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Abstract

Influenza epidemics each year cause hundreds of thousands of deaths worldwide
and put high loads on health care systems, in France and elsewhere. A main con-
cern for resource planning in public health is the risk of an extreme and dangerous
epidemic. Sizes of epidemics are measured by the number of visits to doctors caused
by Influenza Like Illness (ILI), and health care planning relies on prediction of ILI
rates. We use recent results on the multivariate Generalized Pareto (GP) distri-
butions in Extreme Value Statistics to develop methods for real-time prediction
of risks of exceeding very high levels and for detection of unusual and potentially
very dangerous epidemics. Based on the observation of the two first weeks of the
epidemic, the GP method for real-time prediction is employed to predict ILI rates
of the third week and the total size of the epidemic for extreme influenza epidemics
in France. We then apply a general anomaly detection framework to the ILI rates
during the three first weeks of the epidemic for early detection of unusual extreme
epidemics. As an additional input to resource planning we use standard methods
from extreme value statistics to estimate risk of exceedance of high ILI levels in
future years. The new methods are expected to be broadly applicable in health
care planning and in many other areas of science and technology.

1 Introduction

Influenza every year causes 250,000–500,000 deaths worldwide [Rambaut et al.,
2008] and 0–10,000 deaths in France [Viboud et al., 2004]. In the 20th century
there were 3 influenza pandemics, with the very extreme and unusual 1918 Spanish
flu causing perhaps 50 million deaths [Simonsen et al., 1998]. Annual seasonal
influenza epidemics put substantial strain on public health care systems, in France
because the high morbidity leads to emergency rooms becoming overfilled, and also
by the work caused by excess deaths. Countrywide data on morbidity is typically
available in the form of counts of visits to doctors caused by Influenza Like Illness
(ILI).

Substantial epidemiological research is aimed at the impact of annual seasonal
influenza epidemics on the health care system. Key problems include

(P1) estimation of risks of very extreme ILI rates next year — or during the next
10 years,

(P2) real-time prediction of risks of high ILI rates in extreme epidemics, and
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(P3) detection of anomalous and unusual, potentially very dangerous, extreme epi-
demics.

These three key problems concern prediction outside of the range of observed
data. Extreme value statistics (EVS) is the branch of statistics which has been de-
veloped to address problems like the ones raised above, and to extrapolate outside
the range of data. It is broadly used to handle extreme events, such as extreme
floods or heat waves or episodes with huge financial losses [Katz et al., 2002, Em-
brechts et al., 1997]. In this paper we build on recently developed EVS results
on multivariate Generalized Pareto (GP) distributions to extend the toolbox of
available epidemiological techniques, by using them to give consistent answers to
Problems (P1), (P2) and (P3). We then use the new tools for prediction of the ILI
rates during the third week and of the total size for influenza epidemics in France,
and for evaluating the risk that a new epidemic is anomalous. The methods we have
developed in this paper can be used more broadly, e.g. for prediction of extremes
of other types of recurrent community epidemics or for dimensioning of capabilities
to handle health problems caused by extreme heat waves.

A central issue for resource planning in public health is to predict the likeli-
hood that exceptional or extreme courses of events occur in the not too distant
future [Bresee and Hayden, 2013]. We use ILI data from France, collected by the
Sentinelles network [Réseau Sentinelles, 2019]. In this data a visit to a doctor is
classified as ILI using the following three criteria, i) fever in excess of 39 degrees
centigrades, ii) respiratory symptoms, and iii) muscle aches. Only a part of the ILI
cases are actually caused by influenza, but of course the total number measures the
burden on the health care system. There is an influenza epidemic in France each
year, and the estimated yearly peak number of ILI visits to health care providers
during a week varies between 200,000 and 900,000, cf. Figure 1 below.

Problem (P1) is solved by standard and well established methods from EVS.
As for previous use in epidemiology, we only know of two papers: in 2015, Chen
et al. applied EVS to monthly incidence of avian influenza cases, and in 2016,
Thomas et al. illustrated the use of EVS to estimate distributions of extremes of
annual seasonal influenza mortality and variations by weekday in the daily number
of emergency department visits. As far as we understand, classical SIR modeling is
not suitable for the large influenza epidemics where sizes of outbursts are determined
by macro scale events such as high genetic variability and frequent genetic re-
assortment of viruses, and substantial variation in efficiencies of vaccines and in
vaccination frequency [Rambaut et al., 2008].

Previous approaches to Problem (P2) include high dimensional times series pre-
diction [Davis et al., 2016]. The Sentinelles network uses a nonparametric “nearest
neighbor” method to predict the evolution of the epidemic. The US Center for
Disease Control initiated a data challenge to predict the year 2013 US influenza
epidemic. Their conclusion was “Forecasting has become technically feasible, but
further efforts are needed to improve forecast accuracy so that policy makers can
reliably use these predictions” [Biggerstaff et al., 2016].

Solutions to Problem (P3) can be seen as a warning systems for early man-
aging of unusual and potentially dangerous extreme epidemics. We are aware of
two previous papers that used EVS in the context of surveillance: Guillou and
Kratz [2013] proposed a method for early detection of time clusters applied to the
surveillance of Salmonella and Thomas et al. [2017] presented an anomaly detection
algorithm in extreme regions using empirical Minimum-Volume sets on the sphere.
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The approach in the present paper, built on a Generalized Pareto likelihood, can
add corroboration or otherwise to fears that an anomalous event occurs.

A problem which is important for health care planning is to decide when the
yearly influenza epidemic has started. Papers studying this question include [Le Strat
and Carrat, 1999] which proposes an automatic detection method based on hidden
Markov models. The Sentinelles network uses the “Serfling method” [Serfling, 1963]
which is built on cyclical seasonal modeling of background ILI rates and pronounces
that the annual influenza epidemic has started when ILI rates during two consecu-
tive weeks exceeds the upper bound of the 90% confidence interval for the weekly
seasonal mean. Here we propose a third method, adapted to our problem, to define
the start of an influenza epidemic.

The next section gives a very brief account of the Peaks over Threshold (PoT)
method in EVS. Section 3 describes the ILI data in more detail and how we select
the extreme part of epidemics. Section 4 presents the methods we use and in
particular the multivariate GP distributions which form the basis for the approach
to Problems (P2) and (P3) which is developed in this paper. The section also
discusses the GP likelihood approach for measuring anomalous character of a new
epidemic which can contribute to solutions of Problem (P3). In Section 5 the EVS
methods are applied to the Sentinelles ILI data and Section 6 studies the accuracy
of the real-time prediction, based on Brier plots and scores. Finally, Section 7
contains a concluding discussion.

2 Background: EVS modeling

EVS builds on two methods, the block maxima method which applies to, say, yearly
maxima of some quantity of interest, and the Peaks over Thresholds (PoT) method,
which is the one we will use here.

The approach to Problem (P1) is based on the one-dimensional version of the
PoT method in which one defines a suitably high threshold and only uses the
excesses (= observation − threshold) as the data for the statistical analysis. E.g.
the observations could be the ILI rates of the third week of an influenza epidemic
and the data to be analyzed could be the excesses of the 0.3 quantile of these
rates. In the statistical analysis these excesses, given that they are positive, are
then assumed to be independent and identically distributed and to follow a GP
distribution, and the parameters of this GP distribution are estimated from the
data. The estimated distribution can then, e.g., be used to compute risks that
there will be a very high ILI rate next year, or during the next 10 years. A useful
account of this method is given in [Coles, 2001].

The multivariate PoT method, basis for the approach to Problems (P2) and
(P3), is much more recent. In it the observations instead are vectors and one de-
fines a threshold for each component of the vector. From the components one then
subtracts its threshold to form an excess vector. Note that here “excesses” can be
negative. An excess vector is then considered to be a threshold exceedance if at
least one of the excesses are positive, i.e., if at least one of the components exceeds
its threshold. The data to be analyzed consists of the set of such threshold excess
vectors. For the ILI data the observations are, e.g., the ILI rates of the three first
weeks of the extreme epidemic. In the statistical analysis the data set consist-
ing of the threshold excess vectors are assumed to be independent and identically
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distributed and to follow a multivariate GP distribution. The parameters of this
distribution are estimated from the data, and the estimated distribution is used
for real-time prediction and for anomaly detection. Formulas and more details are
given in Section 4 and in the appendix.

The philosophy behind the PoT method is that often extreme values, say high
weekly ILI rates, behave quite differently than non-extreme values, and hence that
only extreme values give information about other extremes. The reason for using
the GP distribution is limit theory for extremes which is completely parallel to the
central limit theory motivation for using the normal distribution to model “sums
of errors”, and that it hence provides a principled way of extrapolating outside of
the range of observed data.

3 The ILI data

The nationwide Réseau Sentinelles network consists of approximately 1,500 practic-
ing physicians in France who voluntarily participate in disease surveillance. A main
part of their effort is biweekly reporting of ILI visits. The reported numbers of new
cases per week are centrally converted to weekly incidence rates per 100,000 persons
to obtain the “raw incidence rates” [for further details see Réseau Sentinelles, 2019].
We downloaded the raw weekly ILI incidence rates for metropolitan France from
January 1985 to February 2019 and fitted the Serfling cyclic regression to estimate
the seasonal weekly means. The weekly means were then subtracted from the raw
weekly incidence rates to form the “deseasonalized ILI incidence rates”.

Figure 1 shows the 35 epidemics which are included in the raw downloaded data.
The weekly means are much smaller than the peak rates, so instead plotting the
deseasonalized ILI data would not change the appearance of the graph.

In the sequel we only study the deseasonalized 1985–2018 data and put the 2019
data aside as a test case.

Epidemics are extreme events, with a behavior which is much different from the
behavior during non-epidemic periods. To select the extreme part of the epidemics,
we adapted the definition of the start of an annual epidemic, and also, to obtain
good fit of the GP models, we applied a further selection proceedure which removed
a few of the least extreme epidemics from the modelling.

Thus, we deemed an epidemic period to begin when the deseasonalized ILI rates
exceeded the threshold 275 during two consecutive weeks. The start of the epidemic
period was set to be the first of these two weeks, and the end was defined to be
the end of the Serfling epidemic period. The resulting 35 epidemic periods had
lengths varying from 3 to 12 weeks. The “size of the epidemic” was computed
as the sum of the weekly deseasonalized ILI incidence rates for the weeks in the
epidemic period. The threshold 275 corresponds to the 0.35 quantile of all ILI rates
within a Serfling epidemic period. The choice of this threshold was driven by the
wish to have a definition which made the epidemics as synchronized as possible, see
Figure 2. From now on, we will refer to the first three weeks of an epidemic period
as Week 1, Week 2 and Week 3.

Below we use the deseasonalized ILI rates during Weeks 1 and 2 to predict the
incidence rate of Week 3. As a first step, for each of Weeks 1, 2, and 3, the 0.3
quantile of the deseasonalized ILI rates was subtracted from the rates themselves,
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Figure 1: Weekly raw ILI incidence rates per 100,000 persons in metropolitan France
from January 1985 to February 2019.
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Figure 2: a) Weekly deseasonalized ILI incidence rates for the Serfling epidemics, and b)
weekly deseasonalized ILI incidence rates for epidemics obtained from the definition in
this paper.
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to obtain “threshold excesses” for the deseasonalized data. The values of these
quantiles were Week 1: 226, Week 2: 327 and Week 3: 347. Recall that according
to this definition excesses can be negative. If at least one of these three threshold
excesses in an epidemic was positive, we classified this epidemic as “extreme”.
In this way we obtained 32 extreme epidemics. The 32 three-dimensional vectors
consisting of the threshold excesses for Weeks 1, 2, and 3 in these extreme epidemics
were the basis for our analysis.

We additionally used the observed incidence rates during Weeks 1 and 2 to
predict the size of the epidemic. This was done in the same way as for prediction
of the ILI rate of Week 3. We considered the three-dimensional vectors consisting
of threshold excess ILI rates for Weeks 1 and 2, and for the size of the epidemic.
Now only 31 of these vectors were considered as “extreme” (the 0.3 quantile for the
size of the epidemic was equal to 1973).

The 0.3 quantile threshold was chosen, as is standard in extreme value statistics,
as a compromise between model fit and the wish to have as much data as possible.
As an epidemic may be considered as a deviation from the standard behaviour of
ILI rates outside of an epidemic, the level 0.3 seems to be a reasonable choice.

4 Methods

Section 4.1 presents estimations of probabilities of occurence of large epidemics
during future years, obtained by standard methods from EVS. This answers the
question in Problem (P1). Our approach to Problem (P2), real-time forecasting, as
explained in Section 4.2, consists of two steps: first a multivariate GP distribution
is fitted to the threshold excesses, and then prediction is done by computing condi-
tional probabilities of exceeding thresholds, using the fitted distribution. It builds
on recent results on multivariate EVS modeling, [Rootzén et al., 2016], [Kiriliouk
et al., 2019]. Section 4.3 concerns Problem (P3): we combine a general framework
of anomaly detection with GP modeling.

The size of an influenza epidemic, e.g., depends on immunity and vaccination
frequency in the population at risk, and it seems likely that the size of last years
epidemic will influence these. Nevertheless, contrary to what is sometimes stated
in the literature, there is little indication that this translates into statistical depen-
dence between annual seasonal epidemics in France. We hence throughout assume
that epidemics occurring in different years are mutually independent.

The methods we develop apply in general dimensions and for GP distributions
with general margins, but we introduce them through the 3-dimensional data de-
scribed above, deseasonalized ILI incidence rates of Weeks 1, 2, and 3, and desea-
sonalized ILI rates of Weeks 1 and 2 and the size of the epidemic, with standard
exponential margins. Formulas for the general case are given in the appendix.

4.1 Prediction of risks for future years, Problem (P1)

As outlined in Section 2, the standard method to predict risks using data from
earlier observed extreme events is to select a threshold u and then model the con-
ditional distribution of the excesses (= observations−u) of the threshold, given
that they are positive, with the GP distribution, which has cumulative distribution
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function (cdf)

H(x) =

1− (1 + γ
σx)
−1/γ
+ if γ 6= 0, x ≥ 0

1− exp(−x
σ ) if γ = 0, x ≥ 0.

(1)

Here σ > 0 is a scale parameter, and γ is a shape parameter which can take both
positive and negative values, and the subscript + indicates that the expression in
parentheses should be replaced by 0 if it is negative. The parametrization is chosen
so that the cdf for γ = 0 is the limit as γ → 0 of the cdf with non-zero γ. TThe
parameters of the cdf (1) of the excesses are estimated from the observed threshold
excesses, in this paper using Maximum Likelihood estimation. Then, for x > u, F
can be estimated by

F̂ (x) = 1− p̂u(1− Ĥ(x− u)),

where Ĥ is the GP cdf (1) with parameters replaced by their estimated values and
p̂u = 1− F̂ (u) is the empirical frequency of observations which exceed the threshold
u [Coles, 2001].

In this paper, the observations are either the ILI rates during Week 3 or else the
size of the epidemic, and there is one observation per year (counting years as the
period from July 1 to June 30). We use the excesses of the 0.3 quantiles, so that
p̂u = 0.7 and the number of threshold excesses is 0.7× 34 = 24 since the 1985–2018
ILI data covers 34 years.

Assuming independence of the annual seasonal epidemics, the empirical cdf of
largest ILI rate during n years is then obtained as F̂ (x)n = (1− p̂u(1−Ĥ(x−u)))n.
The risk of exceeding a large value with probability α can be measured by the
(1 − α)th quantile xα of this empirical cdf. It is found by solving the equation
F̂ (xα)n = 1 − α. In particular, if the shape parameter of the GP distribution is 0
so that the distribution is exponential then

xα = u+ σ̂{log p̂u − log(1− (1− α)1/n)}, (2)

for α such that p̂u ≥ 1− (1− α)1/n.

4.2 Real time GP prediction of high level exceedances,
Problem (P2)

Since data did not indicate any deviations from γ = 0, i.e. from exponential dis-
tributions, we assumed that the marginal distributions of the positive threshold
excesses of the ILI rates were exponential and standardized them to be unit expo-
nential (Section 5.1).

We now describe our approach to Problem (P2). Let U = (U1, U2, U3) be a
3-dimensional random vector such that E[emaxU ] < ∞, let fU be the probability
density function of U , let fi, Fi be the density and distribution functions, respec-
tively, of Ui, the i-th component of U , and write x = (x1, x2, x3). Throughout
vectors are boldface, and operations between vectors are interpreted component-
wise, with 1-dimensional vectors recycled to 3-dimensional ones as needed, so that,
e.g., maxU = max{U1, U2, U3} and x+ log t = (x1 + log t, x2 + log t, x3 + log t).

According to the U-representation of GP distributions ([Kiriliouk et al., 2019],
Equation (3.4)), the density function hU of the 3-dimensional GP distribution with
standard exponential margins generated by U may be written as

hU (x) =
1{x�0}

E[emaxU ]

∫ ∞
0

fU (x+ log t)dt, (3)
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where the indicator function 1{x�0} equals one if at least one of the components
of x is positive, and is zero otherwise. We used generators with independent com-
ponents, so that fU = f1f2f3 and chose the best one from three different models
which were obtained from generators with Gumbel distributions, reverse exponen-
tial distributions, and reverse Gumbel distributions for the components of U . To
ensure identifiability, the location parameter of the first component was set to zero.
For the Gumbel distribution we used the parametrization

Fi(xi) = exp (− exp (−αi(xi − βi))) , αj > 0, βj ∈ R

where the requirement E[emaxU ] < ∞ imposes the restriction α > 1. Formulas
for the densities hU for the Gumbel and reverse exponential models are given in
Equations (7.2) and (7.4) of [Kiriliouk et al., 2019], and for the reverse Gumbel
model in the Appendix (Equation (A.1)). We used these expressions for Maximum
Likelihood estimation of the parameters of the models. The numerical optimiza-
tion used the R-function optim with the 1-dimensional integrals in the likelihoods
calculated by the R-package pracma.

Let X be a random vector with density hU . By Equation (3) the conditional
probability that the third component in X exceeds a level ` > 0 given the values
of the first two components is

P [X3 ≥ `|X2 = x2, X1 = x1] =

∫∞
x3=`

1{x�0}
∫∞
0 fU (x+ log t)dtdx3∫∞

x3=−∞ 1{x�0}
∫∞
0 fU (x+ log t)dtdx3

.

Using Fubini’s theorem and the assumption that fU = f1f2f3 this simplifies to

P [X3 ≥ `|X2 = x2, X1 = x1] =
∫∞
0 f1(x1+log t)f2(x2+log t)(1−F3(`+log t))dt∫∞

0 f1(x1+log t)f2(x2+log t)dt
, if x1 ∨ x2 > 0

∫∞
0 f1(x1+log t)f2(x2+log t)(1−F3(`+log t))dt∫∞

0 f1(x1+log t)f2(x2+log t)(1−F3(0))dt
, if x1 ∨ x2 ≤ 0,

(4)

with x1 ∨ x2 = max{x1, x2}.
If one or both of Weeks 1 and 2 excesses in the new epidemic are positive

one knows that the epidemic will be “extreme” and uses Equation (4), with the
unknown parameters in the fi replaced by their estimated values, as forecast of the
risk that the ILI rate of Week 3 in the new epidemic will exceed the level `.

If instead the Week 1 and 2 excesses both are negative one does not know
whether the new epidemic will be extreme or not. In this case we multiply (4) by
the observed empirical probability that the epidemic will be extreme given that
Weeks 1 and 2 excesses are negative, that is with

#{epidemics with positive Week 3 excess and negative Weeks 1 and 2 excesses}
#{epidemics with negative Weeks 1 and 2 excesses}

= 0.71 ,

and use this as the risk forecast.
Prediction of the risk that the size of the epidemic exceeds a level was done in

the same way.
Because of computational issues caused by the small number of available extreme

episodes, we did not attempt to include the fact that the ILI rates in the first two
extreme epidemic weeks had to exceed 275 into the models.
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4.3 Detection of unusual extreme epidemics, Problem
(P3)

We take advantage of the GP method for early detection of “anomalous extreme
epidemics”. Here anomalous is interpreted to be with respect to the fitted GP
model from Section 4.2. Hence an anomaly corresponds to an unusual observation
given that the ILI rates of at least one of Weeks 1, 2 or 3 is large.

Our approach is a combination of a classical framework of anomaly detection
[e.g. Section 2 of Root et al., 2015] with GP modeling. A very large value of
the estimated GP negative log-likelihood of the observed rates during the first
three weeks of an extreme epidemic would indicate that something anomalous, and
potentially very dangerous, is happening while a smaller negative log-likelihood
could alleviate fears.

Recall that the GP negative log-likelihood is is given by

− log hU (x) = logE[emaxU ]− log

∫ ∞
0

fU (x+ log t)dt,

for x ∈ R3 such that x � 0. We computed the value of the negative log-likelihoods
of the fitted GP model for 1,500 simulated datasets and used them to obtained
significance levels for the GP negative log-likelihoods (Section 6.1 below). The
corresponding p-values are a measure of the extent to which an extreme epidemic
is anomalous.

A pandemic occurs when a new type of virus for which there is little natural
immunity is spreading. This can cause very dangerous influenza epidemics, and
hence the anomality measure is particularly interesting for pandemic years, as an
early indication of how France will fare during the pandemic.

5 Results: Prediction of extreme ILI loads on

the health care system in France

In this section we apply the methods from Section 4 to the deseasonalized Sentinelles
ILI rates.

5.1 Risk of extreme ILI incidence rates next year, and
for the next 10 years

We first fitted one-dimensional GP cdf-s, Equation (1), to the positive excesses of
the 0.3 quantile of the deseasonalized ILI rates of Weeks 1, 2 and 3, and to the sizes
of the epidemics and made likelihood ratio tests of the hypotheses that the shape
parameters γ were equal to zero. The p-values in the tests were 0.85, 0.90, 0.75,
and 0.15 and gave no reason to doubt that γ = 0, i.e. that the cdf-s are exponential.
The qq-plots in Figure 3 indicate good fit of the exponential distribution. We hence
assumed that all γ-s equal zero during the rest of the analysis.

Standard estimates and confidence intervals for the scale parameters of the ex-
ponential distributions are given in Table 1, and quantiles calculated using Equa-
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Figure 3: Quantile-quantile plots of the exponential fit for the positive deseasonalized ILI
incidence rate excesses of the 0.3 quantile.
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Table 1: Estimates of scale parameters of the positive deseasonalized ILI rate excesses of
the 0.3 quantile. CI is confidence interval.

Week 1 Week 2 Week 3 Size of epidemic
Estimate 81 235 366 1,726
95% CI [48 ; 114] [141; 330] [219 ; 513] [1,035 ; 2,417]

Table 2: Estimated rates such that the probability that the deseasonalized ILI incidence
rates exceed them is 10% or 1%.

one year one year 10 years 10 years
α 10% 1% 10% 1%

Week 3 1,063 1,907 1,889 2,749
Size of epidemic 5,347 9,322 9,241 13,289

tion (2) in Table 2. For example, there is 10% chance that the size of the epidemic
will exceed the rate 9,241 per 100,000 at least once during the next 10 years.

5.2 GP Real-time prediction of the ILI incidence rate
of Week 3 and of the size of the epidemic

We first standardized the ILI excesses to unit exponential margins by dividing by
the scale parameter estimates from Table 1, and then selected the best one from
the three families of GP distributions listed in Section 4.2.

Table 3 shows that in terms of AIC and BIC the GP family with reverse expo-
nential generators performed best for the ILI rates of Week 3, but that the difference
to the model with Gumbel generators was not large, and that for the size of the epi-
demic the model with Gumbel generators was best. For computational convenience
and to make results more comparable we choose to use the model with Gumbel gen-
erators both for prediction of the ILI rate of Week 3 and for prediction of the size
of the epidemic. We call this model, which has Gumbel generators and standard
exponential marginal distributions, the Gumbel model. It has 5 parameters, the
3 scale parameters of the 3 Gumbel generators and 2 location parameters for the
generators, with the remaining location parameter fixed to ensure identifiability.

Table 4 indicated that the full model (M1) should not be simplified further. In
the estimation we fixed the first location parameter β1 to equal 0. Table 5 gives
the estimated parameters for the selected Gumbel model.

Table 6, as an example, shows the predicted risk, using Equation (4) computed
from the fitted GP model and using logistic regression, that the set aside 2019 epi-
demic should exceed the levels (0.5, 0.75, 0.95, 1, 1.2) × the largest ILI rate observed
during 1985–2019. The predicted probabilities, even for the lowest level were quite
small, and in fact this level was not exceeded. Logistic regression requires that
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Table 3: AIC and BIC for the fit of different models a) Week 3 and b) for the size of the
epidemic

Generator: Gumbel Reverse exponential Reverse Gumbel
AIC 203 198 699
BIC 211 205 706

a) Week 3

Generator: Gumbel Reverse exponential Reverse Gumbel
AIC 218 226 689
BIC 225 233 696

b) Size of epidemic

there is at least one level exceedance, and was not useful for predicting exceedances
of the two largest levels.

Table 6: Predicted probabilities of exceedance for the 2019 epidemic. For the 2019
epidemic the ILI rate of Week 3 was 500, and the size of the epidemic was 1,192. Multiple
is multiple of largest observed rate.

Multiple 0.5 0.75 0.95 1 1.2
Level 816 1,224 1,551 1,632 1,959
GP 0.038 0.002 0.0003 0.0001 0.00002

Logistic 0.018 0.018 0.011 - -

a) Week 3

Multiple 0.5 0.75 0.95 1 1.2
Level 3,620 5,431 6,879 7,241 8,689
GP 0.096 0.017 0.004 0.003 0.0007

Logistic 0.019 0.013 0.013 - -

b) Size of the epidemic

5.3 Quantifying the risk that an anomalous epidemic is
starting

Recall that by anomalous we mean anomalous with respect to the fitted Gum-
bel model in Section 5.2, i.e. that the GP negative log-likelihood of a new epi-
demic is unusually large. The Sentinelles ILI data only includes one pandemic, the
2009 swine flu pandemic. However, surprisingly, the Gumbel model negative log-
likelihood for the ILI rates of Weeks 1, 2, and 3 for the 2009-10 extreme epidemic
in France was in no way unusual, see Figure 4, and hence did not point to a risk of
a dangerous development. This in fact did not happen either, see Figure 1.

12



0

10

20

1990 2000 2010 2020

Season

N
e
g
a
ti
ve

 l
o
g
−

lik
e
lih

o
o
d

Figure 4: Leave-one-out negative Gumbel log-likelihoods for the ILI rates of Weeks 1-3
in the 33 extreme epidemics 1985 to 2019. Black circle is the 2009 pandemic, square is
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Table 4: AIC, BIC and LR tests for simplification of the Gumbel model a) for Week 3
and b) for the size of the epidemic.

Model Parameters AIC BIC LR p-values
M1 α1, α2, α3, β2, β3 203 211 -
M2 α1, α2, α3 219 226 5.13× 10−4

M3 α, β2, β3 217 224 1.15× 10−3

M4 α 214 215 2.84× 10−3

a) Week 3

Model Parameters AIC BIC LR p-values
M1 α1, α2, α3, β2, β3 218 225 -
M2 α1, α2, α3 227 235 8.00× 10−3

M3 α, β2, β3 226 234 1.25× 10−2

M4 α 222 224 2.77× 10−2

b) Size of epidemic

Table 5: Estimates of parameters (α,β) for the Gumbel model a) for Week 3 and b) for
the size of the epidemic.

Parameter α1 α2 α3 β2 β3
Estimate 2.10 6.45 3.14 0.48 0.31

a) Week 3

Parameter α1 α2 α3 β2 β3
Estimate 2.62 4.74 2.13 0.22 -0.11

b) Size of epidemic

There is a fine line between “extreme” and “anomalous” epidemics. To illustrate
this we added two extra points to Figure 4 corresponding to an extreme epidemic
obtained as i) a simulation from the Gumbel model of ILI rates of Weeks 1, 2, and
3, with the simulation chosen such that the rate of Week 3 in the simulation equals
the 99% quantile of the simulated rates for Week 3, and ii) a point obtained from
i) by multiplying the ILI rates of Weeks 1 and 3 by 2 and rate of Week 2 by 0.1.
As expected, point ii) seems much more anomalous.

The significance levels for anomaly detection were obtained as follows: we sim-
ulated 1,500 datasets, each consisting of 33 epidemics from the selected GP model,
and for each simulated dataset obtained an estimated negative log-likelihood by
inserting epidemic 33 into the the negative logarithm of the Gumbel density es-
timated from the first 32 epidemics. The results were sorted to obtain quantiles,
see Table 7. These are the cut-off levels used in Figure 4. Due to the size of the
simulations there is substantial uncertainty in the estimated 99.9% quantile.
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Table 7: Cut-off levels to determine significance of the negative log-likelihood of a new
epidemic, with the log-likelihood computed from the Gumbel model fitted to the 32
observed extreme epidemics 1985–2018.

Significance level 10% 5% 1% 0.1%
Cut-off 5.16 6.06 8.00 12.57

6 Assessment of prediction of level exceedances

This section presents the tools we use to assess of prediction of level exceedances
and their applications to the 1985–2019 ILI data.

6.1 Methods

The accuracy of probabilistic predictions depends on (i) how well one is able to
model and use models for prediction, and (ii) to what extent it is possible to predict
at all, i.e. on the dependence between the predictors and the event one wants to
predict. There is a substantial literature on assessment of forecasting [see Lerch
et al., 2017, Biggerstaff et al., 2016, and references therein]. However, with few
exceptions [e.g. Renard et al., 2013], this literature provides metrics which compare
predictions with observations and does not touch on the question we are interested
in: prediction of exceedance of a level which is close to, or larger, than the largest
observed value. The problem is that standard assessment metrics are not useful
when the frequency of level exceedances in the data is small or zero.

We use Brier plots and standardized Brier scores to address (i) and (ii). The
Brier plots show predicted probabilities of level exceedance stratified according to
if there was an exceedance or not. The standardized Brier score is defined as

1−
1
N

∑N
i=1 (p̂i − oi)2

p(1− p)
,

where p̂i is the predicted probability of exceedance, oi = 1 if there was an ex-
ceedance, and 0 otherwise, N is the number of exceedances and p = 1

N

∑N
i=1 oi,

see e.g. [Steyerberg et al., 2010]. This score is bounded by 1, with larger values
indicating better prediction and equality meaning perfect prediction. Using the
predictor pi = p gives the value 0.

(i) Model fit and prediction of exceedance of moderate levels: In addition to
standard model checking methods we used leave-one-out cross-validation to make
Brier plots and computed standardized Brier scores for the GP predictions of mod-
erately high level exceedances for the 1985–2019 epidemics. To have a baseline to
compare with we also did the same analyses for logistic regression.

(ii) Prediction outside of the range of the data: We used the simulated 1,500
data sets consisting of 33 extreme epidemics from the selected GP model for the
prediction of the rate of Week 3 (recall that 32 epidemics were classified as extreme).
For each simulated data set we then estimated new model parameters from the first
32 epidemics and used the resulting model to predict the ILI rate of Week 3 in the
33rd epidemic from the rates of Weeks 1 and 2 in this epidemic. We applied the same
procedure for the size of the epidemic (for which 31 epidemics were extreme), but
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now simulating 32 extreme epidemics. The simulations used Method 4 of [Rootzén
et al., 2018, Section 7], with the tuning constant set to K = 106.

6.2 Accuracy of real-time predictions

We used the levels given in Table 6 to assess performance of the EVS real-time
predictions on the 1985–2019 ILI data. Additionally, for the two lowest levels
we also computed logistic regression predictions of the exceedance probabilities.
Logistic regression was not useful for prediction of risks of exceedance of the three
highest levels.

(i) Model fit and prediction of exceedance of moderate levels: For prediction of
the ILI rate of Week 3 the 33 years with extreme epidemics (32 extreme epidemics
between 1985 and 2018 plus 2019 which is also an extreme epidemic) were used
for leave-one-out cross-validation of prediction accuracy and for the size of the
epidemics the 32 years with extreme epidemics were used. Table 8 and Figure 5 show
that both GP prediction and logistic regression performed well. The normalized
Brier scores were higher for logistic regression than for the GP predictions. The
differences were mainly caused by differences in the predictions for one out of the
33 (or 32) extreme epidemics.

Table 8: Standardized Brier scores obtained from leave-one-out cross-validation. Multiple
is multiple of largest observed deseasonalized 1985–2019 ILI rate.

Week 3 Size of epidemic
Multiple 0.5 0.75 0.5 0.75

Level 816 1,224 3,620 5,431

Brier score
GP 0.54 0.57 0.37 0.54

Logistic 0.77 0.72 0.75 0.68
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Figure 5: Brier plots obtained from leave-one-out cross-validation.

(ii) Prediction outside of the range of the data: We simulated 1,500 sets of
33 extreme epidemics from the final estimated Gumbel model and for each data
set fitted the Gumbel model to the first 32 epidemics and used the fitted model to
predict the third week in the 33rd epidemic from the first two weeks. We applied the
same procedure for the size of epidemic but now simulating 32 extreme epidemics.
Figure 6 shows a similar behaviour of the simulated predictions as for the cross-
validation of prediction of Week 3 which are shown in Figure 5. Similar figures (not
shown) for the size of the epidemic led to the same conclusion.

The best possible prediction probability is the conditional probability in the
true model. For the data, the true model of course is not known, but in simulations
it is. Figure 7 and Table 9 show that the true model gives somewhat better predic-
tion probabilities for Week 3, but that differences are quite small. Thus, perhaps
surprisingly, uncertainty in parameter estimation had little influence on prediction
accuracy.
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Figure 6: Brier boxplots of the prediction probabilities obtained from simulation of the
fitted Gumbel model.
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Figure 7: Brier boxplots comparing prediction probabilities obtained from using param-
eters estimated from the first 32 simulated extreme epidemics and obtained from using
the true model parameters.
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Table 9: Standardized Brier scores for the simulated data. “Multiple” is multiple of
largest observed rate 1985–2019, “True” means prediction used the true model parame-
ters.

Multiple 0.5 0.75 0.95 1 1.2
Level 816 1,224 1,551 1,632 1,959
GP 0.71 0.74 0.70 0.69 0.79

Logistic 0.47 0.27 0.01 - -
True 0.70 0.74 0.70 0.70 0.78

a) Week 3

Multiple 0.5 0.75 0.95 1 1.2
Level 3,620 5,431 6,879 7,241 8,689
GP 0.57 0.61 0.66 0.70 0.65

Logistic 0.45 0.42 0.33 - -
True 0.60 0.65 0.68 0.70 0.67

b) Size of the epidemic

The GP prediction method led to high Brier scores, showing that GP prediction
from a Gumbel model with the parameters used in the simulations works well, see
Table 9. Areas under the ROC curve (not included in paper) were all higher than
0.92, again indicating good predictions.

To judge the differences between the cross-validated Brier scores and the simu-
lated Brier scores we used the simulations to construct 4 data sets parallel to the
observed extreme epidemics and computed cross-validated normalized Brier scores
for each of these. The random variations between the resulting 4 sets of Brier scores
were larger than the differences between Table 8 and Table 9.

7 Discussion and conclusions

Extreme value statistics is a body of theoretically motivated and consistent methods
for estimation and prediction of risks of threshold exceedances. Using EVS is im-
portant for providing methods which generalize and allow for comparison between
results obtained in separate studies.

Section 4.1 provides estimates of risks that large — or very large — influenza
epidemics will occur in years to come. These estimates provide input for long term
resource planning and are standard in other areas such as environmental science,
but have so far been little used in epidemiology and health care planning.

For levels inside the range of observed values many real-time prediction methods,
such as logistic regression, are available and often work well, and logistic regression
also does this for prediction of risks of level exceedances of ILI incidence rates.
However, these methods cannot handle levels which are close to or above the largest
observed values, which often are the most important ones. The results of Section 5.2
indicate that, provided the GP distribution continues to hold outside of the range
of data, the GP real-time prediction method can provide useful predictions of risks
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of exceedance of such very high levels.
Advances in medical technology will aid handling of risks of occurrence of new

and extremely dangerous pandemics, but instead the fast rise in air travel makes
risks of very rapid spread much more dramatic than it was during the time of the
Spanish Flu. The methods developed in Section 6.2 provide a new way to judge
risks associated with a developing pandemic.

Future development of the methods introduced in this paper will profit from
the very rapid advance of the theory of multivariate extremes, including improved
numerical methods and the development of statistical techniques.

Finally, both real-time prediction of risks of exceeding very high thresholds and
detection of anomalies are important much more broadly in health care and also in
very many other areas. The methods we have developed will be useful also in these
areas.
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Appendix

Probability density function for the 3-dimensional GP distribution with
reverse Gumbel distributions

The generator of the third model used in Sections 4.2 and 5.2 has independent
reverse Gumbel distributed components with distribution functions

Fj(xj) = 1− exp[− exp{αj(xj − βj)}], αj > 0, βj ∈ R.

Calculations very similar to the derivation of Equation (7.2) in [Kiriliouk et al.,
2019] show that the resulting GP distribution has probability density function

hU (x,1,0) =

∫∞
0

∏d
i=1 αj

(
texj−βj

)αj exp
(
−
(
texj−βj

)αj) dt∫∞
0

(
1−

∏n
i=1 e−(te

−βj )αj
)

dt
. (A.1)

Conditional prediction of extreme events

Generalizing the notation in Section 4.2, write xi:j = (xi, . . . , xj) and x = (x1, . . . , xd).
Then, using the same conventions as in Section 4.2, the U-representation of the den-
sity of d-dimensional GP distributions is

hU (x) = hU (x;σ,γ) =
1{x�0}

E[emaxU ]

 d∏
j=1

1

σj + γjxj

∫ ∞
0

fU

(
1

γ
log
(

1 + γ
x

σ

)
+ log t

)
dt

Note that in the general case hU depends both on the generator U and on the
marginal parameters σ,γ. For σ = 1,γ = 0 this expression reduces to Equa-
tion (3). The next proposition gives the conditional prediction formulas for pre-
diction of the exceedances of the dth component given the first c components of a
d-dimensional vector.
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Proposition 1. Let X = (X1, . . . , Xd) a d-dimensional GP vector with density
fU and let 1 ≤ c < d. The probability that Xd will exceed a threshold v given
X1:c = x1:c is given by

i) for x1:c � 0 and v ∈ R

P[Xd > v |X1:c = x1:c] =



∫
xd>v

∫
xc+1:d−1

φ(x)dxc+1:d−1dxd∫
xc+1:d−1

φ(x)dxc+1:d
if c < d− 1

∫
xd>v

φ(x)dxd∫
xd
φ(x)dxc+1:d

if c = d− 1;

ii) for x1:c ≤ 0 and v > 0

P[Xd > v |X1:c = x1:c] =



∫
xd>v

∫
xc+1:d−1

φ(x)dxc+1:d−1dxd∫
xc+1:d−1�0 φ(x)dxc+1:d−1

if c < d− 1

∫
xd>v

φ(x)dxd∫
xd>0 φ(x)dxd

if c = d− 1;

iii) for x1:c ≤ 0 and v ≤ 0

P[Xd > v |X1:c = x1:c] =



∫
xd>0

∫
xc+1:d−1≤0 φ(x)dxc+1:d−1dxd∫

xc+1:d−1�0 φ(x)dxc+1:d−1

+

∫
xd>v

∫
xc+1:d−1�0 φ(x)dxc+1:d−1dxd∫

xc+1:d−1�0 φ(x)dxc+1:d−1

if c < d− 1

1 if c = d− 1.

Example. For d = 3 and c = 2 we get

P [X3 > v3 | X1:2 = x1:2] =



∫
x3>v3

φ(x)dx3∫
x3
φ(x)dx3

if x1:2 6≤ 0 and v3 ∈ R;

∫
x3>v3

φ(x)dx3∫
x3>0 φ(x)dx3

if x1:2 ≤ 0 and v3 > 0;

1 if x1:2 ≤ 0 and v3 ≤ 0.

Proof. Let fxd|X1:c=x1:c
be the conditional marginal density of xd givenX1:c = x1:c,

that is

fxd|X1:c=x1:c
(xd) =

h(x1:c,xd)(x1:c, xd)

hx1:c(x1:c)

where h(x1:c,xd) is the marginal joint density of (x1:c, xd) and hx1:c is the marginal
joint density of x1:c. Then,

P[Xd > v |X1:c = x1:c] =

∫ ∞
xd=v

fxd|X1:c=x1:c
(xd)dxd .
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We start by deriving the formula for hx1:c and h(x1:c,xd). First,

hx1:c(x1:c)

=

∫
xc+1:d

1{x�0}φ(x)dxc+1:d

= 1{x1:c�0}

∫
xc+1:d

φ(x)dxc+1:d +

∫
xc+1:d

1{xc+1:d�0}φ(x)dxc+1:d

−1{x1:c�0}

∫
xc+1:d

1{xc+1:d�0}φ(x)dxc+1:d

= 1{x1:c�0}

∫
xc+1:d

1{xc+1:d≤0}φ(x)dxc+1:d +

∫
xc+1:d

1{xc+1:d�0}φ(x)dxc+1:d .

Similarly, we show that, if c < d− 1,

h(x1:c,xd)(x1:c, xd) = 1{(x1:c,xd)�0}

∫
xc+1:d−1

1{xc+1:d−1≤0}φ(x)dxc+1:d−1

+

∫
xc+1:d−1

1{xc+1:d−1�0}φ(x)dxc+1:d−1 .

If c = d− 1, then

h(x1:c,xd)(x1:c, xd) = hU (x) = 1{x�0}φ(x) .

We now discuss according to the sign of x1:c and v.

Case 1: x1:c � 0

hx1:c(x1:c) =

∫
xc+1:d

φ(x)dxc+1:d ,

and, if c < d− 1,

h(x1:c,xd)(x1:c, xd) =

∫
xc+1:d−1

1{xc+1:d−1≤0}φ(x)dxc+1:d−1

+

∫
xc+1:d−1

1{xc+1:d−1�0}φ(x)dxc+1:d−1 .

Whence,

h(x1:c,xd)(x1:c, xd) =

{∫
xc+1:d−1

φ(x)dxc+1:d−1 if c < d− 1

φ(x) if c = d− 1 .

Therefore,

fxd|X1:c=x1:c
(xd) =



∫
xc+1:d−1

φ(x)dxc+1:d−1∫
xc+1:d

φ(x)dxc+1:d
if c < d− 1

φ(x)∫
xd
φ(x)dxd

if c = d− 1.
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and

P[Xd > v | x1:c = x1:c] =

∫
xd

1{Xd>v}fxd|X1:c=x1:c
(xd)dxd

=



∫
xd

1{Xd>v}
∫
xc+1:d−1

φ(x)dxc+1:d−1dxd∫
xc+1:d

φ(x)dxc+1:d
if c < d− 1

∫
xd

1{Xd>v}φ(x)dxd∫
xd
φ(x)dxd

if c = d− 1.

Case 2: x1:c ≤ 0

hx1:c(x1:c) =

∫
xc+1:d

1{xc+1:d�0}φ(x)dxc+1:d ,

and

h(x1:c,xd)(x1:c, xd)

=



1{xd>0}

∫
xc+1:d−1

1{xc+1:d−1≤0}φ(x)dxc+1:d−1

+

∫
xc+1:d−1

1{xc+1:d−1�0}φ(x)dxc+1:d−1

if c < d− 1

1{xd>0}φ(x) if c = d− 1.

Therefore,

fxd|X1:c=x1:c
(xd) =



1{xd>0}
∫
xc+1:d−1

1{xc+1:d−1≤0}φ(x)dxc+1:d−1∫
xc+1:d

1{xc+1:d�0}φ(x)dxc+1:d

+

∫
xc+1:d−1

1{xc+1:d−1�0}φ(x)dxc+1:d−1∫
xc+1:d

1{xc+1:d�0}φ(x)dxc+1:d

if c < d− 1

1{xd>0}φ(x)∫
xd

1{xd>0}φ(x)dxd
if c = d− 1.

and

P[Xd > v |X1:c = x1:c]

=

∫
xd

1{Xd>v}fXd|X1:c=x1:c
(xd)dxd

=



∫
xd

1{Xd>v}1{xd>0}
∫
xc+1:d−1

1{xc+1:d−1≤0}φ(x)dxc+1:d−1dxd∫
xc+1:d

1{xc+1:d�0}φ(x)dxc+1:d

+

∫
xd

1{Xd>v}
∫
xc+1:d−1

1{xc+1:d−1�0}φ(x)dxc+1:d−1dxd∫
xc+1:d

1{xc+1:d�0}φ(x)dxc+1:d

if c < d− 1

∫
xd

1{xd>v}1{xd>0}φ(x)dxd∫
xd

1{xd>0}φ(x)dxd
if c = d− 1.

Now, separating according to the sign of the threshold v, we get the following
cases.
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Case 2.1: v > 0 (with x1:c ≤ 0)

P[Xd > v |X1:c = x1:c]

=



∫
xd

1{Xd>v}
∫
xc+1:d−1

1{xc+1:d−1≤0}φ(x)dxc+1:d−1dxd∫
xc+1:d

1{xc+1:d�0}φ(x)dxc+1:d

+

∫
xd

1{Xd>v}
∫
xc+1:d−1

1{xc+1:d−1�0}φ(x)dxc+1:d−1dxd∫
xc+1:d

1{xc+1:d�0}φ(x)dxc+1:d

if c < d− 1

∫
xd

1{xd>v}φ(x)dxd∫
xd

1{xd>0}φ(x)dxd
if c = d− 1.

=



∫
xd

1{Xd>v}
∫
xc+1:d−1

φ(x)dxc+1:d−1dxd∫
xc+1:d

1{xc+1:d�0}φ(x)dxc+1:d
if c < d− 1

∫
xd

1{xd>v}φ(x)dxd∫
xd

1{xd>0}φ(x)dxd
if c = d− 1.

Case 2.2: v < 0 (with x1:c ≤ 0)

P[Xd > v | x1:c = x1:c]

=

∫
xd

1{Xd>v}fxd|X1:c=x1:c
(xd)dxd

=



∫
xd

1{xd>0}
∫
xc+1:d−1

1{xc+1:d−1 ≤ 0}φ(x)dxc+1:d−1dxd∫
xc+1:d

1{xc+1:d�0}φ(x)dxc+1:d

+

∫
xd

1{Xd>v}
∫
xc+1:d−1

1{xc+1:d−1�0}φ(x)dxc+1:d−1dxd∫
xc+1:d

1{xc+1:d�0}φ(x)dxc+1:d

if c < d− 1

1 if c = d− 1.
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Réseau Sentinelles. Inserm/Sorbonne Université. https://www.sentiweb.fr,
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