-graphs however, which must contain input and

output, so that we get:

projv : ∀G : 2p-graph.V → vertexG

proje : ∀G : 2p-graph. E → (edgeG)⊥

The functions are defined such that projv (injvv) = v when-

ever v is a vertex (of some 2p-graph) and proje (injee) =
Some e whenever e is an edge. The operation of opening a

packaged graph can then be defined as follows

Definition 9.2 (Opening). Let G = ⟨V , E,p, lv , le , ι,o⟩. We

set opnG := ⟨V ′, E ′,p ′, lv ′, le ′, injv ι, injvo⟩ with
• V ′ := {injvx | x : G}
• E ′ := {injee | e : edge G}
• p ′b e := if proje e is Some e ′ then injv (p b e ′) else ι
• lv ′v := lv (projvv)
• le ′e := if proje e is Some e ′ then lee ′ else 1

At this point, we can prove:

Lemma 9.3. For all 2p-graph G, pck(opnG) ≃2 G.

In order to relate the two variants of the step relation, we

need a proper notion of isomorphism on open graphs. This

is obtained by reusing isomorphisms on packaged graphs

via the packing operation.

Definition 9.4 (Open isomorphisms). Let O andU be open

pre-graphs. We call O and U isomorphic, written O Û≃2 U if

they are both well-formed and pckO ≃2 pckU .

4
This is the finite type of pairs of elements x : V and proofs of x ∈ VU .

Note that we define isomorphism as a relation between

pre-graphs; this relation is a partial equivalence relation

(PER) rather than an equivalence relation due to the well-

formedness requirement.

As expected, strong equivalences give rise to isomorphisms.

Fact 9.5. O Û≃2 U whenever O ≡ U and O is well-formed.

Note that, given O ≡ U , well-formedness of O implies

well-formedness of U , allowing us to have only one well-

formedness assumption. This is convenient when showing

that a complex graph expression is isomorphic to an expres-

sion known to be well-formed.

Now that we have a proper notion of isomorphisms on

open graphs, we can show that the open step relation com-

mutes with them.

Lemma 9.6. If U Û7→ U ′ andU Û≃2 V , then there exists some
V ′ such that V Û7→ V ′ andU ′ Û≃2 V ′.

This property is relatively easy to prove because it deals

exclusively with open graphs. All we need to do is establish

a number of lemmas showing that incidence of edges and

the arc predicate are preserved under isomorphisms. As with

isomorphisms of packaged graphs, this requires viewing

isomorphisms as functions from vertices to vertices.

We then need to prove that (additive) packaged steps and

(subtractive) open step actually match. To prove that pack-

aged steps give rise to open steps we first establish a number

of commutation properties about the opening operation:

Fact 9.7. • opn(G[x ← α]) Û≃2 (opnG)[injvx ← α]
• opn(G ∔ α) Û≃2 opnG ∔ [x,α] when x < EopnG
• opn(G ∔ [x,u,y]) Û≃2 opnG ∔ [e, injvx,u, injvy] when
e < VopnG

Lemma 9.8. If F 7→ F ′ then there exists some U ′ such that
opn F Û7→ U ′ and pckU ′ ≃2 F ′.

Proof. By case analysis on F 7→ F ′. We sketch the case for

the (V1) rule, the other cases are similar. That is, we need to

find a graphU ′ such that

opn(G ∔ α ∔ [inl x,u, inr ∗]) Û7→ U ′ (1)

U ′ Û≃2 opn(G[x ← dom(uα)]) (2)

By Lemma 9.6, we can also make isomorphism steps before

making an actual step. We pick a fresh vertex z and a fresh

edge e and then use Fact 9.7 to push the opening operation

down to the graph G. Thus (1) reduces to showing:

H := opnG ∔ [z,α]∔ [e, injv x,u, z] Û7→ U ′

The side conditions of rule (V1) are then easily established.

Applying the rule (V1) determinesU ′ to be

H [injv x ← dom(uα)] \ z

whose packing is isomorphic to G[x ← dom(uα)]. □
11

Christian Doczkal and Damien Pous

For the converse direction (reflecting open steps with pack-

aged steps), we need to be able to trace vertices through the

packing operation. For this, we define a function

pckv : ∀U .V → U

Recall that the vertex type of pckU is the set of vertices of

U . Hence, this amounts to pairing vertices x with proofs of

x ∈ U if possible and otherwise returning a default vertex.

Fact 9.9. • pck (U [x←α]) ≃2 (pckU)[pckv x←α]
• pck (U ∔ [x,α]) ≃2 pckU ∔ α when x < VU
• pck(U∔[e, x,u,y]) ≃2 pckU∔[pckvx,u, pckvy]when
e < EU

Lemma 9.10. IfU ÛZ⇒ U ′, then pckU Z⇒ pckU ′.

Proof. By induction on the given sequence, since strong

equivalence and edge-flips are both contained in isomor-

phism, it suffices to prove the lemma in the case of a single

rewrite step. We proceed by case analysis on this step. We

again sketch the case for (V1), the other cases are similar. We

have IG (z) = {e}, arcU e x u z, z , x , and z < {ιU ,oU } and
we need to show

pckU Z⇒ pck(U [x ← dom(uα)] \ z)

where α := lvU z. In order to apply the (V1) rule for 7→, we

need to expand U . Without loss of generality, e is an edge

from x to z; if not, we apply an isomorphism that reverses e
inU and reestablish all assumptions. Now it suffices to show

pckU ≃2 pck(U \ z)∔ α ∔ [inl (packv x),u, inr ∗] (3)

and apply rule (V1). Finally, the isomorphism (3) is estab-

lished by extruding the packing operation on the right. Dur-

ing this process, we can choose the vertex and edge to be

added (Fact 9.9) and we choose x and e respectively. Thus, it
suffices to show

pckU ≃2 pck(U \ z ∔ [z,α]∔ [e, x,u, z])

which can be shown using the laws for graph equivalence

(Fact 9.5 and Lemma 8.4). □

We can finally transfer local confluence:

Proof of Proposition 8.1. Assume F ′ ←[F ≃2 G 7→ G ′. By
Lemma 9.8, we getU ′,V ′ such that opn F Û7→ U ′, pckU ′ ≃2
F ′, opnG Û7→ V ′, and pckV ′ ≃2 G ′. By Lemma 9.3, we

have opn F Û≃2 opnG, so that by Lemma 9.6 we get W ′

such that opnG Û7→ W ′
and U ′ Û≃2 W

′
. By open local con-

fluence (Proposition 8.5) on opnG, we finally find O such

that V ′,W ′ ÛZ⇒ O . We can close the diagram with pckO : by
Lemma 9.10 we have

F ′ ≃2 pckU ′ ≃2 pckW ′ Z⇒ pckO ⇐ \ pckV ′ ≃2 G ′ □

10 Conclusion and future work
Putting everything together as explained at the end of Sec-

tion 3, we obtain a formal proof Theorem 3.2. Formalizing

this proof required us to setup several tools for reasoning

about graphs and isomorphisms, under two distinct repre-

sentations: the packaged representation, which is convenient

for constructing and combining graphs, and the open repre-

sentation, which is convenient for subtractive operations.

The formalization has a moderate size (2700/3900 lines of

specification/proofs); large parts of it consist in general in-

frastructure and lemmas about labeled directed multigraphs,

which should be reusable and could be integrated with [9].

We leave four main directions for future work.

First, building on the finite type library of MathComp [18]

is extremely convenient, but the few additional structures

we added on top of it in a monolithic way (labels, graphs,

2p-graphs) already made us reach the point where efficiency

issues start being noticeable. We thus plan to rework the

concrete implementation of these structures, following the

packaged-class approach advocated in MathComp [12]. This

should improve efficiency, but also give us the opportunity

to provide a library with more fine-grained abstractions.

Second, 2pdom-algebras form a fragment of 2p-algebras,

where a neutral element for parallel composition is added,

allowing one to denote all graphs of treewidth at most two—

not just the connected ones. Soundness and completeness of

2p-algebra is established in [4, 8], each time by building on

completeness of 2pdom-algebra. We plan to explore a more

direct approach: we believe that the present formal proof

could be extended to deal directly with this more general

case, just by modifying the rewrite system and the shape

of the normal terms. We would also like to study smaller

fragments. For instance, is it still possible to axiomatize graph

isomorphism in absence of the converse operation?

Third, by combining our completeness proof for 2pdom-

algebra with the extraction function from treewidth at most

two connected graphs to terms [4] formalized in [7], we

could obtain a formal proof that such graphs form the free

2pdom-algebra. The rewrite system we used here makes it

possible to define another extraction function [8], whose in-

formal description is much easier. Formalizing this approach

however seems challenging: it requires to study the expan-

sion function we alluded to at the beginning of Section 6,

which is a global and deeply dependently typed operation.

Fourth, completeness of 2pdom-algebra has been recently

used to obtain that the equational theory of allegories [11] is

decidable [16]. This decidability proof involves more graph

theory than the present one: it exploits the fact that the

graphs of treewidth at most two are precisely those excluding

K4 as a minor, and it requires a long analysis of the possible

homomorphisms occurring within such graphs. Formalizing

this proof seems rather challenging but not out of reach,

thanks to the library we have developed so far.

12

Completeness of an Axiomatization of Graph Isomorphism

References
[1] R. Chen, C. Cohen, J. Lévy, S. Merz, and L. Théry. Formal proofs of

tarjan’s strongly connected components algorithm in why3, coq and

isabelle. In J. Harrison, J. O’Leary, and A. Tolmach, editors, ITP, volume

141 of LIPIcs, pages 13:1–13:19. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2019.

[2] C. Cohen. Pragmatic quotient types in Coq. In Proc. ITP, volume 7998

of Lecture Notes in Computer Science, pages 213–228. Springer, 2013.
[3] C. Cohen. A finset and finmap DRAFT library. https://github.com/

math-comp/finmap, Nov. 2017. Accessed Nov. 17th, 2017.

[4] E. Cosme-Llópez and D. Pous. k4-free graphs as a free algebra. In Proc.
MFCS, volume 83 of LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, 2017.

[5] B. Courcelle and J. Engelfriet. Graph Structure and Monadic Second-
Order Logic - A Language-Theoretic Approach, volume 138 of Encyclo-
pedia of mathematics and its applications. Cambridge University Press,

2012.

[6] R. Diestel. Graph Theory. Graduate Texts in Mathematics. Springer,

2005.

[7] C. Doczkal, G. Combette, and D. Pous. A formal proof of the minor-

exclusion property for treewidth-two graphs. In J. Avigad and A. Mah-

boubi, editors, ITP, volume 10895 of Lecture Notes in Computer Science,
pages 178–195. Springer, 2018.

[8] C. Doczkal and D. Pous. Treewidth-two graphs as a free algebra. In

Proc. MFCS, volume 117 of LIPIcs, pages 60:1–60:15. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2018.

[9] C. Doczkal and D. Pous. Graph theory in coq: Minors, treewidth, and

isomorphisms, 2019. submitted.

[10] R. Duffin. Topology of series-parallel networks. Journal of Mathemati-
cal Analysis and Applications, 10(2):303–318, 1965.

[11] P. Freyd and A. Scedrov. Categories, Allegories. North Holland. Elsevier,
1990.

[12] F. Garillot, G. Gonthier, A. Mahboubi, and L. Rideau. Packaging mathe-

matical structures. In S. Berghofer, T. Nipkow, C. Urban, andM.Wenzel,

editors, TPHOLs, volume 5674 of Lecture Notes in Computer Science,
pages 327–342. Springer, 2009.

[13] A. Guéneau, J. Jourdan, A. Charguéraud, and F. Pottier. Formal proof

and analysis of an incremental cycle detection algorithm. In J. Harrison,

J. O’Leary, and A. Tolmach, editors, ITP, volume 141 of LIPIcs, pages
18:1–18:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[14] P. Lammich and S. R. Sefidgar. Formalizing network flow algorithms:

A refinement approach in isabelle/hol. Journal of Algebraic Reasoning,
62(2):261–280, 2019.

[15] L. Noschinski. A graph library for Isabelle. Mathematics in Computer
Science, 9(1):23–39, 2015.

[16] D. Pous and V. Vignudelli. Allegories: decidability and graph homo-

morphisms. In Proc. LiCS, pages 829–838. ACM, 2018.

[17] A. K. Singh and R. Natarajan. Towards a constructive formalization of

perfect graph theorems. In M. A. Khan and A. Manuel, editors, ICLA,
volume 11600 of Lecture Notes in Computer Science, pages 183–194.
Springer, 2019.

[18] The Mathematical Components team. Mathematical components

– libraries of formalized mathematics. http://math-comp.github.io/
math-comp/.

13

http://dx.doi.org/10.4230/LIPIcs.ITP.2019.13
http://dx.doi.org/10.4230/LIPIcs.ITP.2019.13
http://dx.doi.org/10.4230/LIPIcs.ITP.2019.13
http://dx.doi.org/10.1007/978-3-642-39634-2_17
https://github.com/math-comp/finmap
https://github.com/math-comp/finmap
http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.76
http://dx.doi.org/10.1007/978-3-319-94821-8_11
http://dx.doi.org/10.1007/978-3-319-94821-8_11
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.60
https://hal.archives-ouvertes.fr/hal-02316859
https://hal.archives-ouvertes.fr/hal-02316859
http://dx.doi.org/10.1016/0022-247X(65)90125-3
http://dx.doi.org/10.4230/LIPIcs.ITP.2019.18
http://dx.doi.org/10.4230/LIPIcs.ITP.2019.18
http://dx.doi.org/10.1007/s10817-017-9442-4
http://dx.doi.org/10.1007/s10817-017-9442-4
http://dx.doi.org/10.1007/s11786-014-0183-z
http://dx.doi.org/10.1145/3209108.3209172
http://dx.doi.org/10.1145/3209108.3209172
http://dx.doi.org/10.1007/978-3-662-58771-3_17
http://dx.doi.org/10.1007/978-3-662-58771-3_17
http://math-comp.github.io/math-comp/
http://math-comp.github.io/math-comp/

	Abstract
	1 Introduction
	2 2pdom-algebras
	3 Sketch of completeness proof
	4 Packaged Labeled Multigraphs
	5 The 2pdom-algebra of graphs
	6 Rewrite System
	7 Reducibility
	8 Confluence
	9 Transferring Local Confluence
	10 Conclusion and future work
	References

