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Redundancy-free Proof-Search

Dominique Larchey-Wendling

Université de Lorraine, CNRS, LORIA, Nancy, France
dominique.larchey-wendling@loria.fr

Abstract. We give a constructive account of Kripke-Curry’s method
which was used to establish the decidability of Implicational Relevance
Logic (R→). To sustain our approach, we mechanize this method in
axiom-free Coq, abstracting away from the specific features of R→ to
keep only the essential ingredients of the technique. In particular we
show how to replace Kripke/Dickson’s lemma by a constructive form of
Ramsey’s theorem based on the notion of almost full relation. We also ex-
plain how to replace König’s lemma with an inductive form of Brouwer’s
Fan theorem. We instantiate our abstract proof to get a constructive
decision procedure for R→ and discuss potential applications to other
logical decidability problems.

Keywords: Constructive Decidability · Relevance Logic · Redundancy-
free Proof-Search · Almost Full relations

1 Introduction

In this paper, we give a fully constructive/inductive account of Kripke’s de-
cidability proof of implicational relevance logic R→, fulfilling the program out-
lined in [17]. The result is known as Kripke’s but it crucially relies on Curry’s
lemma [18] which states that if a sequent S2 is redundant over a sequent S1

and S2 has a proof, then S1 has a shorter proof. Our account of Kripke-Curry’s
method is backed by an axiom-free mechanized proof of the result in the Coq
proof assistant. However, their method and our constructivized implementation
is in no way limited to that particular logic. As explained in [19], “Kripke’s proce-
dure for deciding R→ can be seen as a precursor for many later algorithms that
rely on the existence of a well quasi ordering (WQO).” From a logical perspective,
Kripke-Curry’s method has been adapted to implicational ticket entailment [2]
and the multiplicative and exponential fragment of linear logic [1]. However, both
of these recent papers are now contested inside the community because of deeply
hidden flaws in the arguments [9, footnote 1], [20, footnote 4] and [6, pp 360-362].
This illustrates that the beauty of Kripke-Curry’s method should not hide its
subtlety and justifies all the more the need to machine-check such proofs.
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From a complexity perspective, S. Schmitz recently gave a 2-ExpTime com-
plexity characterization [19] of the entailment problem for R→, implying a de-
cision procedure. However, the existence of a complexity characterization does
not automatically imply a constructive proof of decidability. Indeed, the decision
procedure itself or its termination proof might involve non-constructive argu-
ments. In the case of R→, the result of [19] “relies crucially” on the 2-ExpTime-
completeness of the coverability problem in branching vector addition systems
(BVASS) [7]. Checking the constructive acceptability of such chains of results
implies checking that property for every link in the chain, an intimidating task,
all the more problematic when considering mechanization.1

Our interest in the entailment problem for R→ lies in the inherent simplicity
and genericity of Kripke-Curry’s argumentation. It is centered around the notion
of redundancy avoidance. But compared to e.g. intuitionistic logic (IL), the case
ofR→ is specific because redundancy is not reduced to repetition: the redundancy
relation is not the identity. The case of repetition is not so interesting: Curry’s
lemma is trivial for repetition; and the sub-formula property and the pigeon hole
principle ensure that Gentzen’s sequent system LJ has a finite search space.

In the case of R→, the sequent S2 is redundant over S1 if they are cognate
and S1 is included into S2 for multiset inclusion [18]. In [17], Dickson’s lemma
is identified as the main difficulty for transforming Kripke-Curry’s method into
a constructive proof. Dickson’s lemma2 is a consequence of Ramsey’s theorem
which, stated positively, can be viewed as the following result [23]: the intersec-
tion of two WQOs is a WQO. The closure of the class of WQOs under direct
products follows trivially and so does Dickson’s lemma. We think that the use
of König’s lemma in Kripke’s proof is also a potential difficulty w.r.t. construc-
tivity. Admittedly, there are many variants of this lemma and indeed, we will
use one which is suited in a constructive argumentation.

Let us now present the content of this paper. In Section 2, we propose an
overview of Kripke-Curry’s argumentation focusing on the two issues of Dickson’s
lemma and König’s lemma. To constructivize that proof, we approached the
problem posed by Dickson’s lemma by using T. Coquand’s [3] direct intuitionistic
proof of Ramsey’s theorem through an intuitionistic formulation of WQOs as
almost full relations (AF) [24]. These results are recalled in Section 3. We also
give a constructive version of König’s lemma based on AF relations.

In Section 4, we give an account of what could be called the central ingre-
dients of Kripke-Curry’s proof by outlining the essential steps of our construc-
tive mechanization in the inductive type theory on which Coq is based. Our
proof_decider of Fig. 3 abstracts away from the particular case of R→, by
isolating the essential ingredient: an almost full redundancy relation which sat-
isfies Curry’s lemma. Finally, in Section 4.6, we instantiate the proof_decider
into a constructive decision procedure for R→. We also discuss the potential
applications to other sub-structural logics.

1 As for coverability in BVASS, it seems that the arguments developed in [7] cannot
easily be converted to constructive ones (private communication with S. Demri).

2 Dickson’s lemma states that under pointwise order, Nk is a WQO for any k ∈ N.



` A⊃A ` (A⊃B)⊃ (C ⊃A)⊃ (C ⊃B)
` (A⊃A⊃B)⊃ (A⊃B) ` (A⊃B ⊃ C)⊃ (B ⊃A⊃ C)

` A⊃B ` A
` B

Fig. 1. Hilbert’s style proof system for implicational relevance logic R→.

The technical aspects of our proofs are sustained by a Coq v8.6 mechanization
which is available under a Free Software license [14]. The size of this development
is significant —around 15 000 lines of code,— but most of the code is devoted to
libraries and the implementations of the proof systems R→, LR1→ and LR2→
and the links between them: soundness/completeness results, cut-elimination,
sub-formula property, finitely branching proof-search, etc. The case of implica-
tional intuitionistic logic J→ is treated as well in this mechanization. The core
of our constructivization of Kripke-Curry’s proof can be found in the file proof.v
and is only around 800 lines long (including comments).

2 Constructive issues in Kripke’s decidability proof

In this section, we recall the main aspects of Kripke’s decidability proof for the
implicational fragment of relevance logic R→, described with Hilbert style proof
rules in Fig. 1. We sum up the description of [18] while focusing on the aspects
of the arguments that were challenging from a constructive perspective. Among
the many research directions later suggested by J. Riche in [17] for solving the
missing link —a constructive proof of IDP or of Dickson’s lemma,— the use of
T. Coquand’s approach [4] to Bar induction turned out as a solution.

Notice that in the notation R→, the symbol → represents the logic-level
implication to stay coherent with [17,18,19]. But in this paper, we rather use
⊃ to denote logical implications to avoid conflicting with the Coq notation for
function types T1→ T2 (see e.g. the below definition of HR_proof).

2.1 What is a constructive proof of relevant decidability?

Let us formalize the high-level question that we solve in this paper. Before we
give a mechanized constructive proof of decidability for R→, we need to formally
define provability or proofs, at least forR→. This can easily be done in Coq using
the (informative) inductive predicate:

Inductive HR_proof : Form→ Set :=
| id : ∀A, ` A⊃A
| pfx : ∀A B C, ` (A⊃B)⊃ (C ⊃A)⊃ (C ⊃B)
| comm : ∀A B C, ` (A⊃B ⊃ C)⊃ (B ⊃A⊃ C)
| cntr : ∀A B, ` (A⊃A⊃B)⊃ (A⊃B)
| mp : ∀A B, ` A⊃B→ ` A→ ` B

where “ ` A ” := (HR_proof A).

i.e. HR_proof A or (` A for short) encodes the type of proofs of the formula A
in the Hilbert system for R→ of Fig. 1. A constructive decidability proof for R→

https://github.com/DmxLarchey/Relevant-decidability/blob/master/proof.v


A ` A
〈AX〉

Γ,A,A ` B
Γ,A ` B

〈?W〉
Γ ` A A,∆ ` B

Γ,∆ ` B
〈CUT〉

A,Γ ` B
Γ ` A⊃B

〈?⊃〉
Γ ` A B,∆ ` C
Γ,∆,A⊃B ` C

〈⊃?〉

Fig. 2. The LR1→ sequent calculus rules for R→.

would then be given by a term HR_decidability of type:

HR_decidability : ∀A : Form, {inhabited(` A)}+ {¬inhabited(` A)}

i.e. a total computable function which maps every formula A to a boolean value
which if true, ensures that there is a proof of A, and if false ensures that there
is no proof of A. A constructive decider is a stronger result of type:

HR_decider : ∀A : Form, (` A) + (` A→ False)

that is a total computable function that maps every formula A to either a proof
of A or else ensures that no such proof exists. In other words, a constructive de-
cider is an (always terminating) constructive proof-search algorithm. Obviously,
adding axioms to Coq might hinder the computability of its terms (ensured by
the normalization property of Coq). Hence, we allow no axiom and we aim at
defining HR_decidability or HR_decider in axiom-free Coq.

2.2 Sequent calculi for R→

Hilbert’s R→ formulation is (unsurprisingly) not really suited to designing de-
cision procedures based on proof-search. A standard approach is to convert
Hilbert’s systems into sequent rules such as those of LR1→ in Fig. 2 (see
also [18]). In this particular system, a sequent Γ ` A is composed of a mul-
tiset Γ of formulæ on the left of the ` symbol and exactly one formula A on the
right of the ` symbol. There are three structural rules: 〈AX〉, 〈?W〉 and 〈CUT〉,
and two logical rules: 〈?⊃〉 and 〈⊃?〉. The soundness/completeness of this con-
version to sequent calculus is ensured by the following result: a formula A has a
Hilbert proof ` A if and only if the sequent ∅ ` A has a proof in LR1→ (with
∅ as the empty multiset). That result is mechanized in the file relevant_equiv.v.

Although designed for proof-search, the sequent system LR1→ still suffers
two major problems when considering fully automated procedures: one is the
〈CUT〉 rule and the other is the more problematic contraction rule 〈?W〉. Cut-
elimination is one of the central questions of proof-theory, partly because 〈CUT〉
makes proof-search infinitely branching. Fortunately, the 〈CUT〉 rule is admissi-
ble in LR1→ so we can safely remove that rule from LR1→. Cut-admissibility
is proved using a relational phase semantic in the file sem_cut_adm.v.

On the other hand 〈?W〉 needs to be handled much more carefully. The trick
of Curry, which is well described in [18] is to absorb several instances of 〈?W〉

https://github.com/DmxLarchey/Relevant-decidability/blob/master/relevant_equiv.v
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in the rule 〈?⊃〉 but in a tightly controlled way.3 This is done by replacing both
rules 〈?W〉 and 〈?⊃〉 with the rule 〈?⊃2〉:

Γ ` A B,∆ ` C
Θ,A⊃B ` C

〈?⊃2〉 with LR2_condition(A⊃B,Γ,∆,Θ)

obtaining the system LR2→ composed of 〈AX〉, 〈⊃?〉 and 〈?⊃2〉. The side
LR2_condition(A ⊃ B,Γ,∆,Θ) is a bit complicated to express formally so we
will informally sum up its central idea: while applying 〈?⊃2〉 top-down, some
controlled/bounded form of contraction is allowed on every formula: the prin-
cipal formula A ⊃ B can be contracted at most twice while side formulæ in
Γ,∆ can be contracted at most once. See the definition of LR2_condition in
file relevant_contract.v for a precise characterization.

2.3 Irredundant proofs in LR2→

Before using LR2→ for decidingR→, LR2→ must of course be proved equivalent
to LR1→ and this is not a trivial task (see file relevant_equiv.v for the technical
details). The cornerstone of the equivalence between LR2→ and LR1→ lies in
a critical property of LR2→ called Curry’s lemma. It ensures both:
– the admissibility of the contraction rule 〈?W〉 in LR2→;
– the completeness of irredundant proof-search in LR2→.

We say that a sequent ∆ ` B is redundant over a sequent Γ ` A and we denote
Γ ` A ≺r ∆ ` B if Γ ` A can be obtained from ∆ ` B by repeated top-down
applications of the contraction rule 〈?W〉. We also characterize redundancy using
the number of occurrences |Γ |X of the formula X in the multiset Γ :

Γ ` A ≺r ∆ ` B ⇐⇒ A = B ∧ ∀X, |Γ |X ≺
N
r |∆|X (≺r)

where the binary relation n ≺N
r m on N is defined by n 6 m ∧ (n = 0⇔ m = 0).

Now we can state Curry’s lemma.
Lemma 1 (Curry [5], 1950). Consider two sequents such that ∆ ` B is
redundant over Γ ` A, i.e. Γ ` A ≺r ∆ ` B. Then any LR2→-proof of ∆ ` B
can be contracted into a LR2→-proof of Γ ` A, that is, a proof of lesser height.
The Coq proof term is LR2_Curry in the file relevant_LR2.v. Admissibility of
contraction follows trivially from Curry’s lemma and hence the completeness of
LR2→ w.r.t. 〈CUT〉-free LR1→. Another critical consequence of Curry’s lemma
is related to irredundant proofs.
Definition 1 (Irredundant proof). A proof is redundant if there is a redun-
dant pair in one of its branches, i.e. Γ ` A ≺r ∆ ` B where ∆ ` B occurs in
the sub-proof of Γ ` A. A proof is irredundant if none of its branches contain
a redundant pair.
By Curry’s lemma, any sequent provable in LR2→ has an irredundant proof
in LR2→ (the argument is not completely trivial, see Section 4). Hence, while
searching for proofs in LR2→, one can safely stop at redundancies.
3 Unrestricted contraction would generate infinitely branching proof-search.
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2.4 Kripke’s decidability proof

Building on Curry’s lemma, the key insight of Kripke’s proof of decidability is the
following result. As explained in [8,17], it was discovered many times in different
fields of mathematics, as e.g. Hilbert’s finite basis theorem, the infinite division
principle (IDP by Meyer [15]), Dickson’s lemma, etc. We express Kripke’s lemma
with a concept that was not clearly spotted at that time but was popularized
later on, that of well quasi order.

Definition 2 (Well Quasi Order). A binary relation 6 over a set X is a
well quasi order (WQO) if it is reflexive, transitive and any infinite sequence
x : N→X contains a good pair (i, j), which means both i < j and xi 6 xj.

Lemma 2 (Kripke [12], 1959). Given a finite set of (sub-)formulæ S, the
redundancy relation ≺r is a WQO when it is restricted to sequents composed
exclusively of formulæ in S.

Proof. We give a “modernized” account of the proof. By Ramsey’s theorem, the
product (or intersection) of two WQOs is WQO.4 Hence, the relation ≺N

r over
N is a WQO as the intersection of two WQOs. By finiteness of S, the identity
relation =S on S is also a WQO (this is an instance of the pigeon hole principle).

Denoting ≺Sr as the restriction of ≺r to the sequents composed of formulæ
in the finite set S, we can derive the equivalence

Γ ` A ≺Sr ∆ ` B ⇐⇒ A =S B ∧
∧

X∈S |Γ |X ≺N
r |∆|X

hence ≺Sr is a WQO as a finite intersection of WQOs. ut

Kripke’s proof of decidability of LR2→ (and hence R→) can be summarized
in the following steps:

– consider a start sequent Γ ` A and let S be its finite set of sub-formulæ;
– launch backward proof-search for irredundant proofs of Γ ` A in LR2→, i.e.

search stops when no rule is applicable or at a redundancy. We denote by T
the corresponding (potentially infinite) proof-search tree;

– by the sub-formula property, no formula outside of S can occur in T ;
– T is finitely branching (critically relies on the side condition of rule 〈?⊃2〉);
– T cannot have an infinite branch (by Kripke’s lemma);
– hence by König’s lemma, the proof-search tree T is finite.

In [17], J. Riche focuses on Kripke/Dickson’s lemma as the main difficulty to
get an argumentation that could be accepted from a constructive point of view.
We think that König’s lemma is also a potentially non-constructive result [21],
depending on its precise formulation. In Section 4, we explain how to overcome
these two difficulties and transform this method into a mechanized HR_decider.
4 This result is known as Dickson’s lemma when restricted to Nk with the point-wise
product order. The inclusion relation between multisets built from the finite set S
is a particular case of the product order Nk where k is the cardinal of S.



3 Inductive Well Quasi Orders

In this section we describe an inductive formulation of the notion of WQO. We
are now going to use the language of Inductive Type Theory instead of Set theo-
retical language. Type theoretically, Definition 2 becomes: a WQO is a reflexive
and transitive predicate ≺r : X→X→Prop such that for any f : nat→X, there
exists i, j : nat s.t. i < j and fi ≺r fj (good pair). We can say that any infinite
sequence is bound to be redundant. We recall the inductive characterization of
WQO due to Fridlender and Coquand [10] and the constructive Ramsey theo-
rem [24], from which we derive a constructive proof of Kripke’s lemma. Using
the inductive Fan theorem [10], we derive a constructive König’s lemma. The
corresponding Coq code can be found in the library file almost_full.v.

3.1 Good lists, almost full relations and bar inductive predicates

Much like well founded relations can be defined inductively by accessibility predi-
cates (see module Wf of Coq standard library), WQOs can inductively be defined
either by the almost full inductive predicate (AF) or by bar inductive predi-
cates. Notice that these equivalent inductive characterizations are constructively
stronger than the usual classical definition (like in the case of well-foundedness).

Let us consider a typeX : Type and a redundancy relation≺r : X→X→Prop.
We define the good ≺r : list X→ Prop predicate that characterizes the (finite)
lists which contain a good pair:

good ≺r [xn−1; . . . ;x0] ⇐⇒ ∃ i j, i < j < n ∧ xi ≺r xj (good)

Hence the list [. . . ; b; . . . ; a; . . .] is good when a ≺r b. The list is read from right to
left because we represent the n-prefix of a sequence f : nat→X by [fn−1; . . . ; f0].

Definition 3 (Ir/redundant). Given a relation ≺r : X → X → Prop called
redundancy, a list of values l : list X is redundant if good ≺r l holds and is
irredundant if ¬(good ≺r l) holds.

We write bad ≺r l when the list l satisfies ¬(good ≺r l). The lifting of a
relation R : X →X → Prop by x : X is denoted R ↑ x and characterized by:

u (R ↑ x) v ⇐⇒ u R v ∨ x R u for any u, v : X

The disjunct x R u prohibits any u which is R-greater than x to occur in (R↑x)-
bad sequences. AF relations are defined as those satisfying the aft predicate:5

Inductive aft {X : Type} (R : X →X → Prop) : Type :=
| in_af_t0 : (∀x y, x R y) → aft R
| in_af_t1 : (∀x, aft (R ↑ x)) → aft R.

Hence any full relation (i.e. ∀x y, x R y) is AF, and if every lifting ofR is AF, then
so is R. Notice that the predicate aft is informative: it contains a well-founded
5 The braces around {X : Type} specify an implicit argument.

https://github.com/DmxLarchey/Relevant-decidability/blob/master/almost_full.v


tree of liftings until the relation becomes full (see [24]). This information is
important to compute bounds for proof-search. Reflexive and transitive relations
which satisfy aft are WQOs in the classical interpretation. But constructively
speaking, they are stronger in the following sense: any sequence f : nat→ X
can effectively be transformed into an upper-bound n under which there exists
a good pair, upper-bound obtained by finite inspection of the prefixes of f :

Lemma af_t_inf_chain (X : Type) (≺r : X →X → Prop) :

aft(≺r)→∀(f : nat→X), {n : nat | ∃ i j, i < j < n ∧ fi ≺r fj}.

The constructive Ramsey theorem [24] states that almost full relations are closed
under (binary) intersection, and as a consequence, under direct products:

Theorem af_t_prod (X Y : Type) (R : X→X→Prop) (S : Y →Y →Prop) :

aft R→ aft S→ aft (R× S).

Notice that reflexivity and transitivity of WQOs are completely orthogonal to
almost fullness in these results. They play no important role in our development.

The aft(≺r) property can alternatively be defined by bar inductive predi-
cates [10] as bart (good ≺r) [ ] with the following inductive definition:6

Inductive bart {X : Type} (P : list X → Prop) (l : list X) : Type :=
| in_bar_t0 : P l → bart P l
| in_bar_t1 : (∀x, bart P (x :: l)) → bart P l.

Hence, bart P l means that regardless of the repeated extensions of the list l
by adding elements at its head, the predicate P is bound to be reached at some
point. With this definition, we can derive the (informative) equivalence:

Theorem bar_t_af_t_eq X ≺r l : aft(≺r ↑↑ l)⇐⇒ bart (good ≺r) l.

where R ↑↑ [x1, . . . , xn] := R ↑ xn . . . ↑ x1 (see file af_bar_t.v for details). And
we deduce the equivalence aft(≺r) iff bart (good ≺r) [ ] as the particular case.

3.2 A constructive form of König’s lemma

Brouwer’s Fan theorem can be proved equivalent to the binary form of König’s
lemma [21]. So one could wrongfully be led to the conclusion that both of these
results cannot be constructively established. Here we explain that using suitable
inductive definitions, such results can perfectly be established constructively.

For the rest of this section, we assume a typeX : Type. We recall the inductive
interpretation of the Fan theorem [10]. Given a list of lists ll : list (list X),
we define the list of choice sequences (or fan) of ll denoted list_fan ll

Definition list_fan : list (list X)→ list (list X).

6 [ ] and _ ::_ are shorthand notations for the two list constructors.

https://github.com/DmxLarchey/Relevant-decidability/blob/master/af_bar_t.v


The precise definition of list_fan uses auxiliary functions (see list_fan.v) but
this is unimportant here. Only the following specification which characterizes the
elements of list_fan [l1; . . . ; ln] as choices sequences for [l1; . . . ; ln] matters.7

[x1; . . . ;xn] ∈l list_fan [l1; . . . ; ln]⇐⇒ x1 ∈l l1 ∧ · · · ∧ xn ∈l ln (FAN)

These are the lists composed of one element of l1, then one element of l2, . . .
and one element of ln. The following result [10] states that if P is monotonic and
bound to be reached by successive extensions starting from [ ], then P is bound
to be reached uniformly over the finitary fan represented by choices sequences.

Theorem fan_t_on_list (P : list X→ Prop)
(
HP : ∀x l, P l→P (x :: l)

)
:

bart P [ ]→ bart (fun ll 7→ ∀l, l ∈l list_fan ll→ P l) [ ].

The proof of this result is recalled in bar_t.v. Combining fan_t_on_list with
bar_t_af_t_eq and af_t_inf_chain, we derive the following strong form of
König’s lemma. Given an almost full redundancy relation ≺r : X→X→Prop and
a sequence of finitary choices f : nat→list X, beyond an effective lower-bound
n, every finite prefix of a choice sequence for f is redundant (see koenig.v).

Theorem Constructive_Koenigs_lemma ≺r (f : nat→ list X) :

aft(≺r)→{n | ∀m l, n 6 m→ l ∈l list_fan [fm−1; . . . ; f0]→ good ≺r l}.

In Section 4.5, we over-approximate the branches of the proof-search tree as the
choice sequences of f : nat→ list stm which collects in f n the finitely many
sequents that occur at height n in the proof-search tree. Thus we get a uniform
upper-bound of the length of irredundant (i.e. bad ≺r) proof-search branches.

4 Decision via Redundancy-free Proof-Search

In this section, we describe the mechanization of a generic constructive decider
based on redundancy-avoiding proof-search. We first give an informal account of
the main arguments, then we proceed with a more formal description of these
steps in the language of Coq. Except for the tree.v and almost_full.v libraries,
all the following development is contained in the file proof.v.

4.1 Overview of the assumptions and main arguments

Let us consider a type stm of statements representing logical propositions. These
statements could, depending on the intended application, be formulæ like in
Hilbert style proof systems, or sequents in sequent proof systems or in some
versions of natural deduction, or more generally structures like nested sequents.

7 The notation x ∈l l is a shortcut for In x l, the (finitary) membership predicate.
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H1 . . . Hn

C

Statements are items to be proved or refuted (by showing
the impossibility of a proof as a term of type has_proof s→
False). For this, we describe a proof system as a set of valid
rule instances. These instances are generally represented as in the right figure
where C : stm is the conclusion of the instance and [H1; . . .;Hn] : list stm

is the list of premises. We collect the set of valid rule instances into a binary
relation rules : stm→ list stm→ Prop between individual statements (stm
viewed as conclusions) and list of statements (list stm viewed as premises).
Hence, the validity of the above rule instance in the proof system is expressed
by the predicate rules C [H1; . . . ;Hn]. When dealing with proof-search based
decision, infinite horizontal branching of proof-search is usually forbidden. Hence,
for a given C : stm, only finitely many rule instances exist with C as conclusion.
Moreover, that finite set of instances must be computable to be able to enumerate
the next steps of backward proof-search. We denote this property by rules_fin
and we say that rules has finite inverse images.8

Valid rules instances are combined to form proof trees. A proof tree is a finite
tree of statements where each node is a valid rule instance. Proofs are proof trees
of their root node and n-bounded proofs are proofs of height bounded by n.
Because of the finite inverse images property rules_fin, the set of n-bounded
proofs of a given statement s0 is finite and computable. We define the notion of
minimal proof, which is a proof of minimal height among the proofs of the same
statement. Every proof can effectively be transformed into a minimal proof by
searching among the finitely many proofs of lesser height. An everywhere minimal
proof is such that each of its sub-proof is minimal. Every proof can effectively
be transformed into an everywhere minimal proof.

Our generic constructive technique assumes a binary redundancy relation ≺r

between statements which satisfies Curry’s lemma 1: every proof containing a
redundancy can be contracted into a lesser proof. As a consequence, everywhere
minimal proofs are redundancy free. If we moreover assume that the binary rela-
tion ≺r is almost full (i.e. a constructive WQO), then every infinite sequence of
statements contains a redundancy. However, remember that in Kripke’s lemma 2
for LR2→, only the restriction of ≺r to finitely generated sequents is a WQO.
Hence we only assume ≺r to be almost full on the set of sub-statements of an
initial statement s0.9 By using the constructive version of König’s lemma of
Section 3.2, we show that every sequence of sub-statements of s0 longer than a
bound n0 contains a redundancy. The bound n0 can be computed from s0 only.
As a consequence, every irredundant proof of s0 is a n0-bounded proof. And de-
ciding the provability of s0 is reduced to testing whether the set of n0-bounded
proofs of s0 is empty or not.

8 Typically, systems which include a cut-rule do not satisfy the rules_fin property
which is why cut-elimination is viewed as a critical requisite to design sequent-based
decision procedures. The same remark holds for the modus-ponens rule of Hilbert
systems, usually making them unsuited for decision procedures.

9 For this, we need a notion of sub-statement that is reflexive, transitive and such that
valid rules instances possess the sub-statement property.



4.2 Finiteness, trees and branches

In this section, we consider a fixed X : Type. The predicate finitet P expresses
that a sub-type P : X → Prop of X is finite and computable into a list:

Definition finitet (P : X → Prop) := {l : list X | ∀x, x ∈l l⇐⇒ P x}.

We will use this predicate to encode the rules_fin property. We will also need
a type of finitely branching (oriented) trees:

Inductive tree X := in_tree : X → list (tree X)→ tree X.

where we denote 〈x|l〉 for (in_tree x l). The root root : tree X → X of a
tree verifies root 〈x|l〉 = x and the height ht : tree X → nat of a tree verifies
ht 〈_|l〉 = 1 + max (map ht l). Branches of trees are represented as specific lists
of elements of X. We inductively define a branch predicate:

Inductive branch : tree X → list X → Prop :=
| in_tb0 : ∀t, branch t [ ]
| in_tb1 : ∀x, branch 〈x|[ ]〉 (x :: [ ])
| in_tb2 : ∀ b x l t, t ∈l l→ branch t b→ branch 〈x|l〉 (x :: b).

s.t. the lists b which satisfy branch t b collect all the nodes encountered on paths
from the root of t to one of its internal nodes. The empty list [ ] is among them.

4.3 Proofs, minimal proofs and everywhere minimal proofs

We consider a type stm of logical statements and a collection of valid rule in-
stances rules which has the finite inverse image property.

Variables (stm : Type) (rules : stm→ list stm→ Prop).
Hypothesis

(
rules_fin : ∀c : stm, finitet (rules c)

)
.

Hence, not only are there finitely many rule instances for a given conclusion c
but the predicate rules_fin c contains llc : list (list stm), an effective list
of those instances which verifies the property:

[h1; . . . ;hn] ∈l llc ⇐⇒ rules c [h1; . . . ;hn] for any [h1; . . . ;hn] : list stm

This effective aspect of finite branching is often implicit in studies on proof-
search, because if one cannot even compute the valid instances for a given con-
clusion, then there is no way to implement backward proof-search.

The notion of proof is based on that of proof tree. We define a predicate
proof_tree that satisfies the below (recursive) characteristic property:

Definition proof_tree : tree stm→ Prop.

∀s l, proof_tree 〈s|l〉 ⇐⇒ rules s (map root l) ∧ ∀t, t ∈l l→proof_tree t.



i.e. trees of statements where each node is a valid rule instance, the conclusion
being the node itself and the premises being the children of the node. Given a
statement s, a proof of s is a proof tree t with root s, and a n-bounded proof is
a proof of height bounded by n:

Definition proof (s : stm) (t : tree stm) := proof_tree t ∧ root t = s.
Definition bproof (n : nat) (s : stm) (t : tree stm) := proof s t∧ ht t 6 n.

Proofs of a given statement s are not necessarily finitely many but because of
the finite inverse image property rules_fin, n-bounded proofs are:

Proposition bproof_finite_t (n : nat) (s : stm) : finitet (bproof n s).

We introduce the notion of minimal proof, that is a proof of minimal height
among the proofs with a given root s. We show that every proof t can be trans-
formed into a minimal proof by a simple search of the shortest among the (ht t)-
bounded proofs of s, of which a list can be computed using bproof_finite_t.

Definition min_proof s t := proof s t ∧ ∀t′, proof s t′→ ht t 6 ht t′.
Proposition proof_minimize s t : proof s t→{tmin | min_proof s tmin}.

But to exploit Curry’s lemma, we need a much stronger minimality property: this
is the notion of everywhere minimal proof tree, where every sub-tree is a minimal
proof of its own root. We show that every proof can effectively be transformed
into an everywhere minimal proof.

Definition emin_ptree : tree stm→ Prop.
∀s l, emin_ptree 〈s|l〉 ⇐⇒ min_proof s 〈s|l〉 ∧ ∀t, t ∈l l→ emin_ptree t.
Definition emin_proof s t := proof s t ∧ emin_ptree t.
Proposition proof_eminimize s t : proof s t→{tem | emin_proof s tem}.

Proof. The argument proceeds by induction on the height ht t of the proof tree t.
It uses proof_minimize to compute a minimal proof t1 for s and then proceeds
inductively on every immediate sub-proof of t1. ut

4.4 The completeness of irredundant proofs via Curry’s lemma

We assume a notion of redundancy on statements, that is a binary relation
≺r : stm→stm→Prop. A list of statements l : list stm is redundant if it contains
a good pair for ≺r, which is denoted by good ≺r l (see Section 3.1). The list l is
irredundant if it contains no good pair, i.e. bad ≺r l. A tree t : tree stm is an
irredundant proof if it is a proof and every branch of the tree is irredundant.10

Definition irred_proof s t := proof s t ∧ ∀b, branch t b→ bad ≺r (rev b).

We now state the assumption Curry abstracting Curry’s lemma:

Hypothesis Curry : ∀s1 s2 t, proof s2 t→ s1 ≺r s2→∃t′, ∧
{
proof s1 t

′

ht t′ 6 ht t.

10 Branches are read from the root to leaves, hence the use of rev to reverse lists.



assumption under which everywhere minimal proofs become irredundant:

Lemma proof_emin_irred s t : emin_proof s t→ irred_proof s t.

Proof. Given any branch b of an everywhere minimal proof tree t, we show that
b cannot contain a redundancy. Let s1 ≺r s2 be a good pair in b and let t1/t2
be the sub (proof) trees of roots s1/s2. As s2 occurs after s1 in b, t2 is a strict
sub-tree of t1 and thus ht t2 < ht t1. Using Curry, we get a proof t′1 of s1 with
ht t′1 6 ht t2. We derive ht t′1 < ht t1, and thus t1 is not a minimal proof of s1,
contradicting the everywhere minimality of t. ut

As a consequence, every proof can be transformed into an irredundant one
by direct combination of proof_eminimize and proof_emin_irred.

Theorem proof_reduce s t : proof s t→{tirr | irred_proof s tirr}.

4.5 Bounding the height of irredundant proofs

Kripke used König’s lemma to prove the finiteness of the finitely branching
irredundant proof-search tree by showing that it cannot have infinite branches.
The constructive argument works positively by showing that one can compute a
uniform upper-bound over the length of irredundant proof-search branches. We
use the constructive version of König’s lemma of Section 3.2.

To capture the sub-formula property in our setting, we assume an abstract
notion of sub-statement denoted by s1 ⊇sf s2 and which intuitively reads as
the sub-formulæ of s2 are also sub-formulæ of s1. We postulate that ⊇sf is both
reflexive (sf_refl) and transitive (sf_trans) and more importantly, that every
rule instance preserves sub-statements bottom-up (sf_rules):

Variables (⊇sf : stm→ stm→ Prop) (sf_refl : ∀s, s ⊇sf s)
(sf_trans : ∀s1 s2 s3, s1 ⊇sf s2→ s2 ⊇sf s3→ s1 ⊇sf s3)
(sf_rules : ∀c l, rules c l→∀s, s ∈l l→ c ⊇sf s).

Starting from an initial statement s0 : stm, we build the proof-search sequence
from s0 as the sequence of iterations fun n 7→ rules_nextn [s0] of the operator

Let rules_next : list stm→ list stm.

∀ l h, h ∈l rules_next l⇐⇒ ∃ c m, c ∈l l ∧ h ∈l m ∧ rules c m.

i.e. rules_next l is the (finite) inverse image of l by valid rules instances. By
sf_rules, the proof-search sequence is composed of sub-statements of s0:

Proposition proof_search_sf s0 n s : s ∈l rules_nextn [s0]→ s0 ⊇sf s.

We can cover all the proof-search branches of length n starting from s0 using
the choices sequences over the proof-search sequence fun n 7→ rules_nextn [s0].
Indeed, we establish the following covering property:

Let FAN n s0 := list_fan
[
rules_nextn−1 [s0]; . . . ; rules_next0 [s0]

]
.

Lemma ptree_proof_search (t : tree stm) (b : list stm) :
branch t b→ proof_tree t→ rev b ∈l FAN (length b) (root t).



Theorem proof_decider (stm : Type) (rules : stm→ list stm→ Prop)
(rules_fin :

(
∀c, finitet (rules c)

)
(⊇sf : stm→ stm→ Prop) (sf_refl : ∀s, s ⊇sf s)
(sf_trans : ∀ r s t, r ⊇sf s→ s ⊇sf t→ r ⊇sf t)
(sf_rules : ∀ c l, rules c l→∀h, h ∈l l→ c ⊇sf h)
(≺r : stm→ stm→ Prop)
(Curry : ∀ s t p, pf t p→ s ≺r t→∃q, pf s q ∧ ht q 6 ht p)(
Kripke : ∀s0, aft (≺r restr (fun s 7→ s0 ⊇sf s))

)
:

∀s0 : stm,
{
p : tree stm | pf s0 p

}
+

{
∀p : tree stm, ¬(pf s0 p)

}
.

Fig. 3. Constructive decider by redundancy-free proof-search (pf := proof rules).

Beware that this fan is a strict upper-approximation of proof-search branches.
We postulate our redundancy hypothesis denoted Kripke which states that

the relation ≺r is almost full when restricted to sub-statements of the initial
statement s0 (of which the provability is tested). Using constructive König’s
lemma of Section 3.2 (Constructive_Koenigs_lemma), we derive:

Hypothesis Kripke : ∀s0 : stm, aft
(
≺r restr (fun s 7→ s0 ⊇sf s)

)
.

Proposition irredundant_max_length (s0 : stm) :
{n0 : nat | ∀ml, n0 6 m→ l ∈l FAN m s0→ good ≺r l}.

Notice that we need the informative predicate aft to effectively compute the
upper-bound. We conclude that irredundant proofs are bounded proofs:

Lemma proof_irred_bounded s0 : {n0 | irred_proof s0 ⊆ bproof n0 s0}.

Hence, given a starting statement s0, we can compute (from s0 only) an upper-
bound n0 such that every irredundant proof of s0 is n0-bounded.

4.6 The constructive decider based on redundancy-free proof-search

The proof decider follows trivially. Indeed, the corresponding algorithm uses
proof_irred_bounded to first compute a bound n0 such that every irredundant
proof of s0 has height bounded by n0. Second, the algorithm computes the list
of n0-bounded proofs of s0 using bproof_finite_t. If that list is non-empty,
then s0 has a proof. Otherwise, there is no n0-bounded proofs for s0, thus there
is no irredundant proof for s0 (this is the property of the upper-bound n0), and
then there is no proof for s0 at all using proof_reduce. The full abstract result
proof_decider is displayed in Fig. 3 and established in the file proof.v.

We instantiate the proof_decider on the LR2→ sequent calculus in the
file relevant_LR2_dec.v:

Theorem LR2_decider (s : Seq) :{
t | proof LR2_rules s t

}
+
{
∀t, ¬(proof LR2_rules s t)

}
.

https://github.com/DmxLarchey/Relevant-decidability/blob/master/proof.v
https://github.com/DmxLarchey/Relevant-decidability/blob/master/relevant_LR2_dec.v


Using soundness and completeness results between R→ ! LR1→ ! LR2→
(see the summary file relevant_equiv.v), we get the constructive decider for R→
specified in Section 2.1, the proof of which can be found in logical_deciders.v:

Theorem HR_decider : ∀A : Form, HR_proof A+ (HR_proof A→ False).

5 Conclusion and Perspectives

We present an abstract and constructive view of Kripke-Curry’s method for
deciding Implicational Relevance Logic R→. We get an axiom-free Coq imple-
mentation [14] that we instantiate on LR2→ to derive a constructive decider for
R→. Although not presented in this paper, our implementation includes a con-
structive decider for implicational intuitionistic logic J→ which shares the same
language for formulæ as R→. It is based on a variant of Gentzen’s sequent cal-
culus LJ. Unlike what happens which richer fragments of Relevance Logic [22],
extensions of this method to full propositional IL would present no difficulty.

From a complexity perspective, Kripke’s decidability proof for R→ based on
Dickson’s lemma might be analyzed using control functions as in [8] to classify its
complexity in the Fast Growing Hierarchy. Notice however that these techniques
involve classical formulations of WQOs and their conversion to a constructive
setting is far from evident. Furthermore, the 2-ExpTime complexity character-
ization of [19] was not obtained that via control functions nor Dickson’s lemma.

Kripke-Curry’s method has a potential use well beyond R→ or Dickson’s
lemma and might be able to provide decidability for logics of still unknown and
presumably high complexities. A very difficult case would be to get a construc-
tive proof of decidability for the logic of Bunched Implications BI [11] based
on Kripke-Curry’s method. Indeed, as is the case for LR1→, contraction (and
weakening) cannot be completely removed from the bunched sequent calculus
LBI. It is not obvious what notion of redundancy should be used in that case.

Analyzing the “glitches” in the decidability proof of ticket entailment [6] is
another obvious perspective of this work. Indeed, the attempt of [2] is also based
on Kripke-Curry’s method. This decidability result was independently obtained
by V. Padovani [16] with seemingly much more involved techniques such as the
use of Kruskal’s tree theorem. Still, Kruskal’s tree theorem is also a result about
WQOs of which we do already have a mechanized constructive proof in Coq [13].
The mechanization of ticket entailment might not be completely out of reach.
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