
HAL Id: hal-02333452
https://hal.science/hal-02333452

Submitted on 6 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Polynomial time in untyped elementary linear logic
Olivier Laurent

To cite this version:
Olivier Laurent. Polynomial time in untyped elementary linear logic. Theoretical Computer Science,
2020, 813, pp.117-142. �10.1016/j.tcs.2019.10.002�. �hal-02333452�

https://hal.science/hal-02333452
https://hal.archives-ouvertes.fr

Polynomial Time in Untyped Elementary Linear LogicI

Olivier Laurent

Univ Lyon, EnsL, UCBL, CNRS, LIP, F-69342, LYON Cedex 07, France

Abstract

We show how to represent polynomial time computation in an untyped version
of proof-nets for elementary linear logic. This follows previous work by P. Baillot
but which was developed in a typed and affine setting. We describe how these
two properties can be adapted.

Keywords: Implicit Computational Complexity, Polynomial Time
Computation, Elementary Linear Logic, Proof Nets, Strong Normalization

Implicit computational complexity tries to find structural characterizations
of complexity classes in computational models where no explicit constraint on
time or space is given. In this domain, the resource sensitivity of linear logic [1]
has shown to be a good property for defining logical systems corresponding to
different complexity classes. Let us mention as key examples: polynomial time
(PTIME) [2, 3], elementary time (ELEMENTARY) [2, 4] or polynomial space
(PSPACE) [5].

Given a complexity class C, representing it in a logical system L is usually
done in two steps. First we prove that normalization or cut-elimination in L can
be done in C, this is called complexity soundness of L with respect to C. Second
we encode decision problems of C into proofs in L, and we define an encoding
of inputs into L in such a way that the normalization of (the representation of)
the problem applied to / cut with (the representation of) some input allows us
to get the output. This is called complexity completeness of L with respect to
C.

Among the variants of linear logic related to complexity classes, elementary
linear logic (ELL [2]) is one of the most expressive since it is sound and com-
plete for the class ELEMENTARY of elementary problems (time bounded by
an arbitrary tower of exponentials). It is an easy-to-define restriction of linear
logic which benefits from nice geometric properties like the depth-invariance

IThis work was supported by the LABEX MILYON (ANR-10-LABX-0070) of Université
de Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007), and by the
project Elica (ANR-14-CE25-0005), both operated by the French National Research Agency
(ANR). This work was also supported by GDRI Linear Logic.

Email address: olivier.laurent@ens-lyon.fr (Olivier Laurent)

Preprint submitted to Elsevier October 14, 2019

property of the proof-net syntax called the stratification property [4]. Different
denotational models have been described [6, 7, 8].

However ELEMENTARY can be considered as way too big to be meaning-
ful from a computational point of view. Other logical systems are known to
correspond to smaller classes, but one can also wonder whether it is possible
to characterize these classes inside ELL. The goal is to take advantage of the
good properties of ELL on the one side, and to describe a general framework for
different complexity classes on the other side.

Following a question of J.-Y. Girard asking whether a restriction on the
types of elementary linear logic (ELL [2]) could represent exactly polynomial
time computation (PTIME), P. Baillot [9] showed that proofs of !W(!!Ba (with
W = ∀α.!(α(α)(!(α(α)(!(α(α) encoding binary words, and Ba =
∀α.α (α (α an affine encoding of Booleans) in second-order intuitionistic
elementary affine logic enriched with type fixpoints exactly represent PTIME
decision problems. Rather than defining yet another PTIME encoding in a new
logical system, the goal of this line of work is to stress that ELL is not only a
very well-behaved logic but also a versatile and expressive system.

Our goal is to recast P. Baillot’s work while dealing with an arguably simpler
model of proof-nets. Indeed we prove a similar result as [9] in untyped classical
elementary linear logic. This stresses the standard fact that types are useless for
the control of complexity in elementary linear logic (in particular no need to deal
with fixpoints of types nor second-order quantification in proof-nets). Moreover
it shows that linear proofs are enough (the general weakening principle of affine
logics is not required). Finally, once general weakening is removed, there is no
reason to stick to an intuitionistic world and we can move to a classical one.

Design Choices

We introduce a notion of untyped classical linear proof-nets for elementary
linear logic as a computational model: e-nets, and we describe how it can be
made sound and complete for PTIME (and then for the whole k-EXPTIME fam-
ily). Let us discuss the pros and cons of the different choices to be made in the
design of e-nets.

• Logical systems are traditionally described with sequential structures: se-
quent calculus or natural deduction. The introduction of proof-nets with
linear logic offers a more parallel model in which cut-elimination is much
easier to analyze. This is particularly true for complexity analyses. The
only slight defect of proof-nets is to present proofs as graphs and cut-
elimination as graph rewriting when most people are more comfortable
with terms or trees, and term rewriting.

• In the context of elementary linear logic, complexity bounds are given by
the stratification property, without relying on the involved formulas. It
is thus folklore that untyped versions of ELL have the same complexity
bounds. As a consequence an untyped version is interesting to consider
since it is more expressive than typed versions. Any notion of recursive

2

types, quantification, etc. can be represented by type-erasure into the
untyped world. On the other side, types provide useful guidelines for
building programs in an understandable way, and they also provide safe-
guards for execution: “well-typed programs can’t go wrong”. To sum up,
the untyped setting makes completeness easier, soundness more difficult
and may involve dead-locks in computation.

• The expressive power of a logic depends on the connectives involved. This
is in particular the case for the additive connectives in linear logic. Ad-
ditives give a direct representation of conditionals which allow to choose
one branch in a computation while forgetting the others. However ad-
ditives are difficult to handle in proof-nets. In an affine setting (where
general weakening is allowed on any formula), the additive behaviour can
be encoded by means of multiplicative connectives and second-order quan-
tifiers [10].

General weakening is not well defined in classical systems (see Lafont’s crit-
ical pair [11]) if we want reasonable computational interpretations of cut
elimination. In intuitionistic settings, there is no problem from the proof-
theoretical point of view, but the dynamics of intuitionistic affine proof-
nets is rather heavy [12, 9]. Since both additives and general weakening
generate difficulties in proof nets, we prefer to focus on the simplest pos-
sible computational model: multiplicative exponential linear proof-nets.
Concretely our e-nets are defined with only five different reduction rules.

The erasure capability provided by additives and useful in encoding condi-
tionals can sometimes be simulated in a linear setting [13]. However this
only applies to some particular formulas and, as in [9] the very precise
management of exponentials we need, requires a Scott-style encoding for
which erasure cannot be deduced in the linear world. For this reason, we
follow [14] where, rather than trying to erase useless parts of the compu-
tation, they are gathered in a dedicated garbage part of the encodings.

To sum up, additives and general weakening would make the logic more
expressive but obfuscate the cut-elimination process of proof-nets. Our
choice of rejecting both of them will make soundness easier but complete-
ness will require dealing with explicit garbage.

• As already mentioned, dealing with general weakening requires to stick
to intuitionistic logics. However once we decide to stay linear, there is
no reason not to move to a classical system. It makes the system more
expressive than its intuitionistic variant. We have less steps to consider in
cut-elimination. The impact on complexity soundness and completeness
happens to be negligible: soundness is even slightly simpler since we have
less cases to consider, and completeness is in fact presented through the
intuitionistic bridge to make the input/output behaviour more readable.

3

Structure of the Paper

• Section 1 introduces our computational model: e-nets, an untyped ver-
sion of proof-nets for classical elementary linear logic. A direct proof of
strong normalization for e-nets based on a decreasing ordinal measure is
presented. As far as we know this is the first such proof for ELL proof-nets
in the literature. Confluence is then obtained from strong normalization
and local confluence.

• We explain the specificities of the way computation is represented in e-
nets in Section 2. We describe how to encode Booleans and binary words
with depth 2 e-nets. The linear setting we use requires us to deal with the
presence of some (non erasable) garbage along computations.

• While Section 1 deals with “qualitative” properties of e-nets reduction,
we consider “quantitative” aspects in Section 3 by providing complexity
bounds on some reduction strategies. The concluding result of this sec-
tion is a polynomial time upper bound on the decision problems we can
represent in e-nets through the depth 2 encoding of Section 2.

• Section 4 is about the converse result. We adapt the encoding of PTIME
Turing machines of [15, 9] to a non-affine setting. For this we show how
second-order existential quantification offers a versatile way of masking
and handling garbage. The encoding of Turing machines is presented in
a typed setting, using fixpoints and second-order quantification. Note
the introduction of fixpoints of types is somehow required as recently
showed [16]: otherwise only regular languages would be representable. In
a second step, types disappear since our untyped e-nets make translation
by type-erasure possible.

• Finally Section 5 follows [9] in extending the results of the previous sections
to the characterization of the k-EXPTIME hierarchy in e-nets. This relies
on encodings with higher depths.

1. Untyped Elementary Proof-Nets

Through proof-nets, elementary linear logic (ELL) defines a computational
model which is sound and complete for elementary time [2, 4]. A specificity
of this system is that the complexity bound on the cut-elimination procedure
only relies on the geometric constraints on the proofs and not at all on the
structure/size of the formulas. We make this known fact completely explicit in
our approach by defining a notion of untyped proof-nets for ELL: e-nets, which
will be our computational model.

E-nets are a variant of the nets of [7] in which we remove any label on edges.
In such nets, some cuts cannot be reduced because of a mismatch between
the nodes above the two premises (this situation never happens in the usual
typed setting). Following [17], we will prefer the terminology clash rather than
deadlock [7] for such cuts.

4

In this first section, we present the e-net model and we prove the main
properties of reduction: strong normalization and confluence. The key point is
strong normalization. We give a proof based on associating an ordinal measure
in ωω

2

to any e-net and on proving reduction to make it decrease in any case.
Strong normalization is not required for the rest of the paper but we use it as a
way to obtain confluence which is necessary for our representation results.

1.1. E-Nets

An e-net is a directed acyclic graph with outgoing half-edges (edges may
have no target). Vertices are called nodes. Incoming edges of a node are called
its premises and its outgoing edges are its conclusions. The outgoing half-edges
are called the conclusions of the e-net. Each node has an associated kind which
constrains the number of premises and conclusions:

• ax: with no premise and two conclusions,

• cut: with two premises and no conclusion,

• ⊗, ` or ?c: with two premises and one conclusion,

• ?w: with no premise and one conclusion,

• ?p or !: with one premise and one conclusion.

The premises of the ⊗-nodes and `-nodes are ordered. The first one is called
the left premise and the second one is called the right premise.

With each !-node is associated a sub-graph with no premise, called its box,
such that all its conclusions are premises of ?p-nodes (the auxiliary doors of the
box) or of the !-node under consideration (the main door of the box). Each
?p-node is the auxiliary door of exactly one box. Two boxes are either disjoint
or included one in the other. Each box has itself to be an e-net. The depth of
a node is the number of boxes it is contained in. The depth of the e-net is the
maximal depth of its nodes.

We also require the following Danos–Regnier correctness criterion [18]. A
correctness graph is an undirected graph obtained:

• by replacing the premise of each ?p-node p by an edge connecting p to the
main door of the box of p;

• and by erasing one of the two premises of each ` and ?c-node.

All the correctness graphs of an e-net are required to be acyclic graphs.

In the graphical representation of e-nets (see for example Figures 1 and 4),
we always represent edges oriented in the top-down direction so that we do not
need to put the orientation of edges on the drawings. In this spirit, we say that
a node is above another one if there is a directed path from the first one to the
second. Half-edges are dangling. ⊗-nodes and `-nodes are drawn with the left

5

cut

⊗

ax

ax

`

cut

ax

!

ax ax

?p ?p!

cut

?

⊗

!

?w

w

o

c

o′ p′1 p′2 p′3 o′′p1 p2

B

B′ B′′
ax

?c

cut

?p ?p ?p

Figure 1: An e-net

!

cut

⊗

ax

ax

`

cut

ax

ax ax

?c

?p ?p!

cut

?

⊗

cut

?p?p?p !

?w

w

o

c

o′ p′1 p′2 p′3 o′′p1 p2

ax

Figure 2: Correctness Graphs

premise on the left and the right premise on the right. Each box is drawn as a
rectangle with its doors on the bottom line.

On Figure 1, one can find an e-net R. R has two conclusions (outgoing half-
edges) on the ax-nodes on the bottom-right corner. R contains three !-nodes o,
o′ and o′′ whose respective boxes are the contents of the rectangles named B, B′
and B′′. The depth of R is 1. R has four correctness graphs. They are obtained
from the graph of Figure 2 by selecting only one of the two dashed edges and
only one of the two dotted edges. Note that if we look at the cut-node connected
to a `-node and to a ⊗-node, and if we modify R by putting a ⊗-node on the
left and a `-node on the right, we do not have an e-net anymore since it creates
a cycle between the new ⊗-node, p′1, o′ and p′2 (both dotted edges being kept
when their target is a ⊗-node).

When no distinction is required, ?w, ?c and ?p-nodes are called ?-nodes. The

6

cut

R1

c1 c2

R2

Figure 3: R1 c1./c2 R2

size of an e-net is its total number of nodes. Its size at depth d is the number of
nodes at depth d. By convention, if an e-net has depth D, when counting nodes
at depth strictly bigger than D, we consider there are 0 nodes at those depths.

If c1 is a conclusion of an e-net R1 and c2 is a conclusion of an e-net R2, the
e-net R1 c1./c2 R2 is obtained by adding, to the disjoint union of R1 and R2, a
cut-node with premises c1 and c2 (see Figure 3). When c1 or c2 are immediate
to infer from the context, we will sometimes omit them. This is the case in
particular when an e-net has a unique conclusion.

1.2. Reduction

The dynamics of e-nets is given by local rewritings of some sub-graphs.
Such a rewrite step turns a given sub-graph into a new one which has the same
“interface” (number of incoming and outgoing edges). Reduction occurs around
cut-nodes only. However due to the untyped nature of e-nets, not all cuts can
be reduced. A cut can be reduced if one of the following five reduction rules
can be fired:

• (a-step) It applies if the premise of a cut-node is conclusion of an ax-node:

ax

cut
e1 e2 →a

The other conclusion e1 of the ax-node and the other premise e2 of the
cut-node cannot be the same edge, otherwise we would have a cycle in the
correctness graphs. The reduction connects, through a single edge, the
source of e2 and the target of e1 (if any, otherwise we get an half-edge).

• (m-step) It applies if the premises of a cut-node are conclusions of a ⊗-
node and of a `-node respectively:

⊗ `

cut

e1 e2 e3 e4

→m cut

cut

e1 e2 e3 e4

7

• (w-step) It applies if the premises of a cut-node are conclusions of a w-node
and of an !-node respectively:

!

cut

?w ?p ?p

R

. . .e1 en

→w
e1 en

?w ?w
· · ·

The box of the !-node is erased.

• (c-step) It applies if the premises of a cut-node are conclusions of a c-node
and of an !-node respectively:

e1 en

!

cut

?p ?p?c

R

. . .

e0 e′0

→c

cut

cut

e1 en

! ?p ?p ! ?p ?p

?c ?c

R

. . .

R

. . .

. . .

e′0e0

The box of the !-node is duplicated.

• (p-step) It applies if the premises of a cut-node are conclusions of a p-node
and of an !-node respectively:

e1 en
cut

! ?p ?p ?p ! ?p ?p

. . .

R2

. . .

R1

e′1 e′ke0

→p

R2R1

e1 en e′1 e′ke0

! ?p ?p ?p ?p

cut

.

8

ax

ax

cut

⊗

ax

ax

`
cut

cut

cut

!

ax

?c ?c ?c

axaxax

!?p ?p!

cut

?

⊗
w

o p2
p′1b p′2b p′3b o′a p′2a p′3a

c3
c2c1

!

?w

o′′

o′bp1

B

B′
b B′

a

B′′

?p ?p?p?p
p′1a

?p ?p

Figure 4: A One-Step Reduct of Figure 1

⊗ ⊗

cut

R

. . .

!

cut

?p ?p`

Figure 5: Two Examples of Clashes

The two boxes are “merged”.

Following [19], one can check that acyclicity of the correctness graphs is pre-
served under these reduction steps.

The e-net of Figure 4 is obtained by applying a c-step to the e-net of Figure 1.
The box B′ is duplicated into B′a and B′b.

A reducible cut-node is called a redex. Non reducible cuts are called clashes
(see Figure 5). An e-net is called normal if it contains no redex. It is in mul-
tiplicative normal form (at depth d) if it contains no redex for the a-step or
the m-step (at depth d). Redexes of the a and m-steps are called multiplicative
redexes, the other redexes are the exponential redexes. A reduction step involv-
ing a multiplicative (resp. exponential) redex is called a multiplicative (resp.
exponential) step.

1.3. Main Properties

We focus here on qualitative properties of e-nets and reduction. Quantitative
properties concerning the size of e-nets, the reduction lengths, etc., will be

9

studied in Section 3.
We start with some simple facts about cuts and reduction.

Fact 1 (Non Increasing Depth). If R reduces to R′ in one step, either they
have the same depth or the reduction is a w-step and the depth of R′ may be
strictly smaller than the depth of R. �

Fact 2 (Reduction at Bigger Depth). If R reduces to R′ by a step applied
at depth d, the part of R with depth strictly smaller than d is not modified. �

Fact 3 (Exponential Residues). If R reduces to R′ by an exponential step
at depth d, the generated cuts are never multiplicative redexes at depth d, and
no multiplicative node (ax, ⊗ or `) is modified or created at depth d. �

Fact 4 (Residual ?-Nodes). If R reduces to R′ by a step at depth d, if R
contains a ?-node at depth d which is above a conclusion of R, then R′ also
contains such a node. �

Fact 5 (Persistence of Clashes). If c is a clash in the e-net R which reduces
to R′ by a step at depth d, either c persists in R′ or the reduction is a w-step
and c belongs to the erased box (thus c is at depth at least d+ 1 in R). �

We now move to a proof of the strong normalization property for e-nets.
In contrast with many logical systems, we are here in an untyped setting so
that we cannot rely on types to prove normalization. It relies on the geometric
structure of e-nets, the key idea of [2].

Definition 1 (Reachability). An !-node o is immediately reachable from a
?-node n if:

• the conclusion of o is the premise of a cut-node c;

• n is above c, and the directed path from n to c crosses ?c-nodes only.

This is extended transitively, by saying that ok is reachable from n1 if there is a
sequence n1o1n2o2 . . . nkok (called a reachability path) where oi is immediately
reachable from ni (1 ≤ i ≤ k) and ni+1 is an auxiliary door of the box of oi
(1 ≤ i ≤ k − 1).

If o is immediately reachable from n, they are above two different premises of
the same cut-node. All the nodes of a reachability path are at the same depth.

Thanks to the correctness criterion, in a reachability path n1o1n2o2 . . . nkok,
oi is not reachable from nj if i < j (otherwise one would obtain a cycle in a
correctness graph), leading to:

Fact 6 (Decreasing Reachability). In a reachability path n1o1n2o2 . . . nkok,
the number of reachability paths starting from ni is strictly bigger than the num-
ber of reachability paths starting from nj if i < j. �

10

In the e-net of Figure 1, o is immediately reachable from w, o′ is immediately
reachable from p1, p2 and c, and o′′ is immediately reachable from p′3. The
reachability paths are thus wo, wop1o

′, wop2o
′, wop1o

′p′3o
′′, wop2o

′p′3o
′′ (5 paths

starting from w), p1o
′, p1o

′p′3o
′′ (2 paths starting from p1), p2o

′, p2o
′p′3o

′′ (2
paths starting from p2), co′, co′p′3o

′′ (2 paths starting from c) and p′3o
′′ (1 path

starting from p′3).
Note that a given !-node might be reachable from a given ?-node through

more than one reachability path: wop1o
′ and wop2o

′. The intuition here is
that, through reductions, the node w will eventually act on (copies of) the
boxes whose main door is reachable from w. In this example w will act on the
box B of o, then on two copies of the box B′ of o′, and after that on copies of
B′′. This can be understood as a simplified and more qualitative version of [20].

Theorem 1 (Strong Normalization). The reduction of e-nets is strongly nor-
malizing: there is no infinite sequence of reductions.

Proof. We associate with each e-net R of depth at most D a tuple |R|sn =

(|R|Dsn , . . . , |R|
0
sn), where for each 0 ≤ d ≤ D, |R|dsn is a pair (µd,md):

• µd is the multiset containing, for each ?-node at depth d, the number of
reachability paths starting from it (we ignore the ?-nodes with no reach-
ability path starting from them);

• and md is the number of ax, ⊗ and `-nodes at depth d in R.

If the depth of R is strictly smaller than d, then |R|dsn = ([], 0). We need this
only to compare the tuples associated with R and with its reduct in a w-step
since the depth may strictly decrease. Otherwise the depth is not modified
(Fact 1).

To each e-net R we can also associate an ordinal |R|ordsn ∈ ω(ω+1)·(D+1) =

ωω·(D+1)+1 ∈ ωω2

since |R|sn is order-isomorphic to such an ordinal when:

• N is endowed with its usual order, leading to the ordinal ω;

• multisets over N are endowed with the multiset-ordering, leading to the
ordinal ωω;

• pairs (µd,md) are ordered with a lexicographic order with biggest weight
on the right-most component, leading (up to order-isomorphism) to ele-
ments of ωω · ω;

• and similarly for tuples of D + 1 elements (|R|Dsn , . . . , |R|
0
sn), leading (up

to order-isomorphism) to elements of (ωω · ω) · · · (ωω · ω)︸ ︷︷ ︸
D + 1 times

= ω(ω+1)·(D+1).

We prove that any reduction step makes |R|ordsn decrease, and thus reduction
always terminates. According to Fact 2, if reduction occurs at depth d, it is
enough to focus on (|R|isn)d≤i. We prove for each possible reduction step at

depth d that (the ordinal associated with) |R|dsn strictly decreases.

11

• a-step: No ⊗ or `-node is created and one ax-node is erased at depth d,
thus md decreases.

• m-step: The ax-nodes are not modified and one ⊗-node and one `-node
are erased at depth d, thus md decreases.

• w-step: The ax, ⊗ and `-nodes at depth d are not modified, thus the
value of md does not change. Concerning µd, the element corresponding
to the ?w-node above the cut in the redex disappears, and the created
?w-nodes give elements which are the same as those of the ?p-nodes they
replace, thus µd decreases.

• c-step: The ax, ⊗ and `-nodes at depth d are not modified, thus the
value of md does not change. Concerning µd, let us first recall (Fact 6)
that the values associated with the ?p-nodes of the box above the cut in
the redex are strictly smaller than the value associated with the ?c-node
above the cut. This last value is erased after reduction, and the (smaller)
value associated with each ?p is replaced by three copies of it (two from
?p-nodes and one from a ?c-node), thus µd decreases.

• p-step: The ax, ⊗ and `-nodes at depth d are not modified, thus the
value of md does not change. Concerning µd, the element corresponding
to the ?p-node above the cut in the redex disappears and the others do
not increase, thus µd decreases. �

If we look at the e-net R of Figure 1 and its one-step reduct R′ in Figure 4,
we have: |R|sn = (([], 5), ([1, 2, 2, 2, 5], 4)) ' ωω·2 · 4 +ωω+6 +ωω+3 · 3 +ωω+2 +

ωω · 5 = |R|ordsn > |R′|ordsn = ωω·2 · 4 + ωω+6 + ωω+3 · 2 + ωω+2 · 3 + ωω · 7 '
(([], 7), ([1, 1, 1, 2, 2, 5], 4)) = |R′|sn. Indeed the reachability paths in R′ are: wo,
wop1o

′
a, wop2o

′
b, wop1o

′
ap
′
3ao
′′, wop2o

′
bp
′
3bo
′′, p1o

′
a, p1o

′
ap
′
3ao
′′, p2o

′
b, p2o

′
bp
′
3bo
′′,

p′3ao
′′, p′3bo

′′, c3o
′′, thus w 7→ 5, p1 7→ 2, p2 7→ 2, p′3a 7→ 1, p′3b 7→ 1 and c3 7→ 1.

Proposition 1 (Local Confluence). The reduction of e-nets is locally con-
fluent:

R
|| ""

R1

∗ !!

R2

∗}}R0

Proof. The proof is the same as for typed proof-nets [19] by considering all
possible critical pairs. There are two main categories of such pairs:

• If one of the redexes is inside a box involved in the other redex, this outer-
most redex must be an exponential redex. Depending whether it reduces
by a w-step, c-step or p-step, the innermost redex has then disappeared
or must be reduced twice, or just once (respectively).

12

• The two redexes may have a non-trivial overlap, which can be:

– an ax-node shared by two redexes of the a-step, in which case the
two reductions lead to the same result;

– a cut-node shared by two redexes of the a-step, in which case the two
reductions lead to the same result;

– a whole box shared by the redexes of a p-step and of another expo-
nential step.

This last family is the most interesting one with four cases. First the redexes
of two p-steps involving two auxiliary doors of a given box, second a p-step on
an auxiliary door of a box and a w-step, c-step or p-step on its main door. We
consider here the c-step vs p-step case which is the trickiest:

?c

. . .

R2

. . .

R1

cut

! ?p ?p ?p ! ?p ?p

cut

we obtain the following reduction diagram for closing the critical pair:

.c
}} p

��
.c

}}.
p !!

.

c
��

.
p !! .

leading to the following final e-net:

cut

cut

! ?p ?p ?p ?p

R2R1

cut

. . .

! ?p ?p ?p ?p

R2R1

cut

. . .

?c ?c

.

?c ?c

.

�

13

Proposition 2 (Confluence). The reduction of e-nets is confluent:

R
∗|| ∗""

R1

∗ !!

R2

∗}}R0

Proof. By Theorem 1 and Proposition 1 with Newman’s Lemma [21]. �

In particular, thanks to Theorem 1 and Proposition 2, an e-net as a unique
normal form.

1.4. Closed Reduction

For studying the representation of Turing machines, it is enough to focus on
some particular reduction strategies for e-nets. We define here the key ingredi-
ents of the strategy we are going to focus on.

Definition 2 (Closed Redex). An exponential redex is called closed if the
box with main door involved has no auxiliary door (such a box is called a closed
box).

Lemma 1 (Closed Redex). Let R be an e-net with no multiplicative redex
and no clash at depth 0 and with at least one exponential redex at depth 0. If
there is no ?-node at depth 0 which is above a conclusion (thus they are all above
cuts), then R contains a closed exponential redex at depth 0.

There are many proofs of this lemma in the literature. We give here a
simple one based on paths and correctness (rather than the usual approach via
sequentialization).

Proof. In an e-net with no multiplicative redex and no clash at depth 0, one
can extend the notion of !-node reachable from a ?-node by allowing to cross any
kind of node while going down from the ?-nodes (not just ?c-nodes as before).
Thanks to the correctness criterion again, the reachability relation does not
contain cycles. Starting from the exponential redex and following a reachability
path, one can find a cut !-node such that none of the auxiliary doors of its box
can reach an !-node. The box of such a maximal !-node cannot have any ?p-node
otherwise they would be above a conclusion (or contradict maximality). The
cut below this !-node is then a closed redex. �

A sequence of reduction steps is called a stubborn closed exponential reduc-
tion if it starts with the reduction of a closed redex at depth d and then only
reduces redexes which are at depth d and were generated by previous steps in
the sequence. Moreover it is required to be a maximal such sequence. One
easily checks that all the reduced redexes are closed. Iterated stubborn closed
exponential reduction at depth d of an e-net R consists in iteratively choosing a

14

closed redex at depth d in R and reducing it by a stubborn closed exponential
reduction, until there is no closed redex at depth d in R anymore.

While [9] considers the reduction of special cuts (exponential redexes such
that the associated box has no auxiliary door above a cut), we prefer to focus
here on closed cuts (associated box with no auxiliary door at all) since they are
slightly simpler to handle and general enough in the study of the representation
of functions and decision problems on binary words.

Lemma 2. Let R is be an e-net with no cut at depth strictly smaller than d,
with no multiplicative redex at depth d, but with at least one cut at depth d.
If there is a reduction sequence from R to an e-net R′ with no cut at depth d
and no ?-node at depth d which is above a conclusion, then R contains a closed
exponential redex at depth d and iterated stubborn closed exponential reduction
of R at depth d leads to an e-net with no cut at depth d.

Proof. Let us consider the content R1 of a box at depth d in R which contains
a cut c at depth d (it exists by assumption). R1 does not contain any multi-
plicative redex at depth 0. R1 does not contain any clash at depth 0 by Fact 5
since R′ does not contain any clash at depth d. The cut c is thus an exponential
redex. By Facts 4 and 5 and Lemma 1, R1 contains a closed exponential redex
at depth 0, that is R contains a closed exponential redex at depth d.

Let R0 be obtained by iterated stubborn closed exponential reduction of R
at depth d. By applying Proposition 2 toR0 andR′, we obtain a common reduct
R′0. By Fact 2, R′0 does not contain any cut at depth d or smaller (it is a reduct
of R and R′). Similarly R′0 does not contain ?-nodes at depth d which are above
conclusions. As a consequence, if R0 contains a cut at depth d, it cannot be a
multiplicative redex (Fact 3 applied to R) nor a clash (contrapositive of Fact 5
applied to R′0). So if R0 contains a cut at depth d, by Lemma 1 (using the
contrapositive of Fact 4 applied to R′0), it contains a closed exponential redex,
contradicting the definition of iterated stubborn closed exponential reduction.
�

2. Representation of Decision Problems

In order to measure the expressive power of the computational model given
by e-nets, we are going to define a representation of (some) decision problems
in e-nets. Not all problems can be represented since our e-nets model is not
Turing complete: it comes with intrinsic bounds on computation time.

We denote by B (for Booleans) the two values set {0, 1} and by W (for
words) the set B∗ of finite binary words. Given a function P : W → B (i.e. a
decision problem), we want to define an e-net and a way to give it an element
w of W as an argument so that computation (i.e. reduction) in e-nets gives us
a way to recover the value of P(w) ∈ B.

15

!

!

ax

ax

⊗

`

`

⊗

G

!

!

⊗

`

`

⊗

ax

ax

G

Figure 6: Representation of Booleans (0 and 1 respectively)

2.1. Booleans

Let us start with this read-back question. The standard way of representing
B in another data-type is to choose two objects, one for reflecting the value 0
and the other one for reflecting the value 1.

Our computational model is not powerful enough for this approach. Due to
the linear flavour of e-nets, we cannot erase arbitrary sub-nets through reduc-
tion. As a consequence the computations will accumulate some useless results:
the garbage. We are not able to ensure that all computations with result 1 will
lead to the same e-net: we have no control on their garbage parts. This idea of
dealing with garbage in linear computations directly comes from [14].

For this reason, we consider a set of e-nets associated with each Boolean
value. The families of e-nets representing 0 and 1 are given on Figure 6 (0 on
the left and 1 on the right) where G is the parameter of the family which can
be any e-net.

We can check that the presence of G does not blur the representation:

Fact 7 (Unambiguous Boolean Representation). There is no e-net rep-
resenting both 0 and 1, and if Rb represents b then all its reducts represent b as
well. �

Lemma 3 (Reduction to a Boolean). If R is an e-net which reduces to some
Rb representing b, and if R′ is a reduct of R then R′ also reduces to a repre-
sentation of b.

Proof. By Proposition 2, there exists some R0 which is a reduct of both Rb
and R′. According to Fact 7, R0 is a representation of b. �

16

So if we can ensure that an e-net R reduces to some Rb, it is sensible to say
that R computes the value b.

Remark 1. In an affine setting (see [9] for example), one can extract a unique
representation of Booleans by building the following e-net from any representa-
tion Rb of a Boolean b:

W

ax

!

!

?p

?p

`

cut

Rb

where W is the general weakening node (used to erase the garbage part G in
Rb, but remember the reduction steps for such a W -node are not so easy to
handle).

This shows that our setting is more general than the affine one. Indeed our
encodings apply in the affine case and we can extract standard representations
of Booleans at any point by introducing the appropriate cut as above.

2.2. Binary Words

In order to be able to give an element w of W as an argument to a given
e-net, we want to inject W into the set of e-nets. Let w ∈ W be a binary
word, its representation is the cut-free e-net w of Figure 7 where the number
of ?p-nodes is the length of w, and the ? part represents two trees of ?c-nodes
and ?w-nodes leading to the appropriate arities (a canonical choice is to use a
?w-node for arity 0 only, to use ?c-nodes for arities 2 and above, and to associate
the tree of ?c-nodes to the left) in such a way that if the ith letter of w is 0, the
ith ?p-node is connected to the first (left-most) tree, and if the ith letter of w
is 1, the ith ?p-node is connected to the second (right-most) tree.

For example, the representation of 1011 is on Figure 8.
Since binary words will be used as inputs, we can have perfect control on the

way they are represented without having to consider families of representations
as for Booleans which arrive as outputs.

2.3. Decision Problems

The missing ingredients are now: how to associate an e-net with a decision
problem and how to evaluate it on a given argument in W. This last part is
provided by the following definition:

17

!

!

`

`

?p

⊗

?p

⊗

ax

?p

⊗

ax

`

ax

?

Figure 7: Representation of Binary Words

!

ax axax

!

?p

⊗

ax

`

ax

?p

⊗

?p

⊗

?p

⊗

`

`

?c

?c

Figure 8: Representation of 1011

18

Definition 3 (Representation of a Decision Problem). Let P : W → B
be a decision problem on binary words, the e-net R represents P if:

• R is an e-net with two conclusions ι and o,

• for any w ∈W, R ι./ w reduces to a representation of P(w).

Section 4 will deal with the construction of R from P when P is a PTIME
decision problem. But let assume we have built such an e-net R representing
the decision problem P. According to Definition 3, in order to compute the
value of P(w) for some given w ∈W, it suffices:

• to construct the e-net w (see Section 2.2),

• to build the e-net R ι./ w by adding a cut-node to the disjoint union of w
and R,

• and to reduce the obtained e-net until we reach a representation Rb of a
Boolean b (see Section 2.1).

We conclude that P(w) = b.
Let us make a few comments on this process. First Lemma 3 tells us that,

no matter in which way we reduce R ι./ w, we will always get the same b.
In particular some reduction sequences may be longer to compute than oth-
ers. When complexity comes into the picture, choosing appropriate reduction
strategies will be important (this is studied in Section 3). Second when some
Rb is reached, it takes constant time to figure out which b is represented: start
from the unique conclusion of Rb and check whether the ax-nodes reached by
the following two paths are the same or not:

(1) go up through the !-node above the conclusion, go up again through the
!-node above, go left through the ⊗-node, go right through the ` node,
and go left through the `-node above,

(2) go up through the !-node above the conclusion, go up again through the
!-node above, go left through the ⊗-node, go right through the ` node,
go right through the `-node above, and go left through the ⊗-node.

If we reach the same ax-node, b = 0, otherwise b = 1.

Lemma 4 (Normal Form Representation). If R represents P and R′ is a
reduct of R (in particular its normal form) then R′ represents P as well.

Proof. First, the number of conclusions of an e-net is not modified by reduc-
tion. Second, if R ι./w reduces to some RP(w) representing P(w), then R′ ι./w
reduces to a representation of P(w) as well (Lemma 3). �

19

3. Complexity Bounds

We study here quantitative bounds on the reduction of e-nets. The goal is to
prove a PTIME upper bound on the complexity of representable decision prob-
lems (Theorem 2). For that purpose, we are going to study reduction strategies
with a PTIME upper bound, but also powerful enough to reach representations
of Booleans from the representation of PTIME problems applied to some input.

In order to manipulate in a compact manner the size informations about e-
nets we need to monitor along reductions, we first introduce a notion of weight
and weight matrix.

Definition 4 (Weight at Depth d). If R is an e-net, its weight at depth d is
the triple wd(R) = (s,m, e) ∈ N3 where:

• s is the size of R at depth d in R;

• m is the number of multiplicative redexes at depth d in R;

• e is the number of exponential redexes at depth d in R.

Definition 5 (Weight Matrix). Let R be an e-net, a weight matrix M at
depth d of R is a 3× 3 matrix with coefficients in N ∪ {∞}: s0 m0 e0

s1 m1 e1
s+ m+ e+


such that, according to the componentwise order:

wd(R) ≤ (s0,m0, e0)

wd+1(R) ≤ (s1,m1, e1)

wd′(R) ≤ (s+,m+, e+) for any d′ > d+ 1.

If M is a weight matrix of R at depth d, we use the notation M .d R.

Remember that sizes, numbers of nodes, etc., are defined to be 0 at depths
not occurring in R (see Section 1.1). The value ∞ is used for coefficients we do
not want to (or cannot) monitor. If M .d R and if M′ is obtained from M by
replacing some coefficients with ∞, then we also have M′ .d R.

Lemma 5 (Weight Matrix Shift).

If

 s0 m0 e0
s1 m1 e1
s+ m+ e+

 .d R then

 s1 m1 e1
s+ m+ e+
s+ m+ e+

 .d+1 R.

Proof. This is a direct consequence of Definition 5. �

20

We now study how weight matrices can be used to bound the evolutions
of an e-net along some particular sequences of reductions. They sum up key
quantitative measures on e-nets allowing us to get upper bounds on the lengths
of some reduction sequences and on the sizes of the generated e-nets (see the
proof of Theorem 2 in particular).

Lemma 6 (Iterated Multiplicative Weight Reduction). If R reduces to
R′ by a sequence of multiplicative reduction steps at depth d then: s0 ∞ ∞

s1 ∞ ∞
s+ ∞ ∞

 .d R =⇒

 s0 ∞ ∞
s1 ∞ ∞
s+ ∞ ∞

 .d R′

Moreover the number of reduction steps is at most s0.

Proof. The size at depth d strictly decreases at each multiplicative step, and
nodes (and thus sizes) at depths strictly bigger than d are not modified. �

Lemma 7 (Stubborn Closed Exponential Weight Reduction). If R, with
at most k ?-nodes at depth d, reduces to R′ by stubborn closed exponential re-
duction at depth d, s0 m0 e0

s1 m1 ∞
s+ ∞ ∞

.dR =⇒

 k + s0 m0 e0 − 1
(k + 1)s1 (k + 1)m1 + k ∞
(k + 1)s+ ∞ ∞

.dR′
Moreover each reduction step from R to R′ makes the number of ?-nodes at
depth d strictly decrease, and the length of the reduction is bounded by k.

Proof.

• A closed reduction step at depth d removes a ?-node at depth d (and no
such node is duplicated or added), so the total length of the reduction
cannot be strictly bigger than k.

• Through a closed reduction step at depth d, the size at depth d increases
at most by 1.

• An exponential reduction cannot generate multiplicative redexes at depth
d (Fact 3).

• By maximality of the reduction sequence in a stubborn closed exponential
reduction, an exponential redex is removed.

• There are at most k steps and each one adds at most one copy of the box
concerned by the reduction sequence.

• For the same reason, one can move from m1 multiplicative redexes at
depth d + 1 to (k + 1)m1 multiplicative redexes at depth d + 1, but also
each copy of the box may come with a new multiplicative redex at depth
d+ 1. �

21

Lemma 8 (Iterated Stubborn Closed Exponential Weight Reduction).
If R containing a closed exponential redex reduces to R′ by iterated stubborn
closed exponential reduction at depth d, s0 m0 e0

s1 ∞ ∞
s+ ∞ ∞

 .d R =⇒

 2s0 m0 e0
se00 s1 ∞ ∞
se00 s+ ∞ ∞

 .d R′

and the number of reduction steps is bounded by s0.

Proof. Each time we apply a stubborn closed exponential reduction step from
Ri to Ri+1, Lemma 7 gives: s0 m0 e0

s1 ∞ ∞
s+ ∞ ∞

 .d Ri =⇒

 ki + s0 m0 e0 − 1
(ki + 1)s1 ∞ ∞
(ki + 1)s+ ∞ ∞

 .d Ri+1

so we obtain the result by iterating at most e0 times with
∑
i ki < s0. �

Theorem 2 (PTIME Soundness). If the e-net R represents the decision prob-
lem P then P is in PTIME.

Proof. By Lemma 4, if is enough to prove that any decision problem repre-
sented by a normal e-net is in PTIME. We thus now assume R to be a normal
form.

If w ∈W of length l, we note Rw = R ι./ w:

!

cut

`

`

?p

⊗

?p

⊗

ax

?p

⊗

ax

`

ax

?

!

R

ιo

Let S be 3 plus the size of R, and N = S + 2l, we have: S 0 1
N 0 0
N 0 0

 .0 Rw

Indeed, since R and w are both in normal form, the only redex of R ι./ w is
the cut introduced between R and w which is at depth 0 and is an exponential

22

redex (otherwise it would be a clash or an a-step redex and reduction could not
lead to the representation of a Boolean).

Concerning sizes, S is an immediate bound at depth 0. The size of w at
depth 1 is at most 2l + 5. The size of w at depth 2 is 2l + 2. The nodes of
R above ι and o cannot be the same (otherwise it is an ax-node and reduction
could not lead to the representation of a Boolean), so that R contains at least
2 nodes at depth 0 and thus at most S − 5 nodes at depth 1 (and higher).
Rw contains a unique exponential redex which is a closed redex, so we can

apply stubborn closed exponential reduction to it and obtain R′w with no redex
at depth 0 (using Fact 3). By Lemma 7 (with the number of ?-nodes at depth
0 bounded by S − 1), we have: 2S 0 0

SN S ∞
SN ∞ ∞

 .0 R′w and

 SN S 0
SN ∞ ∞
SN ∞ ∞

 .1 R′w

by Lemma 5 and since, due to the definition of w, the cuts generated at depth
1 cannot be exponential redexes because they are all of the shape:

!

cut

`

`

?p

⊗

?p

⊗

ax

?p

⊗

ax

`

ax

?

Let R′′w be the multiplicative normal form of R′w at depth 1, by Lemma 6,
we have: SN ∞ ∞

SN ∞ ∞
SN ∞ ∞

 .1 R′′w but also

 SN 0 3S
SN ∞ ∞
SN ∞ ∞

 .1 R′′w

since R′′w contains no multiplicative redex at depth 1, and by definition of w,
each multiplicative redex at depth 1 in R′w generates at most 3 exponential
redexes at depth 1 in R′′w: one for each premise of the `-nodes in the picture
above.

By Lemma 3, we can apply Lemma 2 to R′′w and get an e-net R′′′w (with no
cut at depth 1) after iterated stubborn closed exponential reduction at depth 1
in R′′w. By Lemma 8, we have: 2SN 0 0

(SN)3S+1 ∞ ∞
(SN)3S+1 ∞ ∞

 .1 R′′′w and

 (SN)3S+1 ∞ ∞
(SN)3S+1 ∞ ∞
(SN)3S+1 ∞ ∞

 .2 R′′′w

23

by Lemma 5.
Let R0

w be the multiplicative normal form of R′′′w at depth 2, by Lemma 6,
we have:  (SN)3S+1 0 ∞

(SN)3S+1 ∞ ∞
(SN)3S+1 ∞ ∞

 .2 R0
w

By Lemma 3 and Fact 3, R0
w represents b.

The depth cannot increase during reduction (Fact 1) thus the depth of R0
w is

bounded by S < SN . This implies the size of R0
w to be bounded by (SN)3S+2

as well as the size of all the e-nets met during reduction.
The length of the reduction sequence is obtained through the bounds:

Rw
S (Lem. 7)−−−−−−−→ R′w

SN (Lem. 6)−−−−−−−−→ R′′w
SN (Lem. 8)−−−−−−−−→ R′′′w

(SN)3S+1 (Lem. 6)−−−−−−−−−−−−→ R0
w

thus it is bounded by (SN)3S+2 as well:

S + SN + SN + (SN)3S+1 ≤ 4(SN)3S+1 ≤ (SN)3S+2

As already mentioned, a constant time procedure then easily allows us to read
the Boolean value b from (its representation) R0

w.
Both the size bound and the time bound are thus polynomial in the length l

of the input. Such a reduction sequence can then be implemented by a PTIME
Turing machine [2]. �

4. Completeness of the Representation

We want to simulate PTIME Turing machines with e-nets. We will adapt
the encoding of Turing machines from [15, 9] to a non-affine setting. We really
follow the same pattern while carefully introducing additional garbage collection
at the appropriate places to deal with the strictly linear case.

It would be possible to give a direct encoding into e-nets but understanding
how simulation works could be difficult. Since the encoding is compatible with
a notion of recursive types with second-order quantification, we first give such
a typed encoding. Types helps understanding the encoding in a modular way,
and can be erased without impacting the final computation.

Similarly our target is a classical system, but intuitionistic presentations may
look more natural to the readers more comfortable with functional programming
than with cut-elimination in one-sided systems for classical logics. Similarly, the
input/output behaviour of computation appears more clearly in intuitionistic
frameworks.

Since defining a notion of intuitionistic typed nets would be tedious, we focus
here on a intuitionistic sequent calculus. We can then reach our e-nets target
by moving all formulas to the right side of ` by means of (linear) negation (thus
trivially embedding the intuitionistic system into a one-sided classical one), by
translating rules into nodes (thus building graphs from proof trees), and by
erasing types. The point of this detour is to make thinks easier to read with no

24

consequence on the final objects we extract. We simply take advantage of the
fact that the target of the encoding lies in a well structured subset of e-nets.

The logic we use is IELL2µ, a typed intuitionistic linear sequent calculus with
second-order quantification and recursive types. Formulas of IELL2µ are given
by:

A ::= α | A⊗A | A(A | !A | ∀α.A | ∃α.A | µα.A

The associated rules are:

ax
A ` A

Γ ` A ∆, A ` B
cut

Γ,∆ ` B

Γ ` A ∆ ` B ⊗R
Γ,∆ ` A⊗B

Γ, A,B ` C
⊗L

Γ, A⊗B ` C

Γ, A ` B
(R

Γ ` A(B

Γ ` A ∆, B ` C
(L

Γ,∆, A(B ` C

Γ, !A, !A ` B
!C

Γ, !A ` B
Γ ` B

!W
Γ, !A ` B

Γ ` A
!

!Γ ` !A

Γ ` A α /∈ Γ ∀R
Γ ` ∀α.A

Γ, A[B/α] ` C
∀L

Γ,∀α.A ` C

Γ ` A[B/α]
∃R

Γ ` ∃α.A
Γ, A ` C α /∈ Γ, C

∃L
Γ,∃α.A ` C

Γ ` A[µβ.A/β]
µR

Γ ` µβ.A
Γ, A[µβ.A/β] ` B

µL
Γ, µβ.A ` B

The presence of second order quantification and fixpoints in formulas makes
IELL2µ a very powerful typed system allowing for the possibility of rich encodings.

In order to encode Turing machines, we first define representations of some
data types: types are represented by appropriate formulas of IELL2µ and associ-
ated values, constructors or operations by sequent calculus derivations.

• Booleans. The formula for representing Booleans in our linear framework
is: B` = ∀α.α(α((α⊗ α).

The proofs 0` and 1` (representing the two Boolean values) are obtained
from the two possible choices of the splitting of the occurrences of α in:

0`, 1` =

ax
α ` α

ax
α ` α ⊗R

α,α ` α⊗ α
(R

` α(α((α⊗ α)
∀R` B`

These are the only two cut-free proofs of the formula B`.

25

• Garbage. The non-affine setting we use requires to introduce some
garbage collection mechanism. For this we introduce the generic garbage
type ∃γ.γ. It can be used in particular to build the following family of
proofs collecting arbitrary garbage into ∃γ.γ:

gc =

ax
A1 ` A1 · · ·

ax
An ` An ⊗R

A1, . . . , An ` A1 ⊗ · · · ⊗An ∃R
A1, . . . , An ` ∃γ.γ

• Enumerated Data Types. For s ∈ N, a finite enumerated data-type
containing s elements (but also with room for some garbage) can be rep-
resented by: Es = ∀α.α(· · ·(α((α⊗ ∃γ.γ) (with s arrows).

The proofs statek (1 ≤ k ≤ s) are obtained from the s possible choices
of the selection of an occurrence of α in the left top-most axiom rule:

statek =

ax
α ` α

gc

α, . . . , α ` ∃γ.γ
⊗R

α, . . . , α ` α⊗ ∃γ.γ
(R

` α(· · ·(α((α⊗ ∃γ.γ)
∀R` Es

We can do case distinction on the elements of Es through the following
derivable rule which produces garbage (if Γ = B1, . . . , Bp, we use the
notation Γ(A for B1(· · ·(Bp(A):

Γ ` A · · · Γ ` A ELEs,Γ ` A⊗ ∃γ.γ
≡

Γ ` A
(R` Γ(A · · ·

Γ ` A
(R` Γ(A

· · ·
ax

A ` A
(L

Γ(A,Γ ` A
ax

∃γ.γ ` ∃γ.γ
⊗R

Γ(A,∃γ.γ,Γ ` A⊗ ∃γ.γ
⊗L

(Γ(A)⊗ ∃γ.γ,Γ ` A⊗ ∃γ.γ
(L

(Γ(A)(· · ·((Γ(A)(((Γ(A)⊗ ∃γ.γ),Γ ` A⊗ ∃γ.γ
∀LEs,Γ ` A⊗ ∃γ.γ

By introducing a cut between statek and EL (and by eliminating it), one
can recover the kth proof Γ ` A.

• Booleans with Garbage. We can extend the representation of Booleans
with garbage by: B = ∀α.α(α((α⊗ ∃γ.γ) (note we have B = E2).

0 and 1 are obtained from the two possible choices of the splitting of the
occurrences of α in:

0, 1 =

ax
α ` α

ax
α ` α ∃R

α ` ∃γ.γ
⊗R

α,α ` α⊗ ∃γ.γ
(R

` α(α((α⊗ ∃γ.γ)
∀R` B

26

They simply are state1 and state2.

The use of garbage in the type B allows us to collect garbage into B
through:

gcB =

ax
α ` α

ax
α ` α

ax
α ` α

gc

∃γ.γ,A1, . . . , An ` ∃γ.γ ⊗R
α,∃γ.γ,A1, . . . , An ` α⊗ ∃γ.γ ⊗L
α⊗ ∃γ.γ,A1, . . . , An ` α⊗ ∃γ.γ

(L
α(α((α⊗ ∃γ.γ), A1, . . . , An, α, α ` α⊗ ∃γ.γ ∀LB, A1, . . . , An, α, α ` α⊗ ∃γ.γ

(R
B, A1, . . . , An ` α(α((α⊗ ∃γ.γ)

∀RB, A1, . . . , An ` B

Conversely, garbage can be extracted from an element of B to obtain a
garbage-free Boolean in B`:

b2bl =

0`

` B`
1`

` B` ELB ` B` ⊗ ∃γ.γ

• Church Numerals. We represent Church numerals with the formula:
C = ∀α.!(α(α)(!(α(α).

For example, the Church numeral representation of 2 is:

2 =

ax
α ` α

ax
α ` α

ax
α ` α

(L
α(α, α ` α

(L
α(α, α(α, α ` α

(R
α(α, α(α ` α(α

!
!(α(α), !(α(α) ` !(α(α)

!C
!(α(α) ` !(α(α)

(R` !(α(α)(!(α(α)
∀R` C

Let P be a polynomial, it can be represented as a proof of !C ` !C, meaning
that if n represents the Church numeral n, the following proof reduces to
the proof associated with P (n) followed by a promotion rule (!):

n

` C
!` !C

P

!C ` !C
cut` !C

→∗
P(n)

` C
!` !C

The key ingredients for representing P are the representations of the ad-
dition and multiplication functions in !C, !C ` !C obtained by adding a

27

promotion rule (!) to:

add =

ax
!(α(α) ` !(α(α)

ax
!(α(α) ` !(α(α)

ax
α ` α

ax
α ` α

ax
α ` α

(L
α,α(α ` α

(L
α(α, α(α, α ` α

(R
α(α, α(α ` α(α

!
!(α(α), !(α(α) ` !(α(α)

(L
!(α(α), !(α(α)(!(α(α), !(α(α) ` !(α(α)

(L
!(α(α)(!(α(α), !(α(α)(!(α(α), !(α(α), !(α(α) ` !(α(α)

!C
!(α(α)(!(α(α), !(α(α)(!(α(α), !(α(α) ` !(α(α)

∀L
C,C, !(α(α) ` !(α(α)

(RC,C ` !(α(α)(!(α(α)
∀RC,C ` C

and

mul =

ax
!(α(α) ` !(α(α)

ax
!(α(α) ` !(α(α)

ax
!(α(α) ` !(α(α)

(L
!(α(α), !(α(α)(!(α(α) ` !(α(α)

(L
!(α(α)(!(α(α), !(α(α)(!(α(α), !(α(α) ` !(α(α)

∀L
C,C, !(α(α) ` !(α(α)

(RC,C ` !(α(α)(!(α(α)
∀RC,C ` C

For example the polynomial X3 + 2X = X × X × X + X + X can be
represented by:

mul

C,C ` C
!

!C, !C ` !C

mul

C,C ` C
!

!C, !C ` !C
cut

!C, !C, !C ` !C

add

C,C ` C
!

!C, !C ` !C
cut

!C, !C, !C, !C ` !C

add

C,C ` C
!

!C, !C ` !C
cut

!C, !C, !C, !C, !C ` !C
!C

!C ` !C

• Church Binary Words. Similarly, we represent (Church-style) binary
words with the formula: W = ∀α.!(α(α)(!(α(α)(!(α(α).

The two operations of pushing an element (0 or 1) on top of a word are

28

consW0 and consW1 given by:

consW0 , cons
W
1 =

ax
!(α(α) ` !(α(α)

ax
!(α(α) ` !(α(α)

ax
α ` α

ax
α ` α

ax
α ` α

(L
α,α(α ` α

(L
α(α, α(α, α ` α

(R
α(α, α(α ` α(α

!
!(α(α), !(α(α) ` !(α(α)

(L
!(α(α)(!(α(α), !(α(α), !(α(α) ` !(α(α)

(L
!(α(α)(!(α(α)(!(α(α), !(α(α), !(α(α), !(α(α) ` !(α(α)

∀LW, !(α(α), !(α(α), !(α(α) ` !(α(α)
!CW, !(α(α), !(α(α) ` !(α(α)

(R
W ` !(α(α)(!(α(α)(!(α(α)

∀RW `W

depending on which !(α(α) is duplicated in the !C-rule. The empty
word is represented by:

nilW =

ax
α ` α

(R` α(α
!` !(α(α)

!W
!(α(α), !(α(α) ` !(α(α)

(R
` !(α(α)(!(α(α)(!(α(α)

∀R`W

Given two step functions and a base case on a type A, it is possible to
define an iteration taking an argument of type W and building !A. This
comes as a derivable rule:

A ` A A ` A ` A
iterWW ` !A

≡

A ` A
(R` A(A
!` !(A(A)

A ` A
(R` A(A
!` !(A(A)

` A
ax

A ` A
(L

A(A ` A
!

!(A(A) ` !A
(L

!(A(A)(!(A(A)(!(A(A) ` !A
∀LW ` !A

The length of a binary word can be obtained as an element of C through

29

the proof length of W ` C:

length =
ax

!(α(α) ` !(α(α)
ax

!(α(α) ` !(α(α)
ax

!(α(α) ` !(α(α)
(L

!(α(α)(!(α(α)(!(α(α), !(α(α), !(α(α) ` !(α(α)
∀LW, !(α(α), !(α(α) ` !(α(α)

!CW, !(α(α) ` !(α(α)
(RW ` !(α(α)(!(α(α)
∀RW ` C

We could try to use iteration of the successor function but in this case the
conclusion would be W ` !C instead.

• Scott Binary Words. We also need a Scott-style representation of bi-
nary words (or stacks) using a recursive type definition and incorporating
garbage. This is done with the formula (which uses all the three binders
allowed in formulas):

S = µβ.∀α.(β(α)((β(α)(α((α⊗ ∃γ.γ)

which intuitively satisfies S = ∀α.(S(α)((S(α)(α((α⊗∃γ.γ).

The two operations of pushing an element (0 or 1) on top of a word consS0
and consS1 are obtained from the two possible choices of the splitting of
the occurrences of S(α in:

consS0, cons
S
1 =

ax
S ` S

ax
α ` α

(LS,S(α ` α
gc

S(α, α ` ∃γ.γ
⊗RS,S(α,S(α, α ` α⊗ ∃γ.γ
(R

S ` (S(α)((S(α)(α((α⊗ ∃γ.γ)
∀RS ` ∀α.(S(α)((S(α)(α((α⊗ ∃γ.γ)
µR

S ` S

and the empty word is given by:

nilS =

ax
α ` α

gc

S(α,S(α ` ∃γ.γ
⊗RS(α,S(α, α ` α⊗ ∃γ.γ
(R

` (S(α)((S(α)(α((α⊗ ∃γ.γ)
∀R` ∀α.(S(α)((S(α)(α((α⊗ ∃γ.γ)
µR` S

Separating a word into its head (first element in B) and tail (other elements

30

in S) is obtained with the pop proof of S ` B⊗ S:

pop =

0

` B
ax

S ` S ⊗RS ` B⊗ S
(R` S(B⊗ S

1

` B
ax

S ` S ⊗RS ` B⊗ S
(R` S(B⊗ S

0

` B
nilS

` S ⊗R` B⊗ S

gcB
B,∃γ.γ ` B

ax
S ` S

⊗RB,S,∃γ.γ ` B⊗ S
⊗L

(B⊗ S)⊗ ∃γ.γ ` B⊗ S
(L

(S(B⊗ S)((S(B⊗ S)((B⊗ S)(((B⊗ S)⊗ ∃γ.γ) ` B⊗ S
∀L∀α.(S(α)((S(α)(α((α⊗ ∃γ.γ) ` B⊗ S

µL
S ` B⊗ S

In case of an empty input, it answers 0 and an empty tail.

• From Church to Scott. A translation from the Church-style represen-
tation of binary words W into their Scott-style representation S can be
obtained by iteration:

w2s =
consS0
S ` S

consS1
S ` S

nilS

` S
iterWW ` !S

• Configurations. The representation of the execution of Turing machines
with two symbols and s states is based on the following formula for con-
figurations: Config = S⊗B⊗S⊗Es. The first occurrence of S represents
the left part of the tape (in reverse order), B represents the value of the
current cell, the second occurrence of S represents the right part of the
tape, and Es represents the current state.

• Initial Configuration. Assuming that 1 is the initial state, and given the
representation in S of a binary word, one can build the initial configuration
by a cut with:

init =
nilS

` S
pop

S ` B⊗ S
state1

` Es ⊗R
S ` Config

• Transition Function. A transition of the machine is computed through
the proof step of Config ` Config:

step =

· · ·

transitk0

S,S ` Config

transitk1

S,S ` Config
ELS,B,S ` Config⊗ ∃γ.γ · · ·

ELS,B,S,Es ` Config⊗ ∃γ.γ ⊗ ∃γ.γ
⊗L

Config ` Config⊗ ∃γ.γ ⊗ ∃γ.γ

ax
S ` S

gcB
B,∃γ.γ, ∃γ.γ ` B

ax
S⊗ Es ` S⊗ Es ⊗R

S,B,S⊗ Es,∃γ.γ, ∃γ.γ ` Config
⊗L

Config,∃γ.γ, ∃γ.γ ` Config
⊗L

Config⊗ ∃γ.γ ⊗ ∃γ.γ ` Config
cut

Config ` Config

The proofs transitki encode the transition table of the Turing machine:

31

– if, in state k, while reading value i, the machine goes to state k′,
writes i′, and moves its head to the right, then:

transitki =

consSi′

S ` S
pop

S ` B⊗ S
statek′

` Es ⊗R
S,S ` Config

– if, in state k, while reading value i, the machine goes to state k′,
writes i′, and moves its head to the left, then:

transitki =

pop

S ` B⊗ S

ax
S ` S

ax
B ` B ⊗RB,S ` S⊗ B

⊗LB⊗ S ` S⊗ B
cutS ` S⊗ B

consSi′

S ` S
statek′

` Es ⊗R
S,S ` Config

• Execution. Given a number n represented in C and a binary word w in
!S (using a promotion if necessary), we can run the machine for n steps
from the initial state associated with w by using cuts with:

run =

step

Config ` Config
(R` Config(Config
!` !(Config(Config)

init

S ` Config
ax

Config ` Config
(L

Config(Config,S ` Config
!

!(Config(Config), !S ` !Config
(L

!(Config(Config)(!(Config(Config), !S ` !Config
∀LC, !S ` !Config

This is iteration over C.

• Acceptance. Assuming the state s is the accepting one, the acceptance
of a configuration is tested through the proof:

accept =

0

` B · · ·
0

` B
1

` B ELEs ` B⊗ ∃γ.γ

gcB
S,B,S,B,∃γ.γ ` B

⊗LS,B,S,B⊗ ∃γ.γ ` B
cutS,B,S,Es ` B

⊗L
Config ` B

• Whole Computation. The result of the evaluation of the PTIME Turing

32

machine on an input represented in !W is finally obtained by a cut with:

length

W ` C
!

!W ` !C
P

!C ` !C
cut

!W ` !C

w2s

W ` !S
run

C, !S ` !Config
cutC,W ` !Config

!
!C, !W ` !!Config

accept

Config ` B
!

!Config ` !B
!

!!Config ` !!B

b2bl

B ` B` ⊗ ∃γ.γ
!

!B ` !(B` ⊗ ∃γ.γ)
!

!!B ` !!(B` ⊗ ∃γ.γ)
cut

!W, !W ` !!(B` ⊗ ∃γ.γ)
!C

!W ` !!(B` ⊗ ∃γ.γ)

The input is used once to compute (through P) the required number of ex-
ecution steps and another time to turn it into its Scott-style representation
used to build the initial state of the machine.

If we erase garbage, we find back the same encoding as in [9], thus cut
elimination simulates the evaluation of the encoded Turing machine.

Theorem 3 (PTIME Completeness). If P is a PTIME decision problem, there
exists an e-net which represents P.

Proof. As described above, we can associate with a PTIME Turing machine
computing P, a sequent calculus proof of !W ` !!(B` ⊗ ∃γ.γ) in IELL2µ.

We can turn this sequent calculus proof into an e-net. Nodes are associated
with rules through the following mapping:

ax
A ` A 7→ ax-node

Γ ` A ∆, A ` B
cut

Γ,∆ ` B
7→ cut-node

Γ ` A ∆ ` B ⊗R
Γ,∆ ` A⊗B 7→ ⊗-node

Γ, A,B ` C
⊗L

Γ, A⊗B ` C
7→ `-node

Γ, A ` B
(R

Γ ` A(B
7→ `-node

Γ ` A ∆, B ` C
(L

Γ,∆, A(B ` C
7→ ⊗-node

Γ, !A, !A ` B
!C

Γ, !A ` B
7→ ?c-node

Γ ` B
!W

Γ, !A ` B 7→ ?w-node

Γ ` A
!

!Γ ` !A
7→ !-node and ?p-nodes defining a box

33

Rules for ∀, ∃ and µ are simply ignored in the translation.
One can check (by induction on the proof) the generated e-net to satisfy the

correctness criterion.
This transforms an IELL2µ proof of !W representing a binary word w into its

e-net representation w (and conversely, the e-net w can be turned into a proof
of !W). Similarly any proof of !!(B`⊗∃γ.γ) is turned into an e-net representing
a Boolean. This means we obtain an e-net which represents P since the e-net
reduction simulates the sequent calculus cut-elimination. �

5. Beyond PTIME

In [9], not only PTIME is considered but a whole exponential hierarchy. It
is possible to get similar results here.

We define the tower of exponentials 2xk of base 2 and height k by:

2x0 = x 2xk+1 = 2(2
x
k)

Lemma 9. If x ≥ 3, (2xk)2
x
k+1 ≤ 2x

2

k+1.

Proof. By induction on k. For k = 0, we have xx+1 ≤ 2x
2

. Then we have the
following deduction sequence:

2n + 1 ≤ nn if n ≥ 3

n(2n + 1) ≤ nn+1 if n ≥ 3

2xk(2xk+1 + 1) ≤ (2xk)2
x
k+1 choose n = 2xk

2xk(2xk+1 + 1) ≤ 2x
2

k+1 induction hypothesis

(2xk+1)2
x
k+1+1 ≤ 2x

2

k+2

�

The complexity class k-EXPTIME is the class of decision problems com-

putable on a deterministic Turing machine in time O
(

2
P (n)
k

)
(for some polyno-

mial P) for words of size n. In particular 0-EXPTIME = PTIME, 1-EXPTIME is
the class of exponential time problems, and ELEMENTARY =

⋃
k∈N k-EXPTIME.

5.1. Representations

Let us generalize the notions of representations of Section 2.

Definition 6 (k-Representation of Booleans). An e-net k-represents the
Boolean 0 (resp. 1) if it has the shape presented on the left (resp. on the right)
of Figure 9, with exactly k + 2 !-nodes below the ⊗-node.

In particular the notion of Boolean representation of Section 2.1 corresponds
to 0-representation here.

34

!

ax

ax

⊗

`

`

⊗

G

!

...

!

⊗

`

`

⊗

ax

ax

G

!

... } k + 2

Figure 9: k-Representation of Booleans (0 and 1 respectively)

Definition 7 (k-Representation of Decision Problems). Let P : W→ B
be a decision problem on binary words, the e-net R k-represents P if:

• R is an e-net with two conclusions ι and o,

• for any w ∈W, R ι./ w reduces to a k-representation of P(w).

This leads to the following generalization of Theorems 2 and 3:

Theorem 4 (k-EXPTIME Representation). P is a k-EXPTIME decision prob-
lem if and only if there exists an e-net which k-represents P.

The proof is explained in the following two sections. We go faster than for
the PTIME case since the arguments are extremely similar.

5.2. Completeness

On the completeness side (Theorem 3), the only missing ingredients are the

possibility of representing any function x 7→ 2
P (x)
k as a proof with conclusion

!C ` !k+1C, and the existence of a coercion proof with conclusion W ` !kW
which acts as the identity on its argument (see [9]).

35

Let us consider the following proof:

exp =

2

` C
mul

C,C ` C
cutC ` C

(R` C(C
!` !(C(C)

ax
!(α(α) ` !(α(α)

(R` !(α(α)(!(α(α)
∀R` C

ax
C ` C

(LC(C ` C
!

!(C(C) ` !C
(L

!(C(C)(!(C(C) ` !C
∀LC ` !C

The function x 7→ 2x0 = x is represented by ax
!C ` !C , and assuming by

induction that we have a representation of x 7→ 2xk with conclusion !C ` !k+1C,
we represent x 7→ 2xk+1 = 2(2

x
k) by:

2xk

!C ` !k+1C

exp

C ` !C
!

!k+1C ` !k+2C
cut

!C ` !k+2C

x 7→ 2
P (x)
k is then obtained by composing (through a cut) the representation of

P in !C ` !C with this representation of x 7→ 2xk.
A coercion (identity function) from W to !W can be obtained by:

coer =
consW0
W `W

consW1
W `W

nilW

`W
iterWW ` !W

from which we can deduce a proof coerk of W ` !kW for any k by using the
induction step:

coerk+1 = coer

W ` !W

coerk

W ` !kW
!

!W ` !k+1W
cut

W ` !k+1W

The execution of a k-EXPTIME Turing machine is then simulated by:

length

W ` C
!

!W ` !C
2
P (x)
k

!C ` !k+1C
cut

!W ` !k+1C

coerk

W ` !kW
!

!W ` !k+1W

w2s

W ` !S
run

C, !S ` !Config

accept

Config ` B
!

!Config ` !B

b2bl

B ` B` ⊗ ∃γ.γ
!

!B ` !(B` ⊗ ∃γ.γ)
cut

C,W ` !(B` ⊗ ∃γ.γ)
!

!k+1C, !k+1W ` !k+2(B` ⊗ ∃γ.γ)
cut

!W, !W ` !k+2(B` ⊗ ∃γ.γ)
!C

!W ` !k+2(B` ⊗ ∃γ.γ)

36

5.3. Soundness

On the soundness side, we follow the same pattern as for Theorem 2.
Let R be a normal e-net k-representing the problem P and let w be a binary

word. We study the reduction of the e-net Rw = R ι./w. The analysis at depth
0 and 1 is exactly the same for any k. Following the first part of the proof of
Theorem 2, we get:  (SN)3S+1 0 ∞

(SN)3S+1 ∞ ∞
(SN)3S+1 ∞ ∞

 .2 R0
w

with P0(l) = (SN)3S+1 polynomial in l. Moreover R0
w has only redexes at

depth 2 (which are all exponential), and it reduces to the k-representation of a
Boolean.

Let us assume k ≥ 1 and that we have an e-net Rnw (0 ≤ n ≤ k − 1) with: 2
Pn(l)
n 0 ∞

2
Pn(l)
n ∞ ∞

2
Pn(l)
n ∞ ∞

 .n+2 Rnw

for some polynomial Pn(l), with Rnw having redexes at depth n + 2 only (thus
all exponential) and which reduces to the k-representation of a Boolean.

We can apply Lemma 2 and by iterated stubborn closed exponential reduc-
tion at depth n+ 2 we get some R′nw with by Lemmas 8, 9 and 5:
(

2
Pn(l)
n

)2Pn(l)
n +1

∞ ∞(
2
Pn(l)
n

)2Pn(l)
n +1

∞ ∞(
2
Pn(l)
n

)2Pn(l)
n +1

∞ ∞

.n+2R′
n
w and

 2
Pn+1(l)
n+1 ∞ ∞

2
Pn+1(l)
n+1 ∞ ∞

2
Pn+1(l)
n+1 ∞ ∞

.n+3R′
n
w

for Pn+1(l) = Pn(l)2, with R′nw having cuts at depth n+ 3 only.
Let Rn+1

w be its multiplicative normal form at depth n+ 3, we have: 2
Pn+1(l)
n+1 0 ∞

2
Pn+1(l)
n+1 ∞ ∞

2
Pn+1(l)
n+1 ∞ ∞

 .n+3 Rn+1
w

By induction we reach: 2
Pk(l)
k 0 ∞

2
Pk(l)
k ∞ ∞

2
Pk(l)
k ∞ ∞

 .k+2 Rkw

for some polynomial Pk(l).

37

The sizes of all e-nets from Rw to Rkw are then bounded by some 2
P (l)
k with

P a polynomial in l.
Concerning the length of the reduction sequence, we have:

Rw
S (Lem. 7)−−−−−−−→ R′w

SN (Lem. 6)−−−−−−−−→ R′′w
SN (Lem. 8)−−−−−−−−→ R′′′w

(SN)3S+1 (Lem. 6)−−−−−−−−−−−−→ R0
w

· · · Rnw
2Pn(l)
n (Lem. 8)−−−−−−−−−−→ R′nw

2
Pn+1(l)

n+1 (Lem. 6)
−−−−−−−−−−−→ Rn+1

w · · · (0 ≤ n ≤ k − 1)

whose total length is bounded by 2
P (l)
k with P a polynomial in l.

We conclude as in Theorem 2 that such a reduction sequence with bounded
length and bounded sizes can then be implemented by a k-EXPTIME Turing
machine.

6. Conclusion

We have presented the computational model of e-nets: untyped proofs-nets
for classical elementary linear logic. We have shown how they characterize
PTIME computation (Theorems 2 and 3), and more generally k-EXPTIME com-
putation (Theorem 4). The main novelties are the absence of types and the
non-affine framework. We have used types as an intermediary tool to make
the representation of PTIME Turing machines more understandable, but it is
also possible to directly build the e-net simulating the execution of a given ma-
chine, without any reference to types. The restricted erasure power of the model
requires to do some garbage management along the simulation, but it has no
direct impact on the reading of the final result.

Acknowledgements. We would like to thank Patrick Baillot for various discus-
sions during the development of this work, and the anonymous referees for their
suggestions for improving the presentation.

[1] J.-Y. Girard, Linear logic, Theoretical Computer Science 50 (1987) 1–102.

[2] J.-Y. Girard, Light Linear Logic, Information and Computation 143 (2)
(1998) 175–204.

[3] Y. Lafont, Soft Linear Logic and Polynomial Time, Theoretical Computer
Science 318 (1–2) (2004) 163–180.

[4] V. Danos, J.-B. Joinet, Linear logic and elementary time, Information and
Computation 183 (1) (2003) 123–137.

[5] M. Gaboardi, J.-Y. Marion, S. Ronchi Della Rocca, An Implicit Charac-
terization of PSPACE, ACM Transactions on Computational Logic 13 (2)
(2012) 18:1–18:36.

[6] P. Baillot, Stratified coherent spaces: a denotational semantics for Light
Linear Logic, Theoretical Computer Science 318 (1–2) (2004) 29–55.

38

[7] O. Laurent, L. Tortora de Falco, Obsessional cliques: a semantic charac-
terization of bounded time complexity, in: Proceedings of the twenty-first
annual symposium on Logic In Computer Science, IEEE, IEEE Computer
Society Press, Seattle, 179–188, 2006.

[8] O. Laurent, On the categorical semantics of Elementary Linear Logic, The-
ory and Applications of Categories 22 (10) (2009) 269–301.

[9] P. Baillot, On the expressivity of elementary linear logic: Characterizing
Ptime and an exponential time hierarchy, Information and Computation
241 (2015) 3–31.

[10] A. Asperti, Light Affine Logic, in: Proceedings of the thirteenth annual
symposium on Logic In Computer Science, IEEE, IEEE Computer Society
Press, Indianapolis, 300–308, 1998.

[11] J.-Y. Girard, Y. Lafont, P. Taylor, Proofs and Types, no. 7 in Cambridge
tracts in theoretical computer science, Cambridge University Press, 1989.

[12] A. Asperti, L. Roversi, Intuitionistic Light Affine Logic, ACM Transactions
on Computational Logic 3 (1) (2002) 1–39.

[13] H. Mairson, K. Terui, On the Computational Complexity of Cut-
Elimination in Linear Logic, in: Proceedings of the eighth Italian Con-
ference on Theoretical Computer Science (ICTCS), vol. 2841 of Lecture
Notes in Computer Science, Springer, 23–36, 2003.

[14] K. Terui, Proof Nets and Boolean Circuits, in: Proceedings of the nine-
teenth annual symposium on Logic In Computer Science, IEEE, IEEE
Computer Society Press, Turku, 182–191, 2004.

[15] U. Dal Lago, P. Baillot, On light logics, uniform encodings and polynomial
time, Mathematical Structures in Computer Science 16 (4) (2006) 713–733.

[16] L. T. D. Nguyen, Around finite second-order coherence spaces, Available
at http://arxiv.org/abs/1902.00196 , 2019.

[17] D. de Carvalho, M. Pagani, L. Tortora de Falco, A semantic measure of
the execution time in Linear Logic, Theoretical Computer Science 412 (20)
(2011) 1884–1902.

[18] V. Danos, L. Regnier, The structure of multiplicatives, Archive for Math-
ematical Logic 28 (1989) 181–203.

[19] V. Danos, La Logique Linéaire appliquée à l’étude de divers processus de
normalisation (principalement du λ-calcul), Thèse de doctorat, Université
Paris VII, 1990.

[20] U. Dal Lago, Context Semantics, Linear Logic and Computational Com-
plexity, ACM Transactions on Computational Logic 10 (4) (2009) 25:1–
25:32.

39

[21] Terese, Term Rewriting Systems, vol. 55 of Cambridge tracts in theoretical
computer science, Cambridge University Press, 2003.

40

