Dominique Larchey-Wendling
email: dominique.larchey-wendling@loria.fr

Constructive Decision via Redundancy-free Proof-Search

Keywords: Constructive Decidability, Relevance Logic, Redundancyfree Proof-Search, Almost Full relations

We give a constructive account of Kripke-Curry's method which was used to establish the decidability of Implicational Relevance Logic (R→). To sustain our approach, we mechanize this method in axiom-free Coq, abstracting away from the specific features of R→ to keep only the essential ingredients of the technique. In particular we show how to replace Kripke/Dickson's lemma by a constructive form of Ramsey's theorem based on the notion of almost full relation. We also explain how to replace König's lemma with an inductive form of Brouwer's Fan theorem. We instantiate our abstract proof to get a constructive decision procedure for R→ and discuss potential applications to other logical decidability problems.

Introduction

In this paper, we give a fully constructive/inductive account of Kripke's decidability proof of implicational relevance logic R → , fulfilling the program outlined in [START_REF] Riche | Decision procedure of some relevant logics: a constructive perspective[END_REF]. The result is known as Kripke's but it crucially relies on Curry's lemma [START_REF] Riche | Urquhart and Relevant Decidability & Complexity[END_REF] which states that if a sequent S 2 is redundant over a sequent S 1 and S 2 has a proof, then S 1 has a shorter proof. Our account of Kripke-Curry's method is backed by an axiom-free mechanized proof of the result in the Coq proof assistant. However, their method and our constructivized implementation is in no way limited to that particular logic. As explained in [START_REF] Schmitz | Implicational Relevance Logic is 2-EXPTIME-Complete[END_REF], "Kripke's procedure for deciding R → can be seen as a precursor for many later algorithms that rely on the existence of a well quasi ordering (WQO)." From a logical perspective, Kripke-Curry's method has been adapted to implicational ticket entailment [START_REF] Bimbó | On the decidability of implicational ticket entailment[END_REF] and the multiplicative and exponential fragment of linear logic [START_REF] Bimbó | The decidability of the intensional fragment of classical linear logic[END_REF]. However, both of these recent papers are now contested inside the community because of deeply hidden flaws in the arguments [9, footnote 1], [20, footnote 4] and [6, pp 360-362]. This illustrates that the beauty of Kripke-Curry's method should not hide its subtlety and justifies all the more the need to machine-check such proofs.

From a complexity perspective, S. Schmitz recently gave a 2-ExpTime complexity characterization [START_REF] Schmitz | Implicational Relevance Logic is 2-EXPTIME-Complete[END_REF] of the entailment problem for R → , implying a decision procedure. However, the existence of a complexity characterization does not automatically imply a constructive proof of decidability. Indeed, the decision procedure itself or its termination proof might involve non-constructive arguments. In the case of R → , the result of [START_REF] Schmitz | Implicational Relevance Logic is 2-EXPTIME-Complete[END_REF] "relies crucially" on the 2-ExpTimecompleteness of the coverability problem in branching vector addition systems (BVASS) [START_REF] Demri | The covering and boundedness problems for branching vector addition systems[END_REF]. Checking the constructive acceptability of such chains of results implies checking that property for every link in the chain, an intimidating task, all the more problematic when considering mechanization. 1Our interest in the entailment problem for R → lies in the inherent simplicity and genericity of Kripke-Curry's argumentation. It is centered around the notion of redundancy avoidance. But compared to e.g. intuitionistic logic (IL), the case of R → is specific because redundancy is not reduced to repetition: the redundancy relation is not the identity. The case of repetition is not so interesting: Curry's lemma is trivial for repetition; and the sub-formula property and the pigeon hole principle ensure that Gentzen's sequent system LJ has a finite search space.

In the case of R → , the sequent S 2 is redundant over S 1 if they are cognate and S 1 is included into S 2 for multiset inclusion [START_REF] Riche | Urquhart and Relevant Decidability & Complexity[END_REF]. In [START_REF] Riche | Decision procedure of some relevant logics: a constructive perspective[END_REF], Dickson's lemma is identified as the main difficulty for transforming Kripke-Curry's method into a constructive proof. Dickson's lemma2 is a consequence of Ramsey's theorem which, stated positively, can be viewed as the following result [START_REF] Veldman | Ramsey's Theorem and the Pigeonhole Principle in Intuitionistic Mathematics[END_REF]: the intersection of two WQOs is a WQO. The closure of the class of WQOs under direct products follows trivially and so does Dickson's lemma. We think that the use of König's lemma in Kripke's proof is also a potential difficulty w.r.t. constructivity. Admittedly, there are many variants of this lemma and indeed, we will use one which is suited in a constructive argumentation.

Let us now present the content of this paper. In Section 2, we propose an overview of Kripke-Curry's argumentation focusing on the two issues of Dickson's lemma and König's lemma. To constructivize that proof, we approached the problem posed by Dickson's lemma by using T. Coquand's [START_REF] Coquand | A direct proof of the intuitionistic Ramsey Theorem[END_REF] direct intuitionistic proof of Ramsey's theorem through an intuitionistic formulation of WQOs as almost full relations (AF) [START_REF] Vytiniotis | Stop When You Are Almost-Full -Adventures in Constructive Termination[END_REF]. These results are recalled in Section 3. We also give a constructive version of König's lemma based on AF relations.

In Section 4, we give an account of what could be called the central ingredients of Kripke-Curry's proof by outlining the essential steps of our constructive mechanization in the inductive type theory on which Coq is based. Our proof_decider of Fig. 3 abstracts away from the particular case of R → , by isolating the essential ingredient: an almost full redundancy relation which satisfies Curry's lemma. Finally, in Section 4.6, we instantiate the proof_decider into a constructive decision procedure for R → . We also discuss the potential applications to other sub-structural logics. The technical aspects of our proofs are sustained by a Coq v8.6 mechanization which is available under a Free Software license [START_REF] Larchey-Wendling | A Constructive Mechanization of Kripke-Curry's method for the Decidability of Implicational Relevance Logic[END_REF]. The size of this development is significant -around 15 000 lines of code, -but most of the code is devoted to libraries and the implementations of the proof systems R → , LR1 → and LR2 → and the links between them: soundness/completeness results, cut-elimination, sub-formula property, finitely branching proof-search, etc. The case of implicational intuitionistic logic J → is treated as well in this mechanization. The core of our constructivization of Kripke-Curry's proof can be found in the file proof.v and is only around 800 lines long (including comments).

A ⊃ A (A ⊃ B) ⊃ (C ⊃ A) ⊃ (C ⊃ B) (A ⊃ A ⊃ B) ⊃ (A ⊃ B) (A ⊃ B ⊃ C) ⊃ (B ⊃ A ⊃ C) A ⊃ B A B

Constructive issues in Kripke's decidability proof

In this section, we recall the main aspects of Kripke's decidability proof for the implicational fragment of relevance logic R → , described with Hilbert style proof rules in Fig. 1. We sum up the description of [START_REF] Riche | Urquhart and Relevant Decidability & Complexity[END_REF] while focusing on the aspects of the arguments that were challenging from a constructive perspective. Among the many research directions later suggested by J. Riche in [START_REF] Riche | Decision procedure of some relevant logics: a constructive perspective[END_REF] for solving the missing link -a constructive proof of IDP or of Dickson's lemma, -the use of T. Coquand's approach [START_REF] Coquand | Constructive topology and combinatorics[END_REF] to Bar induction turned out as a solution.

Notice that in the notation R → , the symbol → represents the logic-level implication to stay coherent with [START_REF] Riche | Decision procedure of some relevant logics: a constructive perspective[END_REF][START_REF] Riche | Urquhart and Relevant Decidability & Complexity[END_REF][START_REF] Schmitz | Implicational Relevance Logic is 2-EXPTIME-Complete[END_REF]. But in this paper, we rather use ⊃ to denote logical implications to avoid conflicting with the Coq notation for function types T 1 → T 2 (see e.g. the below definition of HR_proof).

What is a constructive proof of relevant decidability?

Let us formalize the high-level question that we solve in this paper. Before we give a mechanized constructive proof of decidability for R → , we need to formally define provability or proofs, at least for R → . This can easily be done in Coq using the (informative) inductive predicate:

Inductive HR_proof : Form → Set := | id : ∀A, A ⊃ A | pfx : ∀A B C, (A ⊃ B) ⊃ (C ⊃ A) ⊃ (C ⊃ B) | comm : ∀A B C, (A ⊃ B ⊃ C) ⊃ (B ⊃ A ⊃ C) | cntr : ∀A B, (A ⊃ A ⊃ B) ⊃ (A ⊃ B) | mp : ∀A B, A ⊃ B → A → B where " A " := (HR_proof A).
i.e. HR_proof A or (A for short) encodes the type of proofs of the formula A in the Hilbert system for R → of Fig. 1

. A constructive decidability proof for R → A A AX Γ, A, A B Γ, A B W Γ A A, ∆ B Γ, ∆ B CUT A, Γ B Γ A ⊃ B ⊃ Γ A B, ∆ C Γ, ∆, A ⊃ B C ⊃ Fig. 2.
The LR1→ sequent calculus rules for R→.

would then be given by a term HR_decidability of type:

HR_decidability : ∀A : Form, {inhabited(A)} + {¬inhabited(A)}
i.e. a total computable function which maps every formula A to a boolean value which if true, ensures that there is a proof of A, and if false ensures that there is no proof of A. A constructive decider is a stronger result of type:

HR_decider : ∀A : Form, (A) + (A → False)
that is a total computable function that maps every formula A to either a proof of A or else ensures that no such proof exists. In other words, a constructive decider is an (always terminating) constructive proof-search algorithm. Obviously, adding axioms to Coq might hinder the computability of its terms (ensured by the normalization property of Coq). Hence, we allow no axiom and we aim at defining HR_decidability or HR_decider in axiom-free Coq.

Sequent calculi for R →

Hilbert's R → formulation is (unsurprisingly) not really suited to designing decision procedures based on proof-search. A standard approach is to convert Hilbert's systems into sequent rules such as those of LR1 → in Fig. 2 (see also [START_REF] Riche | Urquhart and Relevant Decidability & Complexity[END_REF]). In this particular system, a sequent Γ A is composed of a multiset Γ of formulae on the left of the symbol and exactly one formula A on the right of the symbol. There are three structural rules: AX , W and CUT , and two logical rules: ⊃ and ⊃ . The soundness/completeness of this conversion to sequent calculus is ensured by the following result: a formula A has a Hilbert proof A if and only if the sequent ∅ A has a proof in LR1 → (with ∅ as the empty multiset). That result is mechanized in the file relevant_equiv.v.

Although designed for proof-search, the sequent system LR1 → still suffers two major problems when considering fully automated procedures: one is the CUT rule and the other is the more problematic contraction rule W . Cutelimination is one of the central questions of proof-theory, partly because CUT makes proof-search infinitely branching. Fortunately, the CUT rule is admissible in LR1 → so we can safely remove that rule from LR1 → . Cut-admissibility is proved using a relational phase semantic in the file sem_cut_adm.v.

On the other hand W needs to be handled much more carefully. The trick of Curry, which is well described in [START_REF] Riche | Urquhart and Relevant Decidability & Complexity[END_REF] is to absorb several instances of W in the rule ⊃ but in a tightly controlled way. 3 This is done by replacing both rules W and ⊃ with the rule ⊃ 2 :

Γ A B, ∆ C Θ, A ⊃ B C ⊃ 2 with LR2_condition(A ⊃ B, Γ, ∆, Θ)
obtaining the system LR2 → composed of AX , ⊃ and ⊃ 2 . The side LR2_condition(A ⊃ B, Γ, ∆, Θ) is a bit complicated to express formally so we will informally sum up its central idea: while applying ⊃ 2 top-down, some controlled/bounded form of contraction is allowed on every formula: the principal formula A ⊃ B can be contracted at most twice while side formulae in Γ, ∆ can be contracted at most once. See the definition of LR2_condition in file relevant_contract.v for a precise characterization.

Irredundant proofs in LR2 →

Before using LR2 → for deciding R → , LR2 → must of course be proved equivalent to LR1 → and this is not a trivial task (see file relevant_equiv.v for the technical details). The cornerstone of the equivalence between LR2 → and LR1 → lies in a critical property of LR2 → called Curry's lemma. It ensures both:

the admissibility of the contraction rule W in LR2 → ; the completeness of irredundant proof-search in LR2 → .

We say that a sequent ∆ B is redundant over a sequent Γ A and we denote Γ A ≺ r ∆ B if Γ A can be obtained from ∆ B by repeated top-down applications of the contraction rule W . We also characterize redundancy using the number of occurrences |Γ | X of the formula X in the multiset Γ :

Γ A ≺ r ∆ B ⇐⇒ A = B ∧ ∀X, |Γ | X ≺ N r |∆| X (≺ r)
where the binary relation n ≺ N r m on N is defined by n m ∧ (n = 0 ⇔ m = 0). Now we can state Curry's lemma.

Lemma 1 (Curry [START_REF] Curry | A Theory of Formal Deductibility[END_REF], 1950). Consider two sequents such that ∆ B is redundant over Γ A, i.e. Γ A ≺ r ∆ B. Then any LR2 → -proof of ∆ B can be contracted into a LR2 → -proof of Γ A, that is, a proof of lesser height.

The Coq proof term is LR2_Curry in the file relevant_LR2.v. Admissibility of contraction follows trivially from Curry's lemma and hence the completeness of LR2 → w.r.t. CUT -free LR1 → . Another critical consequence of Curry's lemma is related to irredundant proofs.

Definition 1 (Irredundant proof).

A proof is redundant if there is a redundant pair in one of its branches, i.e. Γ A ≺ r ∆ B where ∆ B occurs in the sub-proof of Γ A. A proof is irredundant if none of its branches contain a redundant pair. By Curry's lemma, any sequent provable in LR2 → has an irredundant proof in LR2 → (the argument is not completely trivial, see Section 4). Hence, while searching for proofs in LR2 → , one can safely stop at redundancies.

Kripke's decidability proof

Building on Curry's lemma, the key insight of Kripke's proof of decidability is the following result. As explained in [START_REF] Figueira | Ackermannian and Primitive-Recursive Bounds with Dickson's Lemma[END_REF][START_REF] Riche | Decision procedure of some relevant logics: a constructive perspective[END_REF], it was discovered many times in different fields of mathematics, as e.g. Hilbert's finite basis theorem, the infinite division principle (IDP by Meyer [START_REF] Meyer | Improved Decision Procedures for Pure Relevant Logic[END_REF]), Dickson's lemma, etc. We express Kripke's lemma with a concept that was not clearly spotted at that time but was popularized later on, that of well quasi order. Definition 2 (Well Quasi Order). A binary relation over a set X is a well quasi order (WQO) if it is reflexive, transitive and any infinite sequence x : N → X contains a good pair (i, j), which means both i < j and x i x j .

Lemma 2 (Kripke [START_REF] Kripke | The Problem of Entailment (abstract)[END_REF], 1959). Given a finite set of (sub-)formulae S, the redundancy relation ≺ r is a WQO when it is restricted to sequents composed exclusively of formulae in S.

Proof. We give a "modernized" account of the proof. By Ramsey's theorem, the product (or intersection) of two WQOs is WQO. 4 Hence, the relation ≺ N r over N is a WQO as the intersection of two WQOs. By finiteness of S, the identity relation = S on S is also a WQO (this is an instance of the pigeon hole principle).

Denoting ≺ S r as the restriction of ≺ r to the sequents composed of formulae in the finite set S, we can derive the equivalence

Γ A ≺ S r ∆ B ⇐⇒ A = S B ∧ X∈S |Γ | X ≺ N r |∆| X
hence ≺ S r is a WQO as a finite intersection of WQOs.

Kripke's proof of decidability of LR2 → (and hence R →) can be summarized in the following steps:

consider a start sequent Γ A and let S be its finite set of sub-formulae; launch backward proof-search for irredundant proofs of Γ A in LR2 → , i.e. search stops when no rule is applicable or at a redundancy. We denote by T the corresponding (potentially infinite) proof-search tree; by the sub-formula property, no formula outside of S can occur in T ; -T is finitely branching (critically relies on the side condition of rule ⊃ 2); -T cannot have an infinite branch (by Kripke's lemma); hence by König's lemma, the proof-search tree T is finite.

In [START_REF] Riche | Decision procedure of some relevant logics: a constructive perspective[END_REF], J. Riche focuses on Kripke/Dickson's lemma as the main difficulty to get an argumentation that could be accepted from a constructive point of view. We think that König's lemma is also a potentially non-constructive result [START_REF] Schwichtenberg | A Direct Proof of the Equivalence between Brouwer's Fan Theorem and König's Lemma with a Uniqueness Hypothesis[END_REF], depending on its precise formulation. In Section 4, we explain how to overcome these two difficulties and transform this method into a mechanized HR_decider.

In this section we describe an inductive formulation of the notion of WQO. We are now going to use the language of Inductive Type Theory instead of Set theoretical language. Type theoretically, Definition 2 becomes: a WQO is a reflexive and transitive predicate ≺ r : X → X → Prop such that for any f : nat → X, there exists i, j : nat s.t. i < j and f i ≺ r f j (good pair). We can say that any infinite sequence is bound to be redundant. We recall the inductive characterization of WQO due to Fridlender and Coquand [START_REF] Fridlender | An Interpretation of the Fan Theorem in Type Theory[END_REF] and the constructive Ramsey theorem [START_REF] Vytiniotis | Stop When You Are Almost-Full -Adventures in Constructive Termination[END_REF], from which we derive a constructive proof of Kripke's lemma. Using the inductive Fan theorem [START_REF] Fridlender | An Interpretation of the Fan Theorem in Type Theory[END_REF], we derive a constructive König's lemma. The corresponding Coq code can be found in the library file almost_full.v.

Good lists, almost full relations and bar inductive predicates

Much like well founded relations can be defined inductively by accessibility predicates (see module Wf of Coq standard library), WQOs can inductively be defined either by the almost full inductive predicate (AF) or by bar inductive predicates. Notice that these equivalent inductive characterizations are constructively stronger than the usual classical definition (like in the case of well-foundedness).

Let us consider a type X : Type and a redundancy relation ≺ r : X→X→Prop. We define the good ≺ r : list X → Prop predicate that characterizes the (finite) lists which contain a good pair: Definition 3 (Ir/redundant). Given a relation ≺ r : X → X → Prop called redundancy, a list of values l : list X is redundant if good ≺ r l holds and is irredundant if ¬(good ≺ r l) holds.

good ≺ r [x n-1 ; . . . ; x 0] ⇐⇒ ∃ i j, i < j < n ∧ x i ≺ r x j (
We write bad ≺ r l when the list l satisfies ¬(good ≺ r l). The lifting of a relation R : X → X → Prop by x : X is denoted R ↑ x and characterized by:

u (R ↑ x) v ⇐⇒ u R v ∨ x R u
for any u, v : X

The disjunct x R u prohibits any u which is R-greater than x to occur in (R ↑ x)bad sequences. AF relations are defined as those satisfying the af t predicate:5

Inductive af t {X :

Type} (R : X → X → Prop) : Type := | in_af_t0 : (∀x y, x R y) → af t R | in_af_t1 : (∀x, af t (R ↑ x)) → af t R.
Hence any full relation (i.e. ∀x y, x R y) is AF, and if every lifting of R is AF, then so is R. Notice that the predicate af t is informative: it contains a well-founded tree of liftings until the relation becomes full (see [START_REF] Vytiniotis | Stop When You Are Almost-Full -Adventures in Constructive Termination[END_REF]). This information is important to compute bounds for proof-search. Reflexive and transitive relations which satisfy af t are WQOs in the classical interpretation. But constructively speaking, they are stronger in the following sense: any sequence f : nat → X can effectively be transformed into an upper-bound n under which there exists a good pair, upper-bound obtained by finite inspection of the prefixes of f :

Lemma af_t_inf_chain (X : Type) (≺ r : X → X → Prop) : af t (≺ r) → ∀(f : nat → X), {n : nat | ∃ i j, i < j < n ∧ f i ≺ r f j }.
The constructive Ramsey theorem [START_REF] Vytiniotis | Stop When You Are Almost-Full -Adventures in Constructive Termination[END_REF] states that almost full relations are closed under (binary) intersection, and as a consequence, under direct products:

Theorem af_t_prod (X Y : Type) (R : X → X → Prop) (S : Y → Y → Prop) : af t R → af t S → af t (R × S).
Notice that reflexivity and transitivity of WQOs are completely orthogonal to almost fullness in these results. They play no important role in our development.

The af t (≺ r) property can alternatively be defined by bar inductive predicates [START_REF] Fridlender | An Interpretation of the Fan Theorem in Type Theory[END_REF] as bar t (good ≺ r) [] with the following inductive definition: 6Inductive bar t {X : Type} (P : list X → Prop) (l : list X) : Type := | in_bar_t0 : P l → bar t P l | in_bar_t1 : (∀x, bar t P (x :: l)) → bar t P l.

Hence, bar t P l means that regardless of the repeated extensions of the list l by adding elements at its head, the predicate P is bound to be reached at some point. With this definition, we can derive the (informative) equivalence:

Theorem bar_t_af_t_eq X ≺ r l : af t (≺ r ↑↑ l) ⇐⇒ bar t (good ≺ r) l.

where R ↑↑ [x 1 , . . . , x n] := R ↑ x n . . . ↑ x 1 (see file af_bar_t.v for details). And we deduce the equivalence af t (≺ r) iff bar t (good ≺ r) [] as the particular case.

A constructive form of König's lemma

Brouwer's Fan theorem can be proved equivalent to the binary form of König's lemma [START_REF] Schwichtenberg | A Direct Proof of the Equivalence between Brouwer's Fan Theorem and König's Lemma with a Uniqueness Hypothesis[END_REF]. So one could wrongfully be led to the conclusion that both of these results cannot be constructively established. Here we explain that using suitable inductive definitions, such results can perfectly be established constructively.

For the rest of this section, we assume a type X : Type. We recall the inductive interpretation of the Fan theorem [START_REF] Fridlender | An Interpretation of the Fan Theorem in Type Theory[END_REF]. Given a list of lists ll : list (list X), we define the list of choice sequences (or fan) of ll denoted list_fan ll Definition list_fan : list (list X) → list (list X).

The precise definition of list_fan uses auxiliary functions (see list_fan.v) but this is unimportant here. Only the following specification which characterizes the elements of list_fan [l 1 ; . . . ; l n] as choices sequences for [l 1 ; . . . ; l n] matters. 7 [x 1 ; . . . ;

x n] ∈ l list_fan [l 1 ; . . . ; l n] ⇐⇒ x 1 ∈ l l 1 ∧ • • • ∧ x n ∈ l l n (FAN)
These are the lists composed of one element of l 1 , then one element of l 2 , . . . and one element of l n . The following result [START_REF] Fridlender | An Interpretation of the Fan Theorem in Type Theory[END_REF] states that if P is monotonic and bound to be reached by successive extensions starting from [], then P is bound to be reached uniformly over the finitary fan represented by choices sequences.

Theorem fan_t_on_list (P : list X → Prop) H P : ∀ x l, P l → P (x :: l) :

bar t P [] → bar t (fun ll → ∀l, l ∈ l list_fan ll → P l) [].
The proof of this result is recalled in bar_t.v. Combining fan_t_on_list with bar_t_af_t_eq and af_t_inf_chain, we derive the following strong form of König's lemma. Given an almost full redundancy relation ≺ r : X →X →Prop and a sequence of finitary choices f : nat → list X, beyond an effective lower-bound n, every finite prefix of a choice sequence for f is redundant (see koenig.v).

Theorem Constructive_Koenigs_lemma ≺ r (f : nat → list X) : af t (≺ r) → {n | ∀ m l, n m → l ∈ l list_fan [f m-1 ; . . . ; f 0] → good ≺ r l}.
In Section 4.5, we over-approximate the branches of the proof-search tree as the choice sequences of f : nat → list stm which collects in f n the finitely many sequents that occur at height n in the proof-search tree. Thus we get a uniform upper-bound of the length of irredundant (i.e. bad ≺ r) proof-search branches.

Decision via Redundancy-free Proof-Search

In this section, we describe the mechanization of a generic constructive decider based on redundancy-avoiding proof-search. We first give an informal account of the main arguments, then we proceed with a more formal description of these steps in the language of Coq. Except for the tree.v and almost_full.v libraries, all the following development is contained in the file proof.v.

Overview of the assumptions and main arguments

Let us consider a type stm of statements representing logical propositions. These statements could, depending on the intended application, be formulae like in Hilbert style proof systems, or sequents in sequent proof systems or in some versions of natural deduction, or more generally structures like nested sequents.

H 1 . . . H n C
Statements are items to be proved or refuted (by showing the impossibility of a proof as a term of type has_proof s → False). For this, we describe a proof system as a set of valid rule instances. These instances are generally represented as in the right figure where C : stm is the conclusion of the instance and [H 1 ; . . .; H n] : list stm is the list of premises. We collect the set of valid rule instances into a binary relation rules : stm → list stm → Prop between individual statements (stm viewed as conclusions) and list of statements (list stm viewed as premises). Hence, the validity of the above rule instance in the proof system is expressed by the predicate rules C [H 1 ; . . . ; H n]. When dealing with proof-search based decision, infinite horizontal branching of proof-search is usually forbidden. Hence, for a given C : stm, only finitely many rule instances exist with C as conclusion. Moreover, that finite set of instances must be computable to be able to enumerate the next steps of backward proof-search. We denote this property by rules_fin and we say that rules has finite inverse images. 8Valid rules instances are combined to form proof trees. A proof tree is a finite tree of statements where each node is a valid rule instance. Proofs are proof trees of their root node and n-bounded proofs are proofs of height bounded by n. Because of the finite inverse images property rules_fin, the set of n-bounded proofs of a given statement s 0 is finite and computable. We define the notion of minimal proof, which is a proof of minimal height among the proofs of the same statement. Every proof can effectively be transformed into a minimal proof by searching among the finitely many proofs of lesser height. An everywhere minimal proof is such that each of its sub-proof is minimal. Every proof can effectively be transformed into an everywhere minimal proof.

Our generic constructive technique assumes a binary redundancy relation ≺ r between statements which satisfies Curry's lemma 1: every proof containing a redundancy can be contracted into a lesser proof. As a consequence, everywhere minimal proofs are redundancy free. If we moreover assume that the binary relation ≺ r is almost full (i.e. a constructive WQO), then every infinite sequence of statements contains a redundancy. However, remember that in Kripke's lemma 2 for LR2 → , only the restriction of ≺ r to finitely generated sequents is a WQO. Hence we only assume ≺ r to be almost full on the set of sub-statements of an initial statement s 0 .9 By using the constructive version of König's lemma of Section 3.2, we show that every sequence of sub-statements of s 0 longer than a bound n 0 contains a redundancy. The bound n 0 can be computed from s 0 only. As a consequence, every irredundant proof of s 0 is a n 0 -bounded proof. And deciding the provability of s 0 is reduced to testing whether the set of n 0 -bounded proofs of s 0 is empty or not.

Fig. 1 .

 1 Fig. 1. Hilbert's style proof system for implicational relevance logic R→.

 good) Hence the list [. . . ; b; . . . ; a; . . .] is good when a ≺ r b. The list is read from right to left because we represent the n-prefix of a sequence f : nat→X by [f n-1 ; . . . ; f 0].

As for coverability in BVASS, it seems that the arguments developed in[START_REF] Demri | The covering and boundedness problems for branching vector addition systems[END_REF] cannot easily be converted to constructive ones (private communication with S. Demri).

Dickson's lemma states that under pointwise order, N k is a WQO for any k ∈ N.

Unrestricted contraction would generate infinitely branching proof-search.

This result is known as Dickson's lemma when restricted to N k with the point-wise product order. The inclusion relation between multisets built from the finite set S is a particular case of the product order N k where k is the cardinal of S.

The braces around {X : Type} specify an implicit argument.

[] and _ :: _ are shorthand notations for the two list constructors.

Typically, systems which include a cut-rule do not satisfy the rules_fin property which is why cut-elimination is viewed as a critical requisite to design sequent-based decision procedures. The same remark holds for the modus-ponens rule of Hilbert systems, usually making them unsuited for decision procedures.

For this, we need a notion of sub-statement that is reflexive, transitive and such that valid rules instances possess the sub-statement property.

Work partially supported by the TICAMORE project (ANR grant 16-CE91-0002).

Finiteness, trees and branches

In this section, we consider a fixed X : Type. The predicate finite t P expresses that a sub-type P : X → Prop of X is finite and computable into a list: Definition finite t (P : X → Prop) := {l : list X | ∀x, x ∈ l l ⇐⇒ P x}.

We will use this predicate to encode the rules_fin property. We will also need a type of finitely branching (oriented) trees:

Inductive tree X := in_tree : X → list (tree X) → tree X.

where we denote x|l for (in_tree x l). The root root : tree X → X of a tree verifies root x|l = x and the height ht : tree X → nat of a tree verifies ht _|l = 1 + max (map ht l). Branches of trees are represented as specific lists of elements of X. We inductively define a branch predicate:

s.t. the lists b which satisfy branch t b collect all the nodes encountered on paths from the root of t to one of its internal nodes. The empty list [] is among them.

Proofs, minimal proofs and everywhere minimal proofs

We consider a type stm of logical statements and a collection of valid rule instances rules which has the finite inverse image property.

Variables

(stm : Type) (rules : stm → list stm → Prop). Hypothesis rules_fin : ∀c : stm, finite t (rules c) .

Hence, not only are there finitely many rule instances for a given conclusion c but the predicate rules_fin c contains ll c : list (list stm), an effective list of those instances which verifies the property:

This effective aspect of finite branching is often implicit in studies on proofsearch, because if one cannot even compute the valid instances for a given conclusion, then there is no way to implement backward proof-search.

The notion of proof is based on that of proof tree. We define a predicate proof_tree that satisfies the below (recursive) characteristic property: Definition proof_tree : tree stm → Prop. ∀s l, proof_tree s|l ⇐⇒ rules s (map root l) ∧ ∀t, t ∈ l l→proof_tree t.

i.e. trees of statements where each node is a valid rule instance, the conclusion being the node itself and the premises being the children of the node. Given a statement s, a proof of s is a proof tree t with root s, and a n-bounded proof is a proof of height bounded by n: Definition proof (s : stm) (t : tree stm) := proof_tree t ∧ root t = s. Definition bproof (n : nat) (s : stm) (t : tree stm) := proof s t ∧ ht t n.

Proofs of a given statement s are not necessarily finitely many but because of the finite inverse image property rules_fin, n-bounded proofs are:

Proposition bproof_finite_t (n : nat) (s : stm) : finite t (bproof n s).

We introduce the notion of minimal proof, that is a proof of minimal height among the proofs with a given root s. We show that every proof t can be transformed into a minimal proof by a simple search of the shortest among the (ht t)bounded proofs of s, of which a list can be computed using bproof_finite_t.

Definition min_proof s t := proof s t ∧ ∀t , proof s t → ht t ht t . Proposition proof_minimize s t : proof s t → {t min | min_proof s t min }.

But to exploit Curry's lemma, we need a much stronger minimality property: this is the notion of everywhere minimal proof tree, where every sub-tree is a minimal proof of its own root. We show that every proof can effectively be transformed into an everywhere minimal proof.

Definition emin_ptree : tree stm → Prop. ∀s l, emin_ptree s|l ⇐⇒ min_proof s s|l ∧ ∀t, t ∈ l l → emin_ptree t. Definition emin_proof s t := proof s t ∧ emin_ptree t. Proposition proof_eminimize s t : proof s t → {t em | emin_proof s t em }.

Proof. The argument proceeds by induction on the height ht t of the proof tree t. It uses proof_minimize to compute a minimal proof t 1 for s and then proceeds inductively on every immediate sub-proof of t 1 .

The completeness of irredundant proofs via Curry's lemma

We assume a notion of redundancy on statements, that is a binary relation ≺ r : stm→stm→Prop. A list of statements l : list stm is redundant if it contains a good pair for ≺ r , which is denoted by good ≺ r l (see Section 3.1). The list l is irredundant if it contains no good pair, i.e. bad ≺ r l. A tree t : tree stm is an irredundant proof if it is a proof and every branch of the tree is irredundant. 10 Definition irred_proof s t := proof s t ∧ ∀b, branch t b → bad ≺ r (rev b).

We now state the assumption Curry abstracting Curry's lemma:

assumption under which everywhere minimal proofs become irredundant:

Lemma proof_emin_irred s t : emin_proof s t → irred_proof s t.

Proof. Given any branch b of an everywhere minimal proof tree t, we show that b cannot contain a redundancy. Let s 1 ≺ r s 2 be a good pair in b and let t 1 /t 2 be the sub (proof) trees of roots s 1 /s 2 . As s 2 occurs after s 1 in b, t 2 is a strict sub-tree of t 1 and thus ht t 2 < ht t 1 . Using Curry, we get a proof t 1 of s 1 with ht t 1 ht t 2 . We derive ht t 1 < ht t 1 , and thus t 1 is not a minimal proof of s 1 , contradicting the everywhere minimality of t.

As a consequence, every proof can be transformed into an irredundant one by direct combination of proof_eminimize and proof_emin_irred.

Theorem proof_reduce s t : proof s t → {t irr | irred_proof s t irr }.

Bounding the height of irredundant proofs

Kripke used König's lemma to prove the finiteness of the finitely branching irredundant proof-search tree by showing that it cannot have infinite branches. The constructive argument works positively by showing that one can compute a uniform upper-bound over the length of irredundant proof-search branches. We use the constructive version of König's lemma of Section 3.2.

To capture the sub-formula property in our setting, we assume an abstract notion of sub-statement denoted by s 1 ⊇ sf s 2 and which intuitively reads as the sub-formulae of s 2 are also sub-formulae of s 1 . We postulate that ⊇ sf is both reflexive (sf_refl) and transitive (sf_trans) and more importantly, that every rule instance preserves sub-statements bottom-up (sf_rules):

Starting from an initial statement s 0 : stm, we build the proof-search sequence from s 0 as the sequence of iterations fun n → rules_next n [s 0] of the operator

i.e. rules_next l is the (finite) inverse image of l by valid rules instances. By sf_rules, the proof-search sequence is composed of sub-statements of s 0 :

We can cover all the proof-search branches of length n starting from s 0 using the choices sequences over the proof-search sequence fun n → rules_next n [s 0]. Indeed, we establish the following covering property:

Theorem proof_decider (stm : Type) (rules : stm → list stm → Prop) (rules_fin : ∀c, finitet (rules c)

(Curry : ∀ s t p, pf t p → s ≺r t → ∃q, pf s q ∧ ht q ht p) Kripke : ∀s0, aft (≺r restr (fun s → s0 ⊇ sf s)) :

∀s0 : stm, p : tree stm | pf s0 p + ∀p : tree stm, ¬(pf s0 p) . Beware that this fan is a strict upper-approximation of proof-search branches. We postulate our redundancy hypothesis denoted Kripke which states that the relation ≺ r is almost full when restricted to sub-statements of the initial statement s 0 (of which the provability is tested). Using constructive König's lemma of Section 3.2 (Constructive_Koenigs_lemma), we derive:

Notice that we need the informative predicate af t to effectively compute the upper-bound. We conclude that irredundant proofs are bounded proofs:

Hence, given a starting statement s 0 , we can compute (from s 0 only) an upperbound n 0 such that every irredundant proof of s 0 is n 0 -bounded.

The constructive decider based on redundancy-free proof-search

The proof decider follows trivially. Indeed, the corresponding algorithm uses proof_irred_bounded to first compute a bound n 0 such that every irredundant proof of s 0 has height bounded by n 0 . Second, the algorithm computes the list of n 0 -bounded proofs of s 0 using bproof_finite_t. If that list is non-empty, then s 0 has a proof. Otherwise, there is no n 0 -bounded proofs for s 0 , thus there is no irredundant proof for s 0 (this is the property of the upper-bound n 0), and then there is no proof for s 0 at all using proof_reduce. The full abstract result proof_decider is displayed in Fig. 3 and established in the file proof.v.

We instantiate the proof_decider on the LR2 → sequent calculus in the file relevant_LR2_dec.v: Theorem LR2_decider (s : Seq) :

t | proof LR2_rules s t + ∀t, ¬(proof LR2_rules s t) .

Using soundness and completeness results between R → LR1 → LR2 → (see the summary file relevant_equiv.v), we get the constructive decider for R → specified in Section 2.1, the proof of which can be found in logical_deciders.v:

Theorem HR_decider : ∀A : Form, HR_proof A + (HR_proof A → False).

Conclusion and Perspectives

We present an abstract and constructive view of Kripke-Curry's method for deciding Implicational Relevance Logic R → . We get an axiom-free Coq implementation [START_REF] Larchey-Wendling | A Constructive Mechanization of Kripke-Curry's method for the Decidability of Implicational Relevance Logic[END_REF] that we instantiate on LR2 → to derive a constructive decider for R → . Although not presented in this paper, our implementation includes a constructive decider for implicational intuitionistic logic J → which shares the same language for formulae as R → . It is based on a variant of Gentzen's sequent calculus LJ. Unlike what happens which richer fragments of Relevance Logic [START_REF] Urquhart | The Undecidability of Entailment and Relevant Implication[END_REF], extensions of this method to full propositional IL would present no difficulty.

From a complexity perspective, Kripke's decidability proof for R → based on Dickson's lemma might be analyzed using control functions as in [START_REF] Figueira | Ackermannian and Primitive-Recursive Bounds with Dickson's Lemma[END_REF] to classify its complexity in the Fast Growing Hierarchy. Notice however that these techniques involve classical formulations of WQOs and their conversion to a constructive setting is far from evident. Furthermore, the 2-ExpTime complexity characterization of [START_REF] Schmitz | Implicational Relevance Logic is 2-EXPTIME-Complete[END_REF] was not obtained that via control functions nor Dickson's lemma.

Kripke-Curry's method has a potential use well beyond R → or Dickson's lemma and might be able to provide decidability for logics of still unknown and presumably high complexities. A very difficult case would be to get a constructive proof of decidability for the logic of Bunched Implications BI [START_REF] Galmiche | The semantics of BI and resource tableaux[END_REF] based on Kripke-Curry's method. Indeed, as is the case for LR1 → , contraction (and weakening) cannot be completely removed from the bunched sequent calculus LBI. It is not obvious what notion of redundancy should be used in that case.

Analyzing the "glitches" in the decidability proof of ticket entailment [START_REF] Dawson | Issues in Machine-Checking the Decidability of Implicational Ticket Entailment[END_REF] is another obvious perspective of this work. Indeed, the attempt of [START_REF] Bimbó | On the decidability of implicational ticket entailment[END_REF] is also based on Kripke-Curry's method. This decidability result was independently obtained by V. Padovani [START_REF] Padovani | Ticket Entailment is decidable[END_REF] with seemingly much more involved techniques such as the use of Kruskal's tree theorem. Still, Kruskal's tree theorem is also a result about WQOs of which we do already have a mechanized constructive proof in Coq [START_REF] Larchey-Wendling | A mechanized inductive proof of Kruskal's tree theorem[END_REF]. The mechanization of ticket entailment might not be completely out of reach.