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VORONOI COMPLEXES IN HIGHER DIMENSIONS, COHOMOLOGY
OF GLN(Z) FOR N > 8 AND THE TRIVIALITY OF K8(Z)

MATHIEU DUTOUR SIKIRIĆ, PHILIPPE ELBAZ-VINCENT, ALEXANDER KUPERS,
AND JACQUES MARTINET

Abstract. We enumerate the low dimensional cells in the Voronoi cell complexes
attached to the modular groups SLN(Z) and GLN(Z) for N = 8, 9, 10, 11, using
quotient sublattices techniques for N = 8, 9 and linear programming methods for
higher dimensions. These enumerations allow us to compute some cohomology
of these groups and prove that K8(Z) = 0.

Let N > 1 be an integer and let SLN(Z) be the modular group of integral matrices
with determinant one. Our goal is to compute its cohomology groups with trivial
coefficients, i.e. Hq(SLN(Z);Z). These are known in the cases N 6 7: N = 2 is
classical (e.g. II.7, Ex.3 of [8]), N = 3 is due to Soulé [45], N = 4 is due to Lee
and Szczarba [36], and N = 5, 6, 7 are due to Elbaz-Vincent, Gangl and Soulé [17].

In Theorem 5.2 below, we give partial information for the cases N = 8, 9, 10. For
these calculations we follow mainly the methods of [36] and [17], by investigating
the Voronoi complexes associated to these modular groups.

Recall that a perfect form in N variables is a positive definite real quadratic form
h on RN which is uniquely determined (up to a scalar) by its set of integral minimal
vectors. Voronoi proved in [50] that there are finitely many perfect forms of rank N,
modulo the action of SLN(Z). These are known for N 6 8 (see §1 below). These
finitely many orbits of perfect forms give the top-dimensional generators in the
Voronoi complex; the rest of the complex is constructed from these perfect forms.
Unfortunately, we cannot work with the full Voronoi complex for N = 8 due to its
size, which is beyond our computing capabilities, and we do not have complete
information for N > 8. However, it turns out that it is possible to obtain partial
information on the top and bottom parts of the Voronoi complexes for 8 6 N 6 10
and conjecturally N = 11. In particular, we can enumerate the cells of lowest
dimension explicitly using methods based on sublattices and relative index (cf. §2).
For other cases, we can use linear programming in order to full enumeration in
given cellular dimensions (cf. §3).

Voronoi used perfect forms to define a cell decomposition of the space X∗N of
positive real quadratic forms, whose kernel is defined over Q. This cell decom-
position (cf. §1.2) is invariant under SLN(Z), hence it can be used to give a chain
complex which computes the equivariant homology of X∗N modulo its boundary:
this is the Voronoi complex. On the other hand, this equivariant homology turns
out to be isomorphic to the groups Hq

(
SLN(Z); StN

)
, where StN is the Steinberg

module (see [6] and §1.2.3 below). Finally, Borel–Serre duality asserts that the ho-
mology H∗

(
SLN(Z); StN

)
is dual to the cohomology H∗

(
SLN(Z);Z

)
(modulo torsion
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at primes 6 N + 1). Thus the results mentioned above give partial information about
the cohomology of modular groups.

We will use this to obtain information about the algebraic K-theory of the integers.
In particular, we will prove that the group K8(Z) is trivial (Theorem 6.4) and discuss
its consequences for the Kummer–Vandiver conjecture (cf. §7).

Organization of paper: In §1, we recall the Voronoi theory of perfect forms and
the Voronoi complex which computes the homology groups Hq

(
Γ,StΓ

)
with Γ =

SLN(Z) or GLN(Z). In §2, we give an explicit enumeration of the low dimensional
cells of the Voronoi complexes associated to Γ. In §3, we present another method
based on linear programming. In §4 we give a partial description of the Voronoi
complex associated to modular groups of rank N = 8 up to 12. In §5 we compute
some homology groups of Γ with coefficients in the Steinberg module and we
explain how to compute part of the cohomology of SLN(Z) and GLN(Z) (modulo
torsion) for N > 8. In §6, we use these results to get some information on Km(Z)
for m > 8 and in particular show that K8(Z) is trivial. In §7 we give some arithmetic
applications.

Some of the enumerations of configurations of vectors had already been an-
nounced and used in [24]. Results concerning the triviality of K8(Z) had already
been announced in [16, 31].
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1. The Voronoi reduction theory

In this Section we recall some aspects of the Voronoi reduction theory [50, 38].

1.1. Perfect forms. Let N > 2 be an integer. We let CN be the set of positive
definite real quadratic forms in N variables. Given h ∈ CN , let m(h) be the finite set
of minimal vectors of h, i.e. vectors v ∈ ZN , v , 0, such that h(v) is minimal. A
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form h is called perfect when m(h) determines h up to scalar: if h′ ∈ CN is such that
m(h′) = m(h), then h′ is proportional to h.

Example 1.1. The form h(x, y) = x2 + y2 has minimum 1 and precisely 4 minimal
vectors ±(1, 0) and ±(0, 1). This form is not perfect, because there is an infinite
number of positive definite quadratic forms having these minimal vectors, namely
the forms h(x, y) = x2 + axy + y2 where a is a non-negative real number less than 1.
By contrast, the form h(x, y) = x2 + xy + y2 has also minimum 1 and has exactly
6 minimal vectors, viz. the ones above and ±(1,−1). This form is perfect, the
associated lattice is the “honeycomb lattice”.

Denote by C∗N the set of non-negative real quadratic forms on RN the kernel of
which is spanned by a proper linear subspace of QN , by X∗N the quotient of C∗N by
positive real homotheties, and by π : C∗N → X∗N the projection. Let XN = π(CN) and
∂X∗N = X∗N − XN . Let Γ be either GLN(Z) or SLN(Z). The group Γ acts on C∗N and
X∗N on the right by the formula

h · γ = γt h γ , γ ∈ Γ , h ∈ C∗N ,

where h is viewed as a symmetric matrix and γt is the transpose of the matrix γ.
Voronoi proved that there are only finitely many perfect forms modulo the action of
Γ and multiplication by positive real numbers ([50], Thm. p.110).
Table 1 gives the current state of the art on the enumeration of perfect forms.

rank 1 2 3 4 5 6 7 8 9

# classes 1 1 1 2 3 7 33 10916 > 2.3 × 107

Table 1. Known results on the number of perfect forms up to
dimension 9

The classification of perfect forms of rank 8 was achieved by Dutour Sikirić,
Schürmann and Vallentin [14, 44]. Partial results for dimension 9 are reported in
[48]. The corresponding classification for rank 7 was completed by Jaquet [27],
for rank 6 by Barnes [3], for rank 5 and 4 by Korkine and Zolotarev [30, 29], for
dimension 3 by Gauss [21] and for dimension 2 by Lagrange [34]. We refer to
the book of Martinet [38] for more details on the results up to rank 7. While the
classification of perfect forms of higher rank is not well understood, we know from
Bacher [2] that the number of representatives grows at least exponentially with the
rank and from van Woerden[49] is bounded by eO(d2 log(d)) for perfect forms of rank
d.

1.2. The Voronoi complex.

Notation 1.2. For any positive integer n we let Sn be the class of finite abelian
groups the order of which has only prime factors less than or equal to n.

1.2.1. The cell complex. Given v ∈ ZN − {0} we let v̂ ∈ C∗N be the form defined by

v̂(x) = (v | x)2 , x ∈ RN ,

where (v | x) is the scalar product of v and x. The convex hull in X∗N of a finite subset
B ⊂ ZN − {0} is the subset of X∗N which is the image under π of the quadratic forms
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j
λ j v̂ j ∈ C∗N , where v j ∈ B and λ j > 0. For any perfect form h, we let σ(h) ⊂ X∗N

be the convex hull of the set m(h) of its minimal vectors. Voronoi proved in [50],
§§8-15, that the cells σ(h) and their intersections, as h runs over all perfect forms,
define a cell decomposition of X∗N , which is invariant under the action of Γ. We
endow X∗N with the corresponding CW-topology. If τ is a closed cell in X∗N and h a
perfect form with τ ⊂ σ(h), we let m(τ) be the set of vectors v in m(h) such that v̂
lies in τ. Any closed cell τ is the convex hull of m(τ), and for any two closed cells
τ, τ′ in X∗N we have m(τ) ∩ m(τ′) = m(τ ∩ τ′).

We shall now recall an explicit description of the Voronoi complex and its the
differential from [17].

Let d(N) = N(N + 1)/2 − 1 be the dimension of X∗N and n 6 d(N) a natural
integer. We denote by Σ?n = Σ?n (Γ) a set of representatives, modulo the action of Γ,
of those cells of dimension n in X∗N which meet XN , and by Σn = Σn(Γ) ⊂ Σ?n (Γ) the
cells σ for which any element of the stabilizer Γσ of σ in Γ preserves orientation.

Let Vn be the free abelian group generated by Σn. We define as follows a map

dn : Vn → Vn−1 .

For each closed cell σ in X∗N we fix an orientation of σ, i.e. an orientation of the
real vector space R(σ) of symmetric matrices spanned by the forms v̂ with v ∈ m(σ).
Let σ ∈ Σn and let τ′ be a face of σ which is equivalent under Γ to an element in
Σn−1 (i.e. τ′ neither lies on the boundary nor has elements in its stabilizer reversing
the orientation). Given a positive basis B′ of R(τ′) we get a basis B of R(σ) ⊃ R(τ′)
by appending to B′ a vector v̂, where v ∈ m(σ) − m(τ′). We let ε(τ′, σ) = ±1 be the
sign of the orientation of B in the oriented vector space R(σ) (this sign does not
depend on the choice of v).

Next, let τ ∈ Σn−1 be the (unique) cell equivalent to τ′ and let γ ∈ Γ be such that
τ′ = τ · γ. We define η(τ, τ′) = 1 (resp. η(τ, τ′) = −1) when γ is compatible (resp.
incompatible) with the chosen orientations of R(τ) and R(τ′).

Finally, if σ ∈ Σn and τ ∈ Σn−1, we define the incidence number [σ : τ] for the
Voronoi complex as

(1) [σ : τ] =
∑
τ′

η(τ, τ′) ε(τ′, σ) ,

where τ′ runs through the set of faces of σ which are equivalent to τ. If τ is not
equivalent to a face of σ, we set [σ : τ] = 0. The following map is thus well defined

(2) dn(σ) =
∑
τ∈Σn−1

[σ : τ] τ .

It turns out that the map d generalizes the usual differential of regular CW-complex
to the case of the Voronoi complex (which is not regular CW-complex).

1.2.2. The associated equivariant spectral sequence. According to Section VII.7 of
[8], there is a spectral sequence Er

pq converging to the equivariant homology groups
HΓ

p+q(X∗N , ∂X∗N ;Z) of the pair (X∗N , ∂X∗N), with E1-page given by

E1
pq =

⊕
σ∈Σ?p

Hq(Γσ;Zσ) ,

where Zσ is the orientation module of the cell σ and, as above, Σ?p is a set of
representatives, modulo Γ, of the p-cells σ in X∗N which meet XN . Notice that the
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action of Γσ on Zσ is given by η described above. Since σ meets XN , its stabilizer
Γσ is finite and, by Lemma 4.1 in §3 below, the order of Γσ is divisible only by
primes p 6 N + 1. Therefore, when q is positive, the group Hq(Γσ;Zσ) lies in SN+1.

When Γσ happens to contain an element which changes the orientation of σ, the
group H0(Γσ;Zσ) is killed by 2, otherwise H0(Γσ;Zσ) � Zσ. Therefore, modulo
S2, we have

E1
n 0 =

⊕
σ∈Σn

Zσ ,

and the choice of an orientation for each cell σ gives an isomorphism between E1
n 0

and Vn.

Proposition 1.3. [17, §3.3, p.591-592] The differential

d1
n : E1

n 0 → E1
n−1,0

coincides, up to sign, with the map dn defined in 1.2.1.

As pointed out on p.589 of [17], the identity dn−1 ◦ dn = 0 gives us a non-trivial
test of our explicit computations.

Notation 1.4. The resulting complex (V•, d•) is denoted by VorΓ, and is called the
Voronoi complex.

1.2.3. The Steinberg module. Let TN be the spherical Tits building of SLN over Q,
i.e. the simplicial set obtained as the nerve of the ordered set of non-zero proper
linear subspaces of QN . The Solomon–Tits theorem says that TN is homotopy
equivalent to wedge of (N−2)-spheres, see Theorem IV.5.2 of [8]. Thus the reduced
homology H̃q(TN ,Z) of TN with integral coefficients is zero except when q = N − 2,
in which case

H̃N−2(TN ,Z) C StN

is by definition the Steinberg module. According to Proposition 1 of [47], the
relative homology groups Hq(X∗N , ∂X∗N ;Z) are zero except when q = N − 1, and

HN−1(X∗N , ∂X∗N ;Z) = StN .

From this it follows that, for all m ∈ N,

(3) HΓ
m(X∗N , ∂X∗N ;Z) � Hm−N+1(Γ; StN)

(see e.g. §3.1 of [47]). Combining this equality with the previous sections, we
obtain:

Proposition 1.5. For arbitrary positive integers N > 1 and m. We have the following
isomorphism modulo SN+1

(4) Hm−N+1(Γ; StN) � Hm(VorΓ) mod SN+1.

2. Small cells of quadratic forms

The method described in [37], Sections 9.2 and 9.3, though not very efficient,
can be used to classify cells of dimension n(n+1)

2 − t for small values of t; these are
the “small cells” referred to in the title.
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2.1. Minimal classes and the perfection rank. Our aim is the study of the Voronoi
complex in a given (cellular) dimension n. We shall make use of Watson’s index
theory, a theory which is better understood in terms of lattices. For this reason we
first recall some data of the “dictionary” which link lattices with quadratic forms.

We identify a quadratic form q with the n × n symmetric matrix A such that
q(x) = XtAX, where X is the column-vector of the components of x ∈ Rn. Let E be
an n-dimensional Euclidean space, on which the norm of x is N(x) = x · x. With
a lattice Λ ⊂ E (discrete subgroup of E of rank n) and a basis B = (e1, . . . , en) for
Λ over Z, we associate the Gram matrix A = (ei · e j) of B and the corresponding
positive, definite quadratic form q. The determinant of Λ is det(A), the discriminant
of q. The minimum of Λ, its set m(Λ) of minimal vectors correspond to the same
notions for quadratic forms. We denote by s the number of pairs of minimal vectors
of Λ (or of q). Besides this “kissing number” an important invariant is the perfection
rank r, the definition of which we recall now. Given a line D ⊂ E, we denote by
pD ∈ Ends(E) the orthogonal projection to D, and write px if D = R x for some
x , 0 in E. Note the formulae

px(y) =
x·y
x·x x and Mat(B∗,B, px) = XXt

where B∗ is the dual basis to B, defined by ei · e∗j = δi, j.

Definition 2.1. The perfection rank of a family D1, . . . ,Ds of lines in E is the
dimension of the span in Ends(E) of the projections pDi . A perfection relation on
the set {Di} is a non-trivial R-linear relation of the form

∑
λi pDi = 0. The perfection

rank r of a lattice Λ is the perfection rank of the set of lines R x, x ∈ S (Λ); that of a
quadratic form q is the rank in Symn(R) of the set {XXt}, X ∈ m(q).

We partition the space L of lattices into minimal classes by the relation Λ ∼ Λ′

if and only if there exists u ∈ GL(E) such that u(Λ) = Λ′ and u(m(Λ)) = m(Λ′), and
order the minimal classes by the relation C ≺ C′ if and only if there exists Λ ∈ C

and Λ′ ∈ C′ such that m(Λ) ⊂ m(Λ′).
The dictionary above establishes a one-to-one correspondence between the set of

minimal classes on the one hand, and the set of cells up to equivalence of (positive,
definite) quadratic forms having a given minimum on the other hand. These are
finite sets.

In the sequel, we restrict ourselves to well-rounded lattices (or forms), those for
which the minimal vectors span E. The following proposition provides an easy test
to decide whether two lattices belong to the same minimal class. Given a lattice
Λ and a basis B for Λ, and a set S ’ of representatives of pairs of minimal vectors
of S Λ, let T be the n × s matrix of the components of the vectors of S ′ on B, and
let B = T T t. This is the barycenter matrix of (Λ,B). Its equivalence class under
GLn(Z) does not depend on B.

Proposition 2.2. Two lattices belong to the same minimal class if and only if their
barycenter matrices define the same class under GLn(Z).

Proof. This is Proposition 9.7.2 of [38]. �

Lemma 2.3. Any perfection relation in Ends(E) between projections to vectors of
E may be written in the form∑

x∈S λx px =
∑

y∈T µy py

where λx, µy are strictly positive and S and T span the same subspace of E.
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Proof. Getting rid of the zero coefficients, we obtain a relation of this kind for
convenient subsets S ,T of E, and we may moreover assume that the vectors x, y
have norm 1. Applying this relation on a vector z ∈ T⊥ and taking the scalar
products with z, we obtain the equality∑

x∈S λx (x · z)2 = 0
which shows that z also belongs to S ⊥. We have thus proved the inclusion T⊥ ⊂ S ⊥,
i.e., 〈S 〉 ⊂ 〈T 〉, and exchanging S and T shows that 〈S 〉 = 〈T 〉. �

Remark 2.4. By the lemma above, a perfection relation with non-zero coefficients
between vectors which span an m-dimensional subset F of E involves at least 2m
vectors. This is optimal for all m > 2, as shown by the union of two orthogonal
bases B and B′ for F, since the sum of the orthogonal projections to the vectors of
B and B′ both add to the orthogonal projection to F. This construction of perfection
relations accounts for those of the lattice D4, since S (D4) is the union of three
orthogonal frames.

Theorem 2.5. The perfection rank r of a well-rounded n-dimensional lattice with
kissing number s 6 n + 5 is equal to s.

Proof. By definition of the perfection rank we have r 6 s, and if r < s, there exists
a perfection relation with support 2m vectors of some m-dimensional subspace F
of E. We have s > n + m, hence m 6 5. Now for a lattice L of dimension n 6 5,
one has s = n except if L ∼ D4 or if n = 5 and L has a D4-section having the same
minimum. Since s(D4) = 12, we then have s > n + 8, a contradiction. �

Notice that in the above theorem the bound s− n 6 5 is optimal; see Example 2.7
below.

2.2. Watson’s index theory and very small cells.

2.2.1. Codes associated with well-rounded lattices. Let Λ be a well-rounded lattice,
let e1, . . . , en be n independent minimal vectors of Λ, and let Λ′ be the sublattice of
Λ generated by the ei. Then the index [Λ : Λ′] is bounded from above (by γn/2

n ) and
so is the annihilator d of Λ/Λ′. The maximal index ı(Λ) of a well-rounded lattice Λ

is the largest possible value of [Λ : Λ′] for a pair (Λ,Λ′) as above.
Every element of Λ can be written in the form

x =
a1e1 + · · · + anen

d
, ai ∈ Z ,

and if d > 1 the systems (a1, . . . , an) mod d can be viewed as the words of a Z/dZ-
code. The codes arising this way have been classified for n up to 8 in [37] (which
relies on previous work by Watson, Ryshkov and Zahareva) and for n = 9 in [28].
The paper [37] relied on calculations which where feasible essentially by hand
(together with some checks made using PARI [23]). This is no longer possible
beyond dimension 8, and indeed [28] needed the use of a linear programming
package, which was implemented on MAGMA [7].

By averaging on the automorphism group of the code (see Proposition 8.5 of
[37]), one proves that if some code C of length n can be lifted to a pair (Λ,Λ′) (we
then say that C is admissible), then there exist Λ and Λ′ which are invariant under
Aut(C). Then the minimum smin of s is attained on such a lattice Λ, and the minimal
class of Λ depends uniquely on C.

By inspection of the tables of [37](Tableau 11.1) and [28](Tables 2-10), one
proves:
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Proposition 2.6. Let d > 2 and n 6 9, and let C be an admissible Z/dZ-code. Then
either C can be lifted to a pair (Λ,Λ′) with m(Λ) = {±ei}, or we have s(Λ) > n + 6
for every lift of C. �

Before going further we give some more precise results on the index theory. The
most useful tool is Watson’s identity, relying vectors e1, . . . , en of a basis for E, a
vector e =

a1e1+···+anen
d , and the vectors e′i := e − sgn(ai)ei :( n∑

i=1

|ai|
)
− 2d

 N(e) =

n∑
i=1

|ai|
(
N(e′i) − N(ei)

)
.

Applied to minimal vectors ei of a lattice Λ = 〈ei, e〉, this proves the lower bound∑
|ai| > 2d, and moreover shows that the vectors e′i for which ai , 0 are minimal

whenever
∑
|ai| = 2d.

Example 2.7. Let n = 6, d = 3 and let (e1, . . . , e6) be a basis for E with N(ei) = 1
and constant scalar products ei · e j = t. Let Λ = 〈e1, . . . , e6, e〉 where e =

e1+···+e6
3 .

Then for 1
10 < t < 1

4 (e.g., t = 1
5 ), we have min Λ = 1, m(Λ) = {±ei,±e′i}, and the

perfection relations are proportional to
∑

pei =
∑

pe′i , so that s = 12 = n + 6 and
r = 11 = s − 1. This is a consequence of the fact that we can associate canonically
a perfection relation with every Watson identity [4](Proposition 2.5).

2.2.2. Primitive minimal classes (or cells). Let C be a minimal class. For every
lattice Λ ∈ C, Λ̃ = Λ ⊥ mZ, where m = min Λ, is a lattice in E ×R, which defines a
minimal class C′ = C + Z of dimension n + 1, containing all direct sums Λ ⊕ mZ
close enough to Λ̃. We say that C is primitive if it does not extend by this process a
class of dimension n − 1.

Among n-dimensional (well-rounded) minimal classes, that of Zn, which has
ı = 1 and s − n = 0, plays a special role. Indeed, let C be a minimal class and let
e1, . . . , en be independent minimal vectors of some lattice Λ ∈ C, and let Λ′ ⊂ Λ

be the lattice with basis (e1, . . . , en). Let I1 ⊂ {1, . . . , n} be the support of the code
defined by (Λ,Λ′) (I1 = ∅ if Λ = Λ′) and let I2 be the set of subscripts which occur
as components of minimal vectors distinct from the ±ei (I2 = ∅ if s(Λ) = n). Set
I = I1 ∪ I2 and m = |I|. Then if C , cl(Zn), I is not empty, so that C extends a
minimal class of dimension m > 2.

To list minimal classes up to equivalence it suffices to list those which are
primitive and then complete the list with those of the form C′ ⊕ Z for some class C′

of dimension n − 1.

2.2.3. Classes with s = n.

Theorem 2.8. The numbers of minimal classes of well-rounded lattices with s = n
and n 6 9 having a given index ı are displayed in Table 2.

Proof. The lattices Λ with s = n contain a unique sublattice Λ′ generated by
minimal vectors of Λ, and Λ′ has a unique basis up to permutation and changes
of signs. Hence the classification of minimal classes coincide with the index
classification. We mainly need to consider the results from [37] and [28]. According
to the previous section, for index 2 (resp. 3) there is one primitive class if n > 5
(resp. n > 7), hence n − 4 (resp. n − 6) cells. Similarly for cyclic quotients of order
4 and n > 9 there are n − 4 primitive cells, but only three if n = 8, one if n = 7
and none if n 6 6, which for n = 7, 8, 9 yields 1, 4, and 9 cells of cyclic type with
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ı = 4. In the case ı = 4 but with Λ/Λ′ of type 22 (i.e. ı = 22), the condition is that
the corresponding binary code must be of weight w > 5. This implies ` > 8, and if
` = 8 (resp. ` = 9), we are left with one code, with weight distribution (52, 6) (resp.
three codes, with weight distributions (52, 8), (5, 6, 7) and (63)). As a result we got
four primitive cells. Finally we just have to read in the tables of [37](Tableau 11.1)
and [28](Tables 2-10) for index ı > 5 and n 6 9 for all admissible codes for which
s = n is possible. �

n\ı 1 2 3 4 22 5 6 7 8 4 · 2 # minimal classes

6 4 1 0 0 0 0 0 0 0 0 0 1
5 1 1 0 0 0 0 0 0 0 0 2
6 1 2 0 0 0 0 0 0 0 0 3
7 1 3 1 1 0 0 0 0 0 0 6
8 1 4 2 4 1 1 0 0 0 0 13
9 1 5 3 9 4 4 9 3 3 3 44

Table 2. Number of minimal classes of well-rounded lattices with
s = n and n 6 9 according to the quotient.

To deal with slightly larger values of s, we first establish an as short as possible
list of a priori possible index systems, then test for minimal equivalence the putative
classes obtained from this list, and finally construct explicitly lattices in the putative
class or prove that such a class does not exist. This third step is the more difficult
and it is hopeless to deal with relatively large values of s or of n without using
efficient linear programming methods, as seen in §3.

2.3. Lattices with s = 1 or s = 2. Consider a lattice Λ0 having a basis of minimal
vectors B = (e1, . . . , en) and t = s − n other minimal vectors xi =

∑n
i=1 ai, je j,

1 6 j 6 t. The m × m determinants (m 6 min(t, n)) extracted from the matrix (ai, j)
are the characteristic determinants of Korkine and Zolotarev (cf. Chapter 6 from
[38]). With every characteristic determinant d , 0 they associate a lattice Λ′0 of
index |d| in Λ0. This shows that if ı(Λ0) = 1, then d = 0 or ±1; in particular all ai, j
are 0 or ±1.

3. Enumeration of configurations of vectors

In this section we explain the algorithms used for enumerating the configurations
of vectors in dimension n ∈ {8, . . . , 12} and rank r = n, n + 1 or above.

Our approach computes first the configurations of vectors in rank r = n and then
from this enumeration gets the configurations in rank r = n + 1, then n + 2 and so
on. The number of cases explodes with the dimension n and rank r as one expects
and the computation is thus quite slow. However, for the case r = n an additional
problem occurs: the known bounds on the determinant of vector configurations are
suboptimal. All computations rely on the ability to test if a configuration of shortest
vectors of a positive definite matrix can be derived from a given configuration of
vectors.
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3.1. Testing realizability of vector family. In [28] an algorithm for testing realiz-
ability of vector families by solving linear programs was introduced. We describe
below the needed improvements of our strategy in order to reach higher dimensions.
We refer to [43] for an account of the classical theory of linear programming.

Given m affine functions (φi)16i6m on Rn and another function φ the linear
program is to minimize φ(x) for x subject to the constraints φi(x) > 0. Define
P = {x ∈ Rn, s.t. φi(x) > 0}. The linear program is called feasible if P , ∅ and the
elements of P are called feasible solutions. If φ is bounded from below on P then
the inferior limit is denoted opt(P, φ) and is attained by one feasible solution. Any
feasible solution will satisfy φ(x) > opt(P, φ)

The dual problem is to maximize the value of m such that there exist βi with

φ = m +

m∑
i=1

βiφi with βi > 0

Any feasible solution of the dual problem will gives us φ(x) > m and the
maximum value of such m will be exactly opt(P, φ) by a theorem of von Neumann
[43](§7.4). In other words, any feasible solution (m, βi) of the dual problem will
give us opt(P, φ).

Let A be an n×n matrix with real coefficients and set A[v] := vtAv for any v ∈ Rn.
Given a configuration of vectorsV the basic linear program to be considered is

minimize λ

with λ = A[v] for v ∈ V
A[v] > 1 for v ∈ Zn − {0} − V

If the optimal value satisfies λopt < 1 thenV is realizable, otherwise no.
The main issue is that the above linear program has an infinity of defining

inequalities and so instead we consider the program restricted to a finite subset, i.e.
the linear inequalities:

A[v] > 1 for v ∈ S with S finite and S ⊂ Zn − {0} − V.

It can happen that the equalities λ = A[v] for v ∈ V has no solution with λ , 0.
In that caseV is not realizable.

It can also happen that the linear program is unbounded that is solutions with
arbitrarily negative value of λ are feasible. In that case we append 2V to S.

Thus if those restrictions are implemented then the linear program has an optimal
rational solution Aopt(S) of optimal value λopt(S).

According to the solution of the linear program we can derive following conclu-
sions:

1. If λopt(S) > 1 then we can conclude that the vector configuration is not
realizable.

2. If λopt(S) < 1 and Aopt(S) is positive definite then we compute Min(Aopt(S)).
(a) If Min(Aopt(S)) = V then the configuration is realizable
(b) Otherwise we cannot conclude. But we can insert the vectors in the

difference Min(Aopt(S)) −V into S and iterate.
3. If λopt(S) < 1 and Aopt(S) is not of full rank then we can compute some

integer vector in the kernel of Aopt(S) and insert them into S and iterate.
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4. If λopt(S) < 1 and Aopt(S) is of full rank but not positive semidefinite then
we can compute an integer vector v such that Aopt(S)[v] < λopt(S) and insert
it into S and iterate.

Thus we can iterate until we obtain either feasibility of the vector configuration of
unfeasibility. In practice a naive implementation of this algorithm can be very slow
and we need to apply a number of improvements in order to get reasonable running
time:

1. The dimension of the program is n(n + 1)/2 − r and this is quite large. We
can use symmetries in order to get smaller program. Namely we compute
the group of integral linear transformation preservingV and impose that the
matrix A also satisfies this invariance.

2. Even after symmetry reduction the linear programs have many inequalities
and are hard to solve. In our implementation we use cdd [20] based on
exact arithmetic and provides solutions of the linear program and its dual
in exact rational arithmetic. However, cdd uses the simplex algorithm and
is very slow in some cases. Thus the idea is to use floating point arithmetic
and the glpk program [22] which has better algorithm and can solve linear
programs in double precision. From the approximate solution we can guess
in most cases a feasible rational solution of the linear program and its dual.
If both gives the same value, then we have resolved our linear program. If
this approach fails, then we fall back to the more expensive in time cdd. In
all cases, we only accept a solution if it has a corresponding dual solution.

3. If the matrix Aopt(S) is of full rank but not positive definite then there exists
an eigenvector w ∈ Rn of eigenvalue α < 0. We then use the sequence of
vectors

wi = (Near(iw1),Near(iw2), . . . ,Near(iwn)) .

with Near(x) being the nearest integer to a real number x. As i increases
wi approaches the direction of the vector w. Thus there is an index i0 such
that wi0 , 0 and Aopt(S)[wi0] < λopt(S) and this vector wi0 can be inserted
into S. The problem is that in many cases the matrix Aopt(S) is very near to
being positive definite and the negative eigenvalue will be very small. Thus
we first try double precision with the Eigen template matrix library [25] for
the computation of the eigenvector and vector wi0 . If this fails then we use
the arbitrary precision floating point library mpfr [19], still with Eigen and
progressively increase the number of digits until a solution is found.

4. An issue is for the initial vector set. In our implementation we set

S = V ∪
{
x ± ei ± e j for x ∈ V and 1 6 i, j 6 n

}
− {0}

but there could be better choice for initial vector set.
5. We apply LLL reduction [12] to the vector configuration. Namely, we define

a positive definite matrix

AV =
∑
v∈V

vtv

and apply the LLL reduction to it in order to get a reduction matrix P ∈
GLn(Z). The matrix P ∈ GLn(Z) is then used to reduceV as well. The use of
LLL reduction reduces the maximal size of the coefficients and dramatically



12 PHILIPPE ELBAZ-VINCENT ET. AL.

reduces the number of iterations needed to get a result. Hence we use it
systematically.

When all those methods are implemented we manage to do the realizability tests
in reasonable time.

A variant of the above mentioned realizability algorithm is to consider a family
of vector V of rank r and return a realizable configuration of vectorsW of rank
r if it exists that contains V. It suffices in the case λopt(S) < 1 and Aopt(S) to
distinguish between vectors of Min(Aopt) that increases the rank and vectors that do
not increase the rank.

3.2. Enumeration of configuration of vectors with r = n. In [28] it is proved
that for a configuration {±v1, . . . ,±vn} of shortest vectors, we have

| det(v1, . . . , vn)| 6
√
γn

n

with γn the Hermite constant in dimension n. As it turns out this upper bound on
the determinant is tight for dimension n 6 8 but not in dimension 9 and 10. An
additional problem is that γn is known exactly only for n 6 8 and n = 24. Our
strategy is thus to simply enumerate the vector configurations up to the best upper
bound that we have on the determinant.

For dimension 10, combined with the known upper bound on γ10 this gives an
upper bound of 59 on the indexes of the relevant lattices [28]. If one uses the
conjectured value of γ10 then one gets 36 as upper bound in dimension 10. It will
turn out that the maximal possible determinant is 16.

A key aspect of the enumeration is to enumerate first the cases where the quotient
Zn/L has the structure of a prime cyclic group. This is important since if a prime
p is unfeasible then any vector configurations with determinant divisible by p is
unfeasible as well. It is also important since our enumeration goes prime by prime
for composite determinants. For d = p1 × · · · × pr we first do the enumeration of
vector configurations of determinant p1, then p1 p2 and so on.

In the case of lattices of index p with p prime we consider a lattice L spanned by
e1 = (1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1) and

en+1 =
1
p

(a1, . . . , an), ai ∈ Z

such that (e1, . . . , en) is the configuration of shortest vectors of a lattice. By standard
reductions, we can assume that

· a1 6 a2 6 . . . 6 an
· and 1 6 ai 6 bp/2c.

Since p is prime en+1 can be replaced by ken+1 for any 1 6 k 6 p − 1. Thus we can
assume the vector en+1 to be lexicographically minimal among all possible vectors.

It turns out that lexicographically minimal vector configurations can be enu-
merated by exhaustive enumeration without having to store in memory the list of
candidates. The idea is as follows: if (a1, . . . , an) is lexicographically minimal, then
(a1, . . . , an−1) is also lexicographically minimal. Lexicographic minimality only
requires (p − 1)n multiplications and reductions to be tested. Thus we enumerate
all configuration up to length n − 1 and then extend this enumeration to length n by
adding all possible feasible candidates. For n = 10 and p = 59 we have 16301164
possible vector configurations and for each of them we test realizability.
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When the enumeration for index p is done we can continue the enumeration
up to index pp′ by taking all feasible lattices of index p and considering all their
sublattices of index p′ up to action of the symmetry group. Thus we get a set of a
priori feasible lattices for which we can apply our realizability algorithm and get
a list of lattices of index pp′. For n = 10 the most complex case of this kind is
49 = 72.

By doing prime by prime up to 59 in this way we are able to get all configurations
of shortest vectors in dimension 10, we find 283 different lattices. For dimension
n = 11, we were only able to go up to index 45 and we got in total 6674 possible
sublattices. The list is not proved to be complete but it is reasonable to conjecture
that this list is complete since the maximum determinant of a realizable vector
configuration is 32. For dimension n = 12, we managed only to go up to index 30
and found 454576 different vector configurations and it seems that this list is far
from complete.

3.3. Enumeration of configuration of vectors with r > n. For the case r = n + 1
and r = n + 2 we have proved in [13] that the relevant cones are simplicial. In [13]
an algorithm is given for getting the full list of configuration vectors in those ranks.
The only improvement to this algorithm is that the integer points are obtained by an
exhaustive enumeration procedure since zsolve proved too slow.

For rank r = n+3 and above simpliciality is not a priori true though it is expected
to hold in rank n+3 and n+4. Thus we need a different approach to the enumeration.
If we have a configuration of vectors V′ in dimension n and rank r > n + 2 then
it necessarily contains a n-dimensional configurations V of rank r − 2 and two
n-dimensional configurationsW1 andW2 of rank r − 1 such that

V ⊂Wi ⊂ V
′.

Our approach is as follows:
1. We first enumerate the configurations of vectors in dimension n and rank

r − 2 and r − 1.
2. We determine all the orbits of pairs (V,W) with V of dimension n rank

r − 2,W of dimension n rank r − 1.
3. For any configurationV of dimension n rank r − 2 there is a finite number

of configurations of vectors of dimension n rank r − 1 containing it. We can
thus enumerate all the pairs (W1,W2) containingV and check ifW1∪W2
is contained in a realizable family of vectors.

3.4. Obtained enumeration results. By combining all above enumerations meth-
ods, we can obtain a number of orbits of perfect domains for small r and n.

Proposition 3.1. The number of orbits of cones in the perfect cone decomposition
for rank r 6 12 and dimension n at most 11 (the result for r = n = 11 is conjectural)
are given in Table 3.

Remark 3.2. For dimension n = 11, 12 we do not have a full enumeration, however
the partial configuration obtained are already instructive. In all dimensions n 6 10
the orientation of the well-rounded families of vectors with s = n (i.e., the orientation
of the associated cells of dimension n in X∗n) were found not to be preserved by
their stabilizer. However, this changes with 5 well-rounded configurations known in
dimension 11 and 12 in dimension 12. One such configuration in dimension 11 is
e5 + e6 + e7 + e10 − e3, e11 − e2 − e10, e3 + e9, e4 + e6 + e8 − e2 − e9, e1 + e2 + e3,
e4 + e7 + e11 − e6, e8 + e9 − e7, e1 + e5 − e11, e4 + e5, e1 − e8, e10 and it has a
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r\n 4 5 6 7 8 9 10 11 12

4 1 3 4 4 2 2 2 - -
5 2 5 10 16 23 25 23 16
6 3 10 28 71 162 329 589
7 6 28 115 467 1882 7375
8 13 106 783 6167 50645
9 44 759 13437 ?

10 283 16062 ?
11 6674? ?

Table 3. Known number of orbits of cones in the perfect cone
decomposition for rank r 6 12 and dimension n at most 11 (the
result for r = n = 11 is conjectural).

stabilizer of order 4 which is the minimum known so far. It seems reasonable to
expect that there are well-rounded vector configurations with stabilizer of order
2, i.e. only antipodal operation. We know just one well-rounded configuration in
dimension 12 whose orbit under GL12(Z) splits into two orbits under SL12(Z). One
representative is e6 − e1 − e2 − e3 − e4, e6 − e7 − e8, e9 − e3 − e6 − e10 − e11 − e12,
e7 + e12 − e1 − e2 − e5 − e8, e11 − e1 − e4 − e5 − e6 − e10, e2, e4 + e8 − e7, e9, e10,
e3 + e5 + e7 + e9 − e1, e11, e12.

Remark 3.3. The above data for r 6 7 recover the computations of [17] (cf. Figures
1 and 2) and [36].

4. Homology of the Voronoi complexes

4.1. Preliminaries. Recall the following simple fact, cf. p.602 of [17], which are
relevant for understanding the action of GLN(Z) on XN :

Lemma 4.1. · Assume that p is a prime and g ∈ GLN(R) has order p. Then
p 6 N + 1.
· The action of GLN(R) on the symmetric space XN preserves its orientation if

and only if N is odd.

Remark 4.2. We can give a more precise statement regarding the torsion in GLN(Z).
Let p an odd prime and k a positive integer. Set ψ(pk) = ϕ(pk), ψ(2k) = ϕ(2k) if k > 1
and set ψ(2) = ψ(1) = 0. For an arbitrary m =

∏
α pkα

α define ψ(m) =
∑
α ψ(pkα

α ).
According to the crystallographic restriction theorem, an elementary proof of which
is given as Theorem 2.7 of [33], an element of order m occurs in GLN(Z) if and only
if ψ(m) 6 N.

4.2. The Voronoi complexes in low dimensions. From the computations of §3,
we deduce the following cardinalities.

Proposition 4.3. The number of low dimensional cells in the quotient (X∗N , ∂X∗N)/GLN(Z)
is given by Table 4.

The explicit data can be retrieved at the url https://github.com/elbazvip/
Voronoi-complexes-database. For convenience to the reader, we give below a
set of representatives in the case s = n = 8.

https://github.com/elbazvip/Voronoi-complexes-database
https://github.com/elbazvip/Voronoi-complexes-database
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n 8 9 10 11 12

Σ?n
(
GL8(Z)

)
13 106 783 6167 50645

Σn
(
GL8(Z)

)
0 0 0 0 0

Σ?n
(
GL9(Z)

)
44 759 13437 ?

Σn
(
GL9(Z)

)
0 0 0 ?

Σ?n
(
GL10(Z)

)
283 16062 ?

Σn
(
GL10(Z)

)
0 0 ?

Table 4. Cardinality of Σn and Σ?n for N = 8, 9, 10 (empty slots
denote zero).

Proposition 4.4. A set of representatives for the 13 well-rounded cells of Σ?8
(
GL8(Z)

)
is given by the following matrices:



0 0 0 0 0 −1 0 0
0 −1 0 0 0 1 0 0
0 −1 0 1 0 1 1 0
0 0 0 1 0 1 0 0
0 −1 −1 1 0 0 0 0
1 1 1 0 0 0 0 0
0 2 0 −2 0 −1 −1 −1
0 −1 −1 1 1 1 1 1


,



0 0 1 1 1 0 0 0
0 0 −1 −2 −1 0 0 0
0 0 −2 −2 −2 0 −1 0
0 0 −1 −1 −1 0 0 −1
0 −1 −1 −1 −2 0 0 0
1 1 1 1 1 0 0 0
−1 1 3 3 3 0 1 1
0 −1 −2 −2 −2 1 0 0


,



0 1 1 0 0 0 −1 0
0 −1 −2 0 0 0 1 0
0 −1 −2 0 0 0 1 1
0 −1 −1 0 0 −1 0 0
0 −1 −1 0 0 1 0 0
1 1 1 0 0 0 0 0
0 1 3 0 −1 0 0 0
−1 −1 −2 1 1 0 0 0


,



0 0 1 −1 0 0 0 −1
0 0 −2 1 0 0 0 1
0 −1 −2 1 0 1 0 1
0 −1 −1 0 0 0 0 1
0 −1 −1 1 0 0 0 0
1 1 1 0 0 0 0 0
0 2 3 −2 0 −1 −1 −2
0 −1 −2 1 1 1 1 1


,



−1 −2 0 0 1 1 1 −1
0 1 0 0 0 −1 −1 0
0 1 0 0 −1 −1 −1 2
0 0 1 0 0 0 0 −1
0 −1 0 0 0 0 1 −1
0 1 0 0 −1 −1 −2 1
0 −1 −1 −1 1 1 1 0
1 1 1 1 0 0 0 0


,



0 0 0 −1 0 0 0 1
0 −1 0 1 0 0 1 0
0 1 0 0 −1 0 −1 0
1 −1 0 1 1 0 0 0
0 1 −1 0 0 0 0 0
−1 1 1 0 0 0 0 0
0 2 0 −1 −1 −1 −1 0
1 −2 0 1 1 1 1 0


,



0 0 0 0 −1 1 0 0
0 0 1 −1 −1 0 0 1
0 0 0 1 1 −1 0 −1
0 0 0 0 0 0 1 1
0 0 −1 0 0 −1 0 0
1 0 1 0 0 0 0 0
0 0 1 −1 −1 1 0 0
0 1 −1 1 1 0 0 0


,



−1 1 −1 −2 −1 −1 −2 0
0 0 1 1 0 0 1 0
−1 0 −1 −1 −1 0 −1 1
0 −1 0 1 1 1 2 0
1 0 2 1 1 0 1 0
0 1 0 0 0 −1 −1 0
0 1 −1 −1 −1 −1 −1 0
1 0 1 1 1 1 1 0


,



1 1 −1 −1 −1 0 0 1
−1 0 1 1 1 −1 −1 0
0 0 −1 0 0 1 1 0
−1 0 1 0 0 −1 0 0
0 −1 1 1 0 0 0 0
0 0 0 0 1 1 0 0
1 0 −1 −1 0 0 0 0
1 1 0 0 0 0 0 0


,



1 1 0 0 −1 0 0 0
−1 0 0 −1 1 0 −1 0
1 −1 0 1 0 0 0 0
−1 0 0 −1 0 0 −1 1
−1 −1 0 0 0 1 1 0
0 −1 −1 0 1 0 0 0
1 1 0 1 0 0 0 0
1 1 1 0 0 0 0 0


,



0 0 0 0 0 1 0 −1
0 0 0 1 0 1 0 1
0 0 0 −1 0 −1 1 0
−1 0 1 −1 0 −2 0 0
0 1 −1 0 1 1 0 0
0 −1 1 1 0 0 0 0
0 0 1 −1 0 −1 0 0
1 1 −1 1 0 1 0 0


,



0 −1 0 0 1 0 −1 0
0 1 −1 0 0 0 0 1
0 −1 1 0 0 0 1 0
1 1 −1 0 −1 1 0 0
−1 −1 1 1 0 0 0 0
−1 0 0 0 1 0 0 0
1 2 −2 0 0 0 0 0
0 −1 2 0 0 0 0 0


,



0 0 0 1 0 0 0 −1
−1 0 0 −1 0 0 1 0
0 0 −1 −1 0 0 1 0
0 0 −1 0 0 0 1 1
0 −1 0 −1 0 0 0 0
1 1 1 1 0 0 0 0
0 0 1 1 0 −1 −2 0
0 0 −1 −1 1 1 1 0


.

We can check the inequivalence of the above matrices using the command
qfisom from PARI [23]. As all cells have their orientations changed, we deduce
the following central result for the homology of the Voronoi complex.

Theorem 4.5. The groups Hk(VorGLN (Z)) are zero modulo S2 for N = 8 and k 6 12,
N = 9, 10 and k < 12.

Remark 4.6. In the case N = 12 we cannot prove so far that the list of 12-
dimensional cells of VorGLN (Z) is complete (even if heuristically it seems the case).

5. Cohomology of modular groups
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5.1. Borel–Serre duality. According to Borel and Serre, Thm. 11.4.4 and Thm. 11.5.1
of [6], the group Γ = SLN(Z) or GLN(Z) is a virtual duality group with dualizing
module

Hv(N)(Γ;Z[Γ]) = StN ⊗ Z̃ ,

where v(N) = N(N − 1)/2 is the virtual cohomological dimension of Γ and Z̃ is the
orientation module of XN . It follows that there is a long exact sequence

(5)
· · · Hv(N)−n(Γ; Z̃) Ĥv(N)−n(Γ, Z̃)

Hn−1(Γ; StN) Hv(N)−n+1(Γ; Z̃) · · · .

where Ĥ∗ is the Farrell cohomology of Γ [18].
From Lemma 4.1 and the Brown spectral sequence, X (4.1) of [8], we deduce

that Ĥ∗(Γ, Z̃) lies in SN+1. Therefore

(6) Hn(Γ; StN) ≡ Hv(N)−n(Γ; Z̃) , modulo SN+1.

When N is odd, then GLN(Z) is the product of SLN(Z) by Z/2, therefore

Hm(GLN(Z);Z) ≡ Hm(SLN(Z);Z) , modulo S2.

When N is even, then the action of GLN(Z) on Z̃ is given by the sign of the
determinant (see Lemma 4.1) and Shapiro’s lemma gives

(7) Hm(SLN(Z),Z) = Hm(GLN(Z),M) ,

with

M = IndGLN (Z)
SLN (Z) Z ≡ Z ⊕ Z̃ , modulo S2.

5.2. Homology of modular groups with coefficients in the Steinberg module.
From 4.5 and 1.5, we deduce

Corollary 5.1. The groups Hk−N+1(GLN(Z); StN) are trivial modulo SN+1 for N =

8, 9, 10 and k = 8, . . . , 11 (assuming k > N).

Adding this to the results of [17], one obtains Table 5.

5.3. Cohomology of modular groups. When Γ = SLN(Z) or GLN(Z), we know
Hm(Γ; Z̃) by combining (4) (end of §1.2.3), Section 4.2 and (6). As shown above,
this allows us to compute the cohomology of Γ with trivial coefficients. The results
are given in Corollary 5.2 below.

Corollary 5.2. From Borel–Serre duality, we have

H
N(N−1)

2 −k(GLN(Z);Z) = 0 mod SN+1 ,

for N = 8, 9, 10, 11 and 0 < k 6 12 − N.

Remark 5.3. This provides further evidence for a conjecture of Church, Farb and
Putman [10], see Conjecture 2.
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k\N 0 1 2 3 4 5 6 7 8 9 10 11

12 Z ? ? ? ?
11 ? ? ? ?
10 Z2 ? ? ? ?
9 ? ? ? ?
8 ? ? ? ?
7 Z ? ? ? ?
6 Z Z ? ? ? ?
5 Z Z ? ? ?
4 ? ? ?
3 Z Z ? ?
2 ?
1
0 Z Z

Table 5. The groups Hk+N−1(VorGLN (Z)) = Hk(GLN(Z); StN) mod-
ulo SN+1. Empty slots denote 0.

6. Application to algebraic K-theory of integers

The homology of the general linear group with coefficients in the Steinberg
module can also be used to compute the K-theory of Z. Let P(Z) be the exact
category of free Z-modules of finite rank, let Q be the category obtained from P(Z)
by applying Quillen’s Q-construction [42], and let BQ be its classifying space. Let
QN be the full subcategory of Q containing all free Z-modules of rank at most N
and BQN its classifying space. One of the definitions of the algebraic K-theory
groups [42] is

Km(Z) = πm+1(BQ) , m > 0 .

Therefore we can compute Km(Z) if we understand the homology of BQ as well as
the Hurewicz map

hm : Km(Z)→ Hm+1(BQ;Z).

To do so, we use that Quillen proved in Theorem 3 of [41] that there are long
exact sequences

· · · Hm(BQN ;Z) Hm−N(GLN(Z); StN)

Hm−1(BQN−1;Z) Hm−1(BQN ;Z) · · · .

Since BQ0 ' ∗, these allow us to inductively obtain information about the homology
of BQN from H∗(GLN(Z); StN).
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6.1. On the homology of BQ. Using Proposition 1.5, we can rewrite the above
Quillen sequences as

(8)

· · · Hm(BQN ;Z) Hm−1(VorGLN (Z))

Hm−1(BQN−1;Z) Hm−1(BQN ;Z) · · · .

We obtain the following result concerining the homology of BQ. It is proven
using a spectral sequence, but a reader unfamiliar with spectral sequences may
reproduce the results by inductively using the long exact sequences (8).

Proposition 6.1. Modulo S7 we have

Hm(BQ;Z) =

0 if m = 2, 3, 4, 5, 8, 9
Z if m = 0, 1, 6, 7, 10, 11.

Furthermore, modulo S11 we have H12(BQ;Z) = Z.

Proof. The long exact sequences (8) give rise to a spectral sequence

E1
pq = Hq(GLp(Z); Stp) =⇒ Hp+q(BQ;Z).

We shall use this modulo S7 and S11 respectively. Table 5 gives most of the E1-page
for p 6 11 and q 6 12, substituting N = p and k = q.

For m 6 12, the diagonal line p + q = m contains either no non-zero entry, or a
single entry Z. Thus to prove the first part it suffices to show that the d1-differentials
d1 : E1

p+1,q → E1
p,q vanish modulo S7 for p + q 6 12. For the second part, we need

to further verify that all dr-differentials dr : Er
6+r,6−r+1 → Er

6,6 vanish modulo S11.
Since these are homomorphisms into abelian groups that are either zero or free, we
can prove this by verifying it after tensoring with Q.

To do so, we use that the rational homotopy groups of BQ are known by work of
Borel, §12 of [5]:

πm(BQ) ⊗ Q =

Q if m = 1 or, m = 4i + 2 with i a positive integer,
0 otherwise.

Since BQ is an infinite loop space, the rational homotopy groups determines its
rational homology groups: for m 6 12, Hm(BQ;Q) is 0 if m = 2, 3, 4, 5, 8, 9 and Q
if m = 0, 1, 6, 7, 10, 11, 12. This proves the desired statement. �

Remark 6.2. That the coinvariants H0(GLN(Z); StN) vanish for N > 3 is due to Lee
and Szczarba, Theorem 1.3 of [35]. They deduce this by exhibiting a generating
set of StN . In [11], Church and Putman give a presentation of StN , from which one
may deduce that H1(GLN(Z); StN) = 0 modulo SN for N > 3. In fact, Theorem
A of [11] gives only a rational statement, but it is straightforward to verify their
argument goes through modulo SN . In [40], Miller, Patzt, and Nagpal have shown
that H1(SLN(Z); StN) = 0 for N > 6, that is, without needing to work modulo SN .

6.2. On the Hurewicz homomorphism. By definition, for every integer m > 1,

Km(Z) = πm+1(BQ) .

The space BQ is in fact Ω∞−1K(Z) with K(Z) the algebraic K-theory spectrum of Z,
so in particular an infinite loop space. This has consequences for the kernel Cm of
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the Hurewicz homomorphism

hm : πm(BQ)→ Hm(BQ;Z) .

Proposition 6.3. Modulo S5, we have Cm = 0 for m = 9, 10, 11. Modulo S7, we
have C12 = 0.

Proof. This follows from Theorem 1.5 of [1], which implies that if X is a path-
connected infinite loop space then the kernel of the Hurewicz homomorphism
πn(X)→ Hn(X;Z) is annihilated by Rn, an integer divisible only by primes 6 n

2 + 1.
We apply this result to X = BQ. �

Theorem 6.4. The group K8(Z) is trivial.

Proof. From Propositions 6.1 and 6.3 we deduce that K8(Z) = 0 modulo S7. Ac-
cording to the Quillen–Lichtenbaum conjectures (see e.g. Chapter VI.10 of [51])
if ` is a regular odd prime, there are no `-torsion in K2 j(Z) for j > 0. Hence
K8(Z) = 0. �

Using an elaboration of the method presented, we can recover information about
several related algebraic K-theory groups (see also Table VI.10.1.1 of [51]).

Proposition 6.5. Modulo S7, K9(Z) � Z and K10(Z) = 0. Modulo S11, K11(Z) = 0.

Proof. Having proven Theorem 6.4, we know the groups Ki(Z) modulo S7 for i 6 8:
they vanish unless i = 0, 5 in which case they are Z. The groups Ki(Z) are also the
homotopy groups of the algebraic K-theory spectrum K(Z), and we conclude that
there is a map of spectra

S0 ∨ S1 → K(Z)
which is 8-connected modulo S7. By the Hurewicz theorem modulo S7, we see that

π10(BQ) � H10(BQ,Ω∞−1(S0 ∨ S5);Z)

modulo S7. It is a standard computation that H10(Ω∞−1(S0 ∨ S5);Z) = 0 modulo
S7, so from Propositions 6.1 and the long exact sequence of a pair it follows that
K9(Z) = π10(BQ) � Z modulo S7.

This allows for the construction of a further map

S0 ∨ S5 ∨ S9 → K(Z)

which is 9-connected modulo S7. Applying Ω∞−1 and repeating the above analysis
in degrees 11 and 12 gives K10(Z) = 0 modulo S7 and K11(Z) = 0 modulo S11. �

Remark 6.6. As pointed out in Remark 6.2, [11] proves that H1(GLN(Z); StN)
vanishes modulo SN . In order to prove K12(Z) = 0, we thus ”only“ need to recover
the groups H12(VorGLN (Z)) for N = 9, 10, 11 which are still missing.

7. Arithmetic applications

For the convenience of the reader, we recall some facts about the relationship
between algebraic K-theory and étale cohomology, with a view towards the Kummer–
Vandiver conjecture. We follow the presentation of Kurihara [32] and Soulé [46]
(see also Section VI.10 of [51]).

Let p be an odd prime, i ∈ N and j ∈ Z. Denote by

Hi
ét(Z[1/p];Zp( j)) B lim

←−−
ν

Hi
ét(Spec(Z[1/p]);Z/pν( j))
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the étale cohomology groups of the scheme Spec(Z[1/p]) with coefficients in the j-
th Tate twist of the p-adic integers. It is known that when j , 0 these groups vanish
unless i = 1, 2. It was shown by Dwyer and Friedlander [15] and (independently) by
Soulé [46], that when m = 2 j − i > 1 and i = 1, 2, there is a surjective Chern map

Km(Z)→ Hi
ét(Z[1/p];Zp( j)) .

Recall the following facts about these groups:
1. When p > j + 1 the groups H1

ét(Z[1/p];Zp( j)) vanish.
2. When j > 0 is even, the order of H2

ét(Z[1/p];Zp( j)) is equal to the numerator
of Bn/n (this is due to Mazur and Wiles, [39])

Hence, those groups are not known when i = 2 and j is odd (assuming p > j+1). At
the level of m it means that m is divisible by 4. LetQ(ζp) be the cyclotomic extension
of Q obtained by adding p-th roots of unity. Let C be the p-Sylow subgroup of the
class group of Q(ζp). The group ∆ = Gal(Q(ζp)/Q) � (Z/p)× acts upon C via the
Teichmüller character

ω : ∆→ (Z/p)× ,

with g(x) = xω(g) and xp = 1. For all i ∈ Z let

C(i) = {x ∈ C such that g(x) = ω(g)ix for all g ∈ ∆} .

Let C+ be the subgroup of C fixed by the complex conjugation of Q(ζp). The
Kummer-Vandiver conjecture states that C+ = 0 for arbitrary p. By the above
construction, it turns out that C+ is the direct sum of the groups C(i) for i even
and 0 6 i 6 p − 3. We then deduce the reformulation of the Kummer–Vandiver
conjecture [32, 46]:

Conjecture 7.1 (Kummer–Vandiver conjecture). The groups C(i) vanish for i even
and 0 6 i 6 p − 3.

From op. cit., using the above setting, we get a surjective map

K2m−2(Z)� C(p−m) .

As consequence of (6.4), we get

Corollary 7.1. The groups C(p−5) are zero for all prime p > 3.

Remark 7.2. By [46], we know that C(p−n) is zero for p “large enough” with
respect to n. From computations done by Buhler and Harvey [9], we know that
the conjecture is true for all (irregular) primes p < 163577856. This was recently
improved to p < 2147483648 by Hart, Harvey, and Ong [26].
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[14] M. Dutour Sikirić, A. Schürmann, and F. Vallentin. Classification of eight-dimensional perfect
forms. Electron. Res. Announc. Amer. Math. Soc., 13:21–32, 2007. 3

[15] W. G. Dwyer and E. M. Friedlander. Algebraic and etale K-theory. Trans. Amer. Math. Soc.,
292(1):247–280, 1985. 20

[16] P. Elbaz-Vincent. Perfect forms of rank 6 8, triviality of K8(Z) and the Kummer/Vandiver
conjecture. In Renaud Coulangeon, Benedict H. Gross, and Gabriele Nebe, editors, Lattices and
Applications in Number Theory, volume 13 of 1, 2016. 2

[17] P. Elbaz-Vincent, H. Gangl, and C. Soulé. Perfect forms, K-theory and the cohomology of
modular groups. Adv. Math., 245:587–624, 2013. 1, 4, 5, 14, 16

[18] F. T. Farrell. An extension of Tate cohomology to a class of infinite groups. J. Pure Appl. Algebra,
10(2):153–161, 1977/78. 16

[19] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann. MPFR: a multiple-precision
binary floating-point library with correct rounding. ACM Trans. Math. Software, 33(2):Art. 13,
15, 2007. 11

[20] K. Fukuda. cdd. https://www.inf.ethz.ch/personal/fukudak/cdd_home, 2016. 11
[21] C.-F. Gauss. Untersuchungen über die eigenschaften der positiven ternären quadratischen formen

von ludwig august seeber. J. Reine Angew. Math., 20:312–320, 1840. 3
[22] The GLPK group. glpk. https://www.gnu.org/software/glpk, 2017. 11
[23] The PARI group. PARI/GP, Versions 2.1 � 2.4. 7, 15
[24] S. Grushevsky, K. Hulek, and O. Tommasi. Stable betti numbers of (partial) toroidal compactifi-

cations of the moduli space of abelian varieties. In Proceedings in honour of Nigel Hitchin’s
70th birthday, Volume II, pages 581–610. Oxford University Press, 2018. With an appendix by
Mathieu Dutour Sikirić. 2
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