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Abstract

The contactless collective or selective manipulation of microscopic ob-

jects is powerfully enabled by acoustical tweezers. Trapping is achieved

without pre-tagging with several order of magnitude larger forces at

same input power than optical tweezers, limiting spurious heating and

enabling damage-free displacement and orientation of biological sam-

ples. In addition, the availability of acoustical coherent sources from

kHz to GHz frequencies enables the manipulation of a wide spectrum

of particle sizes. After an introduction of the key physical concepts

behind fluid and particles manipulation with acoustic radiation pres-

sure and acoustic streaming, we will highlight the emergence of specific

wave fields, called acoustical vortices, as a mean to manipulate par-

ticles selectively and in 3D. These acoustic vortices can also be used

to generate hydrodynamic vortices whose topology is controlled by the

topology of the wave. We will conclude this review by a viewpoint on

the field future directions.
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1. Introduction

Acoustical tweezers enable the collective and selective manipulation of particles and flu-

ids with the use of two nonlinear effects: the acoustic radiation pressure and the acoustic

streaming. For particles manipulation, they offer complementary skills compared to their

magnetic and optical analogues. Indeed, one of the first recognized issues of optical tweez-

ers is that the tightly focused laser beam heats the sample and may induce photo-damage

(Ashkin et al. (1986), Svoboda & Block (1994)). This limits the use of optical tweezers

for the manipulation of bio-samples, especially when substantial forces (≥ 100 pN) are

required. On the other hand, magnetic tweezers have a low trap stiffness since the field

is rather constant at the particle scale and most importantly, magnetic tweezers only en-

able the manipulation of magnetic particles or require pre-tagging of the target particle

(Neuman & Nagy (2008)). All these difficulties are overcome with acoustical tweezers: In-

deed, both acoustical and optical radiation pressure are proportional to the intensity of the

incoming wave divided by the celerity of the wave. Since acoustic waves speed in liquids

is five orders of magnitude smaller than light speed, much larger forces can be applied

in acoustics than in optics at same wave intensity, therefore limiting deleterious heating

(Baresch, Thomas & Marchiano (2016)). Moreover, acoustical tweezers do not require pre-

tagging. Finally, since ultrasonic sources are available from kHz to GHz frequencies, par-

ticles of sizes ranging from hundred nanometers to millimeter sizes can be trapped and

manipulated with these devices.

These attractive features have led to early development of acoustical traps (King (1934),

Sölner & Bondy (1936)). The first systems were based on plane standing waves to trap par-

ticles at the nodes or antinodes of the wave depending on their acoustic properties. It is

interesting to note that the emergence of miniaturized transducers enabling on-chip particle

trapping (Ding et al. (2012), Tran, Marmottant & Thibault (2012)) has led to a renewed

interest in the field, with tremendous developments for practical applications in biology

(Ozcelik et al. (2018)). On the one hand, plane standing wave fields are interesting when

only one particle is present in the system, for the collective manipulation of multiple objects

or for particles sorting. On the other hand, the multiplicity of nodes and antinodes pre-

cludes any selectivity, i.e. one particle cannot be moved independently of other neighboring

particles. Moreover, for 3D particles trapping, the use of standing wave requires to position

some transducers (or reflectors) on each side of the trapping area.

The development of selective tweezers (with the ability to manipulate particles indi-

vidually), however requires to strongly localize the acoustic energy in the area of interest.

A natural idea is thus to use focalized waves, as in optics (Wu (1991)). Nevertheless, one

persisting difficulty that impeded the development of selective acoustical tweezers is that

most particles of interest (elastic particles, cells, microorganisms) are denser and stiffer than

the fluid and hence are trapped at pressure nodes of acoustic fields (Gorkov (1962)). Thus,

they would be expelled from the wave focus. Another difficulty is to obtain a 3D trap with

a one-sided tweezers, i.e. with a transducer located on only one side of the manipulated

samples (for obvious practical reasons). The difficulty arises since scattering forces resulting

from the interaction of the beam with the particle tend naturally to push the particles in

the direction of the wave propagation. Trapping of particles in this direction with a limited

aperture of the transducer is thus a real challenge.

To solve these issues, it was first proposed by (Baresch, Thomas & Marchiano (2013b))

to use some specific wave fields called focalized acoustical vortices. These focalized he-

lical waves are spinning around a phase singularity, wherein the intensity vanishes, lead-
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ing to a minimum of the pressure intensity at the focal point surrounded by a bright

ring of high intensity, ensuring the existence of an acoustical trap. These waves pos-

sess some fascinating properties: they are non-diffracting and carry orbital momen-

tum (Hefner & Marston (1999)). The ability of such wave fields to trap particles in

3D with a one-sided wave synthesis system has been first demonstrated experimen-

tally by (Baresch, Thomas & Marchiano (2016)). More recently it has been shown by

(Riaud et al. (2017a), Baudoin et al. (2019a)) that the relatively complex transducers ar-

rays used by Baresch et al. can be replaced by a single interdigitated transducer, whose

spiraling shape encodes the phase of the field like a hologram, hence enabling the selec-

tive manipulation of particles in a standard microscopy environment. These spiraling

transducers are cheap, flat, easily integrable and compatible with disposable substrates,

enabling their widespread use by the scientific community. Another possibility consists in

using acoustic lens made of metascreen (Li et al (2015), Jiang et al (2016)) or spiral grating

(Jiménez et al (2016)).

It is also interesting to note that acoustical vortices not only enable

particles manipulation but also fluid manipulation with the use of acous-

tic streaming (Anhäuser, Wunenburger & Brasselet (2012), Riaud et al. (2014),

Hong, Zhang & Drinkwater (2015)). In particular, they enable the synthesis of hy-

drodynamic vortices, whose topology is controlled by the topology of the acoustical vortex

and not by the boundary conditions. This might lead to tremendous developments in

microfluidics or in fundamental study of hydrodynamic vortices.

In section 2, we will introduce the fluids mechanics concepts at the origin of particles and

fluids manipulation. Section 3 discusses the classical manipulation of particles with standing

wave fields and the numerous application at micro-scales. In section 4, we introduce some

specific wave fields, called acoustical vortices and show how they can be used for 3D selective

particles and fluids manipulation. Finally, we conclude this review by a viewpoint on the

field future directions.

2. Nonlinear acoustics for fluid and particles manipulation

2.1. Nonlinear average equations in acoustics

At first (linear) order, the time averaged net force exerted on a particle and the time average

fluid flow induced by an acoustic field are null. Thus the manipulation of particles and fluids

requires second order nonlinear effects. One of this effect, called acoustic radiation pressure,

is a net force applied at the interface between two media with different acoustic properties.

This force enables the manipulation of particles but also the deformation of fluid interfaces.

A second effect, called acoustic streaming, is a flow produced by the attenuation of an

acoustic wave and the resulting transfer of pseudo-momentum from the wave to the fluid.

Depending on the origin of the wave attenuation, acoustic streaming is generally divided into

bulk acoustic streaming (also called ”Eckart streaming”) due to thermoviscous damping of

the wave in the bulk of the propagating fluid and boundary streaming (also called ”Rayleigh

streaming”), due to wave attenuation at the boundaries resulting from the existence of a

viscous boundary layer.

In this section we will derive a set of coupled constitutive equations, which enable to

compute (i) the nonlinear propagation of acoustic waves, (ii) bulk acoustics streaming and

(iii) the force applied on a particle (resulting from acoustic radiation pressure and bulk

streaming). All these equations will be derived in the limit of low acoustic Mach number,
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low acoustic Reynolds number and low hydrodynamic Reynolds number. Since this review

is focused on freely propagating waves, boundary streaming will be mostly discarded.

Constitutive equations For the sake of simplicity, we will consider here the case of liquids.

Hence, the starting point of the following derivation is the isentropic1 compressible Navier-

Stokes equations, wherein thermal effects are neglected:

Mass balance:
∂ρ

∂t
+∇.(ρv) = 0 (1)

Momentum balance:
∂ρv

∂t
+∇.(ρv ⊗ v) = −∇p+ µ∆v +

(µ
3

+ ξ
)
∇∇.v (2)

Entropy balance ds = 0 (3)

Equation of state: p = p(ρ), with
∂p

∂ρ

∣∣∣∣
s

= c2o and
∂2p

∂ρ2

∣∣∣∣
s

= Γ (4)

and ρ, p, v the density, pressure and velocity fields respectively, µ the dynamic viscosity,

ξ the bulk viscosity, co the sound speed, Γ =
Bc2o
Aρo

, and A = ρoc
2
o and B are two classic

acoustics coefficients introduced in nonlinear acoustics.

Thermal effects (wave thermal damping and fluid heating) can be neglected in liquids

compared to their viscous counterpart (since they are proportional to γ − 1, with γ the

heat capacity ratio, close to 1 in most liquids). The following theory could be nevertheless

completed to account for thermal effects.

Field decomposition Following (Riaud et al. (2017b)), we then introduce a relevant decom-

position of each field f into (i) a hydrostatic contribution (in absence of acoustic excitation)

fo, periodic fluctuations corresponding to the acoustic wave perturbation f̃ and time aver-

aged contributions f̄ 2:

ρ = ρo + ρ̃+ ρ̄ (5)

p = po + p̃+ p̄ (6)

v = ṽ + v̄ (7)

Since the fluid is assumed to be at rest in absence of acoustic excitation, vo = 0. Mathe-

matically, these fields are defined as f̄ =< f − fo > with <> the time averaging operator,

f̃ = f − fo − f̄ (implying < f̃ >= 0). We also assume f̄ � f̃ � fo.

1The fact that viscous effects are considered in the momentum balance but not in the equation
of entropy might seem contradictory since viscous effects contribute to the increase of entropy. In
fact, since viscous damping is weak and the contribution of viscous effects to the increase of entropy
is nonlinear, this approximation is consistent up to second order. See ref (Coulouvrat (1992)) for a
demonstration with asymptotic analysis.

2This decomposition differs from the classical decomposition into a zero, first and second order
field in the sense that acoustic wave perturbation can also contain nonlinear effects as we shall see
later.
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Averaged equations and bulk acoustic streaming Time averaging of the constitutive equa-

tions 1 to 4 up to second order gives:

∂ρ̄

∂t
+ ρo∇.(v̄) +

1

c2o
∇.̄I = 0 (8)

∂

∂t

(
ρov̄ +

1

c2o
Ī

)
+ ρo∇. 〈ṽ ⊗ ṽ〉 = −∇p̄+ µ∆v̄ +

(µ
3

+ ξ
)
∇∇.v̄ (9)

p̄ = c2oρ̄+
Γ

2

〈
ρ̃2
〉

(10)

with Ī = 〈p̃ṽ〉 the intensity vector, representing the flux of acoustic energy. These equations

are the constitutive equations of the average flow v̄ produced by an acoustic wave, which

by definition corresponds to acoustic streaming. We can note that, by neglecting the fourth

order terms ∇. (v̄ ⊗ v̄), we neglected nonlinear hydrodynamics terms. These equations are

therefore limited to slow streaming and cannot describe turbulent flows.

Away from boundaries (and the viscous boundary layer), these equations can be simpli-

fied with weakly restrictive hypotheses: In the mass conservation (Equation 8), the diver-

gence of the intensity vector (third term) corresponds to the viscous dissipation of acoustic

energy, which remains weak compared to inertial terms in most media at usual frequen-

cies. This is quantified by the so-called acoustic Reynolds number Reac = ρc2o/ωµ(4/3 + ξ
µ

)

which is also the ratio between the acoustic attenuation length La = ρc3o/ω
2µ(4/3 + ξ

µ
) (the

characteristic distance of the wave damping) and the wavelength λ. As a consequence, the

condition Reac � 1 ensures that the wave is not attenuated over a distance comparable to

the wavelength. The reverse situation only happens in very viscous fluids or at frequencies

higher than GHz in water. If we assume Reac � 1 and consider only the steady average

flow (after the transient state), we obtain the classical Stokes equation:

∇v̄ = 0 (11)

µ∆v̄ −∇p̄+ F = 0 (12)

with a forcing term (Nyborg (1953)):

F = −ρo∇. 〈ṽ ⊗ ṽ)〉 (13)

corresponding to the source of acoustic streaming. As expected, this source is a nonlinear

average effect resulting from the acoustic field ṽ. Owing to its simplicity, this expression

of the streaming source term has been widely used to compute acoustic steady streaming

numerically. Nevertheless, as we shall see, this expression should be avoided as it con-

tains some terms that do not contribute to bulk acoustic streaming but instead to acoustic

radiation pressure and can lead to large numerical errors in simulations.

Periodic fluctuations: nonlinear propagation of the wave The equations of the periodic

fluctuations up to second order can be simply obtained by subtracting average equations

(1 to 4) to the constitutive Equations (8 to 10):
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∂ρ̃

∂t
+ ρo∇.ṽ = −∇.� ρ̃ṽ� (14)

ρo
∂ṽ

∂t
+∇p̃− µ∆ṽ − µb∇∇.ṽ =

∂

∂t
� ρ̃ṽ� −ρo∇.� ṽ ⊗ ṽ� (15)

p̃− c2oρ̃ =
Γ

2
� ρ̃2 � (16)

with b = 1/3 + ξ/µ and the operator �� is defined by � f̃ g̃ �= f̃ g̃− < f̃g̃ >. The left

hand sides of these equations corresponds to the linear equations of damped acoustic waves.

The right hand sides of these equations represent nonlinear effects affecting the propagation

of the acoustic waves. Following (Riaud et al. (2017b)), these equations can be combined

to obtain the celebrated Kuznetsov equation (Kuznetsov (1970)) describing the nonlinear

propagation of acoustic waves:

∂2φ̃

∂t2
− c2o∆φ̃−

µb

ρo

∂

∂t
∆φ̃ =

∂

∂t

(
B

2Ac2o
�
(
∂φ̃

∂t

)2

� +�
(
∇φ̃
)2
�

)
(17)

with φ̃ the velocity potential (ṽ = ∇φ̃). In this equation, the first two terms on the lhs

simply correspond to d’Alembert wave equation, the third term on the lhs accounts for the

wave viscous damping, while the terms on the rhs corresponds to nonlinear effects affecting

the wave propagation. Here we assumed that ṽ = ∇φ̃ and thus that the fluctuation field is

irrotational. This is correct away from viscous boundary layers, since acoustic modes are

by definition irrotational.

It can be noticed that the contribution of the nonlinear terms to the wave propagation

can be sized by comparing the characteristic length of the wave propagation Lc to the so-

called shock distance Ls = c2o/ωβUac, where Uac is the magnitude of the acoustic velocity

perturbation and β = 1 + B/2A the so-called nonlinear parameter. Indeed, nonlinear

effects are small but nevertheless cumulative. Thus, they can play a significant role over

this characteristic distance. The main effect is the generation of harmonics and the transfer

of energy to these harmonics, which can eventually turn a sinusoidal wave into an acoustical

shock wave (at the origin of the name ”Shock distance”). In many practical applications,

the nonlinear propagation terms can be neglected.

Simplification of the bulk streaming source term Following (Lighthill (1978)) and

(Riaud et al. (2017b)), the streaming source term F = −ρo∇. 〈ṽ ⊗ ṽ〉 can be recast into

a gradient term that does not contribute to acoustic streaming but only to the acoustic

radiation force and another term that is the sole source of bulk streaming:

F = −∇L̄+
ω2µb

ρoc4
Ī (18)

with L̄ = K̄ − V̄ the average acoustic Lagrangian, K̄ = 1/2ρo < ṽ2 > the average acoustic

kinetic energy and V̄ the average potential energy V̄ = 〈p̃2〉/(2ρoc2o). The main assumption

to obtain this equation is that the fluctuation field ṽ is irrotational. Then, if we introduce

the dynamic pressure of the streaming flow p̄s = p̄+L̄ = c2oρ̄+Γ/2
〈
ρ̃2
〉

+L̄, then the Stokes

equation of the streaming flow (Equation 12) can be rewritten under the form:

µ∆v̄ −∇p̄s + FS = 0 with FS =
ω2µb

ρoc4
Ī (19)

6 Baudoin & Thomas.



FS being the sole source of acoustic streaming. This equation shows that the gradient term

plays no role on acoustic streaming. It also shows, as expected, that the streaming source

depends on the wave damping (∝ ω2µb) and the average acoustic intensity Ī.

Figure 1: Geometry and notations used of the calculation of the force exerted on a particle

by an incident acoustic wave.

Force applied on a particle and acoustic radiation force Now that we have obtained equa-

tions for acoustic streaming, we can derive the average force applied on a particle. This

force F̄p is simply the time average of the stress exerted on the moving interface Sp(t) of

the particle:

F̄p =

〈∫∫
Sp(t)

σ.npdS

〉
(20)

with σ = −p1 + 2µD + (ξ − 2µ/3)(∇.v)1 the stress tensor and np the vector normal to

the surface of the particle pointing outward with respect to the particle, Figure 1. The

difficulty to perform this integral comes from the vibration of the particle surface induced

by the acoustic wave, and thus the fact that it is not fixed. To overcome this difficulty,

we can start by introducing flux of momentum tensor B = ρv ⊗ v − σ, and rewrite the

momentum balance under the form:

∂ρv

∂t
+∇.B = 0. (21)

Then, we can introduce a closed surface at rest surrounding the particle Sr, and integrate

this momentum equation over a volume V (t) bounded on one side by the vibrating surface

Sp(t) and the other side by the fixed surface Sr (see Figure 1). The divergence theorem

gives: ∫∫∫
V (t)

∂ρv

∂t
dV +

∫∫
Sp(t)

B.ndS +

∫∫
Sr

B.nRdS = 0 (22)

with n = −np and nR the normal to the surface at rest Sr pointing outward with respect

to V (t). Then using, the Reynolds transport theorem:

∂

∂t

∫∫∫
V (t)

ρvdV =

∫∫∫
V (t)

∂ρv

∂t
dV +

∫∫
Sp(t)

ρvv.ndS, (23)
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the time average of Equation 22 becomes:

F̄p =

〈∫∫
Sp(t)

σ.ndS

〉
= −

∫∫
SR

B̄.nRdS (24)

with the average momentum flux tensor equal to B̄ = ρo 〈ṽ ⊗ ṽ〉+ (po + p̄)1− 2µD̄− (ξ −
2µ/3)∇.v̄ up to second order. Finally considering p̄ = p̄s − L̄ and ∇.v̄ = 0, we obtain the

following final expression of the force applied on a particle 3:

F̄p = F̄rad + F̄str (25)

with F̄rad =

∫∫
SR

(−ρoṽ ⊗ ṽ + L̄).nRdS (26)

and F̄str =

∫∫
SR

(−p̄s1 + 2µD̄).nRdS (27)

As we will see in the next section, the first component of the force F̄rad is the so-called

radiation force applied on the particle, while obviously the second component of the force

is simply the force applied on the particle by the average flow, i.e. bulk acoustic streaming.

Nonlinear acoustics in a nutshell As a conclusion to this section, acoustic wave propagation,

bulk acoustic streaming and the force applied on a particle can be summarized by the

following set of coupled nonlinear equations:

Acoustic wave propagation (linear case):
∂2φ̃

∂t2
− c2o∆φ̃−

µb

ρo

∂

∂t
∆φ̃ = 0 (28)

Acoustic streaming: µ∆v̄ −∇p̄s + FS = 0, with: FS =
ω2µb

ρoc4
Ī and Ī =< p̃ṽ > (29)

Force exerted on a particle: F̄p = F̄rad + F̄str (30)

with the radiation stress: F̄rad =

∫∫
SR

(−ρoṽ ⊗ ṽ + L̄).nRdS (31)

and the streaming force: F̄str =

∫∫
SR

(−p̄s1 + 2µD̄).nRdS (32)

2.2. Radiation pressure: an historical perspective

2.2.1. Origin of the term radiation pressure. The force Fp, applied by a wave on a particle

is at first order an oscillating phenomena whose temporal average is zero. The existence of

a non-zero average force F̄p dates back to Kepler’s observation of the orientation of comets

tail with respect to the light emitted by the sun. The corpuscular theories of light at that

time are probably at the origin of the term ”radiation pressure” to name the mean force per

unit area, P̄em, in reference to the pressure in a gas. In this analogy, the radiation pressure

of a light wave is always directed perpendicular to the surface of the enlightened object.

3Since integration is performed here on a closed surface, Equations 26 and 27 are unaffected by
any constant C, i.e. p̄ = p̄s′ − L̄′ with L̄′ = L̄+ C and p̄s′ = p̄s + C would lead to the same force
applied on the particle. This constant is nevertheless important when Rayleigh radiation pressure is
under consideration, see section 2.2.2 for the definition of Rayleigh radiation pressure and Langevin
radiation pressure, and the discussion in section 2.2.4.
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Maxwell was the first to propose a coherent theory of this phenomenon and demonstrated

that light can exert a force in its direction of propagation instead (Jackson (1962)). In this

theory, the radiation pressure is given by the average of the electromagnetic stress tensor.

A more correct denomination would therefore be the radiation stress and this point is at the

origin of many misunderstandings on this subject. This nonlinear phenomenon proportional

to the square of the electromagnetic field has (for a plane wave propagating along the z-

axis) an amplitude equal to the energy density of the wave, P̄em · z = Ēem. By analogy

with point mechanics, the existence of a nonzero mean force leads to the existence of a

linear momentum carried by electromagnetic waves. This hypothesis will be confirmed by

relativity and will lead to the equivalence between mass and energy that will relate photon

momentum and energy.

2.2.2. Radiation pressure in acoustics. It was in this context, just before the advent of

relativity, that Rayleigh proposed and modeled the existence of a radiation pressure for

acoustic waves in fluids. He studied the plane wave case and initially obtained an expression

identical to optics: the radiation pressure is a second order phenomena equal to the time-

averaged acoustic energy density Ēa (Rayleigh (1902)):

P̄a = Ēa = K̄+ V̄ (33)

This naturally led him to postulate the existence of a linear momentum carried by an

acoustic wave and to explain the acoustic radiation pressure by an exchange of momentum

similarly to optics, following the point of view of Poynting (McIntyre (1981), Post (1960)).

Nevertheless, an acoustic wave propagates in a material medium and taking into account the

non-linearity of its state equation, Rayleigh obtained a second expression (Rayleigh (1905),

Post (1953)):

P̄a = βĒa (34)

where β = 1 + B/(2A). This differentiates the acoustic case from the optical one, the

material medium must be taken into account and nowadays this expression is referred to

as the Rayleigh radiation pressure. The proportionality of acoustic radiation pressure and

energy density was demonstrated by (Altberg (1903)). The situation studied by Rayleigh

corresponds to a plane wave of infinite lateral extension or a plane mode in a wave-guide.

This situation is quite far from the practical case where one seeks to manipulate solid or

fluid particles completely immersed in a fluid. The first to propose a relevant model for

this case was Langevin in a colloquium. His work was nevertheless only published nine

years later by (Biquard (1932a)). Using Kelvin circulation theorem, he showed that in the

stationary regime, the mean pressure difference between two points O and M of a fluid is

equal to the difference of acoustic energy density in these two points, p̄LO− p̄LM = ĒO− ĒM ,

here the superscript, L, stands for Lagrangian coordinates to differentiate from Eulerian

coordinates. Selecting for M a point where the medium is at rest, yields:

p̄L = Ēa + C (35)

with C a constant. As a consequence, the component related to the non-linearity of the

state equation, see Equation 34, contributes only through a uniform pressure, C, which

consequently cannot give rise to any overall force for a completely immersed object since it

is applied on all side on the object. Thus, he recovered Equation 33, the equivalent to the

www.annualreviews.org • Acoustical tweezers 9



optical case known today as Langevin radiation pressure. The computation in Eulerian co-

ordinates was also made assuming an irrotationnal particle velocity and using the unsteady

Bernouilli theorem, this was published in a second article (Biquard (1932b)):

p̄ = pL − 2K̄ = −L̄+ C (36)

These two calculations of the average pressure in a fluid in Lagrangian and Eulerian co-

ordinates (Equations 35 and 36), are called first and second Langevin relations. This last

relation has been revisited by (King (1934), Richter (1940), Bopp (1940)) among others.

We propose here a new version. Indeed, Equation 19 yields ∇p̄s = 0 for an ideal fluid, so

that Equation 36 is recovered from the definition p̄s = p̄+ L̄.

At this stage, some confusions remained on the origin and nature of acoustic radiation

pressure: First, the average force per unit area exerted by the acoustic wave was considered

at that time as a pressure, i.e a stress tensor that is equal to the identity tensor times a

scalar. Second, the linear momentum carried by an acoustic wave and its transfer to another

medium was considered by Rayleigh as responsible for the radiation pressure.

2.2.3. Radiation stress tensor and acoustic momentum. This situation was reanalyzed by

Brillouin (Brillouin 1925a, Brillouin (1925b)). A good account in English of the content of

his papers, published originally in French, can be found in his book (Brillouin (1938)).

First, he challenges the existence of a momentum carried by a longitudinal acoustic

wave in a fluid, i.e he demonstrates that acoustic waves can very well exist without any

average momentum 4.

Indeed, the mean momentum in both Eulerian and Lagrangian coordinates is:

ρ0v̄
L = 〈ρvE〉 = 〈ρ̃ṽ〉+ ρ0v̄ (37)

Hence a zero average momentum, i.e a zero material velocity v̄L = 0 does not prevent the

existence of an acoustic wave (field ρ̃, ṽ) but instead leads to a non-zero average velocity

in Eulerian coordinates v̄ = −〈ρ̃ṽ〉/ρ0. This second order difference between the particle

velocity in Lagrangian and Eulerian coordinates 〈ρ̃ṽ〉/ρ0 = v̄L − v̄ is called the Stokes

drift. Hence the acoustic radiation pressure exerted by these waves cannot be explained

by an exchange of momentum. The quantity 〈ρ̃ṽ〉 is not a true momentum and should

be called instead pseudo-momentum or quasi-momentum for quasi-particles like phonons

(Peierls (1985), McIntyre (1981), Thomas, Marchiano & Baresch (2017)).

Second, he stated that the force exerted on the object is the integral of the Cauchy

stress on its surface oriented toward the outside, see Equation 20. In the special case of a

perfect fluid, the Cauchy stress tensor is the opposite of the pressure times the unit tensor,

−p1. The radiation force is thus the average of this quantity:

F̄p = −〈
∫∫

Sp(t)

pnpdS〉 = −〈
∫∫∫

V (t)

∇pdV 〉 (38)

where we use the divergence theorem to get the second equality. It is important to note

that in this expression, the surface of the object Sp(t) driven by the acoustic wave deforms

to follow the vibrations of the surrounding medium and thus ensure the continuity of the

4i.e. without any mass flow since acoustic waves are supported by a medium and the average
momentum also correspond to the average mass flow.
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normal velocity at the interface. Since the surface elements varies in time, the average and

integral operators do not commute and p̃ will contribute to the radiation pressure. This def-

inition of the radiation force is difficult to use in practice. An exception is Bjerknes force on

a small spherical bubble. At the bubble scale, the pressure gradient is assumed uniform and

integration leads to F̄p = −〈V (t)∇p̃〉, where V (t) is the bubble volume (Bjerknes (1906)).

This case illustrates that radiation pressure is a nonlinear phenomenon: the pressure at

first order is null on average but cannot be neglected since the surface is varying in time.

Third, Brillouin substituted Lagrangian coordinates for Eulerian coordinates in this surface

integral. On the one hand this approach enables to recover a surface at rest to perform

the integral and on the other hand, the Cauchy stress tensor is transformed into the first

Piola-Kirchoff stress tensor. Since the surface is now fixed, the temporal average opera-

tion commutes with the integration and thus integrating the first Piola-Kirchoff average on

the rest surface yields the radiation pressure. The first Piola-Kirchoff stress tensor is the

momentum flux in the momentum conservation equation in Lagrangian coordinates. The

averaged flux of momentum can be finite even if the averaged momentum is null. While this

definition is convenient for radiation pressure in solids, an expression in Euler coordinates

is preferable in fluids. So Brillouin proposed to use the averaged flux of momentum in Eu-

lerian coordinates on a fixed surface surrounding the object. He noted that that going from

moving surface elements to fixed ones is exactly compensated by subtracting the averaged

Reynolds stress tensor, so that:

F̄p = −〈
∫∫

Sp(t)

pnpdS〉 = −〈
∫∫

SR

(p1 + ρv ⊗ v).nRdS〉 = −
∫∫

SR

B̄nRdS (39)

with SR a fixed surface surrounding the object, Figure 1, and:

B̄ = (p̄+ p0)1 + ρ0〈ṽ ⊗ ṽ〉 (40)

for an inviscid flow. The tensorial nature of radiation pressure has been experimentally ver-

ified by (Hertz & Mende (1939), Herrey (1955)). This derivation has been generalized by

(Beissner (1998)) in a fluid and the average fluxes of momentum in Eulerian and Lagrangian

coordinates differ only by a curl that does not contribute to the force on a completely im-

mersed object. The direct derivation of Equation 39 from Equation 38, originally introduced

by (Hasegawa et al. (2000)), uses the Reynolds transport theorem and has been presented

with more generality in section 2.1.

2.2.4. Integral expression of the force exerted on an immersed particle. To get an expres-

sion valid at second order, one may use the expression of the mean pressure Equation 36

and substitute it in Equation 40:

B̄ = −L̄1 + (p0 + C)1 + ρ0〈ṽ ⊗ ṽ〉 (41)

When the object is completely immersed in a perfect fluid (corresponding to Langevin

radiation pressure), the integration over a fixed surface surrounding the object cancels the

uniform part of the isotropic terms (p0+C)1 and hence the radiation force is obtained by the

average of the following tensor (Brillouin (1936), Bopp (1940), Richter (1940), Post (1953),

Borgnis (1953)), Equation 31:

B̄ = −L̄1 + ρ0〈ṽ ⊗ ṽ〉 (42)

www.annualreviews.org • Acoustical tweezers 11



Note that this tensor is completely determined by the average of quadratic expression

involving p̃ and ṽ and hence, the radiation force on a completely immersed object does not

depend on the medium nonlinearity that is contained in the constant C. Thus we recover

the optical case features. This holds as long as the pressure like term has time to relax and

give at equilibrium a uniform pressure throughout the fluid.

However, when the wave is of infinite aperture or confined in a waveguide, (correspond-

ing to Rayleigh radiation pressure), this isotropic uniform term plays a role. Thus the con-

stant C must be determined from the boundary conditions (Brillouin 1925a). For a plane

progressing wave oriented along x-axis impinging on an absorbing target whose average posi-

tion is fixed, all fields have an uniform amplitude. So we can deduce from mass conservation

that ρ̄ = 0 since the whole volume is fixed in average . From Equation 10, we get p̄ = B/AV̄.

Since for a plane progressive wave V̄ = K̄ = 1/2Ēa, p̄ = B/(2A)Ēa and ρ0〈ṽiṽj〉 = 1/2Ēaδ11.

So the radiation stress tensor, Equation 40, reduces to (p0 +B/(2A)Ēa)δij +1/2Ēaδ11. The

lateral pressure is p0 +B/(2A)Ēa while on the axis of propagation, we get p0 + βĒa. If the

outside pressure is p0 the excess pressure from the inside is βĒa, i.e. the Rayleigh radiation

pressure, Equation 34.

2.3. Axial radiation force on a sphere

As underlined above (Equation 42), the radiation pressure tensor depends only on the

acoustic field at first order. However, these fields are the sum of the incident and scat-

tered field and thus it is necessary to compute this latter before performing the integra-

tion on a surface at rest arbitrary located around the object. These two steps have been

achieved by (King (1934)) for a rigid sphere using Equation 36. (Embleton (1954)) ex-

tended these results to the radiation pressure on a rigid sphere set at the focus of a spher-

ical incident wave. (Yosioka & Kawasima (1955)) solved the problem of a compressible

fluid sphere and then (Hasegawa & Yosioka (1969)) the one of an elastic sphere but in a

plane incident wave only using Equation 42. Later, the work of Embleton was general-

ized to take into account the elasticity of the sphere (Chen & Apfel (1996)). An essential

step is the computation of the scattered waves and hence the scattering coefficient. For

an incident longitudinal plane wave and an elastic sphere, the first derivation was made

by (Faran (1951)). In all these works extending, axisymmetry is used to simplify con-

siderably the task (Hasegawa, Ochi & Matsuzawa (1981)). Mathematically, the displace-

ment vector in the elastic spherical particle can be decomposed into a scalar and a vec-

tor potential using Helmholtz’ decomposition. For an incident longitudinal plane wave

propagating along the z-axis, the axial symmetry enables do introduce only one compo-

nent for the vector potential in spherical coordinates: A = (0, 0, A(r, θ)). The complete

problem is thus reduced to two scalars, both solutions of Helmholtz’s equation. The two

potentials are then written as an infinite sum of spherical modes without azimuthal de-

pendence. The boundary conditions at the sphere surface provide the relation between

incident and scattered waves for each spherical mode. This is important to note that

only the force component in the beam direction can be calculated with this approach.

These two limitations (axial symmetry and force component in the beam direction) for-

bade using these models for tweezers investigations and led only to experimental confirma-

tion of theory (Klein (1938), Rudnick (1977), Hasegawa (1977)), local acoustic fields mea-

surements complementary of radiation force balance (Rooney (1973)) and levitation traps

(Sölner & Bondy (1936)).
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2.4. Bulk acoustic streaming: an historical perspective

As the story of acoustic radiation pressure, the history of acoustic streaming also starts with

the work of Rayleigh (Rayleigh (1884)). Aroused by the observations of (Faraday (1831))

and (Dvorak (1874)) of the flows produced by vibrating plates and Kund’s tubes respec-

tively, Rayleigh developed the first theory of the flow induced by an acoustic wave damped

by its interactions with the walls of a tube. In this first type of acoustic streaming, the

flow results from the wave damping induced by shear stresses in the viscous boundary

layer, where the fluid velocity decays to match the velocity of the boundary. This type of

streaming is now referred to as boundary streaming or Rayleigh streaming. Later on, with

the advent of piezoelectric generators, many scientist have reported strong flows of air or

liquid in the direction of the acoustic wave propagation referred at this time as ”quartz

wind”. It was first demonstrated by (Eckart (1948)) (for liquids) that, in this case, the flow

results from the viscous attenuation of the wave in the bulk of the fluid 5. This second

type of acoustic streaming is now referred to as bulk streaming or Eckart streaming. Eckart

obtained his results (i) by developing compressible isentropic Navier-Stokes equations into

zero, first (linear) and second (nonlinear) orders contributions, (ii) by combining the mass

and momentum equations at second order and (iii) by separating the second terms con-

tributing to the nonlinear propagation of the wave from the one contributing to the steady

flow by taking the divergence and curl of this combined equations, respectively. In this way,

he obtained an unsteady diffusion equation for the vorticity (curl of the velocity) at second

order, corresponding to acoustic streaming:

∂Ω2

∂t
− µ

ρo
∆Ω2 =

bµo
ρ3o
∇ρ1 ×∇

∂ρ1
∂t

, with Ω = ∇× v2 (43)

He then applied this equations to the flow produced in an infinite tube by a weakly at-

tenuated wave of finite aperture propagating along the axis of the tube without lateral

interaction with the walls. His theory was verified soon after by (Libermann (1949)), who

nevertheless noticed some differences at large Reynolds number 6. On the one hand, the

advantage of Eckart’s formulation is that it does not rely on time averaging and thus these

equations enable to describe unsteady bulk streaming. On the other hand, these equations

describe the evolution of the vorticity field and (i) it is sometimes difficult to express the

boundary conditions in terms of vorticity and (ii) the derivation of the velocity field from

the vorticity field requires to solve another set of differential equations. Nyborg proposed

a formulation corresponding to a Stokes equation with a source term at the origin of the

acoustic streaming (corresponding to Equations 11 to 13). While mathematically sound, his

formulation of the source term is to proscribe numerically since it contains some potential

terms (see Equations 18), that do not contribute to acoustic streaming, but can be several

orders of magnitude larger than the actual source term 7. Thus small numerical errors on

the gradient terms can lead to ”numerical acoustic streaming” resulting from numerical dis-

5For liquids the viscous damping is dominant. In gases, both thermal and viscous damping
contribute to the streaming

6Indeed, all these theories based on asymptotic development into different orders contributions
are only valid for slow streaming flow (low hydrodynamic Reynolds numbers associated with the
steady flow)

7See e.g. (Shiokawa (1990)), who compared the two terms in the study of acoustic streaming
produced by surface acoustic waves and erroneously neglected the term that actually contributes
to acoustic streaming)
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sipation. (Lighthill (1978)) identified this gradient term and later on (Riaud et al. (2017b))

isolated the sole source of bulk acoustic streaming and expressed it as a function of the in-

tensity vector (see Equation 19). These authors also demonstrated that the bulk streaming

source term can be spatially filtered as the small structures of the acoustic field do not con-

tribute to acoustic streaming. In 1953, (Westervelt, P.J. (1953)) extended Eckart’s work

and reconciliated bulk and boundary streaming in a single formulation. He showed that his

formulation enables to recover these two types of streaming as limit cases.

Since these pioneering work on bulk streaming, many effects have been studied such

as transient streaming (Rudenko (1971)), the influence of diffraction by the edges of

the beam (Kamakura (1996), Moudjed et al. (2014)), the effect of the nonlinear prop-

agation of the wave (Romanenko (1960), Stanikov (1967)), weakly nonlinear flows at

intermediate Reynolds numbers in the limit of the conservation of the flow symme-

try (Gusev & Rudenko (1979)) or more recently the effect of the fluid inhomogeneity

(Karlsen & Bruus (2016)). However, despite these efforts, a proper theory of fast acoustic

bulk streaming at high Reynolds numbers is still lacking. We can note that in this short

historical review, we did not cover the extensive fields of the flow produced by the interac-

tion of a sound wave with a particle or a bubble, neither we treated the steady streaming

produced by incompressible alternative flows (Riley (2001)).

3. Acoustical traps and collective manipulation with standing waves

3.1. Historical development of the field

While the first theoretical works on radiation pressure were performed in optics, the first

effective set-up for particles trapping were developed in acoustics. The main reason is

the availability of powerful coherent source that will appear later in optics with the de-

velopment of lasers. Thus collective manipulation of particles with standing waves as a

long history going back to Chladni figures and Kundt tubes. Chladni figures illustrates

that very small particles are driven mostly by acoustic streaming while the radiation force

dominates for larger particles (Hagsäter et al. (2007)). The relation between these stand-

ing waves acoustical traps and radiation pressure as modeled by (King (1934)) was clearly

established just after (Sölner & Bondy (1936)). (Allen & Rudnick (1947)) observed lev-

itation of different items in standing and progressive waves in air using a very power-

ful siren operating at 25 kHz. They noted that while relatively large objects could be

levitated in standing wave, the trap was unstable for progressive waves. Levitation of

bubbles in liquid columns vibrating at low frequency were also observed and explained

with Bjerknes force (Bucchanan, Jameson & Oedjoe (1962), Baird (1963)). Piezoelectric

sources working at higher frequencies were used thereafter to excite the resonant mode

of a cylindrical cavity and levitate a single bubble on the pressure anti-node at low fre-

quencies (Eller (1968), Gould (1968)). Thereafter, these levitation traps were used for

studying surface tension and phase transition of liquid drops (Apfel (1981)). Levitation

traps were developed both in liquid or in air. In air, the radiation force in acoustics is

strong enough to levitate millimeters beads of iridium, the material with the highest den-

sity (Xie & Wei (2002)). The observation of agglomeration of red blood cells was related

to acoustic standing wave fields and it was initially used to assess potential detrimen-

tal hazard in medical imaging (Baker (1972)). When many particles are involved and

interact, there are several forces at play and the discrimination can be be rather com-

plex (Coakley et al. (1989)). Nevertheless, it was recognized that radiation pressure in
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standing waves could be used for both harvesting and manipulation of small particles

(Schram (1984), Whitworth, Grundy & Coakley (1991)) using modulation of either phase

or amplitude of the two counterpropagating plane waves.

3.2. Radiation force on drops and elastic spheres in the long Wavelength regime

The most common expression of the radiation force induced by standing waves relies on the

assumptions of (i) spherical particles and (ii) excitation in the long wavelength regime (i.e.

when the wavelength is much larger than the size of the particle). For bubbles, the force is

described by Bjerknes formula. On the contrary, when the contrast of compressibility and

density are not too high, e.g elastic particles or drop in a liquid (Gorkov (1962)) developed

a model that is used today in most of acoustic traps.

Since the sphere radius is very small compared to the wavelength, k0a << 1, the

monopole and dipole scattering dominate and (Gorkov (1962)) obtained from a multipole

expansion a simple expression :

F̄p = −∇
(
αmV̄ − αdK̄

)
(44)

with αm =
4

3
πa3

(
1− K0

Kp

)
and αd = 4πa3

(
ρp − ρ0
2ρp + ρ0

)
. (45)

In this formula, K0 = ρ0c
2
0 and K = ρp(4/3c

2
t − c2l ) are the bulk elasticity of the fluid and

solid, ρo and ρp the fluid and particle densities and a the radius of the particle. The particle

longitudinal and transverse wave speeds are noted cl and ct respectively. Here the potential

and kinetic energy, V̄ and K̄, are computed with the amplitude of the linear incident field

at the sphere location. In this expression, the radiation pressure is a potential force that

depends on the incident linear fields and the acoustic contrast factor in compressibility and

density. This approximation based on a Taylor expansion is valid as long as the kinetic and

potential energies are not uniform in any direction. Since it relies on the gradient of the field,

it is generally called the gradient force. This is the case encountered in standing waves. On

the contrary, this force cancels out for a plane progressive wave and the Taylor development

must be carried out at next order. This case was also studied by (Gorkov (1962)) and this

force is not a gradient force and generally referred to as the scattering force. It must be

noted that in real fluid, viscosity corrections can be important (Settnes & Bruus (2012)).

Thermal dissipation was also considered (Karlsen & Bruus (2015)).

3.3. Particles micro-manipulation with radiation force

Today, a very active field of research combines acoustic standing waves with microfluidics.

A lot of promising biological applications are developed in order to separate, concentrate

and manipulate particles and in particular biological cells in a label-free environment and

with high throughput. The corresponding literature is quite extensive and outside the

scope of this review. We redirect an interested reader to existing reviews on the subject

(Lenshof & Laurell (2010), Ding et al. (2013), Yeo & Friend (2014), Ozcelik et al. (2018)).

Individual particles manipulations are limited by two adverse effects that forbid selectivity.

First, standing waves generates traps locations at each nodes or anti-nodes depending on

the acoustic contrasts of density and compressibility (see Equation 44), hence preventing

the trapping of one particle independently of other neighboring particles. Second, the size

and stiffness of the trap is determined by the wavelength and these setup are designed in

the long wavelength regime.
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4. Selective acoustical tweezers and stirrers
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Figure 2: Bessel cylindrical vortices. A. Equiphase surface of a Bessel cylindrical vortex

(topological order l = 1 and cone angle β = π/4). The colorfield corresponds to the pressure

amplitude. The axial component kz, the lateral component k⊥ and the total wave vector

k = kz + k⊥ are represented on the graph. Note that k⊥ is turning around the wave

axis as the wave propagates along z-axis. B. Equiphase surfaces of a cylindrical vortex (of

topological order l = 1) for different cone angles β = arctan k⊥/kz. As the cone angle

increases, the vortex lateral evolution is more rapid while its axial evolution is slower. C.

Lateral evolution of the amplitude and phase.The amplitude vanishes on the axis and this

central minimum is surrounded by a ring of high intensity. Then the field is a succession

of bright and dark rings of decreasing intensities. Inside the first ring, the phase evolves

from 0 to 2π when θ goes from 0 to 2π, with a phase singularity at the center. Laterally

the phase undergoes some phase jump of π each time the sign of the Bessel function jl(kr)

changes. D. Equiphase surfaces of Bessel cylindrical vortices of different topological orders

l = 1, l = 2 and l = 3.

4.1. Spatial localization of the acoustic energy and acoustical vortices

The selective manipulation of a particle, i.e. its manipulation independently of other neigh-

boring particles can only be achieved through spatial localization of the trap and hence the

acoustic energy at the scale of the particle. A natural idea to achieve such localization is

to use laterally or radially focalized waves (for 2D and 3D selective trapping respectively).

This solution adopted in optics is also valid in acoustics for particles attracted at the pres-

sure anti-nodes of an acoustic standing wave field, such as particle less dense and more

compressible than the surrounding liquid (see Equations (44) and (??)). Nevertheless, par-

ticles more stiff and more dense than the surrounding liquid, such as solid particles, cells

and most droplets migrate (Gorkov (1962)) toward the pressure nodes of a standing wave

field. Such particles would be expelled from the focus of a focalized wave, which precludes

their use for many particles of interest. For such particles, it is necessary to concentrate
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the energy but with a minimum at the wave focus surrounded by a ring of high intensity,

which will ensure particles trapping.

4.1.1. Cylindrical vortices. For 2D particles trapping, this apparently paradoxical problem

can be solved by using some specific wave fields called cylindrical acoustical vortices, some

helical waves spinning around a phase singularity axis (Figure 2). These wave struc-

ture are called acoustical vortices (similarly to optics where they are referred to as optical

vortices) owing to their helical wave front, whose structure resembles a hydrodynamic vor-

tex. Nevertheless, since they are solutions of the wave equation, they do no carry any

vorticity. They are sometimes also referred as helical waves. This class of waves were

originally introduced by (Nye & Berry (1974)) when he studied wave phase singularities

and in particular so-called screw dislocations. This phase singularity ensures a canceling

of the amplitude at the beam focus, surrounded by a bright ring which can be used to

trap particles laterally (Courtney (2014)). In the field of acoustics, acoustical vortices were

first introduced (and experimentally synthesized) by (Hefner & Marston (1999)). Mathe-

matically, these waves structures can be simply introduced as a set of separated variable

solutions Ψ(r, θ, z) = f(r)g(θ)h(z) of the wave equation in cylindrical coordinates (r, θ, z)

in the Fourier space, that is to say Helmholtz equation:

∆Ψ− k2Ψ = 0⇐⇒ 1

r

∂

∂r

(
r
∂Ψ

∂r

)
+

1

r2
∂2Ψ

∂θ2
+
∂2Ψ

∂z2
+ k2Ψ = 0.

Indeed, an orthogonal set of solutions of this equation (see SI for the details of the calcula-

tion), that we will refer as Bessel cylindrical vortices are:

Ψ(r, θ, z, t) = AJl(k⊥r) exp(i(lθ + kzz − ωt)), (46)

with A the amplitude of the vortex, Jl the Bessel function of the first kind of order l, k the

wave vector, k = ‖k‖ = ω/c2o the wave number, co the sound speed, l ∈ Z an integer called

the topological charge, kz = k.z the projection of the wave vector over the propagation axis

z and k⊥ = k2 − k2z (see Figure 2 for a visual representation of the different parameters).

These beams are defined by three parameters: their angular frequency ω, their topological

order l and the so-called cone angle β = arccos(kz/k) which defines the angle between the

wave vector k and the propagation axis z. We can note, that for l = 0, the field becomes

invariant over θ and the lateral evolution is given by J0(kr), which exhibits a maximum

in r = 0. Thus this wave field is not a vortex but simply a laterally focalized wave. Thus

vortices only refer to beams of topological order larger than |l| > 1. These waves are

propagative over θ and z and stationary over r, with a lateral evolution given by the Bessel

function. Bessel functions of order |l| > 1 all exhibit a minimum in r = 0 and then oscillate

inside a decreasing envelope, evolving as 1/
√
r.

These waves have good properties for particles lateral trapping. Indeed, the canceling of

the Bessel functions jl(k⊥r) of order |l| > 1 in r = 0 and then its increase up to a maximum

creates a gradient trap that will maintain the particle at the center.

Some asymptotic forms of these Bessel beams exist in the approximation of small conical

angles β � 1 between the wave number and the propagation axis, that is to say in the so-

called paraxial approximation. The solutions of the paraxial approximation of Helmholtz

equation are the so-called Laguerre-Gaussian beams, which take the form:

Ψ(r, θ, z, t) =
A

w(z)

[√
2r

w(z)

]|l|
L|l|p

(
2r2

w(z)2

)
exp

(
−r2

w2(z)
+ i

(
lθ + (2p+ |l|+ 1) arctan

(
z

zR

)
− r2kz

2(z2 + z2R)

))
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with L
|l|
p the associated Laguerre polynomial, w(z) = wo

√
1 + z2/z2R the beam width at

position z along the wave propagation axis, wo the beam waist, zR = πw2
o/λ the Rayleigh

range, λ the wavelength, and (2p + l + 1) arctan(z/zR) the Gouy phase. These waves, are

common in optics, since Gaussian beams are good approximation of the field produced by

a laser. Their intensity is mostly localized close to the beam axis since their amplitude

decreases exponentially as exp(−r2/w2(z)) with a radial extent equal to w(z). Thus, these

waves do not carry an infinite energy and can be synthesized experimentally.

Finally, if we push further the approximation of Bessel beams to vanishing conical

angles β → 0, then kz → k and k⊥ → 0, and Bessel cylindrical vortices turn into so-called

R-vortices:

Ψ = A rl ei(lθ+kz−ωt).

A. Bessel spherical vortex B. Hankel spherical vortex

C. One-sided focalized vortex
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Figure 3: focalized vortices of topological order (l,m) = (1, 1). A. Amplitude and phase of

a Bessel spherical vortex, corresponding to Equation 47. B. Isophase surface of a converging

Hankel vortex. C. Amplitude and phase of a one-sided focalized vortex. The amplitude in

the (y, z) plane shows the focalization of the vortex, pictures on the left hand side show the

amplitude and phase in the source plane (x, y), while pictures on the right hand side show

the amplitude and phase in the focal plane. α corresponds to the aperture of the source.

4.1.2. Focalized vortices. As first proposed by (Baresch, Thomas & Marchiano (2013b)),

an idea to obtain a 3D localized trap is to use the spherical analogues of Bessel cylindrical

acoustical vortices, the so-called Bessel spherical vortices (Figure 3.A). Indeed, these

wavefields focalize the energy in 3D, while maintaining a minimum at the focal point.
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These fields, as their cylindrical counterparts, are a set of orthogonal separate variables

solutions of Helmholtz equation, but this time in spherical coordinates (r, θ, ϕ):

Ψ(r, θ, ϕ) = Ajl(kr)P
m
l (cos(θ)) exp (i(mϕ− ωt)) (47)

with jl(kr) the spherical Bessel function of the first kind of order l ∈ Z, Pml the associated

Legendre polynomial of order (l, m), with m the topological charge, an integer verifying

−l ≤ m ≤ l. Similarly to cylindrical vortices, we can note that if the topological charge

m = 0, the field is invariant over ϕ and thus the wavefield is no more a vortex but simply a

focalized wave. In particular, the case (m, l) = (0, 0) corresponds to a spherically focalized

wave. Thus we will refer to spherical vortices for waves with topological orders |m| ≥ 1.

These waves are stationary in r and θ and propagative over ϕ. The central phase singularity

is surrounded by a spherical bright shell, which provides a good framework for 3D trapping

(see Figure 3 A, left). We can nevertheless note that the z-axis remains a specific axis

around which the phase is turning (see Figure 3 A, center). This specificity can also be

seen in Equation 47, since the angle θ refers to the angle with respect to z axis. Owing to

the phase singularity over this axis, the amplitude cancels all along this axis (see Figure 3

A, right), leading to a weaker trap in this direction.

Spherical vortices carry a finite amount of energy, but their synthesis would require to

position some transducers all around a closed surface surrounding the vortex center. Since

this is not feasible in most practical situations, an idea is to synthesize a wave which is

as close as possible to a spherical vortex, but with a finite aperture. We will will refer

in the following to such wavefields as one-sided focalized vortices (see Figure 3.C). To

synthesize these waves a first important element is that similarly to plane standing wave

A cos(kx) exp(−iωt)), which can be decomposed into the combination of of two counter-

propagating progressive waves A/2 exp(ikx− ωt) +A/2 exp(−ikx− ωt), a Bessel spherical

vortex is the combination of two Hankel diverging and converging spherical vortices:

Ajl(kr)P
m
l (cos(θ)) exp (i(mϕ− ωt)) =

A

2

[
h
(1)
l (kr) + h

(2)
l (kr)

]
Pml (cos(θ)) exp (i(mϕ− ωt))

with h
(1)
l the Hankel function of the first kind corresponding to the converging part and

h
(2)
l the Hankel function of the second kind corresponding to the diverging part.

Thus a one-sided focalized vortex can be generated by synthesizing a section of a Hankel

converging vortex (Baudoin et al. (2019a)) (see Figure 3.B for a representation of the

isophase surface of a Hankel vortex). This is possible with a system controlling the phase

and/or the amplitude of a vibration on a given surface (which can be for example a portion

of sphere or of a plane). An example of a one-sided focalized vortices synthesized from

a control disk (wherein the amplitude and phase of the intersection of a Hankel spherical

vortex with this disk is imposed) is given on Figure 3.C. In this example, the aperture

angle is 60o and the distance between the source and the focal plane is 20λ. This example

shows that the interference between the converging Hankel vortex and the diverging Hankel

vortex initiated at the passage through the focal point produces a standing gradient trap in

the z direction (see Figure 3.C, yz zoom). Nevertheless, since the signal is generated from

only one side, the propagative part of the wave along z axis tends to push the particle away

from the center in the direction of the wave propagation. This is this competition between

the axial pushing force and the gradient restoring force, which makes the 3D trapping of

particles particularly challenging. In addition the acoustic streaming can also contribute

to push the particle away from the trap. In the field of acoustics, Baresch and co-workers
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were the first to demonstrate theoretically (Baresch, Thomas & Marchiano (2013b)) and

experimentally (Baresch, Thomas & Marchiano (2016)) the ability of these beams to trap

particles in the Mie Regime. It is also interesting to note that in the Long Wavelength

Regime, Marzo and co-workers have shown (Marzo et al. (2015)) through an optimization

algorithm, that acoustical vortices are some optimal wavefields for 3D particle trapping for a

given array of transducers with phase control. They also demonstrated that two other types

of wavefields, namely bottle traps and twin traps are optimal for trapping in the direction

of propagation and in one lateral direction respectively.

4.2. Selective particles manipulation

In section 2.3, we saw that the scattering coefficients were computed assuming axial sym-

metry of the problem. For a spherical particle, this assumption restricts the model to

incident plane wave or spheres located at the focus of spherical incident beam. It should be

noted that either a transversely polarized plane wave or acoustical vortices break the axial

symmetry. Scattering of a plane electromagnetic waves by a dielectric sphere has a known

solution: the Lorenz-Mie theory. The Debye potentials are here particularly well suited

for spherical particles. This case has also been studied for acoustics waves propagating in

solids (Einspruch, Witterholt & Truell (1960), Gaunard & Überall (1978)) but the incident

wave is always a plane wave, a case irrelevant for tweezers. To go further, there are two

main methods developed in optics. The first is to decompose the incident wave into plane

waves and then use the previous results for each plane wave modes. The second called

generalized Lorenz-Mie theory (GLMT) consists in looking for a decomposition of the ar-

bitrary incident wave in series of modes of the wave equation, generally the spherical basis

(Maheu, Gouesbet & Gréhan (1987), Barton, Alexander & Schaub (1988)). This approach

led to the first analytic results for radiation pressure exerted by an arbitrary beam on a

dielectric sphere (Ren, Gréhan & Gouesbet (1994), Barton, Alexander & Schaub (1989)).

In acoustics, the growing interest in the manipulation of contactless particles has moti-

vated research in this direction. The first strategy was first used and the case of a particle

located along the axis of propagation of an incident acoustic beam was modeled. These

examples include axisymmetric beams (Marston (2006)) or the more complex wave fronts

of a helical Bessel beam (Marston (2008), Marston (2009)). The case of arbitrary incident

beam was addressed later (Sapozhnikov & Bailey (2013)) and led to a complete expression

of the radiation force.

The second strategy has also been adapted to acoustics and requires three steps. First, a

separated variable solution of Helmholtz equation in free space and in spherical coordinates

is well known :

φ(r, ω) = φa

∞∑
n=0

∑
|m|<n

Aml P
m
l (cos(θ)) exp(ımϕ)jl(k0r) (48)

The series coefficients Aml are called the beam shape coefficients. φa is an optional factor

used to have dimensionless beam shape coefficients. All the previous theory (King (1934),

Hasegawa et al. (2000)) assumed azimuthal symmetry and hence m = 0. Using normalized

spherical harmonics, defined by Y ml =
√

(2l + 1)(l −m)!/(4π(l +m)!)Pml (cos(θ)) exp(ımϕ)

leads to another equivalent set of beam shape coefficients Âml . Assuming linear scattering

and a spherical basis centered on the spherical scatterer, the beam shape coefficients of

the scattered wave are proportional to the incident ones, Rml A
m
l . However, the boundary
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conditions, i.e spherical divergence of the scattered wave, lead to replace Bessel functions

by Hankel functions. As in (Hasegawa et al. (2000)), the integration of Equation 42 can

then be performed on a fixed spherical surface located in the far field. This generalization

was achieved at the same time by (Silva (2011), Baresch, Thomas & Marchiano (2013a)),

(Baresch, Thomas & Marchiano (2013a)) was submitted at the time of publication of

(Silva (2011)). At this stage, Aml and Rml are two sets of unknown coefficients and iden-

tifying them are the two last steps required to compute the radiation force. The beam

shape coefficients are defined by a scalar product between the field and the spherical

harmonics. However, they are functions of the position of the sphere and hence their

numerical evaluation in a 3D domain is time consuming and requires high precision.

To alleviate this problem, different strategies exist (Gouesbet, Lock & Gréhan (2010)).

An effective solution used in optics, is to translate and rotate the spherical basis us-

ing the additional theorem to follow the sphere and obtain the new coefficients. This

solution was adapted to acoustics by (Baresch, Thomas & Marchiano (2013a)). Last, to

complete the generalization of (Hasegawa & Yosioka (1969)) to arbitrary incident beams

the scattering coefficients, Rml , must be computed. This last step was also achieved by

(Baresch, Thomas & Marchiano (2013a)). The axisymetry and the resulting simplification

made before is no longer valid, see section 2.3. The acoustic displacement field in the elastic

particle can be decomposed into three scalar potentials, one for the longitudinal waves, φ,

and two, the Debye potentials for shear waves ψ, χ, with A(r, θ, ϕ) = ∇∧∇∧(rψ)+∇∧(rχ).

These potentials are solutions of the Helmholtz scalar equation and thus can be written as

series of spherical functions as above. Compared to incident plane wave, the boundary

conditions lead to a system of four linear equations relating the four potentials, one in the

fluid and three in the elastic particle. This system is actually made of one idependent equa-

tion describing one of the shear elastic mode. Therefore, this mode can not be excited by

an incident longitudinal wave. The remaining system of three equations is identical with

the one obtained by (Faran (1951)). As a consequence, the azimuthal dependence can be

dropped : Rml = Rl. The complete model of (Baresch, Thomas & Marchiano (2013a))

leads to the first numerical study of the radiation pressure exerted by an arbitrary

field on an elastic spherical particle. It used the Aml and to ease the comparison with

(Sapozhnikov & Bailey (2013), Silva (2011)), the radiation force expression are rewritten

here with the Âml set :

Fx = − 〈Ṽ 〉a
k20

∑∞
n=0

∑
|m|<n =

(
Q−mn Âm∗l Âm−1

l+1 Cn +Qmn Â
m
l Â

m+1∗
l+1 C∗n

)
(49)

Fy = + 〈Ṽ 〉a
k20

∑∞
n=0

∑
|m|<n <

(
Q−mn Âm∗l Âm−1

l+1 Cn +Qmn Â
m
l Â

m+1∗
l+1 C∗n

)
(50)

Fz = −2 〈Ṽ 〉a
k20

∑∞
n=0

∑
|m|<n =

(
Pmn Â

m∗
l Âml+1Cn

)
(51)

〈Ṽ 〉a = k20ρ0|φa|2/4 = |φa|2/(4ρ0c20) is a dimensional factor. It should be re-

placed by 1/(4ρ0c
2
0) if φa is not introduced in the spherical decomposition of the in-

cident field (Equation 48). Qmn =
√

(n+m+ 1)(n+m+ 2)/
√

(2n+ 1)(2n+ 3) and

Pmn =
√

(n+m+ 1)(n−m+ 1)/
√

(2n+ 1)(2n+ 3) are two coefficients related to the

amplitude of the spherical harmonics. These two set of coefficients are identical in

(Baresch, Thomas & Marchiano (2013a), Sapozhnikov & Bailey (2013)). The ones ob-

tained by (Silva (2011)) contain an error coming from the first step described above that

required a reindexing of the series. Cn = R∗n + Rn+1 + 2R∗nRn+1 is the coefficient that
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explicit the dependence of the radiation force on the scattered waves, R∗nRn+1, or the cross

product between incident and scattered waves, R∗n+Rn+1. This coefficient can also be writ-

ten with the S-matrix, Sn = 1 + 2Rn, so that 2Cn = S∗nSn+1− 1. This relates the outgoing

modes of order n and n+ 1, (Sapozhnikov & Bailey (2013), Marston & Zhang (2017)). Us-

ing Eq. 32,34 of (Sapozhnikov & Bailey (2013)) it is straightforward to show that the two

expressions of the radiation force are identical.

This complete model give quantitative prediction of the radiation force. Some examples

are given below for a bead of silica.

One specific feature of selective tweezers compared to standing wave traps is the selec-

tivity. The radial selectivity of a one sided spherical vortex at 50 MHz, a wavelength of

30 µm is shown on Figure 4 left. A negative force means that the bead is pulled toward

the vortex axis. The trap has a radius of 0.42 λ when the numerical aperture is 0.87, i.e a

half angle of 60o. The radiation pressure scales in nanoNewton, an amplitude relevant for

forces at play in biological cells for a weak acoustic pressure of 1 MPa on a bead of silica

of radius 0.15 λ. The azimuthal force is of similar amplitude (Figure 4 right). A bead

initially located in the potential well will spiral around the vortex axis and in the end reach

its equilibrium position at ρ = 0.
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Figure 4: Radial and azimuthal forces of a one sided spherical vortex on a sphere of silica,

the wavelength is 30 µm. Forces are computed for a maximum pressure of 1 MPa at

focus and a sphere of radius 0.15λ. The trap stiffness and the selectivity increase with the

numerical aperture, the half angle is varied from 30o to 65o

The axial selectivity and trap stiffness is also strongly dependent on the numerical

aperture (Figure 5 left). The stiffness, selectivity and force amplitude are weaker in the

axial direction compared to the lateral one since the beam is progressive on this axis. The

force is positive, (thus pushing the particle), when the bead is located before focus. On the

contrary, when the bead is downstream, the axial force is negative and hence pulling the

bead toward the focus. This essential and specific feature of optical tweezers (Ashkin (2011))

ensures trapping in the three dimensions. When the radius of the bead is increased, Figure

5 right the scattering force increases and for a too large bead the axial trapping is lost.

Three dimensional trapping at the focus of a one-sided focalized acoustical vortex

was demonstrated numerically from these formula (Baresch, Thomas & Marchiano (2013b))

and then experimentally (Baresch (2014), Baresch, Thomas & Marchiano (2016)). Here the

tweezers pulling restoring force was high enough to compensate the particle weight and the
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Figure 5: Axial force of a one sided spherical vortex on a sphere of silica, the wavelength is

30 µm. a) The trap stiffness increases with the numerical aperture, the half angle is varied

from 30 to 65. The force is computed for a maximum pressure of 1 MPa at focus and a

sphere of radius 0.15λ. b) The axial restoring force is lost for too large spheres. The radius

of the sphere varies from 0.05 up to 0.27 wavelength.

streaming drag force. A one sided focused acoustical vortex was also able to push upward

and then levitate particles in air (Marzo et al. (2015)).

4.3. Fluid manipulation with acoustical vortices
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Figure 6: Flow structures induced by Bessel cylindrical vortices. The lines delimit the

transition between attractor vortices with a poloidal flow oriented toward the center of the

source (located downward) and repeller vortices corresponding to the classic configuration,

wherein the fluid is pushed away from the source. The ratio r0/r1 is the ratio between

the radius of the cylinder and the lateral extension of the beam. Figure adapted from

(Riaud et al. (2014)).
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Acoustical vortices carry pseudo-angular momentum. Thus, the nonlinear trans-

fer of this pseudo-angular momentum to the fluid through the wave attenuation re-

sults in a streaming flow whose topology is mainly controlled by the topology of the

acoustic vortex. The first estimation and observation of this effect was provided by

(Anhäuser, Wunenburger & Brasselet (2012)). Then, (Riaud et al. (2014)) resolved the

complete problem by extending Eckart’s theory to the case of Bessel cylindrical acousti-

cal vortices. Starting from Eckart’s vorticity diffusion equation:

∆Ω̄ = − b

ρ2o
∇ρ̃×∇∂ρ̃

∂t
,

with Ω̄ = ∇× v̄ and ρ̃ given by Equation 46, they were able to compute the velocity field

in the same configuration as Eckart, i.e. in an infinitely long cylinder of radius r0 axially

enlightened by a beam of finite aperture r1 < r0. They demonstrated that the acoustical

streaming in this configuration is the superposition of a poloidal flow also observed by

Eckart in the case of a plane wave and a toroidal flow that relies on the helical nature of

the acoustical vortex. Interestingly, they showed that in some specific configurations, the

direction of the poloidal flow can be reversed compared to the plane wave case, and the fluid

can recirculate toward the center of the transducer (Figure 6). This can be explained by

the existence of a shadow zone at the center of the beam wherein the fluid can recirculate.

Soon after, the toroidal flow predicted by this theory was shown experimentally by

(Hong, Zhang & Drinkwater (2015)) in an essentially 2D configuration. More recently,

(Baresch, Thomas & Marchiano (2018)) evidenced the flow produced by a one-sided fo-

calized vortex and demonstrated that the fluid is both pushed in the direction of the wave

propagation and set in rotation around the propagation axis due to the helical nature of

the wave. From a theoretical perspective, (Baudoin et al. (submitted a)) calculated analyt-

ically the orbital acoustic streaming produced by a Bessel spherical vortex. As the resolution

of this problem from Eckart’s equation is intricate, they proposed another method based

on Equation 29 and the use of the Green function of Stokes equation. They showed that

the resulting flow is a purely orbital (since ϕ is the only propagative component of a Bessel

spherical vortex) with a confined flow structure located near the focal point.

SUMMARY POINTS

1. The manipulations of particles and fluids with acoustic waves are enabled by two

nonlinear effects: acoustic radiation pressure and acoustic streaming respectively.

2. Since both acoustic and optical radiation pressure are proportional to the wave

intensity divided by the sound speed, acoustical tweezers enable to apply forces

several orders of magnitude larger than their optical counterpart at same wave

intensity.

3. Acoustical tweezers relying on plane standing wave enable to trap and move particles

collectively, but the multiplicity of nodes and antinodes does not enable to move

one particle independently of other neighboring particles, i.e. to trap particles

selectively.

4. To achieve selectivity, a localization of the acoustic energy is necessary. Since many

particles of interest are trapped at the pressure nodes, focalized waves cannot be

used in this case. Localized traps for this type of particles can be achieved with some

specific wave structures called acoustical vortices, which enable to both focalize the

24 Baudoin & Thomas.



acoustic energy and obtain a pressure minimum at the focal point surrounded by a

bright ring, that serves as a trap.

5. To achieve 3D selective trapping with a one-sided tweezers, it is necessary to gen-

erate a wave structure that enables to compensate the inclination of the particles

to be pushed in the wave direction. This task can be be achieved with one sided

focalized vortices.

6. Acoustical vortices can generate some localized flow structures, whose topology

relies on the topology of the acoustical vortex.

FUTURE ISSUES

1. Particles assembly. The 3D selective manipulation of particles with acoustical

tweezers has been recently demonstrated. It is essential in the future to demonstrate

that is not only possible to capture particles individually but also to assemble them

to form clusters of precisely assembled objects.

2. Force calibration. For applications, it would also be necessary to calibrate the

force applied by the tweezers as a function of the input power. Indeed, this calibra-

tion of the force would lead (as in optics but with forces several orders or magnitude

larger) to many applications, e.g. to study cells mechanotransduction or the resis-

tance of bioobjects to mechanical solicitations.

3. Further miniaturization. A significant step has been recently achieved in the

miniaturization of acoustical tweezers. Nevertheless, acoustic coherent sources exist

up to GHz, paving the way toward micrometric and even submicrometric particles

manipulation. The manipulation at this scale is both a technical and scientific

challenge, since it is necessary to understand how acoustic radiation pressure and

acoustic streaming will evolve at these scales.

4. Harmless selective manipulation of biological objects. It is also necessary

to demonstrate that acoustical traps with large trapping force can be obtained at

micrometric scales with harmless acoustic signals for biological objects. This is

critical for all applications involving cells and microorganisms.

5. Measurement of acoustic streaming induced by focalized acoustical vor-

tices. Quantitative comparisons between experimentally synthesized velocity fields

and theoretical developments are still lacking.
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classique et en relativité. Journal de Physique et le Radium 6:11,337-353

Brillouin (1936). Brillouin L. 1936. Les pressions et tensions de radiation. Revue d’Acoustique 5:99–

111

Brillouin (1938). Brillouin L. 1938. Tensors in mechanics and elasticity. Academic Press, New York,

1964

Bucchanan, Jameson & Oedjoe (1962). Buchanan RH, Jameson G, Oedjoe D. 1962. Cyclic migra-

tion of bubbles in vertically vibrating columns Ind. Eng. Chem. Fundamentals 1:2,82–86

Chen & Apfel (1996). Chen X, Apfel RE. 1996. Radiation force on a spherical object in the field

of a focused cylindrical transducer. J. Acoust. Soc. Am. 101:5,2443–47

Coakley et al. (1989). Coakley WT, Bardsley DW, Grundy MA, Zamani F, Clarke DJ 1989. Cell

Manipulation in Ultrasonic Standing Wave Fields J. Chem. Tech. Biotechnol. 44:43–62

Coulouvrat (1992). Coulouvrat F. 1992. On the equations of nonlinear acoustics J. Acoust. 5:321–

359

Courtney (2014). Courtney CRP, Demore CEM, Wu H, Grinenko A, Wilcox PD, Cochran S, and

Drinkwater BW. 2014. Independent trapping and manipulation of microparticles using dex-

terous acoustic tweezers Appl. Phys. Lett. 104: 154103

Ding et al. (2013). Ding X, Li P, Lin S-C, Stratton ZS, Nama N, Guo F, Slotcavage D, Mao X, Shi

J, Costanzo F, Huang TJ 2013. Surface acoustic wave microfluidics Lab Chip. 13:18,362649

Ding et al. (2012). Ding X, Li P, Lin S-C, Kirali B, Yue H, Li X, Chiang I-K, Shi J, Benkovic SJ,

Huang TJ 2013. On-chip manipulation of single microparticles, cells, and organisms using

surface acoustic waves P. Natl. Acad. Sci. USA 109:28, 1110511109

Dvorak (1874). Dvorak V. 1874. Ueber die entstehunweise der Kundt’schen Staubfiguren. Ann.

Phys. 227:4,634-639

Eckart (1948). Eckart C. 1948. Vortices and streams caused by sound waves. Phys. Rev. 73:1, 68-76

Einspruch, Witterholt & Truell (1960). Einspruch NG, Witterholt EJ, Truell R. 1960. Scattering

of a plane transverse wave by a spherical obstacle in an elastic medium. J. Appl. Phys.

31:5,806-18

Eller (1968). Eller A. 1968. Force on a bubble in a standing acoustic wave. J. Acoust. Soc. Am.

43:1,170–171

Embleton (1954). Embleton TFW. 1954. Mean Force on a Sphere in a Spherical Sound Field. I.

(Theoretical). J. Acoust. Soc. Am. 26:1,40–45

Faraday (1831). On a peculiar class of acoustical figures; an don certain forms assumed by groups

of particles upon vibrating elastic surfaces Phil. Trans. R. Soc. Lond. 299:340

Faran (1951). Faran JJ. 1951. Sound scattering by solid cylinders and spheres. J. Acoust. Soc. Am.

23:405–418
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