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Abstract.— Phylogenies involving nonmodel species are based on a few genes, mostly chosen following historical or practical
criteria. Because gene trees are sometimes incongruent with species trees, the resulting phylogenies may not accurately reflect
the evolutionary relationships among species. The increase in availability of genome sequences now provides large numbers
of genes that could be used for building phylogenies. However, for practical reasons only a few genes can be sequenced for
a wide range of species. Here we asked whether we can identify a few genes, among the single-copy genes common to most
fungal genomes, that are sufficient for recovering accurate and well-supported phylogenies. Fungi represent a model group
for phylogenomics because many complete fungal genomes are available. An automated procedure was developed to extract
single-copy orthologous genes from complete fungal genomes using a Markov Clustering Algorithm (Tribe-MCL). Using
21 complete, publicly available fungal genomes with reliable protein predictions, 246 single-copy orthologous gene clusters
were identified. We inferred the maximum likelihood trees using the individual orthologous sequences and constructed
a reference tree from concatenated protein alignments. The topologies of the individual gene trees were compared to
that of the reference tree using three different methods. The performance of individual genes in recovering the reference
tree was highly variable. Gene size and the number of variable sites were highly correlated and significantly affected the
performance of the genes, but the average substitution rate did not. Two genes recovered exactly the same topology as the
reference tree, and when concatenated provided high bootstrap values. The genes typically used for fungal phylogenies
did not perform well, which suggests that current fungal phylogenies based on these genes may not accurately reflect the
evolutionary relationships among species. Analyses on subsets of species showed that the phylogenetic performance did
not seem to depend strongly on the sample. We expect that the best-performing genes identified here will be very useful
for phylogenetic studies of fungi, at least at a large taxonomic scale. Furthermore, we compare the method developed here
for finding genes for building robust phylogenies with previous ones and we advocate that our method could be applied to
other groups of organisms when more complete genomes are available. [Ascomycota; Basidiomycota; fungi; FUNYBASE;
incongruence; multigene phylogenies; topological score; tree of life; Web site; phylogenetic informativeness.]

To date, genes used to build phylogenies have mostly
been chosen based on historical or practical criteria. Phy-
logenies have been constructed using the same genes as
in previous studies or using genes that were available in
the focal sets of species. Using genes whose histories in-
clude duplications, horizontal transfer, lineage sorting,
or selection-based biases may result in gene/species tree
discrepancies. The strength of the inference of species
trees increases when multiple independent loci con-
verge on a single answer. However, because some genes
have higher phylogenetic inference power than others
(Townsend, 2007), the choice of a few genes with high
phylogenetic informativeness can allow the construction
of robust phylogenies and minimize the amount of data
needed to be sequenced.

Fungi constitute good models for phylogenomics be-
cause, to date, they are the only eukaryotic clade in which
more than 30 complete genomes are available (Galagan
et al., 2005). Furthermore, Fungi constitute one of the
main clades of eukaryotic diversity. Roughly 80,000
species have been described but the actual num-
ber has been estimated at approximately 1.5 million
(Hawksworth, 1991). Fungi play pivotal ecological roles
in virtually all ecosystems, through their saprophytic,
pathogenic, mutualistic, and symbiotic species. The eco-
nomic impact of fungi is large, involving human and
crop pathogens. Fungi are also used in food processing,

biotechnology, and as sources of lifesaving antibiotics.
The two major groups that have been traditionally rec-
ognized among the true fungi are the Ascomycota, in-
cluding the yeasts and filamentous fungi, with several
important model species (e.g., Saccharomyces cerevisiae,
Neurospora crassa) and the Basidiomycota, including the
conspicuous mushrooms, the rusts, and the smuts. As-
comycota and Basidiomycota have been called the Di-
caryomycota (Schaffer, 1975) and have been resolved as
sister taxa (e.g., Lutzoni et al., 2004; James et al., 2006).
The other major groups of fungi, basal to the Dicaryomy-
cota, include the Glomeromycota, the Zygomycota, and
the Chytridimycota (James et al., 2006).

The recent availability of numerous fungal genome
sequences provides large numbers of genes that could
be used for building robust phylogenies. Complete
fungal genomes have been successfully used to build
organismal phylogenies (Rokas et al., 2003; Fitzpatrick
et al., 2006; Robbertse et al., 2006). However, if we are
to reconstruct phylogenetic relationships among fungal
species whose complete genome is not sequenced, as is
generally the case, only a limited number of DNA frag-
ments can practically be sequenced. It would therefore
be useful to determine how much data are sufficient
to recover a well-resolved and correct species tree,
and whether some genes better reflect whole-genome
relatedness. Several factors may indeed influence the
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performance of a particular gene in recovering a robust
and valid phylogeny, such as its length, its rate and
mode of evolution, and its demographic and selective
histories. Identifying a few genes sufficient to build
robust phylogenies will economize on costs and improve
accuracy. It will furthermore allow homogenization of
data sets, which will be useful for building the tree of
life using independent studies, which have so far little
overlap in their data partitions (Lutzoni et al., 2004).
Identifying genes with high phylogenetic performance
may also be of great interest for species bar coding (i.e.,
species identification based on a few DNA sequences).

The aim of this study was therefore to develop a
method for finding genes with a high phylogenetic in-
ference power. We used fungi as models because of the
availability of numerous genome sequences. Our spe-
cific aims were to assess which genes recovered the
optimal fungal phylogenies among the single-copy or-
thologs shared by most fungal genomes. Furthermore,
we wished to determine how many genes are required to
obtain an accurate and well-supported phylogeny. Simi-
lar approaches have been developed previously, applied
to yeasts (Rokas et al., 2003) or bacteria (Konstantini-
dis et al., 2006); other studies have also looked for the
best-performing genes, among a few available in ver-
tebrates, but not at a whole-genome scale (Graybeal,
1994; Cummings et al., 1995; Zardoya and Meyer, 1996;
Miya and Nishida, 2000; Springer et al., 2001; Mueller,
2006). These studies have found a high variability in the
performance of single genes and suggested that a few
genes, if appropriately chosen, may be sufficient to re-
cover a reliable species tree. Taking advantage of the com-
plete sequenced fungal genomes, a few previous studies
have built phylogenies (Fitzpatrick et al., 2006; Kuramae
et al., 2006; Robbertse et al., 2006), and one recently in-
vestigated how many and which genes were sufficient
to resolve the fungal tree of life (Kuramae et al. 2007).

Here we developed an automated procedure for ex-
tracting only single-copy orthologous genes from com-
plete fungal genomes, as the presence of paralogs
may hinder correct phylogenetic reconstruction (Koonin,
2005). Maximum likelihood trees based on individual
orthologous clusters and concatenated alignments were
constructed. The performance of each gene was tested
by assessing the congruence of every single-gene phy-
logeny with that of the reference tree, using three differ-
ent metrics. We furthermore tested for parameters that
could predict the performance of single genes in yielding
a good phylogeny, such as gene size, number and pro-
portion of variable sites, and putative function. We then
compared our results and methods to those of previous
studies with similar aims.

MATERIALS AND METHODS

Ortholog Search

Predicted proteins were extracted from 30 fungal
genomes (Table 1). We decided to use exclusively pro-
tein sequences because Basidiomycota and Ascomy-
cota have nucleotide sequences that are too divergent

to be aligned with confidence. From predicted pro-
teins, single-copy orthologs were identified following
the method described in Dujon et al. (2004). First, an
all versus all BLASTP search was performed using the
NCBI BLAST2 software (Altschul et al., 1997) with the
BLOSUM62 matrix and affine gap penalties of 11 (gap)
+ 2 (ext). Pairwise alignments were considered non-
spurious after HSP tiling if they met three criteria: (i) cov-
erage of at least 70% of the query sequence, (ii) identity
of at least 30%, and (iii) E-value cutoff of 6e−6. HSP tiling
was then performed using the “tile hsp” function of the
BioPerl module Bio::Search::BlastUtils (documentation
at http://search.cpan.org/∼birney/bioperl1.2.3/Bio/
Search/BlastUtils.pm). Default values were taken for all
parameters. For each hit, both the query and the subject
sequences have been tiled independently and only if they
came from nonoverlapping regions. If tiling is operated,
the function computes the following data across all tiled
HSPs: total alignment length, total identical residues, and
total conserved residues. If no tiling is operated, only the
values of the best HSP are kept. Note that for all tiled and
nontiled hits, only the best HSP e-value is considered for
MCL clustering. Therefore, HSP tiling can only increase
the number of pairwise alignments that meet the crite-
rion of at least 70% of coverage on query sequence and
at least 30% of identity. HSP tiling has no impact on the
clustering MCL procedure itself.

The BLAST results were then analyzed with the pro-
gram Tribe-MCL (06–058 release) obtained from the Web
site http://www.micans.org/mcl/ (Enright et al., 2002).
The program Tribe-MCL uses Markov clustering (MCL)
by creating a similarity matrix from BLAST e-values and
then clustering proteins into related groups. The main
parameter that influences the size of a cluster in Tribe-
MCL is the inflation value, which can be adjusted from
1.1 (fewer clusters are formed but with more proteins in
each) to 5.0 (more but smaller clusters are formed and
proteins with high similarity remain clustered together).
MCL avoids clustering fragmented proteins or domains
coming from different complex multidomain proteins,
both of which are very common in eukaryotic genomes,
and it has been shown to outperform other cluster algo-
rithms (Costa et al., 2005; Brohee and van Helden, 2006).
In order to be conservative and to retrieve only the true
orthologs present in all fungal genomes, as stringently
as possible, we used the conservative inflation value of
I = 4 (see previous analyses on the impact of the infla-
tion parameter; Enrigth et al., 2002; Dujon et al., 2004;
Robbertse et al., 2006). We also filtered clusters that con-
tain exactly one protein per fungal genome (single-copy
clusters).

The number of recovered single-copy clusters varies
considerably depending on the data set used, as the in-
clusion of more divergent genomes will result in a lower
number of orthologs shared by all. Errors in protein pre-
diction (e.g., proteins deduced from genes identified us-
ing automatic annotation pipelines that are split, fused
or with unresolved introns; Gilks et al., 2005) can also
drastically reduce the number of detected orthologs com-
mon to all genomes, because some orthologs will then be
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artefactually lacking in one genome. In order to minimize
the number of ortholog clusters lost by such an artefact,
we investigated variation in the number of single-copy
clusters by removing one fungal genome at a time from
the initial complete data set (Table 1). As expected, re-
moving highly divergent genomes (e.g., the zygomycete
Rhizopus oryzae) from the data set resulted in an increase
in the number of single-copy clusters, as more orthologs
were then shared by all the remaining genomes (data
not shown). In addition, removing some other genomes,
although closely related to others in the data set, also
increased the number of single-copy clusters, indicat-
ing that these genomes most probably contained nu-
merous errors in protein prediction. Therefore, for the
subsequent phylogenetic analysis, we kept only species
that did not drastically decrease the single-copy clus-
ter number. Following this procedure, we reduced our
initial data set, which contained 30 fungal genomes, to
a data set with 23 genomes (Table 1). Furthermore, be-
cause we needed a reliable reference tree to perform the
topological comparisons, we had to keep only nodes
that were supported and consistent with commonly ac-
cepted relationships among fungal species. We thus re-
moved two species, Aspergillus oryzae and Stagonospora
nodorum, as their placement in the 23 genome phylogeny
was uncertain and had low support (see online Appendix
1; http://www.systematicbiology.org). The subsequent
tree topology comparisons were thus performed using
21 genomes (Table 1).

Phylogenetic Analyses

Protein sequences in the orthologous clusters were
aligned using ClustalW 1.38 (Thompson et al., 1994) with
default settings. We kept only the alignment sections that
were unambiguously aligned and without gaps. In or-
der to detect such regions, we used the program Gblocks
0.91b (Castresana, 2000) with the minimum number of
sequences set to 16, the minimum number of flanking
positions set to 20 and no gaps allowed; otherwise, de-
fault settings were assumed. For the aligned orthologous
sequences in each cluster, we determined which amino
acid substitution model best fit the data using ProtTest 1.4
(Abascal et al., 2005), which estimates the likelihood of
each model and the parameter values under a maximum
likelihood framework. The AIC-1 criterion was used to
rank the 80 different evolution models tested by ProtTest
1.4. We used the information on the chosen model and its
parameters to infer the corresponding maximum likeli-
hood gene trees with PHYML v2.4.4 (Guindon and Gas-
cuel, 2003). A bootstrap analysis with 100 replicates was
performed for each tree in order to assess the support
for the nodes. The majority rule criterion was used to
obtain the consensus trees from the bootstrap analysis
with the program Consense in the PHYLIP 3.66 package
(Felsenstein, 1989). We thus obtained 246 gene trees, one
for each individual orthologous data set.

In order to obtain a reference tree, the individual align-
ments best fitted by the same evolutionary model were
concatenated with a custom-made Perl script. From the

model selection analysis performed using ProtTest, we
found that almost all the orthologs in the data set were
best approximated by either the WAG or the rtREV mod-
els. We therefore built two concatenated alignments, one
for each group of sequences (see Results). We inferred
a maximum likelihood phylogenetic tree from the two
concatenated alignments, one for the WAG and one for
the rtREV concatenations, following the same method
that was used to infer the individual trees. In this case,
we obtained 250 bootstrap replicates to determine the
node support values. Also, we tested a mixture-model
approach under a Bayesian framework to infer the ref-
erence tree, without assuming an a priori model, and
compared the resulting topology with the likelihood ref-
erence trees previously obtained assuming the WAG
and the rtREV models. For the mixture-models analy-
sis we used the PhyloBayes 2.3 package (Lartillot and
Philippe, 2004), which implements a Bayesian Monte
Carlo Markov chain (MCMC) sampler with a Dirichlet
process (using the cat option). Two simultaneous chains
were run for 74,390 and 74,666 generations, respectively.
We used the program bcomp included in PhyloBayes2.3
to check for convergence: if the largest discrepancy across
the bipartitions (maxdiff) of two or several chains is less
than 0.1, this indicates a good convergence level (Phy-
loBayes 2.3 manual). We obtained a maxdiff value <0.1
in our chain comparisons. We used the readpb program
in the PhyloBayes 2.3 package to obtain the summary
and consensus trees. We tried different burnin values dis-
carding 100, 500, and 1000 trees and we tested different
sampling intervals, choosing trees every 10, 5, or 2 trees.
In all cases the consensus tree obtained was the same as
the likelihood trees (see Results, Fig. 1).

Tree Topology Comparisons

The congruence of every individual phylogeny with
respect to the reference tree obtained by concatenation
was assessed using three different indices. First, we
estimated an overall topological score (Nye et al., 2006),
which provides a measure of the distance between
two trees in terms of topology. The algorithm used is
specifically designed to compare trees produced using
different genes for the same set of species, as in our
case. The java applet (distributed at http://www.mrc-
bsu.cam.ac.uk/personal/thomas/phylo comparison/
comparison page.html) matches the branches in the
two trees that have a similar partition of leaf nodes
and finds an optimum 1-to-1 correspondence map. To
obtain the overall score, first every pair of edges is
assigned a score that reflects the topological similarity
of the branches and then the branches in the trees are
paired up to optimize the global score (Nye et al., 2006).
Furthermore, we assessed the performance of each gene
by visually inspecting the node support of the gene
trees with topological scores higher than 90% (online
Appendix 2; http://www.systematicbiology.org).

The commonly used Robinson-Foulds symmetric dis-
tance was also employed to assess the topological
similarity between trees (Robinson and Foulds, 1981).
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FIGURE 1. Phylogeny of the concatenated data set using the 246 single-copy orthologs extracted from 21 genomes (Table 1). Indicated supports
are percentages over 250 bootstraps. Bayesian support for all nodes is also consistent with a 100/100 bootstrap value.

This metric considers all the possible branches that
could exist on the two trees. Each branch divides the
set of species into two groups, with one group con-
nected to one end of the branch and the other group
connected to the other end. A partition of the full set
of species can be created with respect to the tree topol-
ogy. For each tree, a list is created with all the parti-
tions therein. The symmetric distance between two trees
is the count of how many partitions there are among
their respective lists that are not shared between the
two.

Finally, the last metric we used to compare our
trees was the Kuhner-Felsenstein distance (Kuhner and

Felsenstein, 1994). Unlike the two previous methods, the
latter distance takes into account the branch lengths in
the trees. The method starts with all the possible par-
titions in each tree, then assigns a value, which is 0
if the partition is absent from the tree, or the length
of the branch if the partition is present in the tree.
The distance, called the branch score, corresponds to
the sum of squares of differences between the lists
of two trees. If the same branch is present in the
two trees, it will contribute the square of the differ-
ence between the two branch lengths. A branch that
is absent from both trees contributes zero to the total
sum.
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Statistical Analyses

Statistical tests were performed with the JMP 5 soft-
ware (SAS Institute 1995). Because the Arcsin-square-
root-transformed topological score did not significantly
deviate from normality (Shapiro-Wilk W test), we used
an ANOVA to test the effect of the number of variable
sites, the gene size and the percentage of variable sites
on the topological score. For the chi-square test on the 19
GO categories, we pooled those containing a few genes
in order to have at least five genes per category. Gene
size (i.e., alignment length) was highly correlated with
the number of variable sites (r = 0.959; P < 0.00001); they
were therefore analyzed in separate ANOVAs.

We also estimated the average evolutionary rate of
the individual 246 genes, with and without assuming a
molecular clock, using PAML 4 OSX Intel (Yang, 1997).
This approach was undertaken to investigate whether
the best-performing genes evolved with more clock-like
rates of evolution than other less informative genes. We
used the program codeml in the PAML package to esti-
mate the average substitution rate across the alignments.
For all genes, we inferred the evolutionary rates in two
ways: (i) by assuming a global molecular clock (i.e., all
branches in the tree have the same rate), and (ii) by allow-
ing each branch in the tree to have an independent evo-
lutionary rate. The two competing hypotheses are nested
and can thus be compared by a likelihood ratio test (LRT)
with degrees of freedom equal to n− 2, where n is the
number of species (sequences; Yang, 1997).

RESULTS

Clusters of Single-Copy Orthologs

We recovered different numbers of single-copy orthol-
ogous gene clusters for the three different data sets (con-
taining 30, 23, and 21 genomes, respectively; Table 1). For
the 30 fungal genomes, there were 275,948 predicted pro-
teins that were compared using an all versus all BLASTP
search and the subsequent Tribe-MCL analysis allowed
us to identify 17,956 clusters, from which only 43 con-
tained exactly one protein in each genome (single-copy
clusters). For the data set with 23 fungal genomes, we
identified 219 single-copy clusters of putative ortholo-
gous proteins, with alignments ranging from 111 to 1708
amino acids in length (mean length: 522 aa (amino acids),
median length: 447 aa). The average identity within the
219 clusters ranged from 23% to 83% (mean: 52%, me-
dian: 52%). For the 21 remaining genomes, a total of
246 clusters of single-copy orthologs were retrieved. The
alignments ranged in length from 111 to 2197 amino acids
(mean length: 569 aa, median length: 482 aa). Average
identity within the 246 clusters ranged from 24% to 84%
(mean: 51%, median: 51%).

Phylogenies

Maximum likelihood and Bayesian methods produced
the same topologies (not shown). We therefore present
below only the trees obtained using maximum likeli-
hood. In the case of the 23-genome data set, most of the

protein-coding genes (200/219) were best fitted either by
the WAG (Whelan and Goldman, 2001; 163 genes) or the
rtREV (Dimmic et al., 2002; 37 genes) evolution models.
We therefore concatenated all the 163 gene alignments fit-
ted by the WAG model on one hand, and all the 37 gene
alignments fitted by the rtREV model on the other hand,
to infer the maximum likelihood gene tree for each of
these two concatenated data sets. The two concatenated
data sets yielded the same topology with similar node
supports. The tree inferred from the WAG concatenated
data set is shown in online Appendix 1. All the nodes
were well supported and in agreement with previously
published phylogenies (Fitzpatrick et al., 2006; James et
al., 2006; Robbertse et al., 2006), except for the placement
of S. nodorum and the relationships among the three As-
pergillus species.The phylogenetic position of S. nodorum
was also difficult to estimate with accuracy in previous
studies (Fitzpatrick et al., 2006; Robbertse et al., 2006).

To understand the poor support for the placement
of S. nodorum, we looked at all the single-gene phy-
logenies. Three main positions were recovered for S.
nodorum, as indicated in online Appendix 1. The first
position was found in 49 trees, the second position in
76 trees, and the third one in 73 trees. Other placements
were recovered for 21 genes. We also looked at all in-
dividual gene phylogenies for the relationships among
the three Aspergillus species. Of the 219 protein-coding
genes, 203 supported the three species as monophyletic.
Among these 203 genes, 84 supported the closest rela-
tionship for A. nidulans and A. oryzae, 81 genes for A.
fumigatus and A. oryzae, and 38 genes for A. nidulans and
A. fumigatus.

Because we needed a reliable reference tree, we re-
moved the latter two genomes from our data set. For
the 21-genome data set, out of 246 protein clusters, 116
were best approximated by the WAG model, and 122 by
the rtREV model. The reference tree inferred from the
concatenation of the 122 alignments fitted by the rtREV
model is shown in Figure 1. The tree inferred from the
concatenation of the 116 alignments fitted by the WAG
model yielded exactly the same topology. All the nodes
were supported with 100% bootstrap proportions and
were consistent with previously published phylogenies
(James et al., 2006; Fitzpatrick et al., 2006; Robbertse
et al., 2006; Kuramae et al., 2006).

Phylogenetic Performance of Individual Genes

For the 246 trees obtained for the 21-genome data
set, the congruence of every individual phylogeny with
respect to the reference tree obtained by concatenation
(Fig. 1) was assessed using three different indices: the
Nye topological score, the Robinson-Foulds distance,
and the Kuhner-Felsenstein distance (see Materials
and Methods). All three measures were significantly
correlated (Fig. 2). The topological score and the
Robinson-Foulds distance in particular had a very high
correlation coefficient, whereas there was more variabil-
ity in the relationship between the topological score and
the Kuhner-Felsenstein distance (Fig. 2b). This makes
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FIGURE 2. Plot of the topological score as a function of the Robinson-Foulds distance (a) and the Kuhner-Felsenstein distance (b). The two
genes with a topological score of 100% are represented in black.

sense because the first two measures are based solely
on topology, whereas the Kuhner-Felsenstein distance
also takes branch lengths into account. The genes per-
forming well, as assessed from the Kuhner-Felsenstein
distance, also had a good topological score, but the
reverse was less often true. In particular, the two genes
having a topological congruence of 100% did not have
the lowest Kuhner-Felsenstein distances. Because we
were more interested in retrieving correct phylogenetic
relationships than branch length estimates, we mainly
refer to the topological score hereafter.

The distribution of the topological score for the 246
genes from the 21-genome data set approximated a
Gaussian curve skewed towards the low topology
scores (Fig. 3). As seen above, only two genes, MS456
and MS277, yielded exactly the same topology as the
concatenated tree (see online Appendix 2 for a list of
the 59 genes with a topological score at least equal
to 90%, which corresponded to topologies exhibiting
discrepancies with the reference tree for one to three
nodes). Most of the bootstraps in these individual robust
phylogenies were higher than 70%, although a few

 at IN
R

A
-JO

U
Y

-J.M
. on July 17, 2013

http://sysbio.oxfordjournals.org/
D

ow
nloaded from

 

http://sysbio.oxfordjournals.org/


620 SYSTEMATIC BIOLOGY VOL. 57

FIGURE 3. Distribution of the topological score for the 246 individual gene phylogenies with 21 species.

nodes per tree had lower support (online Appendix 2).
Nodes with low support were sometimes those that
differed from the reference tree, but not necessarily:
some nodes that were not recovered in the reference
tree could appear well-supported in single-gene trees,
whereas nodes recovered in the reference tree could be
poorly supported in some single-gene trees.

In order to investigate whether the good phylogenetic
performance of the two genes MS465 and MS277 was
dependent on the sample of species used, we computed
topological scores on subsets of the 21 species. For
each subset, we aligned the corresponding subset of se-
quences and followed the same procedure implemented
for the full set analyses. We first computed topological
scores on two nonoverlapping subsets of respectively 10
and 11 species, maximizing the dispersion of the chosen
species in the tree in each subset. More genes having a
100% topological score were retrieved in these subsets
than for the 21-species data set. The topological scores
of the 246 genes were highly significantly correlated
between the two nonoverlapping subsets (r = 0.5; P >
0.00001). MS456 had again a 100% topological score in
the two independent subsets. MS277 also had a high
topological score, although not 100% in both subsets.
We then computed the topological scores on 10 subsets
of 15 species. The subsets were chosen for minimizing
the overlap of species among them. The distribution of
the topological scores of the two best-performing genes,
MS465 and MS277, was compared to the distribution
of all the genes across all the subsets (Fig. 4). The
distributions showed that these two genes had good
phylogenetic performance compared to the other genes,
independent of the sample. Some variability existed
in the topological scores among the different subsets,
but MS277, and especially MS456, always retained a
high degree of phylogenetic power (Fig. 4). Similar
results were obtained using the Robinson-Foulds and

the Kuhner-Felsenstein distances (online Appendices 3
and 4; http://www.systematicbiology.org).

In order to further test whether the two genes,
MS456 and MS277, can be of general utility for phy-
logenetic inference, we built a tree using all sequences
available in GenBank that had a significant BLAST
hit to either one of the query sequences. Homo sapi-
ens was chosen as an outgroup. The resulting trees
included 36 species (e.g., online Appendix 5 for
MS456; http://www.systematicbiology.org), were well
supported and consistent with phylogenetic relation-
ships known from previous studies (James et al., 2006;
Fitzpatrick et al., 2006). Only Puccinia graminis had a
placement inconsistent with firmly established relation-
ships, but with low bootstrap support (37%).

It is noteworthy that the protein-coding genes most
commonly used in fungal phylogenies, such as the
β-tubulins, the elongation factor EF-1α, the γ -actin, heat
shock proteins, chitinases, chitin synthases, RNA poly-
merases, dehydrogenases, and histones were not found
in the list of the best-performing genes (online Appendix
2). Some of the latter genes were not even present in the
single-copy ortholog clusters shared by most genomes,
as they appeared to have paralogs in some of them (e.g.,
some tubulins, elongation factors, chitinases, and dehy-
drogenases). We computed the topological scores for the
elongation factor EF-1α, β-tubulin, and γ -tubulin. Only
20 species had orthologs of EF-1α among our 21-species
data set, and we choose the best hits among the paralogs
present in some species for β-tubulin and γ -tubulin. The
topological scores were poor for these three genes, even
when they were concatenated: 80.3% for EF-1α, 79.4%
for β-tubulin, 84.6% for γ -tubulin, and 85.2% for the
tree resulting from their concatenation. Among the 246
single-copy orthologs, the number of genes that had a
better topological score than the widely used β-tubulin,
γ -tubulin, and EF-1α genes was thus respectively 49.2%,
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FIGURE 4. Distribution of the number of occurrences for given
topological scores on 10 subsets of 15 species for the 246 individual
gene phylogenies (a), and for the two genes yielding a 100% topologi-
cal score: MS456 (b) and MS277 (c).

77.6%, and 53.6%. Even when combined, 50.8% of the
genes had individually better topological scores.

Minimal Number of Concatenated Genes Required
to Produce a Robust Phylogeny

Based on the results from the topological scores
described above, we ranked the genes according to
the congruence of their topologies to that of the ref-
erence tree. We concatenated 2, 3, 5, 10, 15, 20, and 25

single-gene alignments from the 21-genome data set,
corresponding to the individual genes that provided the
most congruent topologies with respect to the reference
tree. Concatenating the two best-performing genes was
sufficient to obtain a topology identical to the reference
tree, with all bootstraps higher than 70%. Concatenation
of the top three genes was sufficient to recover bootstrap
supports higher than 80% for all the nodes in the tree.
However, even with 25 genes, not all nodes had 100%
bootstrap supports.

Characteristics of the Best-Performing Genes

Some of the gene ontology (GO) function categories
(Ashburner et al., 2000) were significantly overrepre-
sented in the 59 best-performing genes compared to the
246 orthologs. These overrepresented categories corre-
sponded to biological regulation, organelle, membrane,
organelle part, and binding (Fig. 5; χ2 test, P = 0.004).
According to the annotation as in Saccharomyces cere-
visiae, the two best-performing genes identified in this
study are (i) MS277, a protein required for processing
of 20S pre-rRNA in the cytoplasm and it associates with
pre-40S ribosomal particles; and (ii) MS456, a component
of the hexameric MCM complex, which is important for
priming origins of DNA replication (online Appendix 2).

The ANOVAs detected a significant effect of the num-
ber of variable sites (F1,241 = 25.82, P < 0.0001; Fig. 6)
and gene size (F1,241 = 28.51, P < 0.0001) on the topo-
logical score. Interestingly, the two genes yielding the
same topology as the concatenated data sets had inter-
mediate numbers of variable sites and gene sizes (Fig.
6). All the genes longer than 700 base pairs yielded topo-
logical scores higher than 88%. However, there was high
variability in the phylogenetic performance for a given
gene size, and topological scores higher than 90% could
be recovered at any gene size.

The phylogenetic informativeness of a gene is likely
related to its evolutionary rate and it has been suggested
that a given gene can be effectively used to solve a soft
polytomy if it evolves at an optimal rate at a relevant time
scale (Townsend, 2007). We tried to determine whether
the genes we identified as the most phylogenetically
informative (MS456 and MS277) evolved under an opti-
mal rate (i.e., correlated with phylogentic performance)
across all the branches in the phylogeny. We estimated
the average substitution rate of the 246 genes, with and
without assuming the molecular clock. The two models
were compared by means of a LRT and the assumption
of a molecular clock was rejected for all 246 genes. The
average evolutionary rates computed without assuming
the clock were not significantly correlated with the
topological score, the Robinson-Foulds, or the Kuhner-
Felsenstein distance. The average rates estimated for the
246 genes ranged between 0.62 and 2.88 expected total
number of amino acid substitutions per amino acid site
across the phylogeny. The average substitution rates
of the two best genes were 0.88 for MS277 and 1.52 for
MS456, but within the same rate interval the topological
score varied considerably, from 100% for the best genes
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FIGURE 5. Proportions of the putative functions, according to the Gene Ontology (GO) classification, among the 246 clusters of orthologs (in
black) and among the 59 best-performing genes (in grey).

to 57% for the worst-performing gene in that rate range.
We did not find an optimal average rate at which these
genes evolve, and there is no correlation between the av-
erage rate and the phylogenetic performance estimated
by the topological and branch length distances used
here.

FUNYBASE

A Web site is available with open access to the clusters
of orthologous sequences: http://genome.jouy.inra.fr/
funybase/funybase result.cgi. The aligned clusters of or-
thologous sequences can be downloaded either for the

data set containing 30 fungal genomes or for the data set
including the 21 genomes ultimately retained. For each
cluster, the mean identity of the sequences, the amino
acid substitution model that best fit the data, and the
topological score are available. The database was named
FUNYBASE, after FUNgal phyLogenomic dataBASE.

DISCUSSION

Comparison of the Methods Used across Studies for
Identifying Genes with High Phylogenetic Performance

In this study we show that there is high variability in
the phylogenetic performance of single genes and that

FIGURE 6. Plot of the topological score as a function of gene size for the 246 individual gene phylogenies with 21 species. The two genes with
a topological score of 100% are represented in black.
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accurate phylogenies can be obtained using only a few
of the best-performing genes. Similar conclusions have
been reached by previous studies on different taxa us-
ing bacteria (Konstantinidis et al., 2006), yeasts (Rokas
et al., 2003), and vertebrates (Graybeal, 1994; Cummings
et al., 1995; Zardoya and Meyer, 1996; Springer et al.,
2001; Mueller, 2006). In contrast, a recent study aiming
at identifying the best genes for fungal phylogenies con-
cluded that the concatenation of 40 to 45 proteins was
needed to correctly resolve the fungal tree of life (Kura-
mae et al., 2007). There are important differences in terms
of the methods employed in each of these studies with
respect to the analysis conducted here and we discuss
below how it could have affected the conclusions.

First, our work and most of the previous studies differ
in the methods followed to obtain the clusters of shared
and putatively orthologous genes, from which the
alignments and trees are inferred. We decided to use the
MCL clustering methods because we wanted to recover
the maximum possible number of orthologous gene
clusters but doing so under sufficiently stringent condi-
tions to avoid hidden paralogs. The trade-off involved
in this operation is best handled with MCL because its
specificity can be finely tuned with respect to the data set
at hand (Costa et al., 2005; Brohee and van Helden, 2006).
We chose a value of the inflation parameter that had
been shown to produce an optimal number of clusters
containing shared single-copy genes (Enright et al., 2002;
Dujon et al., 2004; Robbertse et al., 2006). Robbertse et
al. (2006) also used this approach on fungi and made a
thorough comparison of the number of clusters inferred
with respect to different values of the inflation parame-
ter. They found an optimal value at which the orthologs
recovered were reliably identified and clustered. Other
studies used rather ad hoc methods to derive clusters
of orthologous proteins, either identifying each gene
family with a single representative in each genome
(Fitzpatrick et al., 2006) or by inferring orthology based
on the eukaryotic ortholog protein database KOG
(http://www.ncbi.nlm.nih.gov/COG/grace/shokog.
cgi); (Kuramae et al., 2006, 2007). We consider that these
latter methods are not designed to optimize the number
of inferred orthologous clusters: methods may be too
liberal when the only criterion to propose orthology is
that proteins are present as single-copy in all compared
genomes, as hidden paralogy can be a serious concern;
on the contrary, methods can be too conservative when
they are based on more general ortholog databases,
for instance, the KOG database, which to date is built
using only two fungal species (S. cerevisiae and S. pombe)
and require similarity with other more distantly related
eukaryotes, as in this case they are likely to miss many
orthologs that are exclusively shared among fungi.
Furthermore, we showed that the inclusion of some
genomes drastically decreased the number of shared
orthologous clusters, most probably due to numerous
errors in protein predictions, and this had never been
evaluated. In the end we recovered 219 clusters of
orthologs in the 23-species data set and 246 single-copy
orthologs in the 21-species data set, which represents

only ca. 2.5% of the mean number of proteins found
in the 30 fungal species (Table 1). This small number
of single-copy genes shared by all fungal genomes is
in agreement with previous studies: 531 single-copy
clusters of orthologs shared among 25 eukaryotic
genomes (Kuramae et al., 2006); 70 single-copy clusters
of orthologs shared among 33 fungal genomes (Kuramae
et al., 2007); 153 shared among 42 fungi (Fitzpatrick
et al., 2006); and 854 shared among 17 Ascomycota
(Robbertse et al., 2006). We expect the reliability of
orthology to differ among studies, and a comparison
among the orthologous groups obtained by different
studies might be warranted, although it lies outside of
the scope of the present work. Finally, it is interesting
to note that a recent study has demonstrated that the
OrthoMCL algorithm (Li et al., 2003) performs better
than the Tribe-MCL method for the automatic detection
of ortholog clusters in multiple eukaryotic genomes
(Chen et al., 2007). The latter study was performed
with default values for the inflation parameter, so it
is not possible to make a direct comparsion with our
approach. However, for future work it will probably
be simpler to directly evaluate the ortholog clusters
produced by OrthoMCL than performing a fine-tuning
of the Tribe-MCL inflation parameter.

The choice of methods used to infer the trees does
not seem to affect the results. In this study, maximum
likelihood and Bayesian methods produced the same
topologies. Other studies have also reported similarly
convergent results regardless of the methods used to
infer trees. Model choice, in the case of likelihood and
Bayesian methods, is almost always done as we did here,
by statistically testing the fit of different models to the
data and choosing the best fitting model. It is important
to note that in our case two models were consistently
chosen as fitting best our data: the WAG (Whelan and
Goldman, 2001) and the rtREV (Dimmic et al., 2002)
models, similar to previous findings (Robbertse et al.
2006). The fact that those two models are among the most
complex available to date explains to some degree their
performance. However, it was somewhat puzzling to
find that WAG and rtREV each fitted best to roughly half
of the clusters when we analyzed the 21-species data set
(116 fitted by WAG and 122 fitted by rtREV), as opposed
to the analysis of the 23-species data set, where WAG best
fitted 163 clusters and rtREV best fitted only 37 clusters.
We speculate that both models perform roughly similarly
well in fitting our data, and that choosing one over the
other is especially difficult with current statistical tests.
Both models have 189 adjustable parameters and though
derived from very different data, the rtREV model may
take a mathematical form that makes it equivalent to the
WAG model (Dimmic et al., 2002). It has been suggested
that model averaging may capture the best features of
different models in limit cases where model choice is
especially difficult to decide (Posada and Buckley, 2004).

A very important difference among the studies that
aimed at identifying genes with high phylogenetic per-
formance was the comparison of the phylogenies ob-
tained from individual genes and a reference tree. We
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employed three metrics to estimate the distances, both
in terms of topology (Robinson and Foulds, 1981; Nye
et al., 2006) and branch length (Kuhner and Felsen-
stein, 1994). These metrics are strict measures of dis-
tance between trees (Felsenstein, 2004); all three pro-
duced similar results and were correlated. In contrast,
most of the previous studies did not use indices for
topological comparison. The first studies obtained in-
dividual gene trees by analyzing partitions of differ-
ent mitochondrial genes or subsets of nucleotides ex-
tracted from the mitochondrial genome and compared
those individual phylogenies to a reference tree that
was not based on whole-genome data sets: Cummings
et al. (1995) used the contraction/decontraction method
(Robinson-Foulds, 1981); Springer et al. (2001) measured
the variation in bootstrap support level; Zardoya and
Meyer (1996) used the KH (Kishino and Hasegawa, 1989)
and Templeton’s (1983) tests; and Mueller (2006) com-
pared the trees by counting the number of recovered
expected branches. Among the studies using a refer-
ence tree based on whole-genome sequence, some were
not explicit about the method used (Robbertse et al.,
2006; Kuramae et al., 2006); in one case the YAPTP test
was used (Fitzpatrick et al., 2006), which only tells if
the topologies under comparison are more similar be-
tween them than expected by chance (Creevey et al.,
2004); in another study the correlation of the branch
lengths between single gene and reference trees was mea-
sured (Rokas et al., 2003). Finally, Kuramae et al. (2007)
used Pearson’s correlation coefficient between genetic
distance matrices. This latter study is very close to ours in
terms of both objectives and model organisms, but uses
very different methods and reaches drastically different
conclusions. Only 70 clusters of orthologs were found
to be shared among their 33 fungal genomes, based on
the KOG database; the reference tree included species
with ambiguous placements, such as S. nodorum and
A. oryzae; phylogenetic performance was measured as
a correlation of distance matrix and was thus not based
on topological comparison. This may explain why Ku-
ramae et al. (2007) concluded that the concatenation of
40 to 45 proteins were needed to recover their reference
tree, whereas we found that only a few genes were suf-
ficient. We did a BLAST search of the five genes with
the highest correlation coefficient to the reference tree
found by Kuramae et al. (2007) and checked their topo-
logical score in FUNYBASE. Among the five proteins,
four corresponded to our clusters MS34, FG684, MS400,
and FG705, with topological scores of 84.2%, 82%, 78.8%,
and 76.9%, respectively. These very low topological score
values indicate that those proteins ranked as the best-
performing ones by Kuramae et al. (2007) actually yield
trees with very low topological similarity with the tree
based on whole genome sequences. Further, among the
five proteins ranked as the best-performing ones by Ku-
ramae et al. (2007), the last one corresponded to the clus-
ter FG3837, for which no ortholog was detected in nearly
half of the genomes in our data sets. We therefore ad-
vocate that future studies aiming at finding genes with
high phylogenetic performance use only genomes with
reliable protein prediction, use MCL to infer clusters of

single-copy orthologs, use a reliable reference tree, and
use a strict topological metric; e.g., the topological score
(Nye et al., 2006).

Another novelty of our approach compared to previ-
ous ones is the test of the consistency of phylogenetic
performance among samples. If the genes producing a
tree similar to the reference tree for a set of species per-
formed less well on another set of species, they would
be of limited interest. However, we showed that the phy-
logenetic performance of the genes, as measured by in-
dices of topological similarity, did not depend strongly
on the chosen set of species. The phylogenetic perfor-
mance must therefore be an intrinsic property of the
genes, most probably related to factors such as evolution-
ary rates, number of informative sites, and demographic
and selective histories.

It would in fact be convenient to find parameters from
which phylogenetic performance could be predicted, be-
cause it would remove the necessity of comparison with
full-genome data sets. We found that both gene size and
the total number of variable sites were significantly corre-
lated and were moderately good predictors of the phylo-
genetic performance of individual genes (see also Galtier,
2007). All the genes longer than 700 bp yielded good
topological scores. However, the two best-performing
genes had intermediate gene sizes and there was a great
variability in the phylogenetic performance for a given
gene size, indicating that other factors have an impact on
phylogenetic performance of single genes. Because topo-
logical scores higher than 90% could be recovered at any
gene size, the best approach may be to combine several
genes with high phylogenetic performance, regardless
of their size. The GO functional categories that corre-
sponded to biological regulation, membrane, organelle
part, and binding were overrepresented in the 59 best-
performing genes relative to the 246 single-copy genes
identified, but this cannot serve either as a strong a pri-
ori predictor of phylogenetic performance. The evolu-
tionary rate did not appear useful to detect genes with
high phylogenetic performance either. It may be that
the demographic and selective histories of the genes are
more relevant. Assessing phylogenetic performance us-
ing similar approaches as ours, or as the one proposed
by Townsend (2007), therefore appears essential to detect
the genes that produce the most accurate phylogenies.

The Best-Performing Genes Identified for Fungal Phylogenies

The phylogeny of fungal species inferred here using a
genome-wide sampling of orthologous proteins had the
same topology as those found in previously published
studies, where complete genome sequences were also
used, either by concatenating common orthologs or
by employing supertree methods (Fitzpatrick et al.,
2006; Robbertse et al., 2006; Kuramae et al., 2006). In
those studies, the placement of S. nodorum and the
relationships among the three Aspergillus species were
also weakly supported. Three different placements of S.
nodorum occurred with similar frequency in the single
gene trees. Because the second and third placements
(online Appendix 1) corresponded to the closest nodes
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subsequent to the first placement, we believe that the
discordance between the different gene trees is probably
best explained by rapid speciations that prevented accu-
mulation of synapomorphies (Rosenberg and Nordborg,
2002; Rokas and Carroll, 2006) or caused lineage sorting.
The lack of resolution of the nodes among the Aspergillus
species can also be due to rapid speciation (Rosenberg
and Nordborg, 2002; Rokas and Carroll, 2006) or to
lineage sorting (Pollard et al., 2006). Alternatively, du-
plications and differential loss of paralogs, or horizontal
gene transfers, may be responsible for the observed
conflicting phylogenetic signals. Aspergillus oryzae has
indeed been subject to a large-scale genome expansion
compared to the two other Aspergillus species, due to
either duplication or lateral gene transfers (Machida et
al., 2005). The difficult placement of the Aspergillus and
S. nodorum species confirms that some clades are re-
fractory to resolution even with complete-genome data
sets.

Full-genome data sets nevertheless seem to provide
reliable information on the evolutionary relationships of
most species. However, if genes are to be sequenced in
order to build a phylogeny, only a few can be practi-
cally sequenced. Single-gene analyses are, however, de-
pendent on the genes having an evolutionary history
that reflects that of the entire organism, which is often
not the case. By comparing the topologies of the indi-
vidual gene trees with that of the reference tree, based
on the full genomes, we found a high variability in
the phylogenetic performance of individual genes. Some
genes performed better than others, and this seemed to
be an intrinsic property of the genes, not dependent on
the sample. It was remarkable, and not necessarily ex-
pected, that two single genes produced exactly the same
topology as the reference tree. Our results show that
two well-chosen genes were sufficient to recover a ro-
bust phylogenetic tree that reflected the whole-genome
relatedness among the species. By extending our analy-
sis to 36 genomes, we showed that the best-performing
genes found with our approach can be of general utility
for fungal phylogenies, although five to six genes among
the best-performing genes should probably be used to
resolve all the nodes. The genes commonly used for in-
ferring fungal phylogenies often had paralogs in some
genomes and/or were lacking from others and had fur-
thermore poor phylogenetic performance. The currently
standing fungal tree of life therefore seems to have been
built using marker genes that perform suboptimally for
phylogenetic inference. The validity of current classifi-
cations based on single commonly used markers (e.g.,
ITS, elongation factors, tubulins) may warrant a careful
revision.

We note that the genes ranked here as the best-
performing ones may not be suitable for shallower taxo-
nomic scales. Nevertheless, deep-level clades within the
Dicaryomycota are the most difficult to resolve (Lutzoni
et al., 2004; James et al., 2006) and are those for which
our best-performing genes should be the most useful
(Liu and Hall, 2004). For shallower-level phylogenetics,
the FUNYBASE allows the rapid mining of single-copy

genes present in all fungal genomes and will therefore
be useful for finding suitable genes at the desired
taxonomic scale. It is, however, interesting to note that
previous studies found roughly the same ranking in
the performance of mitochondrial protein-coding genes
for recovering the expected phylogeny of teleosteans as
for recovering the expected phylogeny of tetrapods and
mammals (Zardoya and Meyer, 1996; Miya and Nishida,
2000). The genes we ranked among the best-performing
genes for resolving relationships among the major
fungal groups should be useful for many purposes,
economizing costs and improving accuracy for large-
scale phylogenies, in particular for building the tree of
life. Basal nodes in the fungi, and in particular within
the Dicaryomycota, are indeed still poorly supported
(James et al., 2006) and need further analyses using
genes with high phylogenetic performance at this scale.

CONCLUSION

Phylogenetic sequence analysis of three to six genes
represents currently the most favourable approach for
inferring relationships among species. Our evaluation of
the best-performing genes describing relationships be-
tween species from the two main fungal phyla shows
that this approach is highly reliable, as it provides re-
sults similar to those obtained with whole-genome data
sets. The choice of genes, however, is critical because
the performance of the different protein-coding genes
in deriving a reliable phylogeny was highly variable. We
expect that the methodology developed here based on
fungal genomes will guide the selection of genes to use
in future phylogenetic studies in fungi and will also be
applied to other groups of organisms as more genomes
become available.
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