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Abstract. By using pointers, breadth-first algorithms are very easy to
implement efficiently in imperative languages. Implementing them with
the same bounds on execution time in purely functional style can be chal-
lenging, as explained in Okasaki’s paper at ICFP 2000 that even restricts
the problem to binary trees but considers numbering instead of just
traversal. Okasaki’s solution is modular and factors out the problem of
implementing queues (FIFOs) with worst-case constant time operations.
We certify those FIFO-based breadth-first algorithms on binary trees
by extracting them from fully specified Coq terms, given an axiomatic
description of FIFOs. In addition, we axiomatically characterize the
strict and total order on branches that captures the nature of breadth-
first traversal and propose alternative characterizations of breadth-first
traversal of forests. We also propose efficient certified implementations
of FIFOs by extraction, either with pairs of lists (with amortized con-
stant time operations) or triples of lazy lists (with worst-case constant
time operations), thus getting from extraction certified breadth-first algo-
rithms with the optimal bounds on execution time.

Keywords: Breadth-first algorithms · Queues in functional
programming · Correctness by extraction · Coq

1 Introduction

Breadth-first algorithms form an important class of algorithms with many appli-
cations. The distinguishing feature is that the recursive process tries to be “equi-
table” in the sense that all nodes in the graph with “distance” k from the
starting point are treated before those at distance k + 1. In particular, with
infinite (but finitely branching) structures, this ensures “fairness” in that all
possible branches are eventually pursued to arbitrary depth, in other words, the
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recursion does not get “trapped” in an infinite branch.1 This phenomenon that
breadth-first algorithms avoid is different from a computation that gets “stuck”:
even when “trapped”, there may be still steady “progress” in the sense of pro-
ducing more and more units of output in finite time. In this paper, we will not
specify or certify algorithms to work on infinite structures although we expect
the lazy reading of our extracted programs (e. g., if we choose to extract towards
the Haskell language) to work properly for infinite input as well and thus be
fair—however without any guarantees from the extraction process. Anyway, as
mentioned above, breadth-first algorithms impose a stronger, quantitative notion
of “equity” than just abstract fairness to address the order of traversal of the
structure.

When looking out for problems to solve with breadth-first algorithms, plain
traversal of a given structure is the easiest task; to make this traversal “ob-
servable,” one simply prints the visited node labels (following the imperative
programming style), or one collects them in a list, in the functional program-
ming paradigm, as we will do in this paper (leaving filtering of search “hits”
aside). However, in the interest of efficiency, it is important to use a first-in,
first-out queue (FIFO) to organize the waiting sub-problems (see, e. g., Paulson’s
book [15] on the ML language). Here, we are also concerned with functional lan-
guages, and for them, constant-time (in the worst case) implementations of the
FIFO operations were a scientific challenge, solved very elegantly by Okasaki [13].

Breadth-first traversal is commonly [4] used to identify all nodes that are
reachable in a graph from a given start node, and this allows creating a tree
that captures the subgraph of reachable nodes, the “breadth-first tree” (for a
given start node). In Okasaki’s landmark paper at ICFP 2000 [14], the author
proposes to revisit the problem of breadth-first numbering : the traversal task is
further simplified to start at the root of a (binary) tree, but the new challenge
is to rebuild the tree in a functional programming language, where the labels
of the nodes have been replaced by the value n if the node has been visited as
the n-th one in the traversal. The progress achieved by Okasaki consists in sep-
arating the concerns of implementing breadth-first numbering from an efficient
implementation of FIFOs: his algorithm works for any given FIFO and inherits
optimal bounds on execution time from the given FIFO implementation. Thus,
breadth-first numbering can be solved as efficiently with FIFOs as traversal,2

and Okasaki reports in his paper that quite some of his colleagues did not come
up with a FIFO-based solution when asked to find any solution.

In the present paper, using the Coq proof assistant,3 we formalize and solve
the breadth-first traversal problem for finite binary trees with a rich specification
in the sense of certified programming, i. e., when the output of an algorithm is a

1 Meaning that recursion would be pursued solely in that branch.
2 Jones and Gibbons [7] solved a variant of the problem with a “hard-wired” FIFO

implementation—the one we review in Sect. 7.1—and thus do not profit from the
theoretically most pleasing FIFO implementation by Okasaki [13].

3 https://coq.inria.fr, we have been using the current version 8.9.0, and the authori-
tative reference on Coq is https://coq.inria.fr/distrib/current/refman/.
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dependent pair (v, Cv) composed of a value v together with a proof Cv certifying
that v satisfies some (partial correctness) property.4 The key ingredient for its
functional correctness are two equations already studied by Okasaki [14], but
there as definitional device. Using the very same equations, we formalize and
solve the breadth-first numbering problem, out of which the Coq extraction5

mechanism [9] can extract the same algorithm as Okasaki’s (however, we extract
code in the OCaml6 language), but here with all guarantees concerning the
non-functional property of termination and the functional/partial correctness,
both aspects together constituting its total correctness, i. e., the algorithm indeed
provides such a breadth-first numbering of the input tree.

As did Okasaki (and Gibbons and Jones for their solution [7]), we motivate
the solution by first considering the natural extension to the problem of travers-
ing or numbering a forest, i. e., a finite list of trees. The forests are subsequently
replaced by an abstract FIFO structure, which is finally instantiated for several
implementations, including the worst-case constant-time implementation follow-
ing Okasaki’s paper [13] that is based on three lazy lists (to be extracted from
coinductive lists in Coq for which we require as invariant that they are finite).

The breadth-first numbering problem can be slightly generalized to breadth-
first reconstruction: the labels of the output tree are not necessarily natural
numbers but come from a list of length equal to the number of labels of the
input tree, and the n-th list element replaces the n-th node in the traversal, i. e.,
a minor variant of “breadth-first labelling” considered by Jones and Gibbons [7].
A slight advantage of this problem formulation is that a FIFO-based solution is
possible by structural recursion on that list argument while the other algorithms
were obtained by recursion over a measure (this is not too surprising since the
length of that list coincides with the previously used measure).

In Sect. 2, we give background type theoretical material, mostly on list nota-
tion. Then we review existing tools for reasoning or defining terms by recur-
sion/induction on a decreasing measure which combines more than one argu-
ment. We proceed to the short example of a simple interleaving algorithm that
swaps its arguments when recurring on itself. In particular, we focus on how
existing tools like Program Fixpoint or Equations behave in the context of
extraction. Then we describe an alternative of our own—a tailored induction-
on tactic—and we argue that it is more transparent to extraction than, e. g.,
Equations. Section 3 concentrates on background material concerning breadth-
first traversal (specification, naive algorithm), including original material on a
characterization of the breadth-first order, while Sect. 4 revolves around the
mathematics of breadth-first traversal of forests that motivates the FIFO-based
breadth-first algorithms. In Sect. 5, we use an abstractly specified datatype
of FIFOs and deal with the different problems mentioned above: traversal,

4 For Coq, this method of rich specifications has been very much advocated in the
Coq’Art, the first book on Coq [3].

5 The authors of the current version are Filliâtre and Letouzey, see https://coq.inria.
fr/refman/addendum/extraction.html.

6 http://ocaml.org.
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numbering, reconstruction. In Sect. 6, we elaborate on a level-based approach
to numbering that thus is in the spirit of the naive traversal algorithm. Section 7
reports on the instantiation of the FIFO-based algorithms to two particular effi-
cient FIFO implementations. Section 8 concludes.

The full Coq development, that also formalizes the theoretical results (the
characterizations) in addition to the certification of the extracted algorithms in
the OCaml language, is available on GitHub:

https://github.com/DmxLarchey/BFE

In Appendix A, we give a brief presentation of these Coq vernacular7 files.

2 Preliminaries

We introduce some compact notations to represent the language of constructive
type theory used in the proof assistant Coq. We describe the method called
“certification by extraction” and illustrate how it challenges existing tools like
Program Fixpoint or even Equations on the example of a simple interleav-
ing algorithm. Then we introduce a tailored method to justify termination of
fixpoints (or inductive proofs) using measures over, e. g., two arguments. This
method is encapsulated into an induction-on tactic that is more transparent to
extraction than the above-mentioned tools.

The type of propositions is denoted Prop while the type (family) of types is
denoted Type. We use the inductive types of Booleans (b : B := 0 | 1), of natural
numbers (n : N := 0 | Sn), of lists (l : LX := [] | x :: l with x : X) over a type
parameter X. When l = x1 :: · · · :: xn :: [], we define |l| := n as the length of
l and we may write l = [x1; . . . ;xn] as well. We use ++ for the concatenation
of two lists (called the “append” function). The function rev : ∀X, LX → LX
implements list reversal and satisfies rev [] = [] and rev(x :: l) = rev l ++x :: [].

For a (heterogeneous) binary relation R : X → Y → Prop, we define the
lifting of R over lists ∀2R : LX → LY → Prop by the following inductive rules,
corresponding to the Coq standard library Forall2 predicate:

∀2R [] []

R x y ∀2R l m

∀2R (x :: l) (y :: m)

Thus ∀2R is the smallest predicate closed under the two above rules.8 Intuitively,
when l = [x1; . . . ;xn] and m = [y1; . . . ; yp], the predicate ∀2R l m means n =
p ∧ R x1 y1 ∧ · · · ∧ R xn yn.

7 Vernacular is a Coq idiom for syntactic sugar, i. e., a human-friendly syntax for type
theoretical notation—the “Gallina” language.

8 This is implemented in Coq by two constructors for the two rules together with an
induction (or elimination) principle that ensures its smallestness.

https://github.com/DmxLarchey/BFE


2.1 Certification by Extraction

Certification by extraction is a particular way of establishing the correctness of
a given implementation of an algorithm. In this paper, algorithms are given as
programs in the OCaml language.

Hence, let us consider an OCaml program t of type X → Y . The way to
certify such a program by extraction is to implement a Coq term

ft : ∀x : Xt, pret x → {y : Yt | postt x y}

where pret : Xt → Prop is the precondition (i. e., the domain of use of the
function) and postt : Xt → Yt → Prop is the (dependent) postcondition which
(possibly) relates the input with the output. The precondition could be tighter
than the actual domain of the program t and the postcondition may characterize
some aspects of the functional behavior of t, up to its full correctness, i. e., when
pret/postt satisfy the following: for any given x such that pret x, the value ft x
is the unique y such that postt x y holds.

We consider that t is certified when the postcondition faithfully represents
the intended behavior of t and when ft extracts to t: the extracted term
extract(ft) but also the extracted types extract(Xt) and extract(Yt) have
to match “exactly” their respectively given OCaml definitions, i. e., we want
t ≡ extract(ft), X ≡ extract(Xt) and Y ≡ extract(Yt). The above identity
sign “≡” should be read as syntactic identity. This does not mean character
by character equality between source codes but between the abstract syntax
representations. Hence some slight differences are allowed, typically the name
of bound variables which cannot always be controlled during extraction. Notice
that pret x and postt x y being of sort Prop, they carry only logical content and
no computational content. Thus they are erased by extraction.

As a method towards certified development, extraction can also be used with-
out having a particular output program in mind, in which case it becomes a tool
for writing programs that are correct by construction. Of course, getting a clean
output might also be a goal and thus, the ability to finely control the compu-
tational content is important. But when we proceed from an already written
program t, this fine control becomes critical and this has a significant impact on
the tools which we can use to implement ft (see upcoming Sect. 2.3).

2.2 Verification, Certification and the Trusted Computing Base

“Certification” encompasses “verification” in the following way: it aims at pro-
ducing a certificate that can be checked independently of the software which is
used to do the certification—at least in theory. While verification implies trusting
the verifying software, certification implies only trusting the software that is used
to verify the certificate, hence in the case of Coq, possibly an alternative type-
checker. Notice that one of the goals of the MetaCoq9 project [1] is precisely to

9 https://github.com/MetaCoq/metacoq.

https://github.com/MetaCoq/metacoq


produce a type-checker for (a significant fragment of) Coq, a type-checker which
will itself be certified by Coq.

Extraction in Coq is very straightforward once the term has been fully spec-
ified and type-checked. Calling the command

Recursive Extraction some coq term

outputs the extracted OCaml program and this part is fully automatic, although
it is very likely that the output is not of the intended shape on the first attempt.
So there may be a back-and-forth process to fine-tune the computational con-
tent of Coq terms until their extraction is satisfactory. The method can scale
to larger developments because of the principle of compositionality. Indeed, pro-
vided a development can be divided into manageable pieces, Coq contains the
tools that help at composing small certified bricks into bigger ones. Verifying
or certifying large monolithic projects is generally hard—whatever tools are
involved—because guessing the proper invariants becomes humanly unfeasible.

Considering the Trusted Computing Base (TCB) of certified extraction in
Coq, besides trusting a type-checker, it also requires trusting the extraction
process. In his thesis [10], P. Letouzey gave a mathematical proof of correct-
ness (w. r. t. syntactic and semantic desiderata) of the extraction principles that
guide the currently implemented Extraction command. Arguably, there is a
difference between principles and an actual implementation. The above-cited
MetaCoq project also aims at producing a certified “extraction procedure to
untyped lambda-calculus accomplishing the same as the Extraction plugin of
Coq.” Hence, for the moment, our work includes Extraction in its TCB but so
do many other projects such as, e. g., the CompCert compiler.10 Still concerning
verifying Coq extraction in Coq, we also mention the Œuf11 project [12], but
there is work of similar nature also in the Isabelle community [6]. Notice that
we expect no or little change in the resulting extracted OCaml programs (once
MetaCoq or one of its competitors reaches its goal) since these must respect the
computational content of Coq terms. As the principle of “certification by extrac-
tion” is to obtain programs which are correct by construction directly from Coq
code, we consider certifying extraction itself to be largely orthogonal to the goal
pursued here.

2.3 Extraction of Simple Interleaving with Existing Tools

This section explains some shortcomings of the standard tools that can be
used to implement recursive schemes in Coq when the scheme is more com-
plicated than just structural recursion. We specifically study the Function,
Program Fixpoint, and Equations commands. After discussing their versatility,
we focus on how they interact with the Extraction mechanism of Coq.

10 http://compcert.inria.fr.
11 http://oeuf.uwplse.org.

http://compcert.inria.fr
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As a way to get a glimpse of the difficulty of the method, we begin with the
case of the following simple interleaving function of type LX → LX → LX
that merges two lists into one

[l1; . . . ; ln], [m1; . . . ;mn] �→ [l1;m1; l2;m2; . . . ; ln;mn]

by alternating the elements of both input lists. The algorithm we want to certify
is the following one:

let rec itl l m = match l with [] → m | x :: l → x :: itl ml (1)

where l and m switch roles in the second equation/match case for itl. Hence
neither of these two arguments decreases structurally12 in the recursive call and
so, this definition cannot be used as such in a Coq Fixpoint definition. Notice
that this algorithm has been identified as a challenge for program extraction in
work by McCarthy et al. [11, p. 58], where they discuss an OCaml program of a
function cinterleave that corresponds to our itl.

We insist on that specific algorithm—it is however trivial to define a function
with the same functional behavior in Coq by the following equations:

itltriv [] m = m itltriv l [] = l itltriv (x :: l) (y :: m) = x :: y :: itltriv l m

Indeed, these equations correspond to a structurally decreasing Fixpoint which
is accepted nearly as is by Coq.13 However, the algorithm we want to certify
proceeds through the two following equations itl [] m = m and itl (x :: l) m =
x :: itl m l. While it is not difficult to show that itltriv satisfies this specification,
in particular by showing

Fact itl triv fix 1 : ∀x l m, itltriv (x :: l)m = x :: itltriv ml

by nested induction on l and then m, extraction of itltriv, however, does not
respect the expected code of itl, see Eq. (1).

While there is no structural decrease in Eq. (1), there is nevertheless an
obvious decreasing measure in the recursive call of itl, i. e., l,m �→ |l| + |m|.
We investigate several ways to proceed using that measure and discuss their
respective advantages and drawbacks. The comments below are backed up by
the file interleave.v corresponding to the following attempts. The use of Coq 8.9
is required for a recent version of the Equations package described below.
12 Structural recursion is the built-in mechanism for recursion in Coq. It means that

Fixpoints are type-checked only when Coq can determine that at least one of the
arguments of the defined fixpoint (e. g., the first, the second...) decreases structurally
on each recursive call, i. e., it must be a strict sub-term in an inductive type; and this
must be the same argument that decreases for each recursive sub-call. This is called
the guard condition for recursion and it ensures termination. On the other hand, it
is a very restrictive form a recursion and we study more powerful alternatives here.

13 As a general rule in this paper, when equations can be straightforwardly implemented
by structural induction on one of the arguments, we expect the reader to be able to
implement the corresponding Fixpoint and so we do not further comment on this.

https://github.com/DmxLarchey/BFE/blob/master/coq/interleave.v


– Let us first consider the case of the Function command which extends the
primitive Fixpoint command. It allows the definition of fixpoints on decreas-
ing arguments that may not be structurally decreasing. However the Function
method fails very quickly because it only allows for the decrease of one of the
arguments, and with itl, only the decrease of a combination of both arguments
can be used to show termination. We could of course pack the two arguments
in a pair but then, this will modify the code of the given algorithm, a modi-
fication which will undoubtedly impact the extracted code;

– Let us now consider the case of the Program Fixpoint command [17]. We can
define itlpfix via a fully specified term:

Program Fixpoint itlfullpfix l m {measure (|l|+|m|)} : {r | r = itltriv l m} := . . .

basically by giving the right-hand side of Eq. (1) in Coq syntax, and
then apply first and second projections to get the result as itlpfix l m :=
π1(itlfullpfix l m) and the proof that it meets its specification itlpfix l m = itltriv l m

as π2(itlfullpfix l m). The Program Fixpoint command generates proof obliga-
tions that are easy to solve in this case. Notice that defining itlpfix without
going through the fully specified term is possible but then it is not possible
to establish the postcondition itlpfix l m = itltriv l m;

– Alternatively, we can use the Equations package [18] which could be viewed
as an extension/generalization of Program Fixpoint. In that case, we can
proceed with a weakly specified term:

Equations itleqs l m : LX by wf (|l| + |m|) < := . . .

then derive the two equations that are used to define itleqs, i. e., itleqs [] m = m
and itleqs (x :: l) m := x :: itleqs m l. These equations are directly obtained by
making use of the handy simp tactic provided with Equations. With these
two equations, it is then easy to show the identity itleqs l m = itltriv l m.

To sum up, considering the Coq implementation side only: Function fails
because no single argument decreases; Program Fixpoint succeeds but via a
fully specified term to get the postcondition; and Equations succeeds directly
and generates the defining equations that are accessible through the simp tactic.

However, when we consider the extraction side of the problem, both Program
Fixpoint and Equations do not give us the intended OCaml term of Eq. (1).
On the left side of Fig. 1, we display the extracted code for itlpfix that was
developed using Program Fixpoint, and on the right side the extracted code for
itleqs implemented using Equations.14 Both present two drawbacks in our eyes.
First, because “full” (resp. “eqs0”) are not made globally visible, it is impossible
to inline their definitions with the Extraction Inline directive although this
would be an obvious optimization. But then, also more problematic from an
algorithmic point of view, there is the packing of the two arguments into a pair
14 The actual extracted codes for both itlpfix and itleqs are not that clean but we sim-

plified them a bit to single out two specific problems.

https://coq.inria.fr/refman/language/gallina-extensions.html?highlight=function#coq:cmd.function
https://coq.inria.fr/refman/addendum/program.html?highlight=program
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let itlpfix l m =
let rec loop p =

let l0 = fst p in

let m0 = snd p in

let full = fun l2 m2

loop (l2,m2)
in match l0 with

| [] m0

| x :: l1 x :: full m0 l1
in loop (l,m)

let itleqs l m =
let rec loop p =

let m0 = snd p in

let eqs0 = fun l2 m2

loop (l2,m2)
in match fst p with

| [] m0

| x :: l1 x :: eqs0 m0 l1
in loop (l,m)

Fig. 1. Extraction of itlpfix (Program Fixpoint) and itleqs (Equations).

(l,m) prior to the call to the “loop” function that implements itlpfix (resp. itleqs).
As a last remark, the two extracted codes look similar except that for itleqs, there
is the slight complication of an extra dummy parameter added to the above
definition of “eqs0” that is then instantiated with a dummy argument .

To sum up our above attempts, while the Function commands fails to handle
itl because of the swap between arguments in Eq. (1), both Program Fixpoint
and Equations succeed when considering the specification side, i. e., defining the
function (which implicitly ensures termination) and proving its postcondition.
However, extraction-wise, both generate artifacts, e. g., the pairing of arguments
in this case, and which are difficult or impossible to control making the “certifi-
cation by extraction” approach defined in Sect. 2.1 fail.

In the previously cited work by McCarthy et al. [11], the authors report that
they successfully avoided “verification residues” as far as their generation of
obligations for the certification of running time was concerned. We are heading
for the absence of such residues from the extracted code. Let us hence now
consider a last approach based on a finely tuned tactic which is both user-
friendly and inlines inner fixpoints making it transparent to extraction. This is
the approach we will be using for the breadth-first algorithms considered in here.

2.4 Recursion on Measures

We describe how to implement definitions of terms by induction on a measure
of, e. g., two arguments. Let us consider two types X,Y : Type, a doubly indexed
family P : X → Y → Type of types and a measure ‖·, ·‖ : X → Y → N.
We explain how to build terms or proofs of type t : P x y by induction on the
measure ‖x, y‖. Hence, to build the term t, we are allowed to use instances of
the induction hypothesis:

IH : ∀x′ y′, ‖x′, y′‖ < ‖x, y‖ → P x′ y′

i. e., the types P x′ y′ with smaller x′/y′ arguments are (recursively) inhabited.
The measures we use here are limited to N viewed as well-founded under the
“strictly less” order. Any other type with a well-founded order would work as well.



To go beyond measures and implement a substantial fragment of general recur-
sion, we invite the reader to consult work by the first author and Monin [8].

In the file wf utils.v, we prove the following theorem while carefully craft-
ing the computational content of the proof term, so that extraction yields an
algorithm that is clean of spurious elements:

Theorem measure double rect (P : X → Y → Type) :
(∀x y, (∀x′ y′, ‖x′, y′‖ < ‖x, y‖ → P x′ y′) → P x y) → ∀x y, P x y.

It allows building a term of type P x y by simultaneous induction on x and
y using the decreasing measure ‖x, y‖ to ensure termination. To ease the use
of theorem measure double rect we define a tactic notation that is deployed as
follows:

induction on x y as IH with measure ‖x, y‖
However, if the induction-on tactic was just about applying an instance of the
term measure double rect, it would still leave artifacts in the extracted code much
like the (resp. ) dummy parameter (resp. argument) in the itleqs example of
Fig. 1. So, to be precise in our description, the induction-on tactic actually
builds the needed instance of the proof term measure double rect on a per-use
basis, i. e., the proof term is inlined by the tactic itself. This ensures perfect
extraction in the sense of the result being free of any artifacts. We refer to the
file wf utils.v for detailed explanations on how the inlining works.

From the point of view of specification, our induction-on tactic gives the
same level of flexibility when compared to Program Fixpoint or Equations, at
least when termination is grounded on a decreasing measure. However, when con-
sidering extraction, we think that it offers a finer control over the computational
content of Coq terms, a feature which can be critical when doing certification
by extraction. We now illustrate how to use the induction-on tactic from the
user’s point of view, on the example of the simple interleaving algorithm.

2.5 Back to Simple Interleaving

To define and specify itlon using the induction-on tactic, we first implement a
fully specified version of itlon as the functional equivalent of itltriv.15 We proceed
with the following script, whose first line reads as: we want to define the list r
together with a proof that r is equal to itltriv l m—a typical rich specification.

15 Of course, it is not operationally equivalent.

https://github.com/DmxLarchey/BFE/blob/master/coq/wf_utils.v
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Definition itlfullon l m : {r : LX | r = itltriv l m}.
Proof.
induction on l m as loop with measure (|l| + |m|).
revert loop; refine (match l with

| nil �→ fun �→ exist m O
?
1

| x :: l′ �→ fun loop �→ let (r, Hr) := loop m l′ O?
2

in exist (x :: r) O?
3 end).

� trivial. (* proof of O?
1 *)

� simpl; omega. (* proof of O?
2 *)

� subst; rewrite itl triv fix 1; trivial. (* proof of O?
3 *)

Defined.

The code inside the refine(. . .) tactic outputs terms like exist s O
?
s where

is recovered by unification, and O
?
s is left open to be solved later by the user.16

The constructor exist packs the pair (s,O?
s) as a term of dependent type {r :

LX | r = itltriv l m} and thus O
?
s remains to be realized in the type s =

itltriv l m. This particular use of refine generates three proof obligations (also
denoted PO)

O
?
1 // . . . � m = itltriv [] m

O
?
2 // . . . � |m| + |l′| < |x :: l′| + |m|

O
?
3 // . . . ,Hr : r = itltriv ml′ � x :: r = itltriv (x :: l′) m

later proved with their respective short proof scripts. Notice that our newly intro-
duced induction-on tactic could alternatively be used to give another proof of
itl triv fix 1 by measure induction on |l| + |m|. We remark that PO O

?
2 is of

different nature than O
?
1 and O

?
3. Indeed, O?

2 is a precondition, in this case a
termination certificate ensuring that the recursive call occurs on smaller inputs.
On the other hand, O?

1 and O
?
3 are postconditions ensuring the functional cor-

rectness by type-checking (of the logical part of the rich specification). As a
general rule in this paper, providing termination certificates will always be rela-
tively easy because they reduce to proofs of strict inequations between arithmetic
expressions, usually solved by the omega tactic.17

Considering POs O
?
2 and O

?
3, they contain the following hypothesis (hidden

in the dots) which witnesses the induction on the measure |l| + |m|. It is called
loop as indicated in the induction-on tactic used at the beginning of the script:

loop : ∀ l0 m0, |l0| + |m0| < |x :: l′| + |m| → {r | r = itltriv l0 m0}
It could also appear in O

?
1 but since we do not need it to prove O

?
1, we inten-

tionally cleared it using fun �→ . . . Actually, loop is not used in the proofs
16 In the Coq code, O?

s is simply another hole left for the refine tactic to either fill it
by unification or postpone it. Because O

?
1, O

?
2 and O

?
3 are postponed in this example,

we give them names for better explanations.
17 Because termination certificates have a purely logical content, we do not care whether

omega produces an “optimal” proof (b. t. w., it never does), but we appreciate its
efficiency in solving those kinds of goals which we do not want to spend much time
on, thus the gain is in time spent on developing the certified code. Efficiency of code
execution is not touched since these proofs leave no traces in the extracted code.



of O?
2 or O

?
3 either but it is necessary for the recursive call implemented in the

let . . . := loop . . . in . . . construct.
This peculiar way of writing terms as a combination of programming style

and combination of proof tactics is possible in Coq by the use of the “swiss-army
knife” tactic refine18 that, via unification, allows the user to specify only parts
of a term leaving holes to be filled later if unification fails to solve them. It is
a major tool to finely control computational content while allowing great tactic
flexibility on purely logical content.

We continue the definition of itlon as the first projection

Definition itlon l m := π1(itlfullon l m).

and its specification using the projection π2 on the dependent pair itlfullon l m.

Fact itl on spec l m : itlon l m = itltriv l m.

Notice that by asking the extraction mechanism to inline the definition of
itlfullon , we get the following extracted OCaml code for itlon, the one that optimally
reflects the original specification of Eq. (1):

let rec itlon l m = match l with [] → m | x :: l → x :: itlon ml

Of course, this outcome of the (automatic) code extraction had to be targeted
when doing the proof of itlfullon : a trivial proof would have been to choose as r just
itltriv l m, and the extracted code would have been just that. Instead, we did
pattern-matching on l and chose in the first case m and in the second case x :: r,
with r obtained as first component of the recursive call loop m l′. The outer
induction took care that loop stood for the function we were defining there.

Henceforth, we will take induction or recursion on measures for granted,
assuming they correspond to the use of the tactic induction-on.

3 Traversal of Binary Trees

We present mostly standard material on traversal of binary trees that will lay
the ground for the original contributions in the later sections of the paper.
After defining binary trees and basic notions for them including their branches
(Sect. 3.1), we describe mathematically what constitutes breadth-first traver-
sal by considering an order on the branches (Sect. 3.2) that we characterize
axiomatically (our Theorem 1). We then look at breadth-first traversal in its
most elementary form (Sect. 3.3), by paying attention that it indeed meets its
specification in terms of the order of the visited branches.

18 The refine tactic was originally implemented by J.-C. Filliâtre.



3.1 Binary Trees

We use the type of binary trees (a, b : TX := 〈x〉 | 〈a, x, b〉) where x is of
the argument type X.19 We define the root : TX → X of a tree, the subtrees
subt : TX → L (TX) of a tree, and the size ‖·‖ : TX → N of a tree by:

root 〈x〉 := x subt 〈x〉 := [] ‖〈x〉‖ := 1
root 〈 , x, 〉 := x subt 〈a, , b〉 := [a; b] ‖〈a, x, b〉‖ := 1 + ‖a‖ + ‖b‖
and we extend the measure to lists of trees by ‖[t1; . . . ; tn]‖ := ‖t1‖ + · · · + ‖tn‖,
hence ‖[]‖ = 0, ‖[t]‖ = ‖t‖ and ‖l ++m‖ = ‖l‖ + ‖m‖. We will not need more
complicated measures than ‖·‖ to justify the termination of the breadth-first
algorithms to come.

A branch in a binary tree is described as a list of Booleans in LB representing
a list of left/right choices (0 for left and 1 for right).20 We define the predicate
btb : TX → LB → Prop inductively by the rules below where t // l ↓ denotes
btb t l and tells whether l is a branch in t:

t // [] ↓
a // l ↓

〈a, x, b〉 // 0 :: l ↓
b // l ↓

〈a, x, b〉 // 1 :: l ↓
We define the predicate bpn : TX → LB → X → Prop inductively as well.

The term bpn t l x, also denoted t // l � x, tells whether the node identified by l
in t is decorated with x:

t // [] � root t

a // l � r

〈a, x, b〉 // 0 :: l � r

b // l � r

〈a, x, b〉 // 1 :: l � r

We show the result that l is a branch of t if and only if it is decorated in t:

Fact btb spec (t : TX) (l : LB) : t // l ↓ ↔ ∃x, t // l � x.

By two inductive rules, we define ∼T : TX → TY → Prop, structural equiv-
alence of binary trees, and we lift it to structural equivalence of lists of binary
trees ∼LT : L (TX) → L (TY ) → Prop

〈x〉 ∼T 〈y〉
a ∼T a′ b ∼T b′

〈a, x, b〉 ∼T 〈a′, y, b′〉
l ∼LT m := ∀2(∼T) l m

i. e., when l = [a1; . . . ; an] and m = [b1; . . . ; bp], the equivalence l ∼LT m means
n = p ∧ a1 ∼T b1 ∧ · · · ∧ an ∼T bn (see Sect. 2).

Both ∼T and ∼LT are equivalence relations, and if a ∼T b then ‖a‖ = ‖b‖, i. e.,
structurally equivalent trees have the same size, and this holds for structurally
equivalent lists of trees as well.
19 In his paper [14], Okasaki considered unlabeled leaves. When we compare with his

findings, we always tacitly adapt his definitions to cope with leaf labels, which adds
only a small notational overhead.

20 We here intend to model branches from the root to nodes, rather than from nodes
to leaves. It might have been better to call the concept paths instead of branches.



3.2 Ordering Branches of Trees

A strict order <R is an irreflexive and transitive (binary) relation. We say it is
total if the associated partial order <R ∪ = is total in the usual sense of being
connex, or equivalently, if ∀x y, {x <R y} ∨ {x = y} ∨ {y <R x}. It is decidable
and total if:

∀x y, {x <R y} + {x = y} + {y <R x}
where, as usual in type theory, a proof of the sum A + B + C requires either a
proof of A, of B or of C together with the information whether the first, second
or third summand has been proven.

The dictionary order of type ≺dic : LB → LB → Prop is the lexicographic
product on lists of 0’s or 1’s defined by

[] ≺dic b :: l 0 :: l ≺dic 1 :: m

l ≺dic m

b :: l ≺dic b :: m

The breadth-first order on LB of type ≺bf : LB → LB → Prop is defined by

|l| < |m|
l ≺bf m

|l| = |m| l ≺dic m

l ≺bf m

i. e., the lexicographic product of shorter and dictionary order (if equal length).

Lemma 1. ≺dic and ≺bf are decidable and total strict orders.

We characterize ≺bf with the following four axioms:

Theorem 1. Let <R : LB → LB → Prop be a relation s. t.

(A1) <R is a strict order (irreflexive and transitive)
(A2) ∀x l m, l <R m ↔ x :: l <R x :: m
(A3) ∀ l m, |l| < |m| → l <R m
(A4) ∀ l m, |l| = |m| → 0 :: l <R 1 :: m

Then <R is equivalent to ≺bf , i. e., ∀ l m, l <R m ↔ l ≺bf m. Moreover the
relation ≺bf satisfies (A1)–(A4).

3.3 Breadth-First Traversal, a Naive Approach

The zipping function zip : L (LX) → L (LX) → L (LX) is defined by

zip [] m := m zip l [] := l zip (x :: l) (y :: m) := (x++ y) :: zip l m

The level-wise function niv : TX → L (LX) — niv refers to the French word
“niveaux” — is defined by21

niv 〈x〉 := [x] :: [] niv 〈a, x, b〉 := [x] :: zip (niv a) (niv b)

21 The function niv is called “levelorder traversal” by Jones and Gibbons [7].



The (n + 1)-th element of niv t contains the labels of t in left-to-right order that
have distance n to the root. We can then define bftstd t := concat(niv t).22 We lift
breadth-first traversal to branches instead of decorations, defining nivbr : TX →
L (L (LB)) by

nivbr 〈x〉 := [[]] :: []
nivbr 〈a, x, b〉 := [[]] :: zip

(
map (map (0 :: ·)) (nivbr a)

)(
map (map (1 :: ·)) (nivbr b)

)

and then bftbr t := concat(nivbr t), and we show the two following results:

Theorem niveaux br niveaux t : ∀2 (∀2 (bpn t)) (nivbr t) (niv t).

Theorem bft br std t : ∀2(bpn t) (bftbr t) (bftstd t).

Hence bftbr t and bftstd t traverse the tree t in the same order, except that bftstd
outputs decorating values and bftbr outputs branches.23 We moreover show that
bftbr t lists the branches of t in ≺bf -ascending order.

Theorem 2. The list bftbr t is strictly sorted w. r. t. ≺bf .

4 Breadth-First Traversal of a Forest

We lift root and subt to lists of trees and define roots : L (TX) → LX and
subtrees : L (TX) → L (TX) by

roots := map root subtrees := flat map subt

where flat map is the standard list operation given by flat map f [x1; . . . ;xn] :=
f x1 ++ · · · ++ f xn. To justify the upcoming fixpoints/inductive proofs where
recursive sub-calls occur on subtrees l, we show the following

Lemma subtrees dec l : l = [] ∨ ‖subtrees l‖ < ‖l‖.

Hence we can justify termination of a recursive algorithm f l with formal argu-
ment l : L (TX) that is calling itself on f(subtrees l), as soon as the case f []
is computed without using recursive calls (to f). For this, we use, for instance,
recursion on the measure l �→ ‖l‖ but we may also use the binary measure
l,m �→ ‖l ++m‖ when f has two arguments instead of just one.

4.1 Equational Characterization of Breadth-First Traversal

We first characterize bftf—breadth-first traversal of a forest—with four equiva-
lent equations:

22 Where concat := fold (· ++ ·) [], i. e., concat [l1; . . . ; ln] = l1 ++ · · · ++ ln.
23 The bpn t relation, also denoted l, x �→ t // l � x, relates branches and decorations.



Theorem 3 (Characterization of breadth-first traversal of forests –
recursive part). Let bftf be any term of type L (TX) → LX and consider the
following equations:

(1) ∀ l, bftf l = roots l ++ bftf (subtrees l);
(2) ∀ l m, bftf (l ++m) = roots l ++ bftf (m++ subtrees l);
(3) ∀ t l, bftf (t :: l) = root t :: bftf (l ++ subt t);
(Oka1) ∀x l, bftf (〈x〉 :: l) = x :: bftf l;
(Oka2) ∀ a b x l, bftf (〈a, x, b〉 :: l) = x :: bftf (l ++[a; b]).

We have the equivalence: (1) ↔ (2) ↔ (3) ↔ (Oka1 ∧ Oka2).

Proof. Equations (1) and (3) are clear instances of Eq. (2). Then (Oka1∧Oka2)
is equivalent to (3) because they just represent a case analysis on t. So the only
difficulty is to show (1) → (2) and (3) → (2). Both inductive proofs alternate
the roles of l and m. So proving (2) from e. g. (1) by induction on either l or
m is not possible. Following the example of the simple interleaving algorithm of
Sect. 2.5, we proceed by induction on the measure ‖l ++m‖. ��
Equations (Oka1) and (Oka2) are used by Okasaki [14] as defining equations,
while (3) is calculated from the specification by Jones and Gibbons [7]. We single
out Eq. (2) above as a smooth gateway between subtrees-based breadth-first
algorithms and FIFO-based breadth-first algorithms. Unlocking that “latch bolt”
enabled us to show correctness properties of refined breadth-first algorithms.

Theorem 4 (Full characterization of breadth-first traversal of forests).
Adding equation bftf [] = [] to any one of the equations of Theorem 3 determines
the function bftf uniquely.

Proof. For any bft1 and bft2 satisfying both bft1 [] = [], bft2 [] = [] and e. g.
bft1 l = roots l ++ bft1 (subtrees l) and bft2 l = roots l ++ bft2 (subtrees l), we show
bft1 l = bft2 l by induction on ‖l‖. ��

Notice that one should not confuse the uniqueness of the function—which is
an extensional notion—with the uniqueness of an algorithm implementing such
a function, because there are hopefully numerous possibilities.24

4.2 Direct Implementation of Breadth-First Traversal

We give a definition of forestdec : L (TX) → LX × L (TX) such that, provably,
forestdec l = (roots l, subtrees l), but using a simultaneous computation:

forestdec [] := ([], []) forestdec (〈x〉 :: l) := (x :: α, β)

forestdec (〈a, x, b〉 :: l) := (x :: α, a :: b :: β)
where (α, β) := forestdec l.

24 Let us stress that extensionality is not very meaningful for algorithms anyway.



Then we show one way to realize the equations of Theorem 3 into a Coq term:

Theorem 5 (Existence of breadth-first traversal of forests). One can
define a Coq term bftf of type L (TX) → LX s. t.

1. bftf [] = []
2. ∀l, bftf l = roots l ++ bftf (subtrees l)

and s. t. bftf extracts to the following OCaml code:25

let rec bftf l = match l with [] → [] | → let α, β = forestdec l in α @ bftf β.

Proof. We define the graph �bft of the algorithm bftf as binary relation of type
L (TX) → LX → Prop with the two following inductive rules:

[] �bft []

l �= [] subtrees l �bft r

l �bft roots l ++ r

These rules follow the intended algorithm. We show that the graph �bft is
functional/deterministic, i. e.

Fact bft f fun : ∀ l r1 r2, l �bft r1 → l �bft r2 → r1 = r2.

By induction on the measure ‖l‖ we define a term bft f full l : {r | l �bft r}
where we proceed as in Sect. 2.5. We get bftf by the first projection bftf l :=
π1(bft f full l) and derive the specification

Fact bft f spec : ∀l, l �bft bftf l.

with the second projection π2. Equations 1 and 2 follow straightforwardly from
bft f fun and bft f spec. ��

Hence we see that we can use the specifying Eqs. 1 and 2 of Theorem 5 to
define the term bftf . In the case of breadth-first algorithms, termination is not
very complicated because one can use induction on a measure to ensure it. In
the proof, we just need to check that recursive calls occur on smaller arguments
according to the given measure, and this follows from Lemma subtrees dec.

Theorem 6 (Correctness of breadth-first traversal of forests). For all
t : TX, we have bftf [t] = bftstd t.

Proof. We define �niv : L (TX) → L (LX) → Prop by

[] �niv []

l �= [] subtrees l �niv ll

l �niv roots l :: ll

and we show that l �niv ll → m �niv mm → l ++m �niv zip ll mm holds,
a property from which we deduce [t] �niv niv t. We show l �niv ll → l �bft

concat ll and we deduce [t] �bft concat (niv t) hence [t] �bft bftstd t. By bft f spec
we have [t] �bft bftf [t] and we conclude with bft f fun. ��
25 Notice that list append is denoted @ in OCaml and ++ in Coq.



4.3 Properties of Breadth-First Traversal

The shape of a tree (resp. forest) is the structure that remains when removing
the values on the nodes and leaves, e. g., by mapping the base type X to the
singleton type unit. Alternatively, one can use the ∼T (resp. ∼LT) equivalence
relation (introduced in Sect. 3.1) to characterize trees (resp. forests) which have
identical shapes. We show that on a given forest shape, breadth-first traversal is
an injective map:

Lemma bft f inj l m : l ∼LT m → bftf l = bftf m → l = m.

Proof. By induction on the measure l,m �→ ‖l ++m‖ and then case analysis on l
and m. We use (Oka1&Oka2) from Theorem 3 to rewrite bftf terms. The shape
constraint l ∼LT m ensures that the same equation is used for l and m. ��

Hence, on a given tree shape, bftstd is also injective:

Corollary 1. If t1 ∼T t2 are two trees of type TX (of the same shape) and
bftstd t1 = bftstd t2 then t1 = t2.

Proof. From Lemma bft f inj and Theorem 6. ��

4.4 Discussion

The algorithm described in Theorem 5 can be used to compute breadth-first
traversal as a replacement for the naive bftstd algorithm. We could also use
other equations of Theorem 3, for instance using bftf [] = [], (Oka1) and (Oka2)
to define another algorithm. The problem with equation

(Oka2) bftf (〈a, x, b〉 :: l) = x :: bftf (l ++[a; b])

is that it implies the use of ++ to append two elements at the tail of l, which
is a well-known culprit that transforms an otherwise linear-time algorithm into
a quadratic one. But Equation (Oka2) hints at replacing the list data-structure
with a first-in, first-out queue (FIFO) for the argument of bftf which brings us
to the central section of this paper.

5 FIFO-Based Breadth-First Algorithms

Here come the certified algorithms in the spirit of Okasaki’s paper [14]. They
have the potential to be efficient, but this depends on the later implementation
of the axiomatic datatype of FIFOs considered here (Sect. 5.1). We deal with
traversal, numbering, reconstruction—in breadth-first order.



fifo : Type Type

f2l : ∀X, fifo X LX
emp : ∀X, {q | f2l q = []}
enq : ∀X q x, {q′ | f2l q′ = f2l q++[x]}
deq : ∀X q, f2l q �= [] {(x, q′) | f2l q = x :: f2l q′}
void : ∀X q, {b : B | b = 1 f2l q = []}

Fig. 2. An axiomatization of first-in first-out queues.

5.1 Axiomatization of FIFOs

In Fig. 2, we give an axiomatic description of polymorphic first-in, first-out
queues (a. k. a. FIFOs) by projecting them to lists with f2l {X} : fifoX → LX
where the notation {X} marks X as an implicit argument26 of f2l. Each axiom
is fully specified using f2l: emp is the empty queue, enq the queuing function, deq
the dequeuing function which assumes a non-empty queue as input, and void a
Boolean test of emptiness. Notice that when q is non-empty, deq q returns a pair
(x, q′) where x is the dequeued value and q′ the remaining queue.

A clean way of introducing such an abstraction in Coq that generates little
overhead for program extraction towards OCaml is the use of a module type that
collects the data of Fig. 2. Coq developments based on a hypothetical implemen-
tation of the module type are then organized as functors (i. e., modules depend-
ing on typed module parameters). Thus, all the Coq developments described in
this section are such functors, and the extracted OCaml code is again a func-
tor, now for the module system of OCaml, and with the module parameter that
consists of the operations of Fig. 2 after stripping off the logical part. In other
words, the parameter is nothing but a hypothetical implementation of a FIFO
signature, viewed as a module type of OCaml.

Of course, the FIFO axioms have several realizations (or refinements), includ-
ing a trivial and inefficient one where f2l is the identity function (and the ineffi-
ciency comes from appending the new elements at the end of the list with enq).
In Sect. 7, we refine these axioms with more efficient implementations following
Okasaki’s insights [13] that worst-case O(1) FIFO operations are even possible
in an elegant way with functional programming languages.

5.2 Breadth-First Traversal

We use the equations which come from Theorem 3 and Theorem 5:

bftf [] = [] bftf (〈x〉 :: l) = x :: bftf l bftf (〈a, x, b〉 :: l) = x :: bftf (l++[a; b])

26 When a parameter X is marked implicit using the {X} notation, it usually means
that Coq is going to be able to infer the value of the argument by unification from the
constraints in the context. In the case of f2l l, it means X will be deduced from the
type of l which should unify with fifo X. While not strictly necessary, the mechanism
of implicit arguments greatly simplifies the readability of Coq terms. In particular,
it avoids an excessive use of dummy arguments .



They suggest the definition of an algorithm for breadth-first traversal where
lists are replaced with queues (FIFOs) so that (linear-time) append at the end
(. . . ++[a; b]) is turned into two primitive queue operations (enq (enq . . . a) b).
Hence, we implement FIFO-based breadth-first traversal.

Theorem 7. There exists a fully specified Coq term

bft fifof : ∀q : fifo (TX), {l : LX | l = bftf (f2l q)}
s. t. bft fifof extracts to the following OCaml code:

let rec bft fifof q =
if void q then []
else let t, q′ = deq q

in match t with
| 〈x〉 → x :: bft fifof q′

| 〈a, x, b〉 → x :: bft fifof (enq (enq q′ a) b).

Proof. We proceed by induction on the measure q �→ ‖f2l q‖ following the
method exposed in the interleave example of Sect. 2.5. The proof is structured
around the computational content of the above OCaml code. Termination POs
are easily solved by omega. Postconditions for correctness are proved using the
above equations. ��
Corollary 2. There is a Coq term bftfifo : TX → LX s.t. bftfifo t = bftstd t
holds for any t : TX. Moreover, bftfifo extracts to the following OCaml code:

let bftfifo t = bft fifof (enq emp t).

Proof. From a tree t, we instantiate bft fifof on the one-element FIFO (enq emp t)
and thus derive the term bft fifo full (t : TX) : {l : LX | l = bftf [t]}. The first
projection bftfifo t := π1(bft fifo full t) gives us bftfifo and we derive bftfifo t =
bftstd t from the combination of the second projection bftfifo t = bftf [t] with
Theorem 6. ��

5.3 Breadth-First Numbering

Breadth-first numbering was the challenge proposed by Okasaki to the commu-
nity and which led him to write his paper [14]. It consists in redecorating a tree
with numbers in breadth-first order. The difficulty was writing an efficient algo-
rithm in purely functional style. We choose the easy way to specify the result of
breadth-first numbering of a tree: the output of the algorithm should be a tree
t : TN preserving the input shape and of which the breadth-first traversal of
bftstd t is of the form [1; 2; 3 . . .].

As usual with those breadth-first algorithms, we generalize the notions to
lists of trees.

Definition is bfn n l := ∃k, bftf l = [n; . . . ;n + k[.



Lemma 2. Given a fixed shape, the breadth-first numbering of a forest is unique,
i. e., for any n : N and any l,m : L (TN),

l ∼LT m → is bfn n l → is bfn n m → l = m.

Proof. By Lemma bft f inj in Sect. 4.3. ��
We give an equational characterization of breadth-first numbering of forests

combined with list reversal. In the equations below, we intentionally consider a
bfnf function that outputs the reverse of the numbering of the input forest, so
that, when viewed as FIFOs of trees (instead of lists of trees), both the input
FIFO over TX and the output FIFO over type TN correspond to left dequeuing
and right enqueuing.27 That said, Eqs. (E2) and (E3) correspond to (Oka1)
and (Oka2) respectively, augmented with an extra argument used for keeping
track of the numbering.

Lemma 3. Let bfnf : N → L (TX) → L (TN) be a term. Considering the
following conditions:

(E1) ∀n, bfnf n [] = [];
(E2) ∀nx l, bfnf n (〈x〉 :: l) = bfnf (1 + n) l ++[〈n〉];
(E3) ∀nax b l, ∃ a′ b′ l′,

bfnf (1 + n) (l ++[a; b]) = b′ :: a′ :: l′ ∧ bfnf n (〈a, x, b〉 :: l) = l′ ++[〈a′, n, b′〉];
(Bfn1) ∀n l, l ∼LT rev(bfnf n l);
(Bfn2) ∀n l, is bfn n (rev(bfnf n l)).

We have the equivalence: (E1 ∧ E2 ∧ E3) ↔ (Bfn1 ∧ Bfn2).

Proof. From right to left, we essentially use Lemma 2. For the reverse direc-
tion, we proceed by induction on the measure i, l �→ ‖l‖ in combination with
Theorem 5 and Theorem 3—Equations (Oka1) and (Oka2). ��

Although not explicitly written in Okasaki’s paper [14], these equations hint
at the use of FIFOs as a replacement for lists for both the input and output of
bfnf . Let’s see this informally for (E3): bfnf n is to be computed on a non-empty
list viewed as a FIFO, and left dequeuing gives a composite tree 〈a, x, b〉 and the
remaining list/FIFO l. The subtrees a and b are enqueued to the right of l and
bfnf (1+n) called on the resulting list/FIFO. (E3) guarantees that a′ and b′ can
be dequeued to the left from the output list/FIFO. Finally, 〈a′, n, b′〉 is enqueued
to the right to give the correct result, thanks to (E3). This construction will be
formalized in Theorem 8.

We define the specification bfn fifo f spec corresponding to breadth-first num-
bering of FIFOs of trees

Definition bfn fifo f spec n q q′ := f2l q ∼LT rev (f2l q′) ∧ is bfn n (rev(f2l q′))

and we show the inhabitation of this specification.
27 The fact that input and output FIFOs operate in mirror to each other was already

pointed out by Okasaki in [14]. Using reversal avoids defining two types of FIFOs or
bi-directional FIFOs to solve the issue.



Theorem 8. There exists a fully specified Coq term

bfn fifof : ∀(n : N) (q : fifo X), {q′ | bfn fifo f spec n q q′}
which extracts to the following OCaml code:

let rec bfn fifof n q =
if void q then emp
else let t, q0 = deq q in match t with

| 〈 〉 → enq (bfn fifof (1 + n) q0) 〈n〉
| 〈a, , b〉 → let b′, q1 = deq

(
bfn fifof (1 + n) (enq (enq q0 a) b)

)
in

let a′, q2 = deq q1
in enq q2 〈a′, n, b′〉.

Proof. To define bfn fifof , we proceed by induction on the measure n, q �→ ‖f2l q‖
where the first parameter does not participate in the measure. As in Sect. 2.5,
we implement a proof script which mixes tactics and programming style using
the refine tactic. We strictly follow the above algorithm to design bfn fifof .
Of course, proof obligations like termination certificates or postconditions are
generated by Coq and need to be addressed. As usual for these breadth-first
algorithms, termination certificates are easy to solve thanks to the omega tactic.
The only difficulties lie in the postcondition POs but these correspond to the
(proofs of the) equations of Lemma 3. ��
Corollary 3. There is a Coq term bfnfifo : TX → TN s. t. for any tree t : TX:

t ∼T bfnfifo t and bftstd (bfnfifo t) = [1; . . . ; ‖t‖]

and bfnfifo extracts to the following OCaml code:

let bfnfifo t = let t′, = deq
(
bfn fifof 1 (enq emp t)

)
in t′.

Proof. Obvious consequence of Theorem 8 in conjunction with Theorem 6. ��

5.4 Breadth-First Reconstruction

Breadth-first reconstruction is a generalization of breadth-first numbering—see
the introduction for its description. For simplicity (since all our structures are
finite), we ask that the list of labels that serves as extra argument has to be
of the right length, i. e., has as many elements as there are labels in the input
data-structure, while the “breadth-first labelling” function considered by Jones
and Gibbons [7] just required it to be long enough so that the algorithm does
not get stuck.

We define the specification of the breadth-first reconstruction of a FIFO q of
trees in TX using a list l : LY of labels

Definition bfr fifo f spec q l q′ := f2l q ∼LT rev (f2l q′) ∧ bftf (rev (f2l q′)) = l.



We can then define breadth-first reconstruction by structural induction on
the list l of labels:

Fixpoint bfr fifof q l {struct l} : ‖f2l q‖ = |l| → {q′ | bfr fifo f spec q l q′}.

Notice the precondition ‖f2l q‖ = |l| stating that l contains as many labels as the
total number of nodes in the FIFO q.28 Since we use structural induction, there
are no termination POs. There is however a precondition PO (easily proved) and
postcondition POs are similar to those of the proof of Theorem 8. Extraction to
OCaml outputs the following:

let rec bfr fifof q = function
| [] → emp
| y :: l →
let t, q0 = deq q in match t with

| 〈 〉 → enq (bfr fifof q0 l) 〈y〉
| 〈a, , b〉 → let b′, q1 = deq

(
bfr fifof (enq (enq q0 a) b) l

)
in

let a′, q2 = deq q1
in enq q2 〈a′, y, b′〉.

Notice the similarity with the code of bfn fifof of Theorem 8.

Theorem 9. There is a Coq term bfrfifo : ∀ (t : TX) (l : LY ), ‖t‖ = |l| → TY
such that for any tree t : TX, l : LY and H : ‖t‖ = |l| we have:

t ∼T bfrfifo t l H and bftstd (bfrfifo t l H) = l.

Moreover, bfrfifo extracts to the following OCaml code:

let bfrfifo t l = let t′, = deq
(
bfr fifof (enq emp t) l

)
in t′.

Proof. Direct application of bfr fifof (enq emp t) l. ��

6 Numbering by Levels

Okasaki reports in his paper [14] on his colleagues’ attempts to solve the breadth-
first numbering problem and mentions that most of them were level-oriented, as
is the original traversal function bftstd. In his Sect. 4, he describes the “cleanest”
of all those solutions, and this small section is devoted to get it by extraction
(and thus with certification through the method followed in this paper).

We define childrenf : ∀{K}, L (TK) → N × L (TK) such that, provably,
childrenf l = (|l|, subtrees l) but using a more efficient simultaneous computation:

childrenf [] := (0, [])
childrenf (〈 〉 :: l) := (1 + n,m)

childrenf (〈a, , b〉 :: l) := (1 + n, a :: b :: m)
where (n,m) := childrenf l

28 This condition could easily be weakened to ‖f2l q‖ ≤ |l| but in that case, the speci-
fication bfr fifo f spec should be changed as well.



and rebuildf : ∀{K}, N → L (TK) → L (TN) → L (TN)

rebuildf n [] := []
rebuildf n (〈 〉 :: ts) cs := 〈n〉 :: rebuildf (1 + n) ts cs
rebuildf n (〈 , , 〉 :: ts) (a :: b :: cs) := 〈a, n, b〉 :: rebuildf (1 + n) ts cs
and otherwise rebuildf := [].

Since we will need to use both childrenf and rebuildf for varying values of the type
parameter K, we define them as fully polymorphic here.29 We then fix X : Type
for the remainder of this section.

The algorithms childrenf and rebuildf are (nearly) those defined in [14, Figure
5] but that paper does not provide a specification for rebuildf and thus cannot
show the correctness result which follows. Instead of a specification, Okasaki
offers an intuitive explanation of rebuildf [14, p. 134]. Here, we will first rephrase
the following lemma in natural language: the task is to obtain the breadth-first
numbering of list ts, starting with index n. We consider the list subtrees ts of
all immediate subtrees, hence of all that is “at the next level” (speaking in
Okasaki’s terms), and assume that cs is the result of breadth-first numbering of
those, but starting with index |ts| + n, so as to skip all the roots in ts whose
number is |ts|. Then, rebuildf n ts cs is the breadth-first numbering of ts. In view
of this description, the first three definition clauses of rebuildf are unavoidable,
and the last one gives a dummy result for a case that never occurs when running
algorithm bfn levelf in Theorem 10 below.

Lemma 4. The function rebuildf satisfies the following specification: for any n,
ts : L (TX) and cs : L (TN), if both subtrees ts ∼LT cs and is bfn (|ts| + n) cs
hold then ts ∼LT rebuildf n ts cs and is bfn n (rebuildf n ts cs).

Proof. First we show by structural induction on ts that for any n : N and
ts : L (TN), if roots ts = [n;n + 1; . . .] then rebuildf n ts (subtrees ts) = ts. Then
we show that for any Y,Z : Type, n : N, ts : L (TY ), t′s : L (TZ) and any
cs : L (TN), if ts ∼LT t′s then rebuildf n ts cs = rebuildf n t′s cs. This second
proof is by structural induction on proofs of the ts ∼LT t′s predicate. The result
follows using Lemma 2. ��

The lemma suggests the recursive algorithm contained in the following the-
orem: in place of cs as argument to rebuildf , it uses the result of the recursive
call on bfn levelf with the index shifted by the number of terms in ts (hence the
number of roots in ts—which is different from Okasaki’s setting with labels only
at inner nodes) and the second component of childrenf ts.

Theorem 10. There is a fully specified Coq term

bfn levelf : ∀ (i : N) (l : L (TX)), {m | l ∼LT m ∧ is bfn i m}

29 Hence the ∀{K} where K is declared as implicit.



which extracts to the following OCaml code:

let rec bfn levelf i ts = match ts with
| [] → []
| → let n, ss = childrenf ts in rebuildf i ts (bfn levelf (n + i) ss).

Proof. By induction on the measure i, l �→ ‖l‖. The non-trivial correctness PO
is a consequence of Lemma 4. ��
Corollary 4. There is a Coq term bfnlevel : TX → TN s. t. for any tree t : TX:

t ∼T bfnlevel t and bftstd (bfnlevel t) = [1; . . . ; ‖t‖]

and bfnlevel extracts to the following OCaml code:

let bfnlevel t = match bfn levelf 1 [t] with t′ :: → t′.

Proof. Direct application of Theorems 6 and 10. ��

7 Efficient Functional FIFOs

We discuss the use of our breadth-first algorithms that are parameterized over
the abstract FIFO datatype with the implementations of efficient and purely
functional FIFOs. As described in Sect. 5.1, the Coq developments of Sects. 5.2,
5.3 and 5.4 take the form of (Coq module) functors and their extracted code is
structured as (OCaml module) functors. Using these functors means instantiat-
ing them with an implementation of the parameter, i. e., a module of the given
module type. Formally, this is just application of the functor to the argument
module. In our case, we implement Coq modules of the module type correspond-
ing to Fig. 2 and then apply our (Coq module) functors to those modules. The
extraction process yields the application of the extracted (OCaml module) func-
tors to the extracted FIFO implementations. This implies a certification that
the application is justified logically, i. e., that the FIFO implementation indeed
satisfies the axioms of Fig. 2.

7.1 FIFOs Based on Two Lists

It is an easy exercise to implement our abstract interface for FIFOs based on pairs
(l, r) of lists, with list representation f2l (l, r) := l ++ rev r. The enq operation
adds the new element to the front of r (seen as the tail of the second part),
while the deq operation “prefers” to take the elements from the front of l, but
if l is empty, then r has to be carried over to l, which requires reversal. It is
well-known that this implementation still guarantees amortized constant-time
operations if list reversal is done efficiently (in linear time). As before, we obtain
the implementation by automatic code extraction from constructions with the
rich specifications that use measure induction for deq.



We can then instantiate our algorithms to this specific implementation, while
Jones and Gibbons [7] calculated a dedicated breadth-first traversal algorithm
for this implementation from the specification.

We have the advantage of a more modular approach and tool support for
the code generation (once the mathematical argument in form of the rich spec-
ification is formalized in Coq). Moreover, we can benefit from a theoretically
yet more efficient and still elegant implementation of FIFOs, the one devised by
Okasaki [13], to be discussed next.

7.2 FIFOs Based on Three Lazy Lists

While amortized constant-time operations for FIFOs seem acceptable—although
imperative programming languages can do better—Okasaki showed that also
functional programming languages allow an elegant implementation of worst-
case constant time FIFO operations [13].

The technique he describes relies on lazy evaluation. To access those data
structures in terms extracted from Coq code, we use coinductive types, in par-
ticular finite or infinite streams (also called “colists”):

CoInductive SX := 〈〉 : SX | # : X → SX → SX.

However, this type is problematic just because of the infinite streams it contains:
since our inductive arguments are based on measures, we cannot afford that such
infinite streams occur in the course of execution of our algorithms. Hence we need
to guard our lazy lists with a purely logical finiteness predicate which is erased
by the extraction process.

Inductive lfin : SX → Prop :=
| lfin nil : lfin 〈〉
| lfin cons : ∀x s, lfin s → lfin (x # s).

We can then define the type of (finite) lazy lists as:

Definition Ll X := {s : SX | lfin s}.

Compared to regular lists LX, for a lazy list (s,Hs) : Ll X, on the one hand,
we can also do pattern-matching on s but on the other hand, we cannot define
Fixpoints by structural induction on s. We replace it with structural induction
on the proof of the predicate Hs : lfin s. Although a bit cumbersome, this allows
working with such lazy lists as if they were regular lists, and this practice is fully
compatible with extraction because the guards of type lfin s : Prop, being purely
logical, are erased at extraction time. Here is the extraction of the type Ll in
OCaml:

type α llist = α llist Lazy.t
and α llist = Lnil | Lcons of α ∗ α llist



Here, we see the outcome of the effort: the (automatic) extraction process
instructs OCaml to use lazy lists instead of standard lists (a distinction that
does not even exist in the lazy language Haskell).

Okasaki [13] found a simple way to implement simple FIFOs30 efficiently
using triples of lazy lists. By efficiently, he means where enqueue and dequeue
operations take constant time (in the worst case). We follow the proposed imple-
mentation using our own lazy lists Ll X. Of course, his proposed code, being of
beautiful simplicity, does not provide the full specifications for a correctness
proof. Some important invariants are present, though. The main difficulty we
faced was to give a correct specification for his intermediate rotate and make
functions.

We do not enter more into the details of this implementation which is com-
pletely orthogonal to breadth-first algorithms. We invite the reader to check that
we do get the exact intended extraction of FIFOs as triples of lazy lists; see the
files llists.v, fifo 3llists.v and extraction.v described in Appendix A.

7.3 Some Remarks About Practical Complexity

However, our experience with the extracted algorithms for breadth-first number-
ing in OCaml indicate for smaller (with size below 2k nodes) randomly generated
input trees that the FIFOs based on three lazy lists are responsible for a factor
of approximately 5 in execution time in comparison with the 2-list-based imple-
mentation. For large trees (with size over 64k nodes), garbage collection severely
hampers the theoretic linear-time behaviour. A precise analysis is out of scope
for this paper.

8 Final Remarks

This paper shows that, despite their simplicity, breadth-first algorithms for finite
binary trees present an interesting case for algorithm certification, in particu-
lar when it comes to obtain certified versions of efficient implementations in
functional programming languages, as those considered by Okasaki [14].

Contributions. For this, we used the automatic extraction mechanism of the Coq
system, whence we call this “breadth-first extraction.” Fine-tuning the proof
constructions so that the extraction process could generate the desired code—
without any need for subsequent code polishing—was an engineering challenge,
and the format of our proof scripts based on a hand-crafted measure induction
tactic (expressed in the Ltac language for Coq [5] that is fully usable as user of
Coq—as opposed to Coq developers only) should be reusable for a wide range
of algorithmic problems and thus allow their solution with formal certification
by program extraction.

30 He also found a simple solution for double-ended FIFOs.



We also considered variations on the algorithms that are not optimized for
efficiency but illustrate the design space and also motivate the FIFO-based solu-
tions. And we used the Coq system as theorem prover to formally verify some
more abstract properties in relation with our breadth-first algorithms. This com-
prises as original contributions an axiomatic characterization of relations on
paths in binary trees to be the breadth-first order (Theorem 1) in which the paths
are visited by the breadth-first traversal algorithm. (Sect. 3.3). This also includes
the identification of four different but logically equivalent ways to express the
recursive behaviour of breadth-first traversal on forests (Theorem 3) and an
equational characterization of breadth-first numbering of forests (Lemma 3).
Among the variations, we mention that breadth-first reconstruction (Sect. 5.4)
is amenable to a proof by structural recursion on the list of labels that is used
for the relabeling while all the other proofs needed induction w. r. t. measures.

Perspectives. As mentioned in the introduction, code extraction of our con-
structions towards lazy languages such as Haskell would yield algorithms that
we expect to work properly on infinite binary trees (the forests and FIFOs would
still contain only finitely many elements, but those could then be infinite). The
breadth-first nature of the algorithms would ensure fairness (hinted at also in
the introduction). However, our present method does not certify in any way that
use outside the specified domain of application (in particular, the non-functional
correctness criterion of productivity is not guaranteed). We would have to give
coinductive specifications and corecursively create their proofs, which would be a
major challenge in Coq (cf. the experience of the second author with coinductive
rose trees in Coq [16] where the restrictive guardedness criterion of Coq had to
be circumvented in particular for corecursive constructions).

As further related work, we mention a yet different linear-time breadth-first
traversal algorithm by Jones and Gibbons [7] that, as the other algorithms of
their paper, is calculated from the specification, hence falls under the “algebra
of programming” paradigm. Our methods should apply for that algorithm, too.
And there is also their breadth-first reconstruction algorithm that relies on lazy
evaluation of streams—a version of it which is reduced to breadth-first number-
ing has been discussed by Okasaki [14] to relate his work to theirs. To obtain
such kind of algorithms would be a major challenge for the research in certified
program extraction.

Another Related Research Direction. We mentioned directly related work
throughout the paper, and we discussed certification of the program extrac-
tion procedure in Sect. 2.2. Let’s briefly indicate a complementary approach. We
state in our Theorems 5, 7, 8, 9 and 10 the OCaml code we wanted to obtain
by extraction (and that we then got), but there is no tool support to start with
that code and to work towards the (fully specified) Coq terms. The hs-to-coq31

tool [19] transforms Haskell code (in place of OCaml that we chose to use) into
Coq code and provides means to subsequent verification provided the Haskell
code does not exploit non-termination.
31 https://github.com/antalsz/hs-to-coq.

https://github.com/antalsz/hs-to-coq
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A Code Correspondence

Here, we briefly describe the Coq vernacular files behind our paper that is hosted
at https://github.com/DmxLarchey/BFE. Besides giving formal evidence for the
more theoretical characterizations, it directly allows doing program extraction,
see the README section on the given web page.
We are here presenting 24 Coq vernacular files in useful order:

– list utils.v: One of the biggest files, all concerning list operations, list
permutations, the lifting of relations to lists (Sect. 2) and segments of the
natural numbers – auxiliary material with use at many places.

– wf utils.v: The subtle tactics for measure recursion in one or two argu-
ments with a N-valued measure function (Sect. 2.4) – this is crucial for smooth
extraction throughout the paper.

– llist.v: Some general material on coinductive lists, in particular proven
finite ones (including append for those), but also the rotate operation of
Okasaki [13], relevant in Sect. 7.2.

– interleave.v: The example of interleaving with three different methods in
Sects. 2.3 (with existing tools—needs Coq v8.9 with package Equations) and
Sect. 2.5 (with our method).

– zip.v: Zipping with a rich specification and relations with concatenation –
just auxiliary material.

– sorted.v: Consequences of a list being sorted, in particular absence of dupli-
cates in case of strict orders – auxiliary material for Sect. 3.2.

– increase.v: Small auxiliary file for full specification of breadth-first traversal
(Sect. 3.3).

– bt.v: The largest file in this library, describing binary trees (Sect. 3.1), their
branches and orders on those (Sect. 3.2) in relation with breadth-first traversal
and structural relations on trees and forests (again Sect. 3.1).

– fifo.v: the module type for abstract FIFOs (Sect. 5.1).
– fifo triv.v: The trivial implementation of FIFOs through lists, mentioned

in Sect. 5.1.
– fifo 2lists.v: An efficient implementation that has amortized O(1) opera-

tions (see, e. g., the paper by Okasaki [13]), described in Sect. 7.1.
– fifo 3llists.v: The much more complicated FIFO implementation that

is slower but has worst-case O(1) operations, invented by Okasaki [13]; see
Sect. 7.2.

– bft std.v: Breadth-first traversal naively with levels (specified with the
traversal of branches in suitable order), presented in Sect. 3.3.

– bft forest.v: Breadth-first traversal for forests of trees, paying much atten-
tion to the recursive equations that can guide the definition and/or verifica-
tion (Sect. 4.1).

https://github.com/DmxLarchey/BFE


– bft inj.v: Structurally equal forests with the same outcome of breadth-first
traversal are equal, shown in Sect. 4.3.

– bft fifo.v: Breadth-first traversal given an abstract FIFO, described in
Sect. 5.2.

– bfn spec rev.v: Characterization of breadth-first numbering, see Lemma 3.
– bfn fifo.v: The certified analogue of Okasaki’s algorithm for breadth-first

numbering [14], in Sect. 5.3.
– bfn trivial.v: Just the instance of the previous with the trivial implemen-

tation of FIFOs.
– bfn level.v: A certified reconstruction of bfnum on page 134 (Sect. 4 and

Fig. 5) of Okasaki’s article [14]. For its full specification, we allow ourselves
to use breadth-first numbering obtained in bfn trivial.v.

– bfr fifo.v: Breadth-first reconstruction, a slightly more general task (see
next file) than breadth-first numbering, presented in Sect. 5.4.

– bfr bfn fifo.v: Shows the claim that breadth-first numbering is an instance
of breadth-first reconstruction (although they have been obtained with dif-
ferent induction principles).

– extraction.v: This operates extraction on-the-fly.
– benchmarks.v: Extraction towards .ml files.
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