Dominique Larchey-Wendling
email: dominique.larchey-wendling@loria.fr

Jean-François Monin
email: jean-francois.monin@univ-grenoble-alpes.fr

Simulating Induction-Recursion for Partial Algorithms

We describe a generic method to implement and extract partial recursive algorithms in Coq in a purely constructive way, using L. Paulson's ifthen-else normalization as a running example.

. We claim that the use of (1) IR, which is still absent from Coq, and (2) an informative predicate (of sort Set or Type) for the domain, preventing its erasing at extraction time, can be circumvented through a suitable bar inductive predicate.

⇒ ω(α, nm y, nm z) | ω(ω(a, b, c), y, z) ⇒ nm(ω(a, nm(ω(b, y, z)), nm(ω(c, y, z)))) We illustrate our technique on L. Paulson's algorithm for if-then-else normalization [START_REF] Giesl | Termination of Nested and Mutually Recursive Algorithms[END_REF][START_REF] Bove | Modelling general recursion in type theory[END_REF] displayed in Fig. 1. For concise statements, we use ω to denote the ternary constructor for if then else expressions, and α as the nullary constructor for atoms. As witnessed in the third match rule ω(ω(a, b, c), y, z), nm contains (two) nested recursive calls, making its termination depend on properties of its semantics. This circularity complicates the approach of well-founded recursion and may even render it unfeasible.

Our method allows to show these properties after the (partial) function nm is defined, as proposed in [START_REF] Krauss | Partial and Nested Recursive Function Definitions in Higher-order Logic[END_REF], but without the use of Hilbert's εoperator. We proceed purely constructively without any extension to the existing Coq system and the recursive definition of Fig. 1 can be extracted as is from the Coq term that implements nm.

We start with the inductive definition of the graph G : Ω → Ω → Prop of nm (Fig. 2) and we show its functionality. 1 Then we define the domain/termination predicate D : Ω → Prop as a bar inductive predicate with the three rules of Fig. 3. We show a dependent induction principle for D (see Fig. 5). The term d_nm_ind states that any dependent property P : ∀e, D e → Prop contains D as soon as it is closed under the simulated constructors d_nm_[012] of D. The assumption ∀ e D 1 D 2 , P e D 1 → P e D 2 restricts the principle to proof-irrelevant properties about the dependent pair (e, D e). This is exactly what we need to establish properties of nm. Then we can show partial correctness and termination as in [START_REF] Giesl | Termination of Nested and Mutually Recursive Algorithms[END_REF] in this example, nm happens to always terminate on a normal form of its input. In a more relational approach, these properties can alternatively be proved using nm_spec and induction on G x n x . Though our approach is inspired by IR definitions, in contrast with previous work, e.g. [START_REF] Bove | Another Look at Function Domains[END_REF], the corresponding principles are established independently of any consideration on the semantics or termination of the target function (nm), i.e. without proving any properties of D/nm a priori. This postpones the study of termination after both D and nm are defined together with constructors and elimination scheme, fixpoint equations and proof-irrelevance. Moreover, our domain/termination predicate D is non-informative, i.e. it does not carry any computational content. Thus the code obtained by extraction is exactly as intended.

G α α G y n y G z n z G (ω α y z) (ω α n y n z) G (ω b y z) n b G (ω c y z) n c G (ω a n b n c) n a G (ω (ω a b c) y z) n a Figure 2: Rules for the graph G : Ω → Ω → Prop of nm. D α D y D z D (ω α y z) D (ω b y z) D (ω c y z) ∀ n b n c , G (ω b y z) n b → G (ω c y z) n c → D (ω a n b n c) D (ω (ω a b c) y z)
2 i.e. nm_pirr : ∀ e D 1 D 2 , nm e D 1 = nm e D 2 .

Our Coq code is available under a Free Software license [START_REF] Larchey-Wendling | The If-Then-Else normalisation algorithm in Coq[END_REF]. We have successfully implemented other algorithms using the same technique: F91, unification, depth first search as in [START_REF] Krauss | Partial and Nested Recursive Function Definitions in Higher-order Logic[END_REF], quicksort, iterations until 0, partial list map as in [START_REF] Bove | Partiality and recursion in interactive theorem provers -an overview[END_REF], Huet&Hullot's list reversal [START_REF] Giesl | Termination of Nested and Mutually Recursive Algorithms[END_REF], etc. The method is not constrained by nested/mutual induction, partiality or dependent types. On the other hand, spotting recursive sub-calls implies the explicit knowledge of all the algorithms that make such calls, a limitation that typically applies to higher order recursive schemes such as e.g. substitutions under binders. Besides growing our bestiary of examples, we aim at formally defining a class of schemes for which our method is applicable, and more practically propose some automation like what is done in Equations [START_REF] Sozeau | Equations: A Dependent Pattern-Matching Compiler[END_REF].

 type Ω = α | ω of Ω * Ω * Ω let rec nm e = match e with | α ⇒ α | ω(α, y, z)

Figure 1 :

 1 Figure 1: L. Paulson's if-then-else normalisation algorithm.

Figure 3 :

 3 Rules for the bar inductive definition of D : Ω→Prop.There, we single out recursive calls using G but proceed by pattern-matching on e following the recursive scheme of nm of Fig.1. Then we define nm_rec : ∀ e (D e : D e), {n | G e n} as a fixpoint using D e to ensure termination. However, the term nm_rec e D e does not use D e to compute: the value n satisfying G e n is computed by pattern-matching on e and recursion, following the scheme of Fig.1.Finally, we define nm e D e := π 1 (nm_rec e D e) and get nm_spec e D e : G e (nm e D e) using the second projection π 2 . Extraction of OCaml code from nm outputs exactly the algorithm of Fig.1, illustrating the purely logical (Prop) nature of D e . In order to reason on D/nm we show that they satisfy the IR specification given in Fig.4: the constructors of D are sufficient to establish the simulated constructors d_nm_[012], while nm_spec allows us to derive the fixpoint equations of nm. Us-ing g_nm_fun, we get proof-irrelevance of nm. 2Inductive Ω :Set := α : Ω | ω : Ω → Ω → Ω → Ω.Inductive D : Ω → Prop := | d_nm_0 : D α | d_nm_1 y z : D y → D z → D(ω α y z) | d_nm_2 a b c y z D b D c : D ω a (nm (ω b y z) D b) (nm (ω c y z) D c) → D ω (ω a b c) y z with Fixpoint nm e (D e : D e) : Ω := match D e with | d_nm_0 → α | d_nm_1 y z D y D z → ω α (nm y D y) (nm z D z) | d_nm_2 a b c y z D b D c D a → nm ω a (nm (ω b y z) D b) (nm (ω c y z) D c) D a end.

Figure 4 :

 4 Figure 4: IR spec. of D : Ω → Prop and nm : ∀e, D e → Ω.

 Theorem d_nm_ind (P : ∀e, D e → Prop) : ∀ e D 1 D 2 , P e D 1 → P e D 2 → P _ d_nm_0 → ∀ y z D y D z , P _ D 1 → P _ D z → P _ (d_nm_1 y z D y D z) → ∀ a b c y z D b D c D a , P _ D b → P _ D c → P _ D a → P _ (d_nm_2 a b c y z D b D c D a) → ∀ e D e , P e D e .

Figure 5 :

 5 Figure 5: Dependent induction principle for D : Ω → Prop.

i.e. g_nm_fun : ∀ e n 1 n

, G e n 1 → G e n 2 → n 1 = n 2 .