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Abstract In order to ensure that existing functionalities have not been
impacted by recent program changes, test cases are regularly executed
during regression testing (RT) phases. The RT time becomes problematic
as the number of test cases is growing. Regression test selection (RTS)
aims at running only the test cases that have been impacted by recent
changes. RTS reduces the duration of regression testing and hence its cost.

In this paper, we present a model-driven approach for RTS. Execution
traces are gathered at runtime, and injected in a static source-code model.
We use this resulting model to identify and select all the test cases that
have been impacted by changes between two revisions of the program. Our
MDE approach allows modularity in the granularity of changes considered.
In addition, it offers better reusability than existing RTS techniques: the
trace model is persistent and standardised. Furthermore, it enables more
interoperability with other model-driven tools, enabling further analysis
at different levels of abstraction (e.g. energy consumption).

We evaluate our approach by applying it to four well-known open-
source projects. Results show that our MDE proposal can effectively re-
duce the execution time of RT, by up to 32 % in our case studies. The
overhead induced by the model building makes our approach slower than
dedicated RTS tools, but the reuse of trace models for further analysis is
overtaking this time difference.

Keywords Regression Test Selection, Regression Testing, Model Driven
Engineering, Execution Trace

1 Introduction
Regression testing (RT) is an important step in the software development lifecycle. It
ensures that code updates do not break the functionalities that have already been suc-
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cessfully tested. However, the size of regression test suites tends to grow fast [YH12]
when an application is evolving; thus considerably increasing the testing cost.

According to various studies, up to 80 % of testing cost is related to regression test-
ing, and more than 50 % of software maintenance cost is dedicated to testing [ER10].
The process of source code compilation, load, and test execution is commonly called
a build. When a build is over, a result, successful or not, is returned to the developer.
According to this result, the developer will either go to another task or correct the
code that has regressed. This is especially true in the context of Continuous Inte-
gration (CI), where the regression testing takes place on a separate server [GPD14].
During the time of the build, the developer does not know yet if she needs to correct
the code (the wait could be long: e.g., 25:33 min including 06:04+18:11 min testing
time for the build 372209560 of the Google Guava project1). Thus, reducing this
duration would improve the development productivity.

Reducing the cost of regression testing by only running a specific subset of test
cases is the purpose of Regression Test Selection (RTS). Most of the large variety
of RTS techniques are based on change impact analysis [LR03, LHS+16]. When an
application under development is being modified, it might be unnecessary to run all
the test cases, especially the ones that are not impacted by changes in the source
code. For instance, existing RTS techniques such as Ekstazi [GEM15] are able to
reduce the regression test time for the Google Guava project 2 to an average of 45 %.
A standard RTS approach usually involves three phases:

• (C) Collection of the dependencies between code and test cases.

• (A) Analysis of the changes to select impacted test cases.

• (E) Execution of the selected test cases.

The benefit of running less test cases during phase (E) could be counterbalanced
by the overhead introduced by the phases (C) and (A). Some existing approaches such
as FaultTracer [ZKK12] have shown a RTS time that is longer than the execution
of all tests. For that reason, several RTS approaches named offline calculate the phase
(C) beforehand. Hence, when the user starts a build, the dependencies are already
available for performing phases (A) and (E) with a positive time gain [Zha18].

The overhead introduced by the phase (A) depends on how the dependencies are
computed during the phase (A) and analysed during the phase (C). It mainly depends
on the precision. A RTS technique is said to be precise if all selected test cases are
affected by the changed code [CH08] (i.e., no useless test case is ran on unchanged
code). Being precise is not mandatory and computing the dependencies at a really fine
grain induces a significant overhead [GEM15]. The balance between the precision and
its induced overhead should be considered when developing and using RTS techniques.

The precision of RTS techniques depends on the granularity when considering
source-code updates. It could distinguish file, class, method, or statement updates. For
instance, a class-level update summarises all the modifications inside a class whereas
a statement-level update considers modifications of a single statement. The usage
of statement-level updates is more precise but induces more overhead than file-level
updates. This is the reason why existing RTS approaches [GEM15] have shown faster
end-to-end3 results using file-level changes, despite selecting more tests. Nevertheless,

1https://travis-ci.org/google/guava/jobs/372209560
2https://github.com/google/guava
3time necessary to compute the set of test cases to run, plus the test execution time.
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L. Zhang shows that depending on the file updated and the case-study, it could be
worth to consider finer method granularity [Zha18]. Therefore, by designing a model-
driven RTS approach, we can provide modularity and allow the tester to manage
the granularity and optimise the precision.

Independently from the precision, RTS techniques must be safe, meaning that
they should select every test case that is impacted by changes in the code [RH96].

While most of the related work on RTS is dedicated to ensuring precision or per-
formance of language-specific and RTS dedicated tools, in this paper we focus on
providing a solution that leverages Model-Driven Engineering (MDE) for improving
RTS in terms of its reusability and interoperability. In the past decade, MDE
has shown that the use of models improves the development in terms of productiv-
ity, quality, and reuse [WHR14]. The accuracy of model-driven program analysis
techniques has proven this approach to be suitable for tracing down the execution of
programs [BCJM10, WP10] and can benefit to RTS. First, the modularity of MDE
allows for a configurable approach where the RTS precision can be set as required.
Second, regression testing is one step among all the software development steps, MDE
aims to prevent each step to be independent by sharing the models. Therefore, we
propose a model-driven RTS approach that collects the execution traces in an impact
analysis model. That model is used all along the RTS and then it can be exchanged,
completed, and reused for different purposes (e.g., debugging, performance analysis,
optimisation). Such model can be connected to the other models of the MDE envi-
ronment, allowing for instance to trace regressions from the requirements model or
UML models, etc. Finally, regressions often happen because of changes in different
artefacts around the code, such as resources, configuration files, or data files. The
holistic view fostered by MDE would enable to address all these problems in a uniform
way based on the impact analysis model.

The risk of applying MDE in RTS is its potential performance overhead, in par-
ticular for building the model [Sel03]. In this paper we show that this cost can be
lightened by developing an offline model-driven RTS technique: costly impact analysis
model creation is anticipated. Our resulting tool significantly reduces the execution
time of regression testing in our case studies, by up to 32 %. While state-of-the-art
dedicated RTS tools may have better raw performance, we argue that the reusability
of our computed models makes our solution especially valuable in MDE environments.

In this paper, we propose a model-driven approach for a highly precise and safe
RTS, using statement-level impact analysis, in order to select test methods impacted
by code changes. An impact analysis model is built offline. When a user requests a
build, this model is queried to select all the tests impacted by changes. Finally, this
reduced set of test cases is executed, thus accelerating the regression testing time.
The approach is based on a customisable model storing the execution traces of the
tests. If the fine-grain accuracy of this model may be slowing down the RTS, it is a
powerful asset for other software engineering tasks, hence improving its reusability.

To evaluate this approach we aim at answering three research questions:

• RQ1: Does our MDE RTS approach allow for a safe and precise RTS?

• RQ2: Is our MDE RTS approach efficient enough to significantly reduce the
regression testing time?

• RQ3: Does our MDE RTS approach offers a better modularity and reusability
than existing approaches?
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The remainder of this paper is organised as follows: Section 2 presents the re-
lated work, Section 3 describes a motivation example, then Section 4 introduces our
approach, followed by an evaluation driven by several experimentations in Section 5.
Finally, Section 6 discusses our proposal and Section 7 concludes this paper and
presents future work.

2 Related Work
RTS has been extensively studied, leading to multiple systematic studies and sur-
veys [ERS10, YH12, GHK+01, LHS+16]. In the following we describe a few repre-
sentative examples of state-of-the-art tools. The approaches for RTS can be classified
according to their granularity.

Coarse-grained regression test selection. Several popular RTS frameworks
are coarse-grained, considering file or class granularity. They result in less overhead
than a finer-grained one, and tends to be more scalable for bigger systems. Ekstazi
has a 3-phases approach: test selection using file-dependencies [GEM15], test execu-
tion, and new dependencies collection, using bytecode instrumentation. Ekstazi is
safe for both code changes and file-system changes. It is among the most efficient
state-of-the-art RTS solutions, with an average time reduction of 47 %.

Fine-grained regression test selection. Orso et al. present a RTS technique
that uses two levels of impact analysis [OSH04]. The first level is coarse-grained,
and accounts for relationships between classes, by generating a graph representing
inheritance and references. This phase allows for change impact computation at
declaration level. The second level generates control-flow graphs at statement level,
for each revision of the code. Coverage information is gathered during the execution of
tests, and a coverage matrix is generated. Such matrix highlights the code statements
that are executed by a specific test. Finally, by comparing control-flow graphs of two
revisions of the same source code, changed statements are gathered, and the test cases
impacted are fetched using the coverage matrix. The empirical evaluation shows that
running the fine-grained analysis produces a high overhead.

Zhang et al. present FaultTracer, a RTS tool using Chianti’s change impact
analysis [ZKK12] for a method-accurate test selection. It generates a set of extended
control-flow graphs, and collects the dependencies at the edge-level by running test
methods. Tests impacted by changes are then computed using those graphs. De-
spite showing accurate results, FaultTracer produces a high overhead, and thus
computing the impact analysis is sometimes longer than executing all the test cases.

Lingming Zhang proposes HyRTS, an hybrid RTS combining both method granu-
larity and file granularity [Zha18]. Using both the cost-effectiveness of file granularity,
and the accuracy of the method-level RTS, HyRTS outperforms Ekstazi and other
state-of-the-art RTS techniques.

Our model-driven approach is modular and can be set to consider a fine-grained
impact analysis as accurate as the state-of-the-art fine-grained RTS techniques or
a coarser-grained granularity. This results in the possibility offers to the tester to
manage the precision of RTS to get a faster test execution, at the expense of a
much slower impact analysis, including the model-management overhead. However,
differently from related work, we propose a model of execution trace of the code. This
model is persisted, customisable, and available to be reused by other model-driven
tools for other types of analysis. Finally, we compute this model beforehand, in order
to effectively accelerate the regression testing duration when triggered by the user.

Journal of Object Technology
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1 public class CA {
2 void mA(int i){
3 if (i == 0)
4 doSomething1();
5 else
6 doSomething2();
7 }
8 void mB() {
9 doSomething3();

10 }
11 void mC() {
12 doSomething4();
13 }
14 }
15

16 public class TestCA {
17 @Test
18 void test_mA_0() {
19 new CA().mA(0);
20 }
21 @Test
22 void test_mA_1() {
23 new CA().mA(1);
24 }
25 @Test
26 void test_mB() {
27 new CA().mB();
28 }
29 @Test
30 void test_mC() {
31 new CA().mC();
32 }
33 }

(a) Revision R1

1 public class CA {
2 void mA(int i) {
3 if (i == 0)
4 doSomething1();
5 else
6 doSomething5();
7 }
8 void mD() {
9 doSomething3();

10 }
11 void mC() {
12 doSomething4();
13 }
14 }
15

16 public class TestCA {
17 @Test
18 void test_mA_0() {
19 new CA().mA(0);
20 }
21 @Test
22 void test_mA_1() {
23 new CA().mA(1);
24 }
25 @Test
26 void test_mB() {
27 new CA().mD();
28 }
29 @Test
30 void test_mC() {
31 new CA().mC();
32 }
33 }

(b) Revision R2

Figure 1 – Two revisions of a program

While we are not aware of any MDE-based tool for RTS of general-purpose lan-
guages, there is some recent work on MDE-based management of execution traces,
especially for DSLs [BMCB17, HBRV]. We differ in addressing by similar techniques
the traces of general-purpose programs. Analysis of execution traces is a very active
research area in software engineering (e.g., recent works are [AMP18, GRS17]) and
process engineering (e.g., [BvdA12]). We believe that a model-driven management
of traces can enhance the interoperability of such solutions.

3 Running Example
Figure 1 presents an example that is used to define the context of our model-driven
approach for RTS. Figure 1a and Figure 1b define a first and a second revisions of a
Java program, respectively. They are verified using the JUnit testing framework.

Journal of Object Technology
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Granularity

M
et

ho
ds

Class Method Statement
test_mA_0 x x x
test_mA_1 x x
test_mB x x x
test_mC x

Table 1 – Selection of test methods depending on the granularity of source-code updates

In the first revision, R1, the test class TestCA verifies that the class CA works as
expected. Four test cases are implemented: test_mA_0, test_mA_1, test_mB, and
test_mC. The first two tests cover the two branches of the if condition in mA. The
third one tests the method mB, and the last one tests the method mC.

The source code modifications of revision R2 update several lines. The first change
occurs at line 6, where the statement inside the else branch is updated. The second
change occurs at line 8, by renaming method mB to mD. Finally, the last modification
considers the new method name mD inside the corresponding test case.

Orso et al. define two different kinds of program changes, statement-level changes
and declaration-level changes [OSH04]. A statement-level change can be either a mod-
ification, deletion, or addition of executable statements, such as lines 6 and 27 changes.
A declaration-level change is a modification of a signature, such as line 8 change. It
could be method name modifications, method additions or deletions, variable type
changes, or any kind of signature changes.

Depending on the granularity of the change impact analysis, different test sets
might be selected for a re-run, as illustrates Table 1. Applying RTS with Class
granularity selects four test cases, with Method granularity three, and with Statement
granularity only two, thus improving the precision. For instance, a Method granularity
would consider the entire method mA() changed, and would select test_mA_1() even
if it is not impacted. To improve the precision, Statement granularity analyses the
impact of each statement: test_mA_1() is not impacted since it doesn’t run line 6.
Therefore, the test execution time is reduced but the overhead is increased.

Next Section, we present a model-driven approach that is able to select impacted
test cases at the most precise Statement granularity. Thereafter, since our approach
provides a persistent impact analysis model, it will be up to the tester to choose the
granularity to balance overhead/precision w.r.t. its case study.

4 Approach
Our model-driven RTS approach performs the three RTS phases relying on impact
analysis model:

• (C) Computation of the impact analysis model.

• (A) Analysis of the impact analysis model to select the impacted tests.

• (E) Execution of the impacted tests.

Journal of Object Technology
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Instrumented Code 

Static Model Execution Traces 

instrumentation

Run all test casesReverse Engineering

Impact Analysis Model 

Source Code 

Figure 2 – Steps to compute the impact analysis model

4.1 Computation of the impact analysis model
Several properties of a program (correctness, robustness, safety, dependencies, etc.)
can be analysed either statically, i.e., by examining the source code of a program, or
dynamically, i.e., by analysing the execution of this program. Combining static and
dynamic analysis is often interesting, since the data gathered dynamically can be used
to add more precision to the static part. Indeed, considering all the possible execution
behaviours of a program is not reasonable for several kinds of analysis [Ern03].

The MoDisco framework is designed to enable static program analysis in MDE [BCJM10].
MoDisco creates a model of the source code, usable for further processing, by model-
driven reverse engineering. The model is easily accessible to any kind of external
modelling tool, providing support for many possible scenarios, such as static mea-
surement, modernisation, understanding. The MoDisco source-code model contains a
full model-driven representation of the source code, and a bidirectional transformation
between model and code.

RTS requires to add dynamic aspects to the static structure and dependency
information already retrieved by MoDisco. Adding dynamic traces turns the static
model of MoDisco into an impact analysis model, serialising how test cases execute
elements of the source code, and helping RTS identifying test cases impacted by source
code changes.

Building the impact analysis model is a costly operation. Nonetheless, considering
the building of this model as the dependency computation in a standard RTS approach
(phase (C)), this model can be computed offline. Hence, when a build is triggered by
the user, after a pull request for instance, this model can be immediately analysed to
select the test cases impacted by code changes.

The approach we propose to build the impact analysis model consists in a succes-
sion of several steps as shown in Figure 2 and as detailed in the next sections. The
first step consists in building a static model from the source code, by reverse engi-
neering using MoDisco. The second step involves the instrumentation of the code. In
the third step, executing this instrumented code on all the tests produces execution
traces. Finally, the fourth step requires parsing those traces, creating references in the
model, that show which elements of the source code are executed by a specific test.

4.1.1 Reverse Engineering
To generate the static model of the source code, MoDisco uses a visitor-based ap-
proach, navigating through the abstract syntax tree (AST) of the source code. In the
case of Java, this model conforms to the MoDisco Java metamodel, is persisted in
XML files, and loaded on-demand in the other steps of our process.

Figure 3 shows an excerpt of the model MoDisco would generate using the source
code of Figure 1a as an input. The MoDisco model contains most of the information

Journal of Object Technology
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R1: Model default: Package

CA: Class TestCA : Class

mA : method mB : method test_mC : methodmC : method test_mB : methodtest_mA_1 : methodtest_mA_0 : method

:Exp
Statement
line = 6

:Exp
Statement
line = 4

:If
Statement
line = 3

:Else
Statement
line = 5

:Exp
Statement
line = 9

:Exp
Statement
line = 12

:Exp
Statement
line = 19

:Exp
Statement
line = 23

:Exp
Statement
line = 27

:Exp
Statement
line = 31

Figure 3 – Excerpt of the MoDisco model with Figure 1a as input

available in the AST, organised in a containment structure, from packages down
to expressions. For instance, Statement objects contain line and column numbers,
expressions, references to declarations, and so on.

In the next steps we complete this model with dynamic data, gathered when
executing an instrumented code.

4.1.2 Instrumentation
The most common approach for tracing the execution of a program is by instrument-
ing it. In the case of Java test cases this can be done for instance using bytecode
instrumentation (BCI) or source code instrumentation (SCI). Both approaches have
their advantages and drawbacks. BCI is usually faster, because SCI needs to recom-
pile the instrumented code before being able to use it. However BCI may not be as
accurate as SCI [HGB+17].

For instance, the Java Code Coverage Framework JaCoCo4 uses BCI [SM08]
through the ASM library5. It iterates over lines of code using the LineNumberTable
attribute available in Java compiled classes. Probes are added between each line of
code, and hence, when a probe is executed, the line of code is considered as covered.
Indeed, BCI can be used to know whether a specific instrumented line of code is
executed, but not exactly when a statement is executed. Usually, there is only one
statement per line of code, but specific cases might happen. For instance, considering
a Java ternary operator which contains a if-true expression and an if-false expres-
sion at the same line: independently of the boolean condition, a standard BCI would
consider both as executed, whereas a SCI is able to distinguish which one is executed.

In our approach we use SCI to precisely track the execution of every element on
the MoDisco metamodel. MoDisco builds a model at the source code level, and thus,
matching the elements of this source code with the model requires less calculation,
and is more precise by using an instrumentation at the same abstraction level. Since
this step is done offline, duration of the recompilation required by SCI is not an issue.

The source code is not instrumented in the same way considering test classes
or System Under Test (SUT) classes. In the SUT classes, all the statements are
instrumented, in order to determine if they have been called by a specific test method.
Before each statement, a probe is added. Hence, if this probe is executed, then the
statement following the probe is considered as executed too. In the test classes, the
source code is instrumented at the method level. A probe is added at the beginning
of each test method, monitoring the test case currently executed. This allows our
approach to trace down all the SUT statements executed by each test method. We
implement the instrumentation by leveraging the Spoon [PMP+16] framework.

4https://www.eclemma.org/jacoco/
5http://asm.ow2.org/
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test: TestCA.test_mA_1()
sutMethod: CA.mA(int)

statement: line 3,col 27 -> line 3,col 38
statement: line 5,col 55 -> line 5,col 59
statement: line 6,col 60 -> line 6,col 75

test: TestA.test_mB()
...

Figure 4 – Execution trace of test mA 1() after instrumentation

R1: Model default: Package

CA: Class TestA: Class

mA: Method test_mA_1: Method

:IfStatement

line = 3

:ExpStatement

line = 4

:ElseStatement

line = 5

:ExpStatement

line = 6

:ExpStatement

line = 23

trace trace trace

Figure 5 – Excerpt of the impact analysis model

4.1.3 Full test set execution
To produce the initial set of execution traces, all the test cases must be executed
once, at the beginning of the process (e.g., when the code is first imported). After the
reverse engineering step we query the MoDisco model to gather the list of test cases
(using Eclipse OCL queries6). Methods having the JUnit 4 @Test annotation are
considered as test cases, such as methods with the Test prefix, in classes extending
the TestCase class of JUnit 3.

Once all the test cases are gathered, the execution of the injected probes will
produce traces, indicating the exact statements, methods, and classes that have been
executed for each test case. These execution traces (Figure 2) are serialised in a
simple text file. For instance, executing the instrumented test method test_mA_1()
of Figure 1a, would produce the execution trace of Figure 4.

4.1.4 Injecting traces in the model
Once all the test cases have been executed, the trace file can be analysed, in order to
complete the MoDisco model of code structure with dynamic information: The classes
and methods are queried in the model using their qualified names, and the statements
are queried using their positions in the compilation unit. Once those elements have
been found, a bi-directional reference is added between the test case, and the executed
program elements. In Figure 5, this reference is the one labeled as impacts. For the
remainder of this paper, we call this model Impact Analysis Model.

Finally, the Impact Analysis Model is persisted in order to be used as soon as a
new version of the code needs to be analyzed, to select the test cases impacted.

6https://projects.eclipse.org/projects/modeling.mdt.ocl
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4.2 Analysis of the impact analysis model to select the impacted tests
This second RTS phase selects the test cases to run, based on the impact analysis
model in our model-driven approach. This phase is online, starting when the user
launches the regression test activity, e.g., after pushing a new version of the code on
a VCS.

Once the build starts and before anything else, the new revision is compiled. If the
compilation fails, no tests are executed and an error report is given to the developer.
If the code compiles successfully, then the RTS can be performed. The two revisions
of the source code are compared, in order to locate the changes. To do that, a VCS
comparison algorithm is used (we use the one implemented in JGit7).

Running such algorithm on two different revisions of the code produces a set of
DiffEntries. They are not only produced from Java files, but from any kind of files
contained in the project, such as configuration files, and compiled sources. When
a DiffEntry concerns a Java file, the impact of source code changes on test cases is
computed using the Impact Analysis Model. Considering non-Java files is part of our
future work. The changed statements are gathered in the model and the impacted test
cases are selected, using the trace reference. For instance, if we focus on the Figure 5,
revision R2 in Figure 1b modified the ExpStatement line 6. Using the trace reference
in the model, test_mA_1 is considered as impacted, and is selected to be run.

As shown in Figure 5, the trace references are precise, linking statements and test
methods. Moreover, by querying the model we can derive the impact at coarser levels
of granularity. For instance in Figure 5, the ExpStatement line 6 is contained inside
the method mA, itself contained inside the class CA. Hence, a coarser-grained analysis
(i.e. method or class granularity) can determine that modifying the method mA or the
class CA would impact test_mA_1, and so on. Implementing a faster hybrid visitor for
computing a coarser-grained impact analysis, such as the one proposed by Lingming
Zhang [Zha18] is possible, thanks to the reusability of our model.

DiffEntry considers a block of a few lines of text, and is classified according to
the type of update (Modification, Insertion, Deletion). In the following we detail the
behaviour of the test selection by type of update.

4.2.1 Modification
First, modifications introduced by developer can be either statement-level changes or
declaration-level changes. If the update is a statement-level change, then the impacts
can be computed with a statement-granularity. If it is a declaration-level change, then
the impacts are computed at a coarser granularity (Method, or Class), depending on
the change.

Second, those changes are either in the SUT, or in the test cases. When a test case
is modified, it is immediately selected to be re-executed. However, the approach is
more specific for SUT modifications: In case of statement-level changes, the modified
lines are parsed, in order to get a set of modified statements. Those statements are
queried in the model, and using the trace reference, all the test cases that executed
this specific statement are selected for a new run.

The approach differs in case of declaration-level changes: If a method declaration
is modified, by either renaming it, or changing the signature, this method is queried
in the model, using its old-version signature. Then, all the test cases that executed
this method are gathered, using the trace reference, and selected for a re-run.

7https://www.eclipse.org/jgit/
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1 abstract class SuperC{
2 void m(){
3 doSomething();
4 }
5 }
6 class C extends SuperC{
7 //

8 //

9 //
10 }
11 class TestC{
12 @Test
13 void test(){
14 new C().m();
15 }
16 }

(a) Revision R1

1 abstract class SuperC{
2 void m(){
3 doSomething();
4 }
5 }
6 class C extends SuperC{
7 void m(){

8 doSomething2();

9 }
10 }
11 class TestC{
12 @Test
13 void test(){
14 new C().m();
15 }
16 }

(b) Revision R2

Figure 6 – Adding a new method impacts an existing test case

Furthermore, the same reasoning is applied with declaration-level changes at class
level. Thus, when a class signature is modified, the old version of the class is queried
in the model, in order to get the test cases impacted, using the trace relation.

Selecting the tests impacted by the modification at different granularities (e.g.,
Package) is also possible, by applying the same approach, thanks to the modularity
provided by that model-driven approach.

4.2.2 Insertion
When the change is an insertion, several cases are possible:

First: Any test-related insertion results in the selection of the test case. Those
can be either a new test, or an existing test with new lines of code.

Second: When new lines are added in an existing SUT method (i.e. statement-
level changes), the modified method is fetched inside the Impact Analysis Model,
using an OCL query. And thus, impacted test cases are obtained using the impacts
reference between this method and the test cases.

Third: When new classes or methods are added. If the method was not present in
the previous revision, then it is not present in the model either, and hence, no impacts
can be directly computed from it. However, adding such method can have impacts on
the existing SUT. Figure 6 describes a situation where the insertion of a new method
has impacts on the test cases. This case can be solved by checking by OCL if such
method overrides a method of a superclass. For instance, if a method m() is added
in class C, this approach would check if m() exists in superclass SuperC. If it does,
then all the test cases executing C.m() would be selected for an execution, using the
trace reference of SuperC.m() in the Impact Analysis Model. This scenario adds a
minor overhead, but is necessary to ensure the safety of our RTS approach.
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12 · Thibault Béziers la Fosse, Jean-Marie Mottu, Massimo Tisi, Gerson Sunyé

4.2.3 Deletion
In the same way as in the other changes, deletions can be at the statement-level, or
declaration-level, which implies two different behaviours.

First, when a line of code is removed at the statement level (i.e.), inside a method,
this method is fetched by querying the Impact Analysis Model. Finally, its impacts
on the test cases are obtained using the trace reference. Test cases impacted are then
selected to be run again.

Second, when an entire method, which does not override any method from a
parent class, is removed, then the test cases calling it have probably been modified
too. Indeed, removing a non-overridden method from a class, but not the calls to
this method would produce compilation issues. The same reasoning works at the
class-level. If a deleted parent class is used in the test cases, then those tests have to
be updated too.

Otherwise, if the deleted method overrides a method from a superclass, then the
old version of this method is fetched from the model, and all the tests executing it
are selected, using the trace references.

To conclude the Section 4, we notice that we successfully design and implement
a model-driven RTS approach that can select impacted test cases based on a model.
The current version of our prototype is available on GitHub8. Thanks to that model,
the granularity of the selection could be easily adapted according to the needs. Ex-
isting RTS techniques using variable granularities show excellent results [Zha18]. As
shown in Section 4.2, it is possible to get the impacted test cases at several granu-
larities (statement, method, class), depending on the change type (statement-level,
declaration-level). Thus, in order to accelerate the RTS, it is possible to limit the
impacts to a certain granularity.

5 Evaluation
This section presents an experimental evaluation of our approach. First, we present
the environment setup and then the experimental workflow, followed by a presentation
of our results.

5.1 Setup
All the experiments are executed on an Intel Core i5-7200U CPU (2.50GHz), 8GB of
RAM, running with Ubuntu-16.04, and using Java 1.8.0 51. The four projects pre-
sented in Table 2 are used for our evaluation. The column First commit corresponds
to the first Git revision used, LOC approximates the lines of Java code available in
each project, and the last two columns list the number of system under test classes
and number of test classes, during the first commit. Those projects are available on
GitHub9.

Those four frameworks have been chosen because they answer to several criteria
that were mandatory for the current state of our prototype: using the git VCS, Java,
the Maven dependency manager, and having test suites running with the JUnit testing

8https://github.com/atlanmod/MDE4RTS
9https://github.com/jhy/jsoup, https://github.com/joel-costigliola/assertj-core

https://github.com/junit-team/junit4, https://github.com/tipsy/javalin
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Framework First commit LOC #Classes Tested #Test Classes
Javalin caae71e 2500 13 23
JSoup 7f8010d 25 000 61 31
JUnit4 64155f8 100 000 126 174
AssertJ cf4d367 250 000 368 1903

Table 2 – Projects used for evaluation

framework. Since all those tools are popular in the development community, restrict-
ing the usage of our prototype to those does not significantly hamper its practical
usefulness.

5.2 Workflow
We used the following workflow to run the experiments. First, a specific starting
revision is determined. This can be a previous tag in a Git history, for instance.
This revision is called R1. Then we define a variable Step, representing the number
of commits between each computation of the RTS. For instance, with Step = 2,
the Regression Test Selection would be computed between R1 and R3. Instead of
applying the RTS at each commit, being able to merge multiple commits at once
offers a more accurate representation of a development lifecycle. In fact, developers
either push multiple commits at once, or use pull requests, to merge several commits
from other branches on the VCS. We then define another variable, Max representing
the maximum amount of commits to analyse. For instance, with Max = 50, the last
revision that could be analysed would be R50.

The experimentation starts with the revision R1. Since no model can be found, all
tests are executed. Then the impact analysis model is built offline, thus computing
the dependencies at the statement-level. Once this is done, the revision R1+Step is
cloned, and the RTS is applied between R1 and R1+Step, using the impact analysis
model previously generated. Hence, the subset of tests is executed. The impact
analysis model is built, from the revision R1+Step, and the next revision R1+2Step is
cloned, and this goes on until reaching RMax. Each time, both the subset of tests
and all tests are executed with the same technique, in order to compare the results.

For the experimentations, the Max value is set to 100, and Step is set to 5. Those
values have been arbitrary chosen and we assume that the quantity of revisions covered
is relevant enough for our evaluation.

5.3 Results
Figure 7a presents the results of applying our model-driven approach to RTS to a
pool of 100 commits, from the four different projects. The first section of the table
presents the quantity of test methods selected by our approach. As the number of
tests varies along the commits analysed, average values are used. The second section
reports the average compilation and execution times for each project, without RTS.
Hence, summing those two values for each project shows the standard build time. The
third section presents the average times of the three model-driven RTS activities. The
sum of the compilation time with the identification and execution of impacted tests
results in the duration of a full build, when using our approach. This model-driven
RTS build durations and the standard build durations are compared in the last section
of the table, as well as in Figure 7b.
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Frameworks JSoup AssertJ JUnit4 Javalin
avg Selected test methods 200 888 35 6
avg Test methods 588 4868 998 95
% Test methods selected 34.01% 18.24% 3.51% 6.31%
(A) Compilation Time (ms) 4805 9854 10 230 18 368
(B) Executing all tests 8051 34 762 11 828 4893
(1) Computing impact
analysis model (ms) 78 307 375 747 82 478 50 555
(2) Identifying impacted
tests (ms) 649 4464 1081 331
(3) Executing impacted
tests (ms) 4079 15 791 3549 2635
Standard build: (A) + (B) 12 856 44 616 22 058 23 261
Model-driven RTS build:
(A) + (2) + (3) 9533 30 109 14 860 21 003
((A) + (2) + (3)) /
((A) + (B)) 74.15% 67.5% 67.4% 90.3%

(a) Average evaluation results
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Figure 7 – Evaluation results

Results show that applying model-driven RTS shortens the build time, in all cases,
when the impact analysis model is built beforehand. On a bigger project such as
AssertJ, the results are more significant, with a RTS build time lasting 67.5 % of a
standard build, when only 18.24 % of the tests cases are executed. Comparing model-
driven RTS build times with standard build times on a small project like Javalin shows
that 6.31 % of the tests are selected, on an average. However, for a project of small
size the impact on the build time is less significant, since selecting and executing the
tests takes 90.3 % of the execution time of all tests.

As explained earlier, running the tests, either all tests, or a test selection, includes
a compilation time. This is performed using Maven and hence several steps of the
Maven build lifecycle have to be executed: validation, compilation, and finally testing.
Comparing only the actual test execution times would show a bigger gap between RTS
and the execution of all tests, but would not reflect real-life builds.

In our experimentation, selecting the tests cases and running them takes always
less time than running all the tests cases. As predicted, a loss of time may occur
when the number of tests is low since the run of a test subset will not compensate the
overhead of the RTS phase (A). However, testers will consider RTS only when their
test suite length starts to be problematic and in that case, our approach is beneficial.

6 Discussion
In that section, we discussed the approach and the experiments to answer the three
research questions.

6.1 RQ1: Precision
Precision has been discussed previously in Section 4. We can answer the second part
of RQ1 positively since our model-driven approach allows precise RTS. Thanks to the
impact analysis model, the precision can be as much finer as Statement granularity.
Moreover, the modularity of the approach allows to adapt the precision by analysing
differently the impact analysis model.
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6.2 RQ1: Safety
To answer the first part of RQ1, we consider the safety of our model-driven RTS
approach. We should prevent an impacted test not to be selected. Therefore, we
consider four risks: miss a source code change, analyse a non up-to-date impact
analysis model, consider all the software artefacts, and flaky tests.

All the tests are first executed to generate the impact analysis model and their
execution is traced at the finest statement granularity. Hence, if any statement is
modified in a future revision, then all the tests that previously executed it can be
selected thanks to the trace references.

The test selection requires an impact analysis model, built offline. If the user
launches regression testing too frequently, the model of the last revision may not
have been completely built. If that happens, the last entirely computed model is
used instead. It would be less precise since more tests would be selected (the ones of
several iterations), but the safety is ensured. If no model is available, then the entire
test suite is executed.

The current state of our tool does not compute the impact of external files changes.
Nonetheless, such dependencies could be added in the impact analysis model: e.g.,
Gregoric et al. describe an efficient approach to collect file dependencies, using BCI
and monitoring [GEM15]. All standard library methods able to access files are mon-
itored, and dependencies towards those files are added when accessed at runtime.
Enhancing our current SCI to monitor external files accesses is part of our future
work. It is another advantage of our model-driven RTS to be able to extend the
impact analysis model with more information. Considering that risk, we ensure the
safety in the current implementation, by detecting that external files modification (us-
ing a diff algorithm) and warning the developer. She can then run all the regression
test cases, in order to ensure that nothing has been broken.

Finally, non-deterministic tests, also known as Flaky Tests [LHEM14], are not
covered by our approach. These tests can behave differently between several execu-
tions, (depending on multiple parameters: asynchronous calls, concurrency, network,
test order dependencies, etc.) and therefore cannot be traced deterministically. The
safety risk of Flaky Tests is not only affected RTS but all the testing process and it
is up to the tester to annotate them for being processed carefully (e.g., with several
execution).

6.3 RQ2: Performance
As presented in the Introduction with RQ2, our model-driven approach has to be
efficient enough to reduce the regression testing time. Poorly performed RTS steps
might produce an overhead so important that selecting and executing a reduced set
of tests would take longer than running the entire test suite.

First, our RTS approach is offline. Therefore, we do not take into account the
model generation time (RTS phase (C)). This phase is costly when generating an
impact analysis model, but it is already performed before the tester launches the
regression testing. Second, the test cases selection (RTS phase (A)) is critical, and
must be computed in a fast way to prevent a counter-productive overhead. Two
expensive activities are processed during the test cases selection:

1. Comparing two revisions of a project, more specifically at a fine granularity
(Statement-level).
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16 · Thibault Béziers la Fosse, Jean-Marie Mottu, Massimo Tisi, Gerson Sunyé

2. Querying the model for specific elements.

Being efficient on those two points is a major concern. Performance when manip-
ulating models are known issues in model-driven engineering. Experiments presented
Section 5 shows that we positively answer RQ2 since selecting the tests cases and
running them takes always less time than running all the tests cases. In addition, our
model-driven approach allows to configure the granularity and then to balance the
overhead depending on the case study (e.g. a case study with few test cases would
benefit from a coarser-granularity, while a case study with slow test cases would ben-
efit from a fine-granularity to reject slow and useless test cases).

Our performance (gain of up to 32 %) are less important than the ones of dedicated
tools such as the ones of [Zha18][GEM15] (they can gain more than 40 %). However,
they will be overtaken by our model-driven approach for further analysis that can
reuse the trace models, as discussed next section.

6.4 RQ3: Complementary use of the Model
In a MDE environment, our impact analysis model becomes a part of the holistic
modelling of all software aspects. Thus, it can be reused to perform heterogeneous
analysis on the project.

For example, tracing down the execution of test cases inside a model would provide
a better understanding of a test suite, useful while reverse-engineering old code bases.
This model could also be used to get an accurate overview of the testing code coverage,
and thus significantly improve the quality of test suites [MvDZB08].

Concretely, in our tool, we use the Structured Metrics Meta-model10 (SMM) for
gathering measurements performed during the test execution [BlFMTS18]. SMM
enables the modelling of several metrics: lines of code, test execution durations,
method complexities, energy consumptions, and so on. By weaving the SMM model
along with the model produced during RTS, we are able to know the energy saved
by not running the test cases that have not been impacted. Figure 8 shows an
example of a SMM usage along with the model produced by our RTS approach.
The Measurement elements contain energy consumptions, and refer to the Methods
available in the model. ObservedMeasure contains the timestamp of the measures.
Finally Observation and SmmModel are root elements in the model.

10https://www.omg.org/spec/SMM/

mA:Method

name = mA 

:ObservedMeasure

timeStamp = 1532337412 

:Observation

:Measurement

name = mA energy consumed (µJ) 
value = 2825

:ObservedMeasure

timeStamp = 1532337415 

:SmmModel

test_mA_1:Method

name = test_mA_1 

:Measurement

name = test_mA_1 energy consumed (µJ) 
value = 2821

Figure 8 – Excerpt of a SMM Energy consumption model
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We successfully answer the RQ3 since the impact analysis model can be completed
and analysed for other software engineering analysis, such as energy consumption. On
the contrary of dedicated tools that are not compatible and require each one to run
and to analyse the program, we collect and serialise all the information in one impact
analysis model. Created once, we save time, counter-balancing the overhead induced
by model manipulations.

6.5 Threat to validity
Several threats to the validity of our experimentation have to be considered:
Commits analysed: First of all, the amount of selected tests highly depends of the
changes made by developers. For instance, the modification added between commits
fce43e6 and 4fe13cb on the project AssertJ impacted 3312 existing test methods.
Therefore, the results could be radically different using other commits. Nonetheless,
by applying our RTS approach on a set of 100 successive commits, we assume that it
covers usual development scenarios, such as adding of new methods, or modifying of
the core methods of the project.

Single machine: All those results have been computed on a single computer dedi-
cated to this task. Even if a particular attention has been taken to only dedicate the
machine to the experimentations, background operations performed on the system
may have impacted the execution times reported.

State of the prototype: Finally, our research prototype’s implementation may con-
tain undetected bugs, and thus the results produced may be subject to variations with
the upcoming improvements and corrections. Even if this prototype is well tested and
its source code has been thoroughly examined (and is open to inspection), not all the
results obtained during the experimentation can be manually verified. Especially the
safety of the approach, while theoretically valid, has been manually checked only for
the small projects. Finally, this prototype is still under development, and so far its
performances have been improving at each revision.

Scalability: Models are well known for suffering of scalability issues [PCM11]. In
fact, the standard EMF implementation persists models using XML data structure.
Those files cannot be partially loaded, and if the model is too large, it might not fit in
memory anymore. When the source code is massive (thousands of classes), the model
generated by MoDisco can be huge (GBs), which may produce scalability issues. This
limitation can be resolved by using scalable persistence layers for models, such as
NeoEMF11, or CDO12.

7 Conclusion and Future Work
In this paper, we presented an approach that applies MDE techniques to RTS. We
build an impact analysis model, starting from a source-code structural model and
enhanced with dynamic information, gathered during test case execution. On top of
this model we implement a fine-grained impact analysis, allowing for effective RTS.
The benefits of the impact analysis model are twofold: it allows the separation of
the impact analysis from the test selection and opens different perspectives for future
work.

11https://www.neoemf.com/
12https://www.eclipse.org/cdo/
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Computing the long-running impact analysis offline allows us to rapidly apply the
RTS when the user needs it, minimising the waiting time, and hence improving the
productivity. Indeed, experiments on four different open-source projects showed that
our approach significantly shortens the regression test execution time. Moreover, the
proposed impact analysis model can serve as a basis for different software engineering
activities: fault localisation, precise code coverage, energy consumption analysis, etc.

While the current version of our prototype provides positive performance results,
several points can still be improved. Incrementality should be considered to reuse and
complete the model during the RTS phase. Indeed, after each build, our prototype
creates the whole model from scratch, using MoDisco. Using diffs to update an exist-
ing model according to the new source code version would shorten the impact analysis
model building time. We also intend to connect our prototype with a persistence layer,
to support larger projects. More experimentations will be performed, especially on
projects larger than AssertJ, and accuracy will be compared to state-of-the-art RTS
tools, such as HyRTS, Ekstazi and FaultTracer.

Finally we will also focus on completing the implementation of our research proto-
type, in order to have more precise results. The impact analysis should be improved,
in order to also analyse external files other than Java source files. Indeed, modifying a
configuration file may impact the test cases execution. This kind of problem threatens
the safety of traditional RTS tools, and a MDE-based holistic approach to RTS could
provide a natural solution.
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Back-annotation of simulation traces with change-driven model trans-
formations. In Software Engineering and Formal Methods (SEFM),
2010.
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