

Analyse comparative de cycles hybrides innovants impliquant des procédés à sorption, pour le stockage d'énergie thermique, la production de froid et/ou de travail mécanique

Alexis Godefroy, Maxime Perier-Muzet, Nathalie Mazet

▶ To cite this version:

Alexis Godefroy, Maxime Perier-Muzet, Nathalie Mazet. Analyse comparative de cycles hybrides innovants impliquant des procédés à sorption, pour le stockage d'énergie thermique, la production de froid et/ou de travail mécanique. Congrès Français de thermique, May 2018, Pau, France. hal-02332665

HAL Id: hal-02332665

https://hal.science/hal-02332665

Submitted on 24 Oct 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Analyse comparative de cycles hybrides innovants impliquant des procédés à sorption, pour le stockage d'énergie thermique, la production de froid et/ou de travail mécanique.

Alexis GODEFROY1*, Maxime PERIER-MUZET1,2, Nathalie MAZET1

¹ CNRS-PROMES Laboratoire PROcédés, Matériaux et Energie Solaire

Tecnosud, Rambla de la Thermodynamique – 66100 Perpignan

52 Avenue Paul Alduy – 66100 Perpignan

Résumé – Un état de l'art des cycles thermodynamiques hybrides mettant en jeu des procédés à sorption est présenté, fournissant un support d'analyse comparée des différents systèmes. Les domaines de pression sont relevés et les organes de détente utilisables (turbine ou expandeur volumétrique) discutés. Le rendement 1^{er} principe moyen est de 0,32 pour les hybrides à absorption et 0,44 pour les hybrides à sorption solide / gaz. L'analyse de la répartition des effets utiles produits (froid ou travail mécanique) explique les valeurs plus faibles obtenues pour les cycles à absorption. Enfin, l'analyse thermodynamique d'un cycle hybride à sorption solide / gaz avec stockage est effectuée.

Nomenclature

COP	Coefficient de Performance	Indices et exposants				
T	Température, ° C ou K	I	1 ^{er} principe (énergétique)			
W	Travail mécanique spécifique, $J.kg^{-1}$	ex	Exergétique			
q	Energie thermique spécifique, $J.kg^{-1}$	in	Entrant			
W	Travail mécanique, J	ref	Réfrigération			
Q	Quantité de chaleur, J	eq,r	Equilibre thermo. de réaction			
E	Exergie, J	0	Grandeur de référence			
Ŵ	Puissance mécanique, W	P	Pompe(s)			
Ċ	Puissance thermique, W	exp	Expandeur			
Ė	Flux d'exergie, W	L	Bas			
Symbo	ples grecs	int	Intermédiaire			
η	Rendement	Н	Haut			
τ	Ratio de production de froid ou travail	sat	Saturation (NH ₃)			

1. Introduction

Les politiques énergétiques et environnementales induisent des problématiques devenues cruciales, d'intégration de sources renouvelables intermittentes, d'écrêtage de pics de demande fortement générateurs de GES, de sources décentralisées et d'usages en autoconsommation... Celles-ci nécessitent la gestion de demandes et sources énergétiques toutes deux variables en forme énergétique, disponibilité, puissance. L'accroissement de cette diversité et de cette variabilité est un déterminant du contexte énergétique à venir, qui requiert des approches innovantes en termes de gestion mais aussi de procédés de conversion d'énergie adaptés.

Concernant la diversité des formes énergétiques en particulier au niveau de la demande, l'une des solutions est le développement de procédés multifonctionnels. Ils permettent soit la génération de plusieurs formes énergétiques à partir d'une même source, soit des productions en cascade en alimentant un système par les rejets thermiques de l'autre (exemple : systèmes de

² UPVD Université de Perpignan Via Domitia

^{*(}auteur correspondant : alexis.godefroy@promes.cnrs.fr)

cogénération couplant productions de chaleur et d'électricité, et permettant d'arbitrer entre l'une et l'autre selon la demande).

Quant à la gestion de la variabilité, la solution de base consiste à intégrer des procédés de stockage, de différentes formes ou vecteurs énergétiques, et donc à rajouter un élément annexe à un système existant. Parmi les filières de stockage d'énergie thermique, les stockages thermochimiques présentent les plus fortes densités énergétiques, et sont aussi des procédés capables de réaliser, à partir d'une source thermique, une production de froid ou une thermotransformation (revalorisation thermique).

Dans ce contexte, il est intéressant de coupler deux cycles thermodynamiques afin de combiner leurs fonctionnalités et leurs avantages et réaliser un système dit « hybride » conduisant à des fonctionnalités innovantes et un intérêt significatif en termes de flexibilité et d'efficacité. Dans cet objectif, les cycles les plus pertinents sont :

- 1. Les cycles trithermes à sorption liquide/gaz (absorption) : ils associent l'évaporation / condensation d'une vapeur et son absorption/désorption dans une solution (classiquement H₂O/LiBr) pour valoriser les effets thermiques associés, exo- ou endothermiques selon les composants. Ces procédés permettent de réaliser de façon continue (par circulation de la solution entre générateur et absorbeur) une production de froid (à l'évaporateur) ou de chaleur (à l'absorbeur). Ils sont caractérisés par leurs bons COP en production de froid (0,7 à 1 environ) en comparaison avec les autres cycles à sorption, notamment la sorption physique solide/gaz (zéolithe / H₂O par exemple), qui présente des COP moyens allant de 0,1 à 0,7 [1].
- 2. Les cycles trithermes à sorption solide/gaz (thermochimiques) : ils sont de fonctionnement similaire aux précédents, mais basés sur une réaction renversable entre un solide et un gaz (synthèse exothermique/décomposition endothermique) et donc discontinus. Ils assurent ainsi intrinsèquement une fonction stockage caractérisée par de fortes densités énergétiques [2] et opèrent dans une large gamme de conditions opératoires (T, P) selon les réactifs [1].
- 3. Les cycles dithermes moteurs : les cycles organiques de Rankine assurent une production d'énergie mécanique efficace à partir d'une source de chaleur à bas niveau thermique, l'adaptation du fluide et des composants permettant d'optimiser la production de travail.

Ces trois cycles ont pour point commun la mise en œuvre d'un fluide de travail qui subit des changements d'état dans des évaporateurs et condenseurs. Concrètement, le couplage et l'hybridation de ces cycles résultera donc de la mise en commun de ces composants.

La première partie de ce document présente deux cycles thermodynamiques résultant de l'hybridation de chacun des deux cycles à sorption précédents avec un cycle moteur de type Rankine. Ces hybrides ont ensuite fait l'objet d'une analyse bibliographique. Enfin, l'analyse thermodynamique de 'l'hybride thermochimique' intégrant la fonction stockage est réalisée.

2. Description des hybrides combinant sorption et cycle moteur

2.1. Hybride à absorption (Ha)

La première hybridation, présentée Figure 1, consiste en l'intégration d'un organe de détente (expandeur) au sein d'une machine à absorption dédiée à la production de froid. On obtient ainsi un cycle tritherme dont le fonctionnement est continu, comme dans le cas du cycle à absorption seul. Ce système est multifonctionnel : l'énergie thermique (Q_g) transmise au générateur de vapeur est transformée en froid au niveau de l'évaporateur (Q_e) et / ou convertie en travail mécanique (W_{exp}) au niveau de l'expandeur. Toutefois, il n'intègre pas de stockage.

Les cycles à sorption hybrides décrits dans la littérature (cf. §3) sont essentiellement basés sur des cycles à absorption liquide/gaz utilisant un détendeur volumétrique. Le cycle le plus

étudié, proposé par Goswami [3], pour la production de travail mécanique et avec une faible production frigorifique, diffère de l'hybride **Ha** par l'absence de condenseur et d'évaporateur, le froid étant produit en aval de l'expandeur (à partir de chaleur sensible du fluide de travail).

2.2. Hybride thermochimique (Ht)

Le second cycle hybride de référence est représenté sur la Figure 2. Ici, l'expandeur est inséré dans un cycle à sorption solide / gaz (chimisorption). On aboutit à un cycle tritherme ou quadritherme, dont le fonctionnement est discontinu comme dans le cas du cycle thermochimique seul. Outre son aspect multifonctionnel (production de travail mécanique au niveau de l'expandeur et production de froid à l'évaporateur ou au réacteur basse température), ce cycle présente l'intérêt d'introduire une capacité de stockage intrinsèque grâce au(x) réacteur(s) à sorption solide / gaz. Cependant, la valorisation de l'aptitude au stockage de tels systèmes thermochimiques est peu abordée dans la littérature.

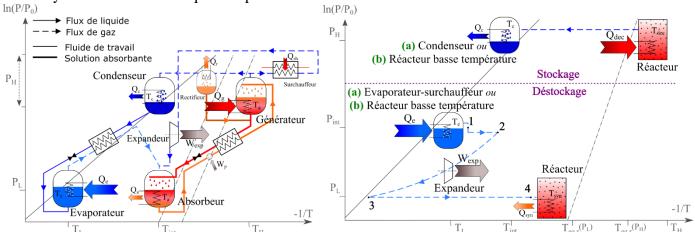


Figure 1 : Cycle hybride à absorption **Ha** représenté dans le diagramme de Clausius-Clapeyron.

Figure 2 : Cycle hybride thermochimique **Ht** dans le diagramme de Clausius-Clapeyron.

Les lignes grises sont les droites d'équilibre thermodynamique :
— liquide/gaz; — · — isostères d'absorption (Fig. 1) et réaction solide/gaz (Fig. 2).

3. Analyse comparée des hybrides à sorption de la littérature

Un travail de recherche bibliographique a été réalisé sur les cycles hybrides à sorption, la synthèse en est présentée dans le Tableau 1. Afin de décrire brièvement les cycles répertoriés, la deuxième colonne « Composition du cycle » précise pour chacun d'entre eux l'hybride de référence le plus proche (**Ha**, **Ht(a**) ou **Ht(b)**) puis les éléments qui en diffèrent (cf. légende).

Tous les cycles dérivant de l'hybride **Ha** comportent une (des) pompe(s) (cf. Figure 1). Bien que non précisé dans la colonne "Energies entrantes", le travail fourni par ces pompes est pris en compte dans le calcul des performances. A l'inverse, les cycles dérivant de **Ht** ne comportent pas de pompes. En plus du cas de référence **Ht(a)**, un cycle dit « à résorption », dans lequel un second réacteur se substitue à l'ensemble évaporateur—condenseur, est envisagé : **Ht(b)**.

Le tableau, bien sûr non exhaustif, met cependant en évidence la diversité des hybrides existants. On constate de plus que les cycles sont de complexités très variables, notamment les hybrides à absorption : outre le cycle de Goswami [3,4], plusieurs d'entre eux mettent en œuvre des associations en série ou en parallèle de cycles à absorption et de Rankine, ou des cascades de cycles ayant jusqu'à 5 étages de pression [5,6]. Les hybrides mettant en jeu des procédés thermochimiques présentent des niveaux de complexité moins importants, et sont jusqu'à présent moins développés que les hybrides à absorption.

	Niveaux	k de pres	Niveaux de pression (bars)	Energies	Fonctionnalitée et	****					3	
mmosition	Borne	es de l'ex	<u>kpandeur)</u>	entrantes **	effets utiles	produits	Kejets thermiques	Evaluation des performances	rmances	Répartitions des effets utiles produits :	oduits:	
du cycle	Low	Medium	High	Chaleur - T°C (Min; Max)	Froid - T°C (Min; Max)	Stockage	T°C (Min; Max)	Rendement "1er principe" / COP	Rendement exergétique	Travail $= \frac{W}{W + Q_{ref}}$	11 1 -	Commentaires - Remarques
на	<u>1,8 - 2</u>	-	<u>8,5 - 10,5</u>	(200; 300)	-9	Non	22	$ \eta_I = \frac{W + Q_{ref}}{Q_{lm} + W_P} = 0,47 - 0,52 * $	$ \eta_{ex} = \frac{W + E_{ref}}{E_{in} + W_{p}} = 0.37 * $	8,04%		Expérimental. Production non simultanée de froid et de travail (choix entre 2 modes de fonctionnement). T ₀ : 22 °C
a - 0 C - 0 E	2		<u>30</u>	140	-10	Non	7	$\eta_I = \frac{W + Q_{ref}}{Q_{ln}} = 0.24$	$\eta_{ex} = \frac{W + E_{ref}}{E_{in}} = 0.59 *$	73,9%	26,1%	Théorique. Cycle de Goswami original. Production simultanée de froid et de travail. T ₀ : 7 °C
a - 0 C - 0 E	2	,	20,5 (4 - 54)	127 (57 ; 197)	10	Non	17	$\eta_I = \frac{W + Q_{ref}}{Q_{to}} = 0.18 *$	$ \eta_{ex} = \frac{W + E_{ref}}{E_{in}} = 0.62 * $	93,1%	6,90%	Théorique. Cycle de Goswami légèrement modifié. Production simultanée de froid et de travail. T _o : 17 °C
a - 1 B - 2 C - 1 étages de pression	0,24	1,8-14	<u>52,4</u>	465	-10	Non	25	$\eta_I = \frac{W + Q_{ref}}{Q_{ln}} = 0.28$	$\eta_{ex} = \frac{W + E_{ref}}{E_{in}} = 0.56$	75,0%	25,0%	Théorique. Production simultanée de froid et de travall. T₀: 25 °C
a - 2 A - 1 B - 1 étages de pression	0,85	1,5 - 14	<u>155</u>	465	-15	Non	25	$\eta_I = \frac{W + Q_{ref}}{Q_{iin}} = 0.24 - 0.26$	$\eta_{ex} = \frac{W + E_{ref}}{E_{in}} = 0.51 - 0.54$	76,6 - 82,7%	17,3 - 23,4%	Théorique. Production simultanée de froid et de travail. Ajustement possible du ratio (Froid/Travail), T ₀ : 25 °C
2 A - 2 Exp -5 étages de pression	0,2-0,4	0,4-1,6 -14	<u>76</u>	465	-15	Non	25	$\eta_I = \frac{W + Q_{ref}}{Q_{in}} = 0.28$	$\eta_{ex} = \frac{W + E_{ref}}{E_{in}} = 0.59$	73,9 - 84,6%	15,4 - 26,1%	Théorique. Production simultanée de froid et de travail. Ajustement possible du ratio (Froid/Travail), T ₀ : 25 °C
- 0 C - 2 A - 1 3 étages de pression	<u>1,6</u>	4,9	<u>27,4</u>	200	7	Non	25	$\eta_I = \frac{W + Q_{ref}}{Q_{lm}} = 0.25 *$	$\eta_{ex} = \frac{W + E_{ref}}{E_{in}} = 0.48$	52,9%	47,1%	Théorique. Production simultanée de froid et de travall. Ajustement possible du ratio (Froid/Travall). T _o : 0 ℃
	2,9 - 5,2	ı	<u>11,67 - 20,33</u>	150 (85 ; 190)	-5 (-10 ; 5)	Non	30 (10; 50)	$\eta_I = \frac{\dot{w} + \dot{Q}_{ref}}{\dot{Q}_{in}} = 0.61 *$	$\eta_{ex} = \frac{\dot{W} + \dot{E}_{ref}}{\dot{E}_{in}} = 0.56 *$	10,3%	89,7%	Théorique. Production simultanée de froid et de travail. Ajustement possible du ratio (Froid/Travail) de 0 à 1
Ht(a)	<u>0,3</u>	-	<u>1,9 *</u>	120	NA	Oui	69	$\eta_I = \frac{W}{Q_{In}} = 0,10$	$\eta_{ex} = \frac{W}{E_{in}} = 0.43 *$	NA	NA	Théorique. Couple choisi : H ₂ O / LiBr. La publication englobe cycle themnochimique et à absorption. Production de froid possible mais non décrite ici. T., : 25 °C
4+/h) - A B	1	•	30	150 (100 ; 400)	10 (-10 ; 10)	NOS	30	$SrCl_2/BaCl_2$ $COP = \frac{Q_{ref}}{Q_{fin}} = 0.70 (0.54 - 0.78)$	$ \eta_{\text{ex}} = \frac{W + E_{ref}}{E_{fin}} = 0.9 (0.80 - 0.90) $	15,5% *	84,5% *	Théorique. Production simultanée de froid et de travail par 2 systèmes à résorption fonctionnant en opposition de phase :
H(D) - # 1	ŀ	,	Į	200 (100 ; 400)	10 (-10 ; 10)	Š	Ü	$COP = \frac{Q_{ref}L}{Q_{lin}} = 0.57 (0.47 - 0.57)$	$\eta_{ex} = \frac{W + E_{ref}}{E_{in}} = 0.48 (0.48 - 0.54)$	19,2% *	80,8% *	fonctionnement pseudo-continu. T ₀ : 30 °C. Performances très dépendantes du couple de sels réactifs choisi
it(a) - 2 R -	29	ж л	24	90 (90 ; 260)	-10	Z S	20	$\frac{\operatorname{BaCl}_{2}\left(8-\operatorname{ONH}_{3}\right)}{\left(\eta_{I}:NA\right)} COP = \frac{Q_{ref}}{Q_{in}} = 0,57$	$\eta_{ex} = \frac{W + E_{ref}}{E_{in}} = 0.62$	16,2%*	83,8%*	Théorique. Production simultanée de froid et de travail. Fonctionnement pseudo-continu orâce aux 2 réacteurs. T. : 20 °C.
pression	1	ļ.	ļ!	180 (90 ; 260)	ŀ	9		$\frac{\text{VnCl}_2 \text{ (6-2 NH}_3)}{(\eta_I : NA)} \qquad COP = \frac{Q_{ref}}{Q_{in}} = 0.42$	$\eta_{ex} = \frac{W + E_{ref}}{E_{in}} = 0.28$	19,6% *	80,4% *	Performances très dépendantes du sel réactif choisi
46	0,83	1,44	2,81	110 (100; 300)	5	2	3	[BaCl ₂ / MnCl ₂) $\eta_I = \frac{W + Q_{ref}}{Q_{ln}} = 0.89 *$	$ \eta_{ex} = \frac{W + E_{ref}}{E_{in}} = 0.41 (0.27 - 0.41) $			Théorique. Production simultanée de froid et de travail par 2 systèmes à résorption fonctionnant en opposition de phase :
n ((b) - 4 %	0,2	0,37	<u>1,17</u>	180 (100 ; 300)	ī	NO	20	$grCl_2/NiCl_2)$ $\eta_I = \frac{W + Q_{ref}}{Q_{ln}} = 0.78 *$	$ \eta_{ex} = \frac{W + E_{ref}}{E_{in}} = 0.33 (0.28 - 0.33) $			fonctionnement pseudo-continu. T ₀ : 20 °C. Performances très dépendantes du couple de sels réactifs choisi
Ht(b)	<u>1*</u>	-	<u>6 - 10</u>	130	0 (-10; 10)	Oui	30	$ \eta_I = \frac{\dot{W} + \dot{Q}_{ref}}{\dot{Q}_{in}} = 0.33 (0.31 - 0.38) $	$\eta_{ex} = \frac{W + \dot{E}_{ref}}{\dot{E}_{in} + \bar{E}_{ORC}} = 0.39 (0.39 - 0.40)$	14,6% *	85,4% *	Théorique. (MnCl ₂ /CaCl ₂). Production déphasée de froid et de travail : fonctionnementpseudo-continu. T ₀ : NA
Ht(b)	1		2	160 (120 ; 170)	10 (-15 ; 15)	Non	25 (25 ; 35)	$ \eta_I = \frac{W + Q_{ref}}{Q_{in}} = 0.42 (0.29 - 0.42) $	$ \eta_{ex} = \frac{W + E_{re}I}{E_{in}} = 0.17 (0.12 - 0.17) $	2,91% *	97,1% *	Expérimental. (MnC½/CaCl₂). Production déphasée de froid et de travail : fonctionnement pseudo-continu. T₀: 25 °C
b) - 2 à 4 Exp	0,04*		49*	140 (30; 150)	Non	Non	25	$ \eta_I = \frac{W}{Q_{in}} = 0.14 (0.07 - 0.15) $	$\eta_{ex} = \frac{W}{E_{in}} = 0.50 (0.25 - 0.54) *$	100%	0%	Théorique, (SrCl ₂ / MnCl ₂), Fonctionnement pseudo-continu. T ₀ : 25°C. Performances très dépendantes de l'écart à l'équilibre thermo, de réaction
າn précisé expli	C >> C	òndenseu dans la pul	r ; E >> Evapora blication, dédui	ateur ; B >> Boile t des données dis	r (évaporation à sponibles ; ** >>	très haute Bien que r	e température) non précisé dans	A >> Absorbeur ; G >> Générateur (désorbeur) ; la colonne "Energies entrantes", le travail fourni	Rect >> Rectifieur ; Exp >> Expandeur par les pompes éventuelles est pris er	; R >> Réacteu compte dans le	r à sorption solid	e / gaz rmances (W est un travail "net")
	Ha - 0 C - 0 E Ha - 1 B - 2 C - 4 étages de pression Ha - 2 A - 1 B - 4 étages de pression Ha - 2 A - 2 Exp - 1 B - 5 étages de pression Ha - 0 C - 2 A - 1 B - 3 étages de pression Ha - 0 R - 2 G - 2 A - 1 B - 3 étages de pression Ha - 0 R - 2 G Ht(b) - 4 R Ht(b) - 4 R Ht(b) - 2 A - 3 étages de pression Ha - 0 R - 2 G Ht(b) - 4 R	Ha 1.8 - 2 Low	du cycle Low Medium Ha 18-2 - la-OC-OE 2 - a-1B-2C-OE 2 - iétages de pression 0.24 1,8-14 pression 0.2-0.4 0,4-1,6 pression 0.2-0.4 -1,5-14 pression 0.2-0.4 -1,5-14 pression 0.2-0.4 -1,5-14 pression 0.0-2-0.4 -1,5-14 pression 0.2-0.4 -1,5-14 pression 0.2-5.2 - -2-G-C-A-1 1.5-14 -14 pression 0.9-5.2 - +tt(a)-2 R-2-3 2.9-5.2 - -2-2 G 2.9-5.2 - +tt(a)-2 R-3 0.83 1.44 +tt(b)-4 R 0.83 1.44 +tt(b)-3 A Exp 0.2 0.32	du cycle Low Medium High Ha 1.8.2 - 8.5-10.5 Ia-OC-OE 2 - 20.5 (4-54) Ia-OC-OE 2 0.24 1,8-14 52.4 pression 0.24.1 1,5-14 155 155 pression 0.24.2 - - 26 pression 1.6 - 2.9 27.4 pression 0.23.2 - 1.67-20.33 Ht(b) - 4 R 2.9 8.5 24 pression 0.2 0.23 1.12 atages de pression 0.2 0.3 1.4 atages de pression 0.2	du cycle Low Medium High Chaleur-T°C (Min; Max) Ha 1.8-2 - 8.5-10.5 (200; 300) 1a - 0C - 0E 2 - 8.5-10.5 (200; 300) a - 0C - 0E 2 - 20.5 (4-54) 127 (57; 197) a - 0C - 0E 2 - 20.5 (4-54) 127 (57; 197) a - 18 - 2C - 10 - 2A - 18 - 19 - 2A - 18 - 2A - 18 - 2A - 18 - 2A - 18 - 2A - 28 - 24 - 2A	uniposition Usornes de l'explaimeur entrantes *** effets utiles du cycle Low Medium High Chaleur - T°C (Min ; Max) Froid - T°C (Min ; Max) Froid - T°C (Min ; Max) Froid - T°C (Min ; Max) Proid - T°C (Min ; Max)	du cycle Low Medium High Chaleur T°C (Min; Max) effets utiles produits du cycle Low Medium High Chaleur T°C (Min; Max) Froid T°C (Min; Max) Stockage Ha 1.8-2 - 8.5-10.5 (200; 300) -9 Non Ia-OC-OE 2 - 8.5-10.5 (200; 300) -9 Non pression 9 2.4 1.8-14 52.4 465 -10 Non pression 9.25 1.5-14 1.55 465 -1.5 Non pression 9.24.1 1.5-14 1.55 465 -1.5 Non pression 0.24.1 1.4 1.25 465 -1.5 Non pression 1.6 4.9 2.2.4 2.0 2.1 Non Non pression 1.6 4.9 2.2.4 2.0 2.0 Non Non pression 1.6 4.9 2.1.6 4.9 2.1.6 1.0	unoposition (Lonnes de l'expandeur) centrantes ** effets unles produits (hermiques du cycle du cycl		charceste Low Action Loy Continue of Lixuanium control of Lixuanium	### PATRICULAR DELICATION Company Company	

Tableau 1 : Aperçu des cycles hybrides mettant en jeu des procédés à sorption

Les cycles hybrides à absorption usuels pour la cogénération de froid et de travail fonctionnent sous des rapports de détente de 2 à 20 (selon la température de source chaude), des pressions basses de l'ordre du bar et des pressions hautes de quelques dizaines de bars. Les études théoriques menées par Zhang et Lior [5,6] proposent des gammes de pression élargies (pressions hautes s'échelonnant de 52,4 à 155 bars et rapports de détente d'environ 200).

Concernant les hybrides thermochimiques, les gammes de pression recensées sont plus restreintes et les rapports de détente vont de 2 à 10 environ. La présence de cascades permet toutefois d'exploiter des différences de pression plus importantes, comme dans l'étude [7].

La problématique des gammes de pression amène la question du choix du type d'expandeur à utiliser. Nous nous intéressons d'abord au cas des variantes de l'hybride **Ha**. En l'absence d'expandeur adapté à la taille du prototype, Han et al. [8] ont fait le choix d'utiliser une vanne de détente suivie d'un échangeur de chaleur pour simuler le passage dans un expandeur. Les études théoriques de Goswami [3,4] évoquent l'utilisation d'une turbine, de même que Zhang et Lior [5,6] et Hua et al. [9]. Dans les systèmes à absorption, l'usage d'une turbine pour la production de travail semble fréquent ; cependant, les expandeurs volumétriques s'avèrent adaptés aux machines de petite taille, comme le soulignent Ventas et al. [10] qui citent tout d'abord l'expandeur à spirales (« scroll »), puis l'expandeur à vis (« screw »), et enfin l'expandeur à piston sur lequel un intérêt croissant est porté.

Les variantes de l'hybride **Ht** sont majoritairement des cycles à résorption, i.e. utilisant au moins deux réacteurs à chimisorption et deux sels réactifs différents. L'organe de détente du système décrit par Wang et al. [11] est une turbine ; Lu et al. [12] choisissent un expandeur de type scroll, de même que Jiang et al. [13,14] qui donnent également une évaluation expérimentale [13] de ses performances (notamment le rendement isentropique) ; l'étude théorique menée par Bao et al. [7] met en avant l'importance, lors du choix de la technologie d'expandeur, de l'aspect dynamique des systèmes à résorption (débits de gaz fortement variables du fait de la cinétique de la réaction chimique) et du (des) rapport(s) de pression qu'ils mettent en jeu selon les sels réactifs utilisés. Enfin, l'hybride présenté par Bao et al. [15], qui ne dérive pas du cycle à résorption, intègre également un expandeur de type scroll dont une modélisation dynamique est proposée.

L'analyse des gammes de pression et des organes de détente utilisés fait ressortir l'adéquation des turbines avec les systèmes à rapports de détente importants (supérieurs à 7), tandis que les expandeurs volumétriques - et notamment de type « scroll » - sont davantage utilisés dans les machines de plus petite taille, correspondant à des rapports de détente plus faibles (environ 2 à 7). La gamme des températures de source chaude coïncide, pour la majorité des cycles hybrides du Tableau 1, avec celle des cycles organiques de Rankine (ORC), i.e. 100 à 300 °C. Seules les analyses de Zhang et Lior [5,6] se basent sur une température de source chaude bien supérieure (465 °C), supposée correspondre à des rejets thermiques industriels à haute température (par exemple ceux d'une turbine à gaz).

En ce qui concerne la fonctionnalité de stockage, peu de cycles hybrides l'intègrent. La première étude mettant en avant la capacité des procédés à sorption à fournir un stockage thermochimique d'énergie est celle de Jahnke et al. [16]. Le cycle décrit, généralisant l'hybride **Ht(a)**, possède la capacité intrinsèque de stocker l'énergie thermique apportée (pour décomposer le sel réactif ou désorber la vapeur présente dans le sorbant) sous forme de potentiel chimique disponible au réacteur ou désorbeur. A l'inverse, la capacité de stockage d'énergie du cycle de Jiang et al. [13] n'est pas intrinsèque au procédé puisqu'il s'agit d'un stockage externe par matériau à changement de phase (PCM). Pour évaluer les performances énergétiques des cycles thermodynamiques hybrides dédiés à la production de froid et de travail mécanique, le critère retenu est le rendement « 1^{er} principe », d'usage courant :

$$\eta_I = \frac{W + Q_{ref}}{Q_{in}} \tag{1}$$

, où W désigne le travail mécanique net produit ($W = W_{exp} - W_P$), Q_{ref} le froid produit et Q_{in} la quantité de chaleur entrante. En outre, une analyse exergétique est requise pour tenir compte de la différence de « qualité » thermodynamique des deux énergies sortantes (travail mécanique / froid). D'où la définition d'un rendement « exergétique » :

$$\eta_{ex} = \frac{W + E_{ref}}{E_{in}} = \frac{W + Q_{ref} \left(\frac{T_0}{T_{ref}} - 1\right)}{Q_{in} \left(1 - \frac{T_0}{T_{in}}\right)} \tag{2}$$

Cela nécessite une température de référence T_0 , qui est souvent prise égale à la température ambiante mais variable selon les auteurs (cf. colonne « Commentaires » du Tableau 1).

Un travail d'uniformisation a été effectué (calcul des critères de performance manquants sur la base des grandeurs disponibles dans les publications) pour se ramener aux 2 critères de performance précédents afin d'établir le Tableau 1. Notons que les expressions peuvent cependant varier légèrement, selon les auteurs et les données fournies. Vijayaraghavan et Goswami [17] ont proposé une analyse des critères d'évaluation des performances pour de tels cycles hybrides.

On constate que les rendements 1^{er} principe des cycles hybrides à absorption varient de 0,18 à 0,61 (moyenne : 0,32), le système le plus performant étant celui proposé par Ventas et al. [10] (cycle à absorption double-effet utilisant le couple NH₃ / LiNO₃). Les rendements exergétiques se situent entre 0,37 et 0,62 (moyenne : 0,54). Le cycle de Goswami [4] a le rendement exergétique le plus élevé, en raison de la forte proportion de travail mécanique qu'il délivre.

En ce qui concerne les hybrides thermochimiques, le rendement 1^{er} principe varie de 0,10 à 0,89 (moyenne : 0,44) et le rendement exergétique entre 0,17 et 0,90 (moyenne : 0,44). On observe ici que les valeurs des rendements ou COP sont très fluctuantes d'un système à l'autre, ce qui s'explique notamment par leur forte dépendance vis-à-vis des sels réactifs utilisés.

L'analyse des performances fait ressortir que les hybrides thermochimiques ont généralement un meilleur rendement énergétique mais un moins bon rendement exergétique que les cycles hybrides à absorption. Ceci est cohérent avec la répartition des effets utiles produits dans chaque cas. En effet :

- hormis [16] et [7] qui sont exclusivement dédiés à la production de travail mécanique, les cycles hybrides à sorption solide / gaz de la littérature sont davantage tournés vers la production de froid (plus de 80% de la production totale).
- à l'inverse, les hybrides à absorption produisent essentiellement du travail mécanique (par exemple, le cycle de Goswami [4] a un très faible effet frigorifique de 6,9%), même si certains d'entre eux permettent l'ajustement des productions de froid et de travail, voire un fonctionnement selon deux modes différents.

La plus faible proportion de travail mécanique produit se répercute dans le cas des systèmes thermochimiques, positivement sur le rendement premier principe (moins de conversion d'énergie thermique en travail), mais négativement sur le rendement exergétique (l'énergie thermique ayant un plus faible contenu exergétique que le travail mécanique).

4. Analyse thermodynamique d'un hybride thermochimique avec stockage

L'étude bibliographique a montré que peu de publications se sont penchées sur la configuration **Ht(a)**. Bao et al. [15] présentent un cycle similaire (de composition identique, mais n'intégrant pas la fonction stockage), et l'étude théorique [16] est la seule à mettre en

avant la fonctionnalité de stockage intrinsèque à cet hybride. Une analyse thermodynamique de cet hybride (selon les conventions de la Figure 2) est proposée ici.

La phase de stockage consiste en la décomposition endothermique du sel réactif (grâce à la source chaude) puis la condensation exothermique de la vapeur réactive ainsi générée (évacuation d'énergie thermique vers le puits à température intermédiaire) ; la phase de déstockage, quant à elle, permet à la fois la production de froid (par évaporation de l'ammoniac à T_L) et de travail mécanique (par détente de la vapeur dans l'expandeur).

L'étude thermodynamique a été menée sous le logiciel EES[®], pour différents sels réactifs. Pour la modélisation du cycle, les hypothèses et conditions opératoires sont les suivantes :

- Pertes de charges négligeables en amont et en aval de l'expandeur,
- Chaleurs sensibles négligeables devant celles des processus endo- et exothermiques,
- Rendement isentropique de l'expandeur : 0,8,
- Plage d'avancement de réaction en synthèse et décomposition : 0,8,
- Ecart de température pour l'échange thermique avec les sources : 5 K,
- Ecart entre température du réacteur et équilibre thermodynamique de réaction : 20 K,
- Ecart de température « interne » ($\Delta T_{int} = T_4 T_2$) : 10 K,
- T_{int} fixée à 25 °C, ce qui impose $P_H=11,67$ bars et P_L dépendant du sel,
- T_L fixée à 0 °C, ce qui impose $P_{int} = 3,55$ bars.

Les résultats sont synthétisés en Tableau 2. Le choix du sel réactif a visiblement peu d'influence sur le rendement 1^{er} principe, qui vaut en moyenne 0,54. Les sels sont classés (de haut en bas) par température d'équilibre croissante pour une pression donnée. Selon cet ordre, on observe que :

- \triangleright La pression P_L (pression de synthèse) est décroissante ;
- \succ P_{int} étant imposée, il en résulte un rapport de détente et une production de travail mécanique croissants ;
- \triangleright Le ratio τ_w est donc également croissant, ainsi que le rendement exergétique η_{ex} malgré l'augmentation de la température de source chaude nécessaire ;
- ▶ Du fait de la diminution de P_L , la température $T_3 = T_{sat}(P_L)$ en sortie d'expandeur décroît. Ceci pourrait engendrer des difficultés technologiques, par exemple pour FeCl₂, MgCl₂ et NiCl₂ où $T_3 < 200 \ K$
- Enfin, comme évoqué ci-dessus, la température de source chaude nécessaire est croissante (par exemple pour MgCl₂ et NiCl₂, $T_H > 500 K$).

	Synthèse					Décompos	Evaluation des performances et répartition des effets utile						
Sel	$T_2(K)$	P _L (bar)	R _p (-)	$T_3(K)$	x ₃ (-)	$T_{eq,r}(P_H)(K)$	$T_{H}(K)$	$\eta_{I}\left(\text{-}\right)$	η _{ex} (-)	τ _w (-)	$\tau_{ref}(-)$	$q_{ref}\left(kJ/kg_{sel}\right)$	w (kJ/kg_{sel})
CaCl ₂	277,7	2,493	1,42	259,4	1	359,5	384,5	0,55	0,28	0,03	0,97	628,5	-17,2
SrCl ₂	287,1	1,781	1,99	251,7	1	368	393	0,55	0,32	0,05	0,95	769,9	-41,2
ZnCl ₂	293,2	0,609	5,8	230,2	0,97	392,7	417,7	0,55	0,37	0,11	0,89	255,9	-32,9
$MnCl_2$	293,2	0,176	20,2	209,9	0,92	423,9	448,9	0,55	0,40	0,17	0,83	554,2	-112,6
FeCl ₂	293,2	0,042	85,4	190,8	0,89	458,7	483,7	0,54	0,41	0,22	0,78	550,3	-152,9
$MgCl_2$	293,2	0,011	319,0	176,5	0,86	486,5	511,5	0,52	0,40	0,25	0,75	732,5	-247,0
NiCl ₂	293,2	0,002	1695,0	161,4	0,83	531	556	0,52	0,39	0,29	0,71	538,2	-216,9
Cond	itions de	fonctionne	ement : 7	$\Gamma_{\rm L} = 273$.2 K (P	$_{int} = 3.55 \text{ bar}$	et T _{int} =	= 298.2	$K(P_H =$	11.67 t	oar). Or	$a:T_{eq,r}(P_L)$	= 323.2 K

Tableau 2 : Analyse thermodynamique de Ht(a) en fonction du sel réactif choisi

Le réactif MnCl₂ semble prometteur au vu de cette analyse thermodynamique. Il est bien connu pour les procédés de stockage thermochimique et déjà utilisé dans des systèmes commerciaux. D'après ces résultats, une masse de 32 kg de ce sel serait suffisante pour disposer

d'une capacité de stockage permettant de produire 1 kWh de travail mécanique et 4,9 kWh de froid.

5. Conclusion

L'état de l'art des connaissances actuelles sur les cycles hybrides impliquant des procédés à sorption pour la production de froid et de travail mécanique permet de rendre compte de la diversité et de la complexité des systèmes existants, et de mettre en avant une lacune concernant les cycles intégrant une fonction intrinsèque de stockage. Dans ce contexte, une analyse thermodynamique de l'hybride **Ht(a)** a été proposée. Des travaux plus approfondis sont à développer sur ce cycle, et notamment sur le couplage antagoniste entre expandeur et réacteur à sorption solide / gaz [7,15]. En outre, d'autres configurations sont envisageables, par exemple avec plusieurs détentes successives pour exploiter des différences de pression importantes.

Références

- [1] L. F. Cabeza, A. Solé, C. Barreneche, Review on sorption materials and technologies for heat pumps and thermal energy storage, *Renewable Energy* 110, 3-39 (2017).
- [2] D. Aydin, S. P. Casey, S. Riffat, The latest advancements on thermochemical heat storage systems, *Renewable and Sustainable Energy Reviews* 41, 356-367 (2015).
- [3] F. Xu, D.Y. Goswami, S.S. Bhagwat, A combined power / cooling cycle, *Energy* 25, 233-246 (2000).
- [4] A.A. Hasan, D.Y. Goswami, S. Vijayaraghavan, First and second law analysis of a new power and refrigeration thermodynamic cycle using a solar heat source, *Solar Energy* Vol. 73, 385-393 (2002).
- [5] N. Zhang, N. Lior, Development of a novel combined absorption cycle for power generation and refrigeration, *Journal of Energy Resources Technology* Vol. 129, ASME Transactions, 254-265 (2007).
- [6] N. Zhang, N. Lior, Methodology for thermal design of novel combined refrigeration / power binary fluid systems. *International Journal of Refrigeration* 30, 1072-1085 (2007).
- [7] H. Bao, Z. Ma, A.P. Roskilly, A chemisorption power generation cycle with multi-stage expansion driven by low grade heat, *Energy Conversion and Management* (2017).
- [8] W. Han, Q. Chen, L. Sun, S. Ma, T. Zhao, D. Zheng, H. Jin, Experimental studies on a combined refrigeration / power generation system activated by low-grade heat, *Energy* 74, 59-66 (2014).
- [9] J. Hua, Y. Chen, Y. Wang, A.P. Roskilly., Thermodynamic analysis of ammonia-water power / chilling cogeneration cycle with low-grade waste heat, *App. Thermal Engineering* 64, 483-490 (2014).
- [10] R. Ventas, A. Lecuona, C. Vereda, M.C. Rodriguez-Hidalgo, Performance analysis of an absorption double-effect cycle for power and cold generation using ammonia / lithium nitrate, *Applied Thermal Engineering* 115, 256-266 (2017).
- [11] L. Wang, F. Ziegler, A.P. Roskilly, R. Wang, Y. Wang, A resorption cycle for the cogeneration of electricity and refrigeration, *Applied Energy* 106, 56-64 (2013).
- [12] Y. Lu, Y. Wang, H. Bao, Y. Yuan, L. Wang, A.P. Roskilly, Analysis of an optimal resorption cogeneration using mass and heat recovery processes, *Applied Energy* 160, 892-901 (2015).
- [13] L. Jiang, L.W. Wang, X.F. Zhang, C.Z. Liu, R.Z. Wang, Performance prediction on a resorption cogeneration cycle for power and refrigeration with energy storage, *Ren. Energy* 83, 1250-1259 (2015).
- [14] L. Jiang, L.W. Wang, C.Z. Liu, R.Z. Wang, Experimental study on a resorption system for power and refrigeration cogeneration, *Energy* 97, 182-190 (2016).
- [15] H. Bao, Y. Wang, A.P. Roskilly, Modelling of a chemisorption refrigeration and power cogeneration system, *Applied Energy* 119, 351-362 (2014).
- [16] A. Jahnke, F. Ziegler, M. Karow, Re-evaluation of the Honigmann-process: thermo-chemical heat store for the supply of electricity and refrigeration (2009).
- [17] S. Vijayaraghavan, D.Y. Goswami, On evaluating efficiency of a combined power and cooling cycle, *Proceedings of IMECE*, 287-295 (2002).

Remerciements

Alexis GODEFROY bénéficie d'une allocation de recherche de l'Ecole Doctorale 305 de l'UPVD – Université de Perpignan Via Domitia.