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ABSTRACT: 
Current study is focused on the GMT based modelling of the two hadal trenches located in 

southwest Pacific Ocean, eastwards from Australia: Tonga and Kermadec. Due to its 

inaccessible location, the seafloor of the deep-sea trench can only be visualized using 

remote sensing tools and advanced algorithms of data analysis. The importance of the 

developing and technical improving of the innovative methods in cartographic data 

processing is indisputable. Automatization in data analysis has been significantly increased 

over the past years. However, using programming and scripting in cartography still remains 

lower comparing to the use of the traditional GIS. Therefore, developing GMT-based 

methods for the geomorphological data processing is crucial for better understanding the 

landforms of the seafloor. Methodology includes application of the GMT scripting toolset 

for the automated digitizing of the profiles crossing the trenches in perpendicular direction. 

A sequence of the GMT codes enabled to visualize raster and vector data, perform 

geomorphological modelling, descriptive statistical data analysis and quantitative 

comparison of the two trenches. Using GMT, the bathymetric sample data of the Kermadec 

and Tonga trenches were modeled, analyzed and compared. The results show deeper 

bathymetry and more seafloor roughness for the Tonga. Comparing to Kermadec, Tonga 

Trench has steeper gradient of the profiles. The seafloor geomorphology is strongly affected 

by a variety of factors that shape actual form of both trenches. The experimental 

methodology is fully based on the GMT scripting with presented and explained codes.  
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1. INTRODUCTION 

The structure of the ocean seafloor has been the subject of the attention in Earth 

sciences recently (Micallef, 2011; Mitchell, 2015). The rapidly developing GIS methods, 

machine learning algorithms and automatization in geospatial analysis improves the 

precision and quality of the mapping. One of these tools, the Generic Mapping Tools 

(GMT), a geospatial scripting toolset developed by Wessel & Smith (1991) provides 

advanced cartographic solutions that enable to model, analyze, map, visualize and calculate 

the phenomena of the submarine geology that can only be studied by the remote sensing 

methods and complex algorithms of data analysis. A variety of the GMT modules (Wessel 

et al, 2013) specifically adjusted for modelling raster grids, plotting vector maps, 

computing descriptive statistical graphs and aesthetic cartographic mapping proved to be a 

perfect tool for modelling oceanological data. Current work is fully based on using GMT 

for comparative analysis and geomorphic modelling of two hadal trenches. 

The presented research is focused on the comparative analysis and geomorphological 

modelling of the two hadal trenches located in the Pacific Ocean: Kermadec and Tonga 

                                                 
1 Ocean University of China, College of Marine Geo-sciences, 266100, Qingdao, Shandong 

Province, China, pauline.lemenkova@gmail.com or lemenkovapolina@stu.ouc.edu.cn; 

http://dx.doi.org/10.21163/GT_2019.142.04
mailto:pauline.lemenkova@gmail.com
mailto:lemenkovapolina@stu.ouc.edu.cn


40 

 

 

(Fig. 1). Using GMT modelling, the shapes of their orthogonal transect profiles were 

compared and analyzed in order to highlight differences and variations in the landforms of 

the two trenches located close to each other yet different in structure. The majority of 

research either focus on the biota communities of the deep-sea ecosystems (Leduc, 2015; 

Nunnally et al., 2016; Leduc et al, 2016) or the tectonic movements of the plates in the 

Pacific Ocean (Duncan et al., 1985; Tappin, 1993; Piller et al., 1999). The presented work 

aims to contribute to the studies on the geomorphological modelling of the hadal trenches 

of the Pacific Ocean.  

Fig. 1. Map of the study area: Kermadec and Tonga trenches, Pacific Ocean (Source: author). 

2. STUDY AREA AND DATA 

The study area is focused on two hadal trenches located in south-west Pacific Ocean 

northwards from Australia and New Zealand: Kermadec and Tonga. Their brief geographic 

description can be characterized as follows. Kermadec Trench is the southern from the two 

located 120 km off the New Zealand with axis continuing from ca. 26°S to 36°S. It is the 5 th 

deepest trench in the world with a maximum depth of 10,177 m (Jamieson, 2015) m and a 
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length of  1500 km (Jamieson et al, 2011). Its closeness to the Antarctic makes it one of the 

coldest trenches in the world (Belyaev, 1989).  

Kermadec Trench runs parallel to the Kermadec Ridge with geomorphology of V-shape 

formed by tectonic subduction of the Pacific Plate under the Indo-Australian Plate 

extending from approximately 26° to 36°S near the northeastern tip of New Zealand's North 

Island (Leduc & Rowden, 2018).  

 

 
Fig. 2. Transect segments of the cross-secton profiles in Kermadec and Tonga trenches (left). 

Geologic and tectonic settings of the trenches (right) (Source: author). 
 

The specific conditions of the tectonic setting in the study area is the subduction of the 

Pacific Plate  at a rapid rate beneath the Indo-Australian Plate along the Tonga–Kermadec 

Trench (Castillo et al., 2009), Fig. 2, right. Specifically, a convergence at maximal rate ∼ 

249 mm/yr) along the Tonga–Kermadec arc system makes it one of the most seismically 

active subduction zones in the world (Bevis et al., 1995). Due to the complex interaction of 

various factors (ocean currents, closeness to the Antarctica) the deep Pacific Ocean seafloor 

underlying the trenches is notable for variable surface productivity (Linley et al, 2017). 

Detailed description of the environmental, geological and tectonic settings of the Kermadec 

is in Smith et al. (2003); Anderson, 2006; Regelous et al., 1997; Smith & Price, 2006. 

Tonga Trench is adjacent, continuing Kermadec Trench northwards with axis stretching 

from ca. 15°S to 26°S. Located in close proximity to the Kermadec, it is separated by a sill 

located on the Tonga Platform (Wright et al., 2000) and by the Louisville Seamount Chain 
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(Jamieson et al, 2013) (Fig. 2, right).  With maximum depths of 10,882 m, the Tonga 

Trenches is the 2nd deepest trench in the world (Blankenship et al, 2006). Similar to the 

Kermadec, Tonga Trench belongs to the South Pacific Subtropical Gyre (SPSG) 

biogeochemical province and has the same primary productivity rate  rate of 87 g C m-2 

y−1 (Xu et al, 2018). Both trench axes have roughly 30° slight from the longitude line. 

Further studies on Tonga Trench, its environment and communities can be found in relevant 

literature (Tappin, 1993; Ewart et al., 1993; Hergt & Woodhead, 2007).  

3. METHODOLOGY 

3.1. GMT codes for the topographic and geological mapping 

A methodological approach consists in the sequence of the GMT modules. Each 

module consists of the small code line. Combined together as a script, they are used for 

mapping. Thus, the following GMT modules were used to map Fig. 1:  

gmt grdcut earth_relief_01m.grd -R140/195/-50/-5 -Gtkt_relief.nc -V 

Here the necessary part of the image was cut off and the coordinates were given (-

R140/195/-50/-5) in WESN way. The raster data used as a basis map is ETOPO1. The 

coordinates in southern hemisphere are given as negative values. The module 'grdinfo' was 

used to analyze the output raster (tkt_relief.nc): 

gmt grdinfo @tkt_relief.nc 

The color palette was made using 'makecpt' module from the available 'geo' palette 

adjusted according to the data range (topography from -11000 to 4500): 

gmt makecpt -Cgeo.cpt -V -T-11000/4500 > myocean.cpt 

Following that the raster image was visualized:  

gmt grdimage earth_relief_01m.grd -Cmyocean .cpt \ 

    -R140/195/-50/-5 -JM6i -P -I+a15+ne0.75 -Xc -K > $ps 

Here the '-JM6i' means Mercator projection with 6 inches width of the map; '-P' means 

portrait orientation; '-K' means continue of the script (not finalized). 

The legend was added using 'psscale' module using the following code snippet: 

gmt psscale -Dg131/-50+w14.8c/0.4c+v+o0.3/0i+ml Rtkt_relief.nc -J -Cmyocean.cpt -

-FONT_LABEL=8p,Helvetica,dimgray --

FONT_ANNOT_PRIMARY=5p,Helvetica,dimgray -Baf+l"Topographic color scale" -I0.2 

-By+lm -O -K >> $ps 

3.2. GMT codes for the geological mapping of the study area 

The geological layers (lines and points) were added on Fig. 2 (right) using the 

following code snippet. As can be seen (the code below), the plotting of the vector elements 

on the map is done using '-W' command, e.g. '-Wthinnest,red'.  

Each code is saved to the initially created file using >>ps command. The first mention 

of this command goes with single bracket, e.g. '> $ps'. Then all the elements that are added 

to the map overlay the same. In this sense, there is certain similarity with GIS layers and a 

sequence of codes in the whole GMT script. The initial files with extension gmt (e.g. 

ridge.gmt) are tables with attribute data (coordinates and values) in native GMT format. 

Hence, the following code was used for geological mapping on Fig. 2, right: 

gmt makecpt -Crainbow -T0/700/50 -Z > rain.cpt 

gmt psxy -R -J volcanoes.gmt -St0.4c -Gred -Wthinnest -O -K >> $ps 

gmt psxy -R -J ridge.gmt -Sf0.5c/0.2c+l+t -Wthinnest,black -Ggreen -O -K >> $ps 

gmt psxy -R -J LIPS.2011.gmt -L -Gpink1@50 -Wthinnest,red -O -K >> $ps 
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# Adding slab contours and magnetic lineation picks 

gmt psxy -R -J SC_tonga.txt -W0.6p,red,- -O -K >> $ps 

gmt psxy -R -J GSFML.global.picks.gmt -Sc0.2c -Wthin,purple -Gpurple -O -K >> $ps 

gmt psxy -R -J trench.gmt -Sf1.5c/0.2c+l+t -Wthick,yellow -Gyellow -O -K >> $ps 

Fig. 3. Geomorphological modelling of the trenches by GMT (Source: author). 
 

The GMT module ‘psxy’ was used for adding annotations on the maps, plotting 

geologic lineaments and sample points. The ‘psbasemap’ and ‘grdcontour’ GMT modules 

were used to map base map elements: bathymetry contours, net grids, titles and subtitles.  

3.3. GMT codes for the geomorphological modelling of the cross-section profiles 

The combination of several GMT modules was used for mapping geomorphological 

profiles (Fig. 2, left). The modelling was done using following code (example for the 

Kermadec Trench). The trench segment and end points were plotted: 

gmt psxy -Rtkt_relief.nc -J -W2p,red trenchK.txt -O -K >> $ps # my line 

gmt psxy -R -J -Sc0.15i -Gred trenchK.txt -O -K >> $ps # points 

Then, the profiles 400 km long, spaced 10 km, sampled every 2km were generated 

using 'grdtrack' GMT module based on the 'tkt_relief.nc' raster in NetCDF format: 

gmt grdtrack trenchK.txt -Gtkt_relief.nc -C400k/2k/10k+v -Sm+sstackK.txt > 

tableK.txt 

The profiles were written into table: gmt psxy -R -J -W0.5p tableK.txt -O -K >> $ps 

The modelling of the profiles was performed by the following code snippet: 
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gmt psxy -R-200/200/-11000/2000 -JX15.2c/5c -Bxag100f50+l"Distance from trench 

(km)"  -Byag2000f1000a2000+l"Depth (m)" -BWeSn \ 

    -Glightgray -W0.5p envK.txt -UBL/-2p/-45p -K > $ps 

gmt psxy -R -J -W1.0p -Ey+p0.2p stackK.txt -O -K >> $ps 

gmt psxy -R -J -W1p,red stackK.txt -O -K >> $ps 

The annotations were added using Unix utility 'echo', for example: 

echo "-70 -100 Profiles 400 km long, spaced 20 km, sampled 2km" | gmt pstext -R -J -

Gwhite -F+jBL+f12p,red -O -K >> $ps 

Final visualization is presented on Fig. 3. 

 
Fig. 4. Mathematical approximation of the trend curves of the profiles (Source: author). 

 

3.4. GMT codes for the mathematical approximation of the trends and histograms 

A sequence of the codes was applied to model trends visualized on Fig. 4 by modules:  For 

example, basic LS line shown on the Fig. 4, E (lower left), y = a + bx + cx^2 was 

plotted using following methodology combining GMT and Unix utilities: 

gmt trend1d -Fxm stackK.txt -Np2 > model.txt 

gmt psxy -R -J -Bpxag100f10 -Bsxg50 -Bpyaf+u"m" -Bsyg2000 \ 

    -BWSne+gazure1 -Sc0.05c -Gred stackK.txt -Y5.0c -O -K >> $ps 

gmt psxy -R -J -W0.5p,blue model.txt -O -K >> $ps 

echo "m@-3@-(t) = a + b\267 t + c\267t@+2@+" | gmt pstext -R -J \ 

    -F+f11p+cBL -Dj0.1i -Glightyellow -O -K >> $ps 
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echo "180 -1500 D" | gmt pstext -R -J -F+jBL+f18p,black -Gfloralwhite -W0.5p -O -K 

>> $ps 

rm -f model.txt 

 
Fig. 5. Histograms of the bathymetry: frequency of the distribution of depths by data for both 

trenches. Left: Kermadec, right: Tonga  (Source: author). 
 

The same procedure was repeated for several mathematic approximations of the trend 

lines showing general profile shapes and gradients for both trenches. The comparison of 

trenches was computed using module 'pshistogram' (Fig. 5) by following code:  

gmt pshistogram tableK.txt -i4 -R-10000/6/0/20 -JX4.8i/2.4i \ 

    -Bpxg1000a1000f100+l"Bathymetry (m)" \ 

    -Bpyg5a5f2.5+l"Frequency"+u" %" -Bsyg2.5 \ 

    -BWSne+t"Histograms of the bathymetry: Kermadec Trench (A) and Tonga Trench 

(B)"+gsnow1 -Glightsteelblue1 \ 

    -D+f7p,Times-Roman,black -L0.1p,dimgray -Z1 -W250 -N0+pblack -N1+p..- -

N2+p. \ 

    -UBL/8.5c/-1.8c -K > $ps 

4. RESULTS AND DISCUSSIONS 

The resulting profiles are visualized as two segments (red and green for both trenches) 

on Fig. 2, left. Automatic digitizing of the cross-section profiles for Kermadec and Tonga 

trenches demonstrated that Tonga trench’s geomorphology has steeper gradient slope on the 

western flank (Fig. 3, A). On the contrary, Kermadec trench (Fig. 3, B) has more gentle 

shape form of the western slope off Tonga Ridge. The results of the comparative analysis of 

the two trenches show that Tonga Trench has shallower depths on the eastern part along but 

kermadec Trench has more abrupt shape with 2,641 depth records s from -6,600 to -6,800 

meters (Fig. 5). Comparing the deepest values >9,000 meters for Tonga Trench there are 5, 

39, 72, 95, 109 observations, that sums together 320 samples. As for kermadec Trench for 

the same depth range there are 10, 18, 48, 72 and 103, which gives together 251 

observation samples proving that Tonga Trench is deeper than Kermadec Trench.  

If we compare the variations of the seafloor depths at range from -6,000 to -5,000, it 

can be sen (Fig. 5) that Kermadec Trench has more values in this range: 1820, 2641, 1203 

and 503 giving together 6167 samples. For the Tonga Trench, the same range gives 4803 (a 

sum of 1221, 2089,  1019 and 544). That means that Kermadec has more gentle slope and 
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shallower depths which can also be seen on Fig. 3. This illustrates tectonic and geological 

local variations, as well as different sedimentation of the Kermadec and Tonga trenches 

causing variations in their geomorphic shape despite their close location to each other.  

5. CONCLUSIONS 

Various factors affect formation, functioning and sustainability of the marine habitats 

and hadal trenches as one of the unique places of the oceans, as discussed in previous 

papers (Lemenkova, 2018a; Pollnac et al., 2001; Pelletier. & Louat, 1989; Lemenkova, 

2018b). The complex analysis of the structure of the ocean ecosystem based on the 

advanced data analysis, software and scripting tools significantly increases the precision 

and speed of the data processing and reliability of the results. Examples of the application 

of programming languages and statistical tools specifically for the oceanological data 

modelling were presented in previous publications: Python (Yu et al., 2019; Lemenkova, 

2019c; Lemenkova, 2019d), R (Lemenkova, 2019a; Lemenkova, 2019b), SPSS  

(Lemenkova, 2019f), Gretl (Lemenkova, 2019e). Using GMT advanced scripting toolset for 

the cartographic modelling increases automatization of the mapping routine. Therefore, 

GMT is strongly recommended for the geospatial data analysis and thematic mapping.  

There are both theoretical and practical innovations of the presented research that can 

be applied in the similar works. The theoretical novelty lies in the comparative 

geomorphological mapping of the two hadal trenches that does not exists in the available 

literature. The practical novelty consists in the developed methodology of the GMT-based 

mapping rather than traditional GIS, applied for the geomorphic modelling. Tested, 

presented and explained functionality of the several GMT modules enables to do automated 

digitizing of the orthogonal profiles crossing trenches in the perpendicular direction. 

Through this modelling, the shape of the landforms and steepness gradient of the trenches 

were visualized, compared and statistically analyzed. The traditional handmade 

cartographic digitizing is a tedious routine usually prone to minor or major errors. On the 

contrary, using GMT based machine learning for the automatization of the cartographic 

techniques significantly improves the quality and precision of the modelling.  
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