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ABSTRACT Nodular thelitis is a chronic enzootic infection affecting dairy cows and
goats. The causative agent was recently shown to be related to the leprosy-causing
bacilli Mycobacterium leprae and Mycobacterium lepromatosis. In this study, the ge-
nome of this pathogen was sequenced and analyzed. Phylogenomic analyses con-
firmed that the pathogen present in nodular thelitis and tuberculoid scrotitis is a
distinct species related to the leprosy bacilli and Mycobacterium haemophilum. Be-
cause the pathogen was originally isolated from a bovine udder, it was named “My-
cobacterium uberis.” The genome of “M. uberis” is only 3.12 Mb in length, which rep-
resents the smallest mycobacterial genome identified so far but which is close to
that of leprosy bacilli in size. The genome contains 1,759 protein-coding genes and
1,081 pseudogenes, indicative of extensive reductive evolution and likely the reason
that M. uberis cannot be grown axenically. The pseudogenization and genome re-
duction in M. uberis seem to have been to some extent independent from the re-
sults determined for the genomes of the leprosy bacilli.

IMPORTANCE M. uberis is an emerging skin pathogen in dairy animals. Its genome
underwent massive reduction and gene decay, leading to a minimal set of genes
required for an obligatory intracellular lifestyle, which highly resembles the evo-
lution of the leprosy agents M. leprae and M. lepromatosis. The genomic similar-
ity between M. uberis and the leprosy bacilli can help in identifying key virulence
factors of these closely related species or in identifying genes responsible for the
distinct differences between thelitis or scrotitis and leprosy with respect to clini-
cal manifestations. Specific DNA markers can now be developed for quick detec-
tion of this pathogen.
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Nodular thelitis is a chronic, enzootic granulomatous dermatitis associated with
acid-fast bacilli. It was originally observed in cows and was first described in France

in 1963 (1) and then in Japan (2) and Switzerland (3). A similar disease, nodular
tuberculoid scrotitis, was observed in bulls and is suspected to be caused by the same
pathogen. The causative agent of the bovine nodular thelitis was recently shown to be
related to the leprosy-causing species Mycobacterium leprae and Mycobacterium lepro-
matosis (4). More recently, the same pathogen was also identified in dairy goats (5). In
this study, the draft genome of this pathogen was reconstructed and analyzed to reveal
a distinct mycobacterial species and for use for confirmation of its detection in nodular
thelitis and tuberculoid scrotitis.

RESULTS AND DISCUSSION
Species name and phylogeny. As shown in Fig. 1, the new species forms a distinct

branch lying between M. haemophilum and the most recent common ancestor of M.
leprae and Mycobacterium lepromatosis. In view of its initial identification from udder,
this species is named Mycobacterium uberis.

Mycobacterium uberis genome sequence. DNA was isolated from a skin biopsy of
bovine udder with nodular thelitis and subjected to Illumina sequencing. The de novo
sequence assembly resulted in 3,571 contigs that were larger than 1 kb and showed
average coverage of over 10�. Most contigs matched sequences from a variety of
bacterial species. On the basis of sequence similarity to M. haemophilum and M. leprae,
we retrieved contigs that unmistakably belonged to M. uberis. Care was taken not to
exclude any other potential M. uberis sequences by manually checking all the remaining
contigs that displayed GC content similar to that of M. uberis and by repeating the
analysis with another assembly program (see Text S1 in the supplemental material for
details). The draft M. uberis genome assembly consists of 54 contigs with an average
length of 58 kb and totaling 3.12 Mb. All of the contigs harbored genes that closely
match those of M. haemophilum (85.7% average nucleotide identity) or M. leprae (82.4%
average nucleotide identity), with no obvious outlier that would indicate an erroneous
assembly with sequences from another bacterial species.

Genome downsizing and pseudogene formation. At a sequence length of
3.12 Mb and containing 1,081 pseudogenes, the genome of M. uberis is as reduced as
that of M. leprae (Table 1). The two species share 1,318 functional protein-coding genes,
which corresponds to 75% of the total number of protein-coding genes in M. uberis and
82% in M. leprae. Similarly, among the 1,309 pseudogenes in M. leprae, only 212
orthologs were predicted to be functional in M. uberis; conversely, among the 1,081
pseudogenes in M. uberis, only 126 orthologs are predicted to be functional in M. leprae
(see Data Set S1 in the supplemental material).

The pseudogene content of M. uberis differs from that of M. leprae. For example, 465
pseudogenes in M. uberis do not have an ortholog in M. leprae, and 607 pseudogenes
in M. leprae do not have an ortholog in M. uberis, suggesting that genome reduction
was, at least in part, an independent process in each species. However, this observation
does not exclude the possibility that the initial pseudogenization occurred in the
ancestor of M. uberis and M. leprae. If this were the case, the pseudogenes that are
present in both species would be more likely to share the same deleterious mutations,
such as frameshifts and premature stop codons. We manually checked 50 random
orthologous pseudogenes and identified only three pairs that shared one or more stop
codons and/or frameshifts. Although some signals were lost or blurred by sequence
drift, this observation suggests that some of the pseudogenization had already started
in the ancestor of M. uberis and M. leprae and that the pseudogenization processes
probably continued independently as the two species diverged. Note that roughly 500
genes which are missing in both species (compared to M. haemophilum) were likely
deleted in the ancestor of M. uberis and M. leprae, which was probably adapting to a
strict intracellular niche (6).

Envelope biogenesis and other specific features. M. leprae contains no methoxy-
mycolates, probably because it has lost the MmaA2 and MmaA3 methoxy mycolic acid
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synthases (7). M. uberis has retained a functional MmaA3 (M. uberis BE_04680
[MUBE_04680]), which might influence the envelope composition. On the other hand,
M. uberis has the same reduced set of five mmpL genes as M. leprae. It remains to be
determined whether M. uberis produces a glycolipid similar or equivalent to the
characteristic and highly antigenic phenolic glycolipid 1 of M. leprae.

A characteristic feature of M. leprae and M. lepromatosis is the presence of the
horizontally acquired gene proS, encoding a eukaryote-like prolyl tRNA synthetase,
which is both displaced and inverted with respect to the M. tuberculosis genome (7,
8) and is similar to those present in various members of the Nocardiaceae family.
The same proS homolog is also present in M. uberis (MUBE_09850) and M. haemo-
philum (B586_RS07325) at the same genomic location, indicating that the gene was
acquired by their ancestor. In addition, M. uberis has a cytochrome P450
(MUBE_02130) of unknown function that is similar to those present in more
distantly related mycobacterial species but that is not present in M. leprae, M.
lepromatosis, or M. haemophilum.

Growth. All attempts to grow M. uberis have failed, a result which was expected
given its highly reduced genome. As in the cases of M. haemophilum and M. leprae, M.
uberis lacks the mycobactin synthesis gene cluster present in Mycobacterium tubercu-

FIG 1 Phylogenetic tree of Mycobacterium uberis and selected mycobacterial species. The tree was
created in MEGA7 from concatenated amino acid sequences (3,696 positions) of 10 proteins (DnaN, RplI,
GrpE, MetG, RplY, PheT, FtsQ, HolA, MiaA, and FtsY) (18) and inferred by using the maximum likelihood
method based on the JTT matrix-based model. The tree is drawn to scale, with branch lengths measured
at the number of substitutions per site. Bootstrap support values, estimated from 500 replicates, are
given below each branch. Mycobacteroides abscessus (previously Mycobacterium abscessus) was used as
the outgroup.

TABLE 1 Genomic features of M. uberis and close relatives M. leprae, M. lepromatosis, and
M. haemophilum

Feature

Value

M. uberis M. leprae M. lepromatosis M. haemophilum

Genome size (bp) 3,122,721 3,268,212 3,206,741 4,235,765
No. of protein-coding genes 1,759 1,609 1,477 3,749
No. of pseudogenes 1,081 1,309 1,334 225
% GC content (genome) 57.49 57.80 57.89 63.95
% GC content (CDS)a 59.58 60.11 60.16 64.35
% GC content (pseudogenes) 55.60 56.45 56.59 64.84
% GC content (intergenic) 53.08 54.17 54.61 60.37
aCDS, coding DNA sequence.
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losis. Moreover, the gene coding for 50S ribosomal protein L25 (MUBE_04325) is
truncated in M. uberis and is probably not functional. Disruption of this gene results in
growth defects in M. tuberculosis (9) and Escherichia coli (10), due to reduced efficiency
of the ribosome.

Virulence. The ESX-1 system is the main determinant of virulence in M. tuberculosis

and in a number of other mycobacterial pathogens (11). While M. leprae and M.
lepromatosis lost some components of ESX-1 (12), M. uberis retained the protein-coding
capacity of the entire system (see Fig. S1 in the supplemental material). However, we
identified a break in the genomic synteny downstream of espJ (MUBE_00800) and an
insertion of a putative proline-proline-glutamate (PPE) gene (MUBE_01185), flanked by
remnants of transposases, between espB (MUBE_01195) and eccE1 (MUBE_01180). It is
not clear how these changes impact the ESX-1 system in M. uberis. Curiously, the
structural variations occur around the same genes that lost coding capacity in M. leprae
and M. lepromatosis (Fig. S1).

The ESX-5 system is the most recently evolved mycobacterial ESX system, which
modulates virulence and host response, and is found only in the slow-growing myco-
bacterial species (13). The two esx genes and the flanking PE/PPE gene pair of the ESX-5
system underwent a series of duplication events that resulted in multiple copies
scattered across the genome (14). It was shown that some of the paralog clusters in M.
tuberculosis serve as accessory systems that aid in the secretion of a subset of proteins
via the prototype ESX-5 system (14). Interestingly, M. uberis lost the core components
of the prototype ESX-5 system, similarly to M. leprae, but has retained at least three
paralog esx pairs.

Drug susceptibility. No mutations were found in the drug-resistance-conferring

regions of RpoB (MUBE_04585), FolP1 (MUBE_01990), GyrA (MUBE_01070), and GyrB
(MUBE_01075) (15), indicating that M. uberis is very likely susceptible to the antileprosy
drugs rifampin, dapsone, and ofloxacin. Since there are no known molecular markers
for resistance, we can only presume that M. uberis is also susceptible to the drugs
clofazimine and clarithromycin, as is M. haemophilum (16).

Mycobacterium leprae cluster organisms. A recently reported causative agent of

feline leprosy, “Candidatus Mycobacterium lepraefelis,” was found to be a close relative
of M. leprae (17). The partial sequence of the groEL2 (hsp65) gene from this pathogen
is 89% to 90% identical to those of M. uberis, M. haemophilum, M. leprae, and M.
lepromatosis. Phylogenetic reconstruction of the groEL sequence placed “Candidatus M.
lepraefelis” between M. uberis and M. leprae (Fig. S2), so it is likely that the genomic
structure of “Candidatus M. lepraefelis” resembles those of M. uberis and M. leprae.
Efforts to close the genome sequences of the M. leprae-like pathogens are needed to
facilitate more-detailed genomic comparisons, which, coupled with biological data, will
provide further insights into the evolution and pathogenicity of this particular group of
mycobacteria.

Significance and molecular detection of Mycobacterium uberis. The availability

of the genome sequence of M. uberis allowed us to design specific PCR primers for
M. uberis. We confirmed the presence of the bacteria in the three cases of bovine
nodular thelitis and the two cases of caprine nodular thelitis reported before (4, 5),
as well as in a new case of bovine nodular thelitis and two cases of caprine nodular
thelitis from different farms in France (Table 2). Moreover, we detected M. uberis in
three cases of nodular tuberculoid scrotitis, confirming the implication of the
bacterium in the two diseases. While definitive evidence is still lacking, these results
strongly suggest that M. uberis is the causative agent of nodular thelitis and
tuberculoid scrotitis.

Early detection and diagnosis of infectious diseases are crucial in animal husbandry
to prevent disease outbreaks and contamination of animal products. Molecular tools
from this study can be used for routine screening of the pathogen and will facilitate
epidemiological investigations.
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MATERIALS AND METHODS
DNA was isolated from a skin biopsy of bovine udder with nodular thelitis and subjected to Illumina

sequencing, followed by sequence assembly and annotation. More details are given in Text S1 in the
supplemental material.

For the PCR assay, we used BLAST to identify genomic regions in M. uberis with no sequence
homology to any publicly available sequence. We chose a 231-bp-long intergenic region that lies
within the specific genomic island in the ESX-1 locus of M. uberis, between the espB gene and eccE1
(Fig. S1), using primers Muber6F (5=-CACCGAACCCCTTCATGTCA-3=) and Muber6R (5=-CCCGGTAGTG
TTGGCTTGAT-3=).

Accession number(s). The annotated genome has been deposited at DDBJ/ENA/GenBank under
accession number QAYL00000000.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/

mSphere.00405-18.
TEXT S1, PDF file, 0.1 MB.
FIG S1, EPS file, 0.1 MB.
FIG S2, EPS file, 0.1 MB.
DATA SET S1, XLSX file, 1.8 MB.

ACKNOWLEDGMENTS
We thank staff members at the Genomic Technologies Facility at the University of

Lausanne, Switzerland, for Illumina sequencing and Véronique Guerin-Faublee, Pierre
Guerin, and Monique Chomarat for scientific advice.

This work was supported by the Fondation Raoul Follereau and Swiss National
Science Foundation grant IZRJZ3_164174.

REFERENCES
1. Joubert L, Ferney J, Oudar J, Van H. 1963. Thélite nodulaire tuberculoïde

de la vache laitière à mycobactéries atypiques scotochromogènes. Rev
Med Vet 114:87–105.

2. Shimizu K, Shirahata T, Ono T, Ueda A. 1968. Studies on skin lesion tuber-
culosis of the bovine udder in Japan. Res Bull Obihiro Univ 5:729–734.

3. Rüsch P, Corboz L, Ossent P, Berchtold M, Ehrensperger F. 1984. Enzo-
otische nodulär-ulzerierende Thelitis mit Mykobakterieninfektion bei
Kühen. Schweiz Arch Tierheilk 126:467– 478.

4. Pin D, Guérin-Faublée V, Garreau V, Breysse F, Dumitrescu O, Flandrois
J-P, Lina G. 2014. Mycobacterium species related to M. leprae and M.
lepromatosis from cows with bovine nodular thelitis. Emerg Infect Dis
20:2111–2114. https://doi.org/10.3201/eid2012.140184.

5. Chartier C, Albaric O, Cesbron N, Despres J, Hoogveld C, Michelet L,
Boschiroli M-L. 2016. Tuberculoid nodular thelitis in a dairy goat flock.
Vet J 209:199 –200. https://doi.org/10.1016/j.tvjl.2015.12.004.

6. Weinert LA, Welch JJ. 2017. Why might bacterial pathogens have small
genomes? Trends Ecol Evol 32:936 –947. https://doi.org/10.1016/j.tree
.2017.09.006.

7. Cole ST, Eiglmeier K, Parkhill J, James KD, Thomson NR, Wheeler PR,

Honoré N, Garnier T, Churcher C, Harris D, Mungall K, Basham D, Brown
D, Chillingworth T, Connor R, Davies RM, Devlin K, Duthoy S, Feltwell T,
Fraser A, Hamlin N, Holroyd S, Hornsby T, Jagels K, Lacroix C, Maclean J,
Moule S, Murphy L, Oliver K, Quail MA, Rajandream MA, Rutherford KM,
Rutter S, Seeger K, Simon S, Simmonds M, Skelton J, Squares R, Squares
S, Stevens K, Taylor K, Whitehead S, Woodward JR, Barrell BG. 2001.
Massive gene decay in the leprosy bacillus. Nature 409:1007–1011. https://
doi.org/10.1038/35059006.

8. Singh P, Benjak A, Schuenemann VJ, Herbig A, Avanzi C, Busso P, Nieselt
K, Krause J, Vera-Cabrera L, Cole ST. 2015. Insight into the evolution and
origin of leprosy bacilli from the genome sequence of Mycobacterium
lepromatosis. Proc Natl Acad Sci U S A 112:4459 – 4464. https://doi.org/
10.1073/pnas.1421504112.

9. DeJesus MA, Gerrick ER, Xu W, Park SW, Long JE, Boutte CC, Rubin EJ,
Schnappinger D, Ehrt S, Fortune SM, Sassetti CM, Ioerger TR. 2017.
Comprehensive essentiality analysis of the Mycobacterium tuberculosis
genome via saturating transposon mutagenesis. mBio 8:e02133-16. https://
doi.org/10.1128/mBio.02133-16.

10. Korepanov AP, Gongadze GM, Garber MB, Court DL, Bubunenko MG.

TABLE 2 Samples used for the PCR detection of M. uberisa

Sample ID Animal Diagnosis Tissue Herd Animal ID
Reference
or source

13Z000257 Goat NT Mammary gland A goat 1 5
13Z002358 Goat NT Inguinal lymph node A goat 1 5
14Z002623 Goat NT Unspecified tissue A goat 2 5
14Z002624 Goat NT Mammary gland A goat 2 5
15Z001519 Goat NT Mammary gland B goat 3 This study
15Z001520 Goat NT Mammary gland B goat 4 This study
NA Cow NT Mammary gland C cow 1 4
NA Cow NT Mammary gland C cow 2 4
NA Cow NT Mammary gland D cow 4 This study
NA Bull TS Scrotum E taurus 1 This study
NA Bull TS Scrotum E taurus 2 This study
NA Bull TS Scrotum E taurus 3 This study
aID, identifier; NT, nodular thelitis; TS, tuberculoid scrotitis; NA, not available.

Highly Reduced Genome of Mycobacterium uberis

September/October 2018 Volume 3 Issue 5 e00405-18 msphere.asm.org 5

 on N
ovem

ber 7, 2019 at IN
S

T
IT

U
T

 P
A

S
T

E
U

R
-B

ibliotheque
http://m

sphere.asm
.org/

D
ow

nloaded from
 

https://www.ncbi.nlm.nih.gov/nuccore/QAYL00000000
https://doi.org/10.1128/mSphere.00405-18
https://doi.org/10.1128/mSphere.00405-18
https://doi.org/10.3201/eid2012.140184
https://doi.org/10.1016/j.tvjl.2015.12.004
https://doi.org/10.1016/j.tree.2017.09.006
https://doi.org/10.1016/j.tree.2017.09.006
https://doi.org/10.1038/35059006
https://doi.org/10.1038/35059006
https://doi.org/10.1073/pnas.1421504112
https://doi.org/10.1073/pnas.1421504112
https://doi.org/10.1128/mBio.02133-16
https://doi.org/10.1128/mBio.02133-16
msphere.asm.org
http://msphere.asm.org/


2007. Importance of the 5 S rRNA-binding ribosomal proteins for cell
viability and translation in Escherichia coli. J Mol Biol 366:1199 –1208.
https://doi.org/10.1016/j.jmb.2006.11.097.

11. Gröschel MI, Sayes F, Simeone R, Majlessi L, Brosch R. 2016. ESX secretion
systems: mycobacterial evolution to counter host immunity. Nat Rev
Microbiol 14:677– 691. https://doi.org/10.1038/nrmicro.2016.131.

12. Gey Van Pittius NC, Gamieldien J, Hide W, Brown GD, Siezen RJ, Beyers
AD. 2001. The ESAT-6 gene cluster of Mycobacterium tuberculosis and
other high G�C Gram-positive bacteria. Genome Biol 2:RESEARCH0044.

13. Newton-Foot M, Warren RM, Sampson SL, van Helden PD, Gey van
Pittius NC. 2016. The plasmid-mediated evolution of the mycobacterial
ESX (Type VII) secretion systems. BMC Evol Biol 16:62. https://doi.org/10
.1186/s12862-016-0631-2.

14. Shah S, Briken V. 2016. Modular organization of the ESX-5 secretion
system in Mycobacterium tuberculosis. Front Cell Infect Microbiol 6:49.
https://doi.org/10.3389/fcimb.2016.00049.

15. Benjak A, Avanzi C, Singh P, Loiseau C, Girma S, Busso P, Fontes ANB,
Miyamoto Y, Namisato M, Bobosha K, Salgado CG, da Silva MB, Bouth RC,
Frade MAC, Filho FB, Barreto JG, Nery JAC, Bührer-Sékula S, Lupien A,
Al-Samie AR, Al-Qubati Y, Alkubati AS, Bretzel G, Vera-Cabrera L, Sakho
F, Johnson CR, Kodio M, Fomba A, Sow SO, Gado M, Konaté O, Stefani

MMA, Penna GO, Suffys PN, Sarno EN, Moraes MO, Rosa PS, Baptista
IMFD, Spencer JS, Aseffa A, Matsuoka M, Kai M, Cole ST. 2018. Phylo-
genomics and antimicrobial resistance of the leprosy bacillus Mycobac-
terium leprae. Nat Commun 9:352. https://doi.org/10.1038/s41467-017
-02576-z.

16. Lindeboom JA, Bruijnesteijn van Coppenraet LES, van Soolingen D, Prins
JM, Kuijper EJ. 2011. Clinical manifestations, diagnosis, and treatment of
Mycobacterium haemophilum infections. Clin Microbiol Rev 24:701–717.
https://doi.org/10.1128/CMR.00020-11.

17. O’Brien CR, Malik R, Globan M, Reppas G, McCowan C, Fyfe JA. 2017.
Feline leprosy due to Candidatus “Mycobacterium lepraefelis”: further
clinical and molecular characterisation of eight previously reported
cases and an additional 30 cases. J Feline Med Surg 19:919 –932. https://
doi.org/10.1177/1098612X17706470.

18. Mizuno T, Natori T, Kanazawa I, Eldesouky I, Fukunaga H, Ezaki T. 2016.
Core housekeeping proteins useful for identification and classification of
mycobacteria. Microb Resour Syst 32:25–37.

19. Simeone R, Bottai D, Frigui W, Majlessi L, Brosch R. 2015. ESX/type VII
secretion systems of mycobacteria: Insights into evolution, pathogenic-
ity and protection. Tuberculosis 95:S150 –S154. https://doi.org/10.1016/
j.tube.2015.02.019.

Benjak et al.

September/October 2018 Volume 3 Issue 5 e00405-18 msphere.asm.org 6

 on N
ovem

ber 7, 2019 at IN
S

T
IT

U
T

 P
A

S
T

E
U

R
-B

ibliotheque
http://m

sphere.asm
.org/

D
ow

nloaded from
 

https://doi.org/10.1016/j.jmb.2006.11.097
https://doi.org/10.1038/nrmicro.2016.131
https://doi.org/10.1186/s12862-016-0631-2
https://doi.org/10.1186/s12862-016-0631-2
https://doi.org/10.3389/fcimb.2016.00049
https://doi.org/10.1038/s41467-017-02576-z
https://doi.org/10.1038/s41467-017-02576-z
https://doi.org/10.1128/CMR.00020-11
https://doi.org/10.1177/1098612X17706470
https://doi.org/10.1177/1098612X17706470
https://doi.org/10.1016/j.tube.2015.02.019
https://doi.org/10.1016/j.tube.2015.02.019
msphere.asm.org
http://msphere.asm.org/

	RESULTS AND DISCUSSION
	Species name and phylogeny. 
	Mycobacterium uberis genome sequence. 
	Genome downsizing and pseudogene formation. 
	Envelope biogenesis and other specific features. 
	Growth. 
	Virulence. 
	Drug susceptibility. 
	Mycobacterium leprae cluster organisms. 
	Significance and molecular detection of Mycobacterium uberis. 

	MATERIALS AND METHODS
	Accession number(s). 

	SUPPLEMENTAL MATERIAL
	ACKNOWLEDGMENTS
	REFERENCES

