N
N

N

HAL

open science

Mechanically Verifying the Fundamental Liveness
Property of the Chord Protocol

Jean-Paul Bodeveix, Julien Brunel, David Chemouil, M Filali

» To cite this version:

Jean-Paul Bodeveix, Julien Brunel, David Chemouil, M Filali. Mechanically Verifying the Funda-
mental Liveness Property of the Chord Protocol. 23rd International Symposium on Formal Methods
(FM 2019), FME: Formal Methods Europe, Oct 2019, Porto, Portugal. pp.45-63, 10.1007/978-3-030-
30942-8_ 5. hal-02332531

HAL Id: hal-02332531
https://hal.science/hal-02332531
Submitted on 24 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02332531
https://hal.archives-ouvertes.fr

Mechanically Verifying the Fundamental Liveness
Property of the Chord Protocol*

Jean-Paul Bodeveix!, Julien Brunel?, David Chemouil?, and Mamoun Filali’

L IRIT CNRS UPS, Université de Toulouse, France, first.last@irit.fr
2 ONERA DTIS, Université de Toulouse, France, first.last@onera.fr

Abstract. Chord is a protocol providing a scalable distributed hash
table over an underlying peer-to-peer network. It is very popular due to
its simplicity, performance and claimed correctness. However, the original
version of the Chord maintenance protocol, presented with an informal
proof of correctness, was since then shown to be in fact incorrect. It is
actually tricky to come up with a provably-correct version as the protocol
combines data structures, asynchronous communication, concurrency,
and fault tolerance. Additionally, the correctness property amounts to
a form of stabilization, a particular kind of liveness property. Previous
work only addressed automated proofs of safety; and pen-and-paper, or
automated but much bounded, proofs of stabilization. In this article,
we report on the first mechanized proof of the liveness property for
Chord. Furthermore, our proof addresses the full parameterized version
of the protocol, weakens previously-devised invariants and operating
assumptions, and is essentially automated (requiring limited effort when
manual assistance is needed).

Keywords: Chord - Distributed protocol - Parameterized verification -
Liveness - Stabilization proof.

1 Introduction

Chord [10,17,18] is a popular distributed lookup protocol addressing an essential
issue of peer-to-peer applications: efficiently localizing some sought data in a
dynamically-evolving network. To achieve this, the Chord protocol is designed so
as to maintain a ring topology, as much as possible, and to fix possible disruptions
due to nodes joining or leaving the network, or failing. When it was first introduced,
Chord was claimed to be simple, efficient and correct. However, Zave [20] identified
some flaws in the maintenance protocol (the only aspect we consider in this paper)
and proposed some corrections. Since then, Chord has been used as a test-bed
for various formal studies [3,5, 15, 19], using various methods and languages,
including an outstanding endeavor by Zave herself [20-23]. However, most work
has focused on proofs of safety while the fundamental correctness property of
Chord is a stabilization property, a particular kind of liveness property, saying

* NOTE: The published version contains a mistake introduced after acceptation and
unspotted until publication. It is hereby fixed on pp. 4 and 7 (indicated in red).

that if, from a certain instant, there is no subsequent join, departure or failure,
then the network is ensured to recover a ring topology eventually and to keep it.
In her work [23], Zave identified key invariants that are instrumental to make
the proof of liveness doable. She was able to check them using Alloy [7] but had
to resort to good old pen and paper to provide a proof of liveness (unachievable
in Alloy). In [5], some of the authors of the present paper used Electrum [11], a
temporal extension of Alloy, to address the liveness proof in an automated way
but only for networks of small size.

In this paper, we present a proof of correctness (liveness property) of the
Chord maintenance protocol with the following contributions:

— our proof is parametric in the number of nodes in the network and in the
number of redundant data used for robustness (so-called “successor lists”, cf.
section 2.1.2);

— we address the problem in a mechanized setting and rely on various abstrac-
tions so that most proof obligations are automatically discharged while most
manual proofs need only limited manual intervention;

— we develop a proof method to address the specific shape of the liveness
property at stake;

— we show that several invariants and operating assumptions made in the
literature can be logically weakened.

Our work is performed using the Event-B language [1] and the accompanying
tool Rodin [2]. We first use superposition refinement (also called horizontal
refinement) to build the protocol incrementally. Then technical refinements are
introduced to make Rodin produce the wanted proof obligations for stabilization.
Thus, we do not really follow a refinement-based method to derive a correct
protocol. Rather, we rely on Event-B and Rodin to take advantage of the ability
to write specifications in an expressive language that the built-in pivot solver
can translate and forward to SMT solvers, with great success in most cases for
this work. For this reason, this article is written with the aim of presenting the
essential aspects of our approach. Full Event-B models can be found at [4].

In section 2, we present our model of the Chord maintenance protocol and
describe our proof methodology. Then, in section 3, we address properties of a
Chord network, showing in particular how known operating assumptions and
invariants can be weakened. In section 4, we show that the maintenance protocol
ensures the liveness property presented above. Finally we present related work
in section 5 and discuss future work in section 6.

2 The Chord Protocol

This section presents the Chord network topology forming a ring, Chord data
and the protocol itself as a set of guarded symbolic transitions.

2.1 Network Structure

2.1.1 Identifier Space In a Chord network, every node has an identifier (a
hash of its IP address). Pairs of keys and associated data are stored in nodes. In

this article, we conflate the notions of a node and its identifier, and thus use a
set NODE of node (identifiers).

The node identifier space is structured as a ring-shaped directed graph.
Intuitively, identifiers are ordered following the usual strict ordering on natural
numbers (written < in the following), wrapping around at the largest identifier in
order to close the ring. Due to this shape, situating an identifier is advantageously
modeled by checking whether it sits between two other identifiers: given ni,ny €
NODE, we define the set of identifiers between n, and ng, written n; — na, by>:

A
Ny~ *Ng = 4N € NODE .
! 2 { ny < n or n < ng otherwise

ny <n<ng ifn1<n2}

Given a node n € NODE, we note next(n) the next node according to —, i.e.,
s.t. n = next(n) = 0.

2.1.2 Chord Network A Chord network is thus built over the identifier space.
In order for Chord to provide an efficient lookup procedure, ideally, the network
should also form a ring-shaped digraph at every instant, where every member is
in charge of storing some payload (depending on the node identifier) and points
to its nearest successor among the ring members (see fig. 1 (left)).

However, as nodes dynamically join and leave the network, this ideal ring shape
cannot always be maintained and appendages to the ring will appear (see fig. 1 (mid-
dle)). The set of nodes belonging to the Chord network, that is belonging to the
Chord ring or to its appendages, is called MEMBERS. Its elements are also called
live nodes. Non-members are called dead nodes. Formally, a node may be dead
either because it was live and later failed or left the network, or because it never
joined the network.

Thus, the protocol is in fact meant to keep the network in a repairable state
and, in the long run, to fix disruptions.

To enhance robustness to failures, every live node holds a fixed-length successor
list [17, Sect. 5.2| of K pointers to other nodes*, where K is a parameter of the
protocol. This way, if a node leaves the network, its predecessor will still have
successors in the network: an assumption is made, stating that every node always
has at least one live node in its successor list (see Sect. 3.2.1). Additionally, every
live node also holds a (possibly-null) pointer to its predecessor node: this is useful
in the execution of maintenance operations.

Thus we end up with the following state variables (prdc is declared as a
partial function as it may be undefined for some members).

MEMBERS C NODE succ : MEMBERS — listy (NODE)
prdc : MEMBERS - NODE

3 In our Event-B model, we actually use a pure first-order axiomatization, presented
e.g. in [15], which allows SMT solvers to deal with many proofs automatically.

4 Not to be confused with Chord’s finger tables whose purpose is to support efficient
query routing [17, Sect. 4.3].

We also use bestSucc : MEMBERS — MEMBERS to indicate the first live node
among the K successors of a member: bestSucc(n) £ succ(n)[i] where i is the
least index s.t. succ(n)i] is alive.

2.2 Chord Operations

2.2.1 Formal Model We present (end of section 2.2) the Chord operations
using a pseudo-code reminiscent of classic formal specification languages. In
practice, we relied on the Event-B notation, essentially because we wanted to
use the accompanying tool Rodin as a pivot solver for a specification which is
parametric in the number of nodes and the length of successor lists. The meaning
of our notation (which is indentation-dependent for brevity) is as follows:

— events have parameters, a guard (introduced by the keyword guard), which
is a conjunction of formulas, and an action body (introduced with do);

— the execution of the action part of an event is atomic and consists in the
sitmultaneous execution of all its statements (no sequentiality in actions);

— interleaving: at every instant, a single event is fired (proof obligations check
that at least one event can be fired at every instant);

— as in Event-B, we do not make any by-default fairness assumption on the
execution model, but our proof will suppose strong fairness on events (see
Section 2.3);

— instead of using classic function application on nodes (e.g. prdc(n)), we use
the dot notation (n.prdc) to emphasize that the variables we consider can
be seen as node fields (n.f = L states that f is undefined for n);

— contrary to Event-B, we also have a notion of conditional, where every then
or else branch is tagged with a label starting with the @ symbol: this provides
a concise way to describe several Event-B events at once’.

Modeling-wise, following [23], an event corresponds to an operation executed by
a single node. It may communicate with only one, other node; and there is a
time-out such that it allows nodes to detect live or dead nodes. These rules aim
at faithfully abstracting the distributed system that Chord is.

2.2.2 Model-Specific State Variables Apart from the previously-mentioned
state variables, our model of the protocol also features two further state variables
Stabilizing and Rectifying:

Stabilizing : MEMBERS - NODE Rectifying C NODE X NODE

The former is used to model the fact that, while an operation, called stabilize
in Chord, is running on a live node, some significant state changes may happen

5 An event E with guard g and body if c then @1 t else @ (if c2 then @a t2 else
@ e) will give rise to an Event-B event E1 with guard g and ¢ and body t, and to
Event-B events E2a (resp. E2b) with guard g and not ¢ and c2 and body t2 (resp.
with guard g and not ¢ and not c2 and body e).

elsewhere. In our model, as in [23], this operation is split into two in order to
allow this “preemption”, and if Stabilizing is defined for a given member m, then
m.Stabilizing yields its memory context (the stored identifier of another node).

Rectifying is here to account for asynchronous communication. In some
contexts, a node may send a message to another node to tell the latter to perform
a so-called rectification. Intuitively, this binary relation associates a node with
the set of messages it has sent and that have not been handled yet. Notice the
type of Rectifying: we do not consider the order in which messages are sent
or received, nor the duplication of messages from a given node to another one.
Additionally, not restricting the domain of Rectifying to MEMBERS allows us
to model a message to a node which has failed since the message was sent.

2.2.3 Events The Chord operations®, shown later, follow the presentation by
Chord authors in [10,17], P. Zave [23] and some authors [5] of the present article,
with a few variations.

The first two events are join and fail and are under the control of the
environment. The fail event models a failure or a voluntary departure. Notice
that an operating assumption on fail is necessary and presented in section 3.2.1.

In the case of the join event, a new node can join the Chord network by taking
a well-positioned live node m as its predecessor and taking m’s successor list as its
list too. Lines 9 to 10, which concern the Rectifying field, are here to model
a special situation: as explained above, Rectifying represents asynchronous
communication. When a node m sends a Rectifying message to a node n, n may:
(1) receive it (and handle it), (2) fail and therefore miss it, or (3) fail and join
again fast enough to still receive it. To account for this distributed aspect, instead
of modeling a channel explicitly, we keep our simple modeling with the following
specificity: when a (previously failed) node joins, some Rectifying messages
addressed to it are chosen non-deterministically and lost (line 9).

Maintenance operations aim at compensating disruptions due to nodes joining
and failing. The first such operation is stabilization. Its purpose is to fix the
first successor of a node. As explained in section 2.2.2, to account for possible
state changes during its execution, the operation is split into two as in [23]. The
first part, stabilizeFromFst, can only happen on a live node if it is not already
doing a stabilization (line 15). The node first checks whether its first successor
is live. If not, the node updates its successor list by shifting it one step to the
left, and padding it at the end with the lowest identifier following its last known
successor (line 19). There may be no node corresponding to this identifier but,
as it is the lowest possible, it prevents skipping possible live nodes and it can
eventually be fixed. Otherwise, the successor list is just updated with fresh data
coming from its first successor (line 22). Finally, the node checks whether its
first successor’s predecessor is better placed than itself. In this case, it decides
to update its first successor: as explained above, stabilization is not over yet
but, to account for possible changes in parallel, we just memorize that it should

5 We write ++ (resp. ::) for list concatenation (resp. cons), and x —= s (resp. x += s)
for x := x\'s (resp. x := xUs). Abusing notation, a singleton set {s} is written s.

21
22
23
24

25

27
28
29

30

32
33
34
35

36

continue the operation later with this better successor (line 24). Otherwise, the
first successor is sent a message saying that it should update its predecessor.

The second stabilization part, stabilizeFromFstPrdc, precisely continues
the operation. It can only be fired if the Stabilizing field is non-null, in which
case it holds a well-located, candidate new value for the first successor. Yet, as
changes may have happened, this node is tested for being a member. If it is dead,
there is nothing to do: the operation is over, the current successor is just sent
a message to tell it to update its predecessor. Otherwise, the candidate node is
taken as a new successor and similarly asked to update its predecessor.

Finally, rectification aims at fixing predecessor pointers. The rectify operation
consumes a message sent during the stabilization of a candidate predecessor. If the
current predecessor is dead or if the candidate is nearer than the current one, then
an update of the predecessor pointer is done, otherwise nothing happens. Finally,
the rectifyNull operation can be spontaneously fired. It sets the predecessor
pointer to null if the pointed node is dead.

event join [new, m] s7 // fail is also subject to an operating
guard 3s // assumption (cf. section 3.2.1)
new ¢ MEMBERS 30 event fail [f]
m € MEMBERS 40 guard
new € m — ™ m.succ[1] 11 f € MEMBERS
do // atomic 12 do
new.succ := M.Ssucc 43 MEMBERS —= f
new.prdc :=m 44
choose loss C NODE then 15
new.Rectifying —= loss 46
47
event stabilizeFromFst [m] 148 event stabilizeFromFstPrdc [m, newFst]
guard 49 guard
m € MEMBERS 50 m € MEMBERS
m.Stabilizing = L 51 m.Stabilizing = newFst
do // atomic 52 newFst € m — ™ m.succ[1]
if m.succ[1] ¢ MEMBERS then @1 53 do // atomic
m.succ = 54 if newFst ¢ MEMBERS then @1
tail(succ) ++ next(m.succ[K]) 55 m.Stabilizing := L
else @ 56 m.succ[1] .Rectifying += m
m.succ := 57 else @2
m.succ[1] :: butLast(m.succ[1].succ)) 58 m.succ = newFst :: butLast(newFst.succ)
if m.succ[1].prdc !'= L 59 m.Stabilizing := L
and m.succ[l].prdc € m — * m.succ[1] 60 newFst.Rectifying += m
then @sta 61
m.Stabilizing := m.succ[1l].prdc 62 event rectify [m, newPrdc]
else @rct 63 guard
m.succ[1l] .Rectifying += m 64 m € MEMBERS
65 newPrdc € m.Rectifying
event rectifyNull [m] 66 do // atomic
guard 67 if m.prdc ¢ MEMBERS
m € MEMBERS 68 or newPrdc € m.prdc ~—* m then @l
m.prdc != L 69 m.Rectifying —= newPrdc
m.prdc ¢ MEMBERS 70 m.prdc := newPrdc
do // atomic 71 else @2
m.prdc := L 72 m.Rectifying —= newPrdc

2.3 Proof Engineering

The proofs of this article have been mechanized thanks to the Rodin framework.
The framework is here used as a proof obligation generator and as an environment
to discharge generated proofs (through user interaction). The framework contains
built-in solvers and is also connected to external SMT solvers. The basic machinery
available within Rodin allows for the automatic generation of proof obligations for
invariants, event convergence, refinements and theorems. An invariant property
is true initially and preserved by each event. Event convergence is established
through the introduction of a variant which is an expression yielding a natural
number or a finite set. Each convergent event must decrease the variant strictly.
Event-B also provides anticipated events which must not increase the variant.
We use these features to generate proof obligations for stabilization.

Since the main property of Chord is stabilization under the hypothesis that
the events join and fail do not occur anymore and strong fairness [8] over the
other events E in a context H, we propose here proof obligations for establishing
the stabilization of a given property Q7:

L Aeemec HAV =v = [e](V = v) (generated by Rodin for anticipated events):
anticipated events do not increase the variant;

2. Necc HANV =v = [e](V < v) (generated by Rodin for convergent events):
convergent events make the variant decrease;

3. HAV #0 =\, o enabled(e) (manually added as a theorem to be proved):
some of the convergent events are enabled while the variant is not empty.

4. HAV = 0 = @ (manually added as a theorem to be proved): when the
variant is empty, the targetted property is satisfied.

where C' C FE is a selected set of convergent events and V is a set expression
over state variables (both provided by the user). The correctness of these proof
obligations heavily relies on strong fairness between two classes of events: enabled
convergent events should eventually be fired for the variant to decrease.

A variation of this proof rule may be used when @ is reached before the
variant V' becomes empty. Obligation (3) is changed as follows:

3a. HA-Q = \/ .o enabled(e) (manually added as a theorem to be proved):
some of the convergent events are enabled while the targetted property is
not reached.

3b. HAQ = A.cglel(Q) (generated by Rodin if @ is declared invariant): @ is
stable.

3 Chord Correctness

In order to formalize a problem, the choice of an appropriate mathematical
structure is crucial. Indeed, it can ease not only the specification of properties but

" Given an event e, [e](p) is the weakest precondition ensuring that e terminates in a
state satisfying p.

194" e

Fig. 1. Some Chord networks: in the ideal state (left), in an arbitrary state (center),
loopy (right) (solid edges: bestSucc, dotted edges: prdc)

also the proof of some of them, in case we can take benefit from meta-properties of
the mathematical structure. In our context, an abstract view of a Chord network
consists of the total function bestSucc over the set MEMBERS of live nodes. As
it is the case for every total function over a finite set, its graph is a directed
pseudoforest. Thus, the existence of a ring of live nodes that is formed by the
bestSucc relation is directly deduced from the representation of the network
through a total function, without any additional hypotheses. Similarly, the fact
that all the live nodes are located in the ring(s) is equivalent to bestSucc being
surjective over MEMBERS. For instance, in the networks on the left-hand side
(ideal) and on the right-hand side (loopy) of fig. 1, all the nodes are in the ring:
bestSucc is surjective. This is not the case for the network in the center. The
nodes that are not part of the ring form the appendages.

A key notion of safe networks identified by [23] distinguishes between the ideal
and the loopy networks. This is the notion of principal node, which relates the
structure of a network (modeled through bestSucc in our case) to the ordering
over the node identifier space (~— in our context). As we will see in the next
section, a loopy network does not have any principal node.

In section 3.1 we develop on some results about functions over finite sets,
which are not Chord-specific, and in section 3.2 we present the properties of a
Chord network.

3.1 Generic Properties

We now present some results about relations and functions over finite sets. These
are not Chord-specific, but still useful to prove Chord correctness.

Theorem 1 (Pigeonhole principle). Given a finite set E, a function f :
E — FE is injective if and only if it is surjective.

A fundamental element in the proof of Chord correctness is the concept
of principal nodes, introduced in [23] in the context of a Chord network. We
generalize here the definition of a principal node w.r.t. an arbitrary relation r
over the identifier space NODE.

Definition 1 (Principal). Given a binary relation C NODE X NODE over the
set of nodes, the set principals(r) of principal nodes for r is the set of nodes
that are not skipped by any pair in r:

principals(r) £ {p € NODE|V(n,m) €r-p&n-—m}

The following lemma and theorem will be useful to show that, in the context
of a network without appendages, one principal node is enough to ensure that all
nodes are correctly located.

Lemma 1. Given a subset E C NODE of nodes and a surjective function f :
E — E, if a node p is principal for f, then its next neighbour according to —*
in E is also principal for f.

Proof. Suppose that next(p) is not principal for f. Then, it is between some x
and f(z). As p is principal, we have z = p. f being surjective, there exists y
s.t. f(y) = next(p). As p is principal, y = p. Thus f(p) = next(p) = z, which
contradicts the fact that next(p) is between z and f(x).

Theorem 2 (Principal for a injective (or surjective) total function).
Given a subset E C NODE of nodes, and a surjective (or injective) total function
f: E— E, if there is some principal node in E for f, then every node in E is
principal for f.

Proof. The proof is straightforward using Lemma 1 and the pigeonhole principle.

3.2 Chord Properties

The authors of Chord have provided explicit properties that ensure correct data
delivery [10,17]|. They define in particular the ideal state of a network.

Definition 2 (Ideal state). A Chord network is in an ideal state if:

1. the first successor and the predecessor of every live node are alive:
Vn € MEMBERS - n.succ[l] € MEMBERS A n.prdc € MEMBERS

2. the successor relation bestSucc® forms a single ring of nodes (every live node
is in the ring): Vni,ny € NODE - ny € nj.bestSucc™ Any € no.bestSucc™,
where bestSucc™ is the transitive closure of bestSucc

3. bestSucc provides the nearest successor of each node according to the identifier
order: ¥Yn € MEMBERS - n — n.bestSucc N MEMBERS = ()

4. prdc provides the nearest predecessor of each node according to the identifier
order: Yn € MEMBERS - n.prdc — n N MEMBERS = ()

5. the tail of the successor list of each node is equal to the successor list of its
first successor (with the last entry removed):
Vn € MEMBERS - Vi € 2..K - n.succ[i] = n.succ[l].succ[i — 1]

8 Since all the first successors are alive in the ideal state, bestSucc always points to
the first successor.

In the following, we write ideal for the conjunction of the above five properties
defining the ideal state.

As explained in section 2 informally, the ideal state cannot be continuously
ensured because nodes can dynamically join and leave the network. The goal of
the maintenance protocol is thus to keep the network in a repairable state so
that it will be fixed eventually.

Definition 3 (Correctness). If eventually no node joins or leaves the network
anymore, the network will eventually reach the ideal state and remain in it.

We will prove the convergence of Chord to the ideal state by relying on
inductive invariants (section 3.2.1) and on variants (section 4).

3.2.1 Chord Invariants In this section, we exhibit an inductive invariant,
which is useful to prove the correctness property. It is inspired by Zave’s work [23]
and consists of three properties. With respect to this pioneering work, the property
related to principal nodes is logically weakened and a technical property, related
to our model-specific variables, is added.

Property 1 (SomeLiveSuccessor). A network satisfies SomeLiveSuccessor if
each live node has a live successor: ¥Yn € MEMBERS - 3i € 1..K - n.succ[i] €
MEMBERS.

SomePrincipal states that there is some principal among the live nodes. Let us
first instantiate the definition of principal, from section 3.1, for a Chord network.

Definition 4 (Chord principal). A Chord principal is a member that is not
“skipped” in any successor list. More formally, a node p € MEMBERS s a Chord
principal if, for any node n € MEMBERS s.t. n.succ = [n1,...,ng], pE€n-">ny
and p € n; > n;qpq forie 1..(K —1).

Proposition 1 (Chord principal). A node is a chord principal iff it is a
member that is a principal for the relation hops, where :

hops = {(m, m.succ[l]) | m € MEMBERS }
U {{m.succ[i], m.succ[i + 1]) | m € MEMBERS and ¢ € 1..(K — 1)}

Considering the relation bestSucc instead of the relation hops, i.e., having a
more abstract view of the successor relation, we have the following proposition:

Proposition 2 (Principal for bestSucc). Given a Chord network, if a node
n is a Chord principal, i.e., a member that is a principal for hops, then it is a
principal node for bestSucc: principals(hops) C principals(bestSucc).

We can now state the property SomePrincipal.

Property 2 (SomePrincipal). A Chord network satisfies SomePrincipal if there
is some live node which is a Chord principal: principals(hops) N MEMBERS # ().

10

Notice this is logically weaker than the property from [23], where the number of
principals was required to be greater than the size of successor lists, as discussed
above.

The following property is related to the model-specific variable Stabilizing,
which records the fact that a node n has to take a node m as its future successor.

Property 3 (StabBetterThanSucc). A Chord network satisfies
StabBetterThanSucc if for every live node n having a pending stabilization, the
candidate for stabilization is better than the current successor of n:

Vn : MEMBERS - n € dom(Stabilizing) = Stabilizing(n) € n — n.succ[1]’

Theorem 3 (Inductive invariant). The following property is preserved by all
of the operations of the Chord protocol, except fail:

SomeLiveSuccessor A SomePrincipal A StabBetterThanSucc
The proof of this theorem is mechanized with Rodin.

Operating Assumptions. Our proof of correctness for Chord relies on the
critical operating assumptions that no failure “breaks” the invariant'.:

1. No failure leaves a node without live node in its successor list.
2. No failure leaves the network without any principal node.

The assumption (1), saying that each successor list always includes a live node,
was present in the original Chord article [17]. Indeed, having a list of successors
prevents from the failure of a successor as soon as there are other nodes left in the
successor list. The assumption (2) comes from Chord property SomePrincipal,
which is an adaptation from the invariant property exhibited in [23], where the
author explained that when a node joins the network, it becomes a principal as
soon as its K preceding nodes are aware of its presence. Assuming the existence of
a minimal number of principal nodes (K + 1 in [23]) is then reasonable, especially
as we assume the existence of only one principal node in this article.

Notice that we also relaxed the assumptions from [23] about the minimal size
of the network and about the absence of duplication in successor lists.

3.2.2 Always-True Properties We now define important structural proper-
ties and show that they are actually implied by the inductive invariant.

Property 4 (AtMostOneRing). A Chord network satisfies the property
AtMostOneRing if any two ring members can access each other through bestSucc™.

Vni,no € MEMBERS- (n1 € nj.bestSucct A ny € ny.bestSucc™)
= (ny € ny.bestSucct A ny € ny.bestSucc™)

9 dom denotes the domain of a relation or a function.
10 The Chord property 3 about the Stabilizing function is preserved by fail and thus
does not impact operating assumptions.

11

Theorem 4. Given a Chord network, SomePrincipal implies AtMostOneRing.

Proof (sketch). Suppose that SomePrincipal is true. Then, there is a Chord
principal, which is also a principal node for bestSucc (from Property 2). Also
suppose that AtMostOneRing is false. There there are two nodes n; and ns that
are in two unconnected bestSucc-"rings”. Considering the first ring, any node
outside this ring is necessary “skipped” by bestSucc: all the principal nodes are
thus in the first ring. Similarly, we can conclude that all the principal nodes are
in the second ring. Contradiction. a

Property 5. A Chord network satisfies DistinctFirstSuccs if the successor
lists include no duplicated node up to the first live node:

Vn € NODE - Vj < fl,, - Vi € 1..j — 1 - n.succ]i] # n.succ|j]
where fi,, is the index of the first live node in n.succ.
Theorem 5. SomePrincipal implies DistinctFirstSuccs.

Proof (sketch). Suppose that SomePrincipal is true and DistinctFirstSuccs
is false. Then, there is a node n s.t. in n.succ, there is a duplicated node n’
before the first live node in n.succ. Since every node except n’ is in the set
n’ — n’, there cannot be a Chord principal different from n’, which contradicts
SomePrincipal, because n' is not a member. a

Property 6. A Chord network satisfies OrderedFirstSuccs if the successor lists
are ordered according to — wup to the first live node in the list:

Vn € NODE - Vj < fl,, - Vi € 1..j — 1 - n.succl[i] € n — n.succ[j]
where fi,, is the index of the first live node in n.succ.

Theorem 6. Given a Chord network, SomePrincipal implies
OrderedFirstSuccs.

Proof (sketch). Suppose that SomePrincipal is true and OrderedFirstSuccs is
false. Then, there are n, 4, j as in the theorem statement s.t. n.succ[i] &
n -~ n.succ[j]. Since these three nodes are distinct (from theorem 5), we
have n.succ[j] € n ~— n.succ[i]. Then, the properties of — imply that every
node except n.succ[i] is included in n —— n.succ[i] U n.succ[i] — n.succ[j].
From SomePrincipal, there is a live node p which is principal. Since p is a live
node, it is distinct from n.succ[é]. It is then skipped by some pair in n.succ,
which leads to a contradiction. a

4 Phase-based Convergence Proof

We now show that in the absence of join and fail events, the system eventually
reaches the ideal state and remains in it. To do so, we introduce four intermediate
macro-states, which are stable'! under the considered hypothesis and reached
successively:

11 . .
Once a macro-state is reached, the system cannot leave it.

12

MS1.
MS2.
MS3.
MS4.

MS5.

Ideal.

Rectifying and prdc in MEMBERS.

the first successor is a member: n.succ[l] € MEMBERS.

Stabilizing only includes members: ran(Stabilizing) C MEMBERS'Z.

prdc is the inverse of bestSucc and both Stabilizing and Rectifying are

empty for members:

VYn € MEMBERS: n.Stabilizing = () A n.Rectifying = QA
n.bestSucc.prdc = n

the tail of the successor list of each node is equal to the successor list of

its first successor (with the last entry removed):

Vn € MEMBERS - Vi € 2..K - n.succ[i] = n.succ[l].succ[i — 1]

We then prove that MS5 implies that the network is ideal.

This phase-based proof allows us to avoid a monolithic convergence proof
which would require finding a complex variant. Each phase (and sub-phase) relies
on a small variant, except the fourth phase (reaching MS4). It relies on the proof
method presented in section 2.3 and thus on fairness hypotheses. The proof was
mechanized in Rodin from our Event-B model, where the guards of join and
fail were set to false'®.

4.1 Reaching MS1: Rectifying and prdc in members

This phase is split into two steps: reaching MSla from a state satisfying the
inductive invariant, and reaching MS1b from MS]a.

MSla.

MS1b.

12

ran(Rectifying) C MEMBERS

We split the event rectify in two events, one guarded by newPrdc ¢
members and the other by newPrdc € members. The variant is the set
Rectifying \ NODE X MEMBERS. The event that is guarded by the neg-
ative membership condition makes the variant decrease (it is tagged
convergent in Event-B) while the other events do not make it increase
(anticipated in Event-B). As long as Rectifying includes non members,
the convergent event is enabled. So, under the fairness hypothesis, MS1la
will be reached eventually.

prdc € MEMBERS - MEMBERS

This property is shown by introducing the variant
prdc![NODE \ MEMBERS]. The rectifyNull event decreases the variant
(and other events do not increase it). It is enabled as long as the variant
is not empty, which ensures the convergence from MSla to MS1b.

ran denotes the range of a relation or a function.

13 Technically, we have an Event-B model for each phase defined as a refinement of
the Event-B machine modelling the Chord protocol, where the MS of the preceding
phase is stated as an invariant of the current phase.

13

4.2 Reaching MS2: the first successor is a member

Vn € MEMBERS - n.succ[l] € MEMBERS

Notice that this is equivalent to Vn € MEMBERS - n.bestSucc = n.succ[l]. In order
to ease the reasoning, given a member node n, we call zombies(n) the set of non
member nodes preceding n.bestSucc in its successor list. So, the objective of this
phase is to reach a state where the zombie sets are empty. It is split into two
steps: reaching MS2a from MS1, and reaching MS2b from MS2a.

MS2a. each node in the stabilizing state has no zombie successors:
Vn € dom(Stabilizing) - zombies(n) = ().
The event stabilizeFromFstPrdc is split to introduce the guard
zombies(m) = () and its negation. The event with the negative guard
makes the variant dom (Stabilizing) \ {m | mMEMEMBERS A zombies(m)
= ()} decrease while others do not increase it.

MS2b. each member has no zombie successors: Vn € MEMBERS - zombies(n) = ()
This property is ensured thanks to the event stabilizeFromFst@l which
removes one element from a non empty zombie set of a member node that
has no Stabilizing memory context. In MSla, this condition is true. For
this phase the variant is {(m,b) - m € MEMBERS A b € zombies(m)}.

4.3 Reaching MS3: Stabilizing only includes members

ran(Stabilizing) C MEMBERS

We take as variant the set of the pairs (nj,m2) in Stabilizing s.t. ns
is not a member. The sub-event stabilizeFromFstPrdc@l makes the variant
Stabilizing N MEMBERS X (NODE \ MEMBERS) decrease. It is enabled while the
variant is not empty.

4.4 Reaching MS4: prdc is the inverse of bestSucc and the Rectifying
and Stabilizing sets of each node are empty

Vn € MEMBERS - n.Stabilizing =) A n.Rectifying = () A n.bestSucc.prdc =n

This property is proved by introducing a complex variant which is the combi-
nation of four sets of node pairs. The events of the protocol make the variant
decrease by moving some pairs from one of the sets to another one of lower weight,
or by removing some pair from the lowest set. Other transitions let the sets
unchanged. The following sets are the following in decreasing order of importance
(for the variant)!*:

1. {{z,y) | * € MEMBERS Ay € MEMBERS Ay € z - bestSucc(z))} \
Stabilizing

14 In Event-B, this structured variant is encoded as a single set using the Cartesian
product and union.

14

2. {{z,y) | * € MEMBERS A y € MEMBERS A (y € dom(prdc) A prdc(y) €
MEMBERS = z € prdc(y) —> y)} \ Rectifying™*

Stabilizing NRectifying ™!

Stabilizing
5. Rectifying™

= o

1

The following events make the variant decrease: stabilizeFromFst@{1,2sta},
stabilizeFromFstPrdc@2, rectify. Besides, the event stabilizeFromFst@2rct
must be split to introduce the guard (m.suc,m) ¢ Rectifying. The sub-event
having this guard true makes also the variant decrease. The other events do not
increase it.

4.5 Reaching MS5: the tail of the successor list of each node is
equal to the successor list of its first successor

Vn € MEMBERS - Vi € 2..K - n.succ[i] = n.succ[l].succ[i — 1]

In this step, we need to manage the concrete successor list of each member node
while its abstraction with bestSucc and a zombie set was sufficient to verify the
previous phases. Data refinement is used to replace these two variables by a unique
successor list. Verifying its correctness is not automatic as automation is weaker
with lists: numerous user-provided case splitting and quantifier instantiations are
required.

Then, in order to prove the convergence to MS5, an auxiliary variable E is
introduced: it includes the pairs (m,) such that the successor list of m is correct
up to position i. More precisely, F is introduced with the following invariant
properties:

E C MEMBERS X 1..K MEMBERS X {1} C F
VYm,i-(m,i) € EAi>1= m.succ[l].succ[i —1] € E
Vm,i-(m,i) e EAi>1={m} x1iCE

Vm,i- (m,i) € EAi>1= m.succ[i] = m.succ[l].succ[i — 1]

Thanks to MS4, we can start with MEMBERS x {1}. Then, thanks to fairness,
the event stabilizeFromFst@2rct which copies the successor list of one node to
its predecessor will eventually saturate E. This property is ensured by taking
(MEMBERS X 1..K) \ E as variant and by splitting the selected event s.t. it ensures
progress.

4.6 Reaching the ideal state

By using the results of section 3, we show that the properties of MS5 imply
that the network is in the ideal state. Indeed, in MS4, bestSucc is necessarily
injective. From the invariant, we have that there is at least one principal node. By
theorem 2 and proposition 2, all nodes are principal for bestSucc, which means
that no node is skipped by bestSucc. Moreover the last property defining the
ideal state exactly matches the definition of MS5. The five properties of an ideal
state are thus fulfilled.

15

5 Related Work

Chord is a popular protocol but also, since the seminal work of Zave [20], a
popular test-bed for formal verification. However, most work [3,9, 15, 20-22]
has focused on proving safety, sometimes with manual proofs only, while the
correctness property for Chord maintenance, addressed here, is a liveness property.
Zave [23] carried out a manual proof of liveness and discovered the fundamental
notion of principal. Some of the authors of the present paper analyzed liveness in
an automated way using Electrum [5] but for small networks. To the best of our
knowledge, this work is the first to address the liveness property of Chord in a
parameterized setting and using a much automated, mechanical proof.

Other distributed system protocols have been formally studied using “high-
level” specification languages. For instance, Pastry was analyzed using TLA™ [13];
similar work used Event-B [16] or ASM [12] to partly verify other protocols.
However, these studies are limited to the verification of safety properties.

Verdi [19] and IronFleet [6] address the question of provably-correct imple-
mentations of distributed protocols while our approach is markedly at a more
abstract level, in particular to favor proof automation. Our work is also focused on
a stabilization property for which we developed a specific proof method. Finally,
proof automation for liveness of parameterized or even arbitrary infinite-state
distributed systems is the subject of recent work such as Ivy [14] but, as far as
we know, a fair amount of manual intervention is still needed.

6 Conclusion

In this article, we proposed a mechanized correctness proof of the Chord mainte-
nance protocol. We address a particular form of liveness property (stabilization)
over a network of arbitrary size. On the logical side, we weakened the operating
assumption related to principal nodes stated in [23], as well as the one requiring
a minimal number of nodes in the network. However, the practical consequences
of this weakening remain to be assessed quantitatively.

As future work, we intend to develop some automated support to stabilization
proofs following the method exhibited in section 4. Another line of work is to refine
our model with less abstract types (e.g. FIFO for asynchronous communication).
Both directions could contribute to the design of a framework for (1) modelling
knowledge in distributed systems, and (2) supporting liveness proofs under
fairness assumptions, with an important degree of automation.

Acknowledgements. We warmly thank Pamela Zave for insightful discussions
on the protocol and for her thorough reading of this article.

J. Brunel and D. Chemouil were partly financed by the European Regional
Development Fund (ERDF) through the Operational Programme for Competitive-
ness and Internationalisation (COMPETE2020) and by National Funds through
the Portuguese funding agency, Fundagao para a Ciéncia e a Tecnologia (FCT)
within project POCI-01-0145-FEDER-016826; and within the French Research
Agency project FORMEDICIS (ANR-16-CE25-0007).

16

References

1.

2.

=

10.

11.

12.

13.

14.

15.

Abrial, J.R.: Modeling in Event-B. Cambridge University Press (2009).
https://doi.org/10.1017/cbo9781139195881

Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.:
Rodin: an open toolset for modelling and reasoning in Event-B. International
Journal on Software Tools for Technology Transfer 12(6), 447-466 (Nov 2010).
https://doi.org/10.1007/s10009-010-0145-y

Bakhshi, R., Gurov, D.: Verification of peer-to-peer algorithms: A case
study. Electronic Notes in Theoretical Computer Science 181, 35-47 (2007).
https://doi.org/10.1016/j.entcs.2007.01.052

Bodeveix, J.P., Brunel, J., Chemouil, D., Filali, M.: A model in Event-B of the
Chord protocol (Jul 2019). https://doi.org/10.5281 /zenodo.3271455

Brunel, J., Chemouil, D., Tawa, J.: Analyzing the Fundamental Liveness Prop-
erty of the Chord Protocol. In: Formal Methods in Computer-Aided De-
sign. Austin (USA) (Oct 2018). https://doi.org/10.23919/fmcad.2018.8603001,
https://hal.archives-ouvertes.fr /hal-01862755

Hawblitzel, C., Howell, J., Kapritsos, M., Lorch, J., Parno, B., Roberts,
M.L., Setty, S., Zill, B.: Ironfleet: Proving practical distributed systems cor-
rect. In: Proceedings of the ACM Symposium on Operating Systems Princi-
ples (SOSP). ACM - Association for Computing Machinery (October 2015).
https://doi.org/10.1145/2815400.2815428

Jackson, D.: Software Abstractions: logic, language, and analysis. MIT press (2012)
Lamport, L.: Specifying systems: the TLA™T language and tools for hardware and
software engineers. Addison-Wesley Longman Publishing Co., Inc. (2002)

Li, X., Misra, J., Plaxton, C.G.: Active and concurrent topology maintenance. In:
International Symposium on Distributed Computing. pp. 320-334. Springer (2004).
https://doi.org/10.1007/978-3-540-30186-8 23

Liben-Nowell, D., Balakrishnan, H., Karger, D.: Analysis of the evolution
of peer-to-peer systems. In: Proceedings of the twenty-first annual sympo-
sium on Principles of distributed computing. pp. 233-242. ACM (2002).
https://doi.org/10.1145/571860.571863

Macedo, N., Brunel, J., Chemouil, D., Cunha, A., Kuperberg, D.: Lightweight Speci-
fication and Analysis of Dynamic Systems with Rich Configurations. In: Foundations
of Software Engineering (2016). https://doi.org/10.1145/2950290.2950318
Marinkovi¢, B., Glavan, P., Ognjanovié¢, Z.: Proving properties of the
chord protocol using the asm formalism. Theoretical Computer Science
756, 64 — 93 (2019). https://doi.org/https://doi.org/10.1016/j.tcs.2018.10.025,
http://www.sciencedirect.com /science/article,/pii/S0304397518306467

Merz, S., Lu, T., Weidenbach, C.: Towards Verification of the Pastry
Protocol using TLAT. In: 3lst IFIP International Conference on For-
mal Techniques for Networked and Distributed Systems. vol. 6722 (2011).
https://doi.org/10.1007/978-3-642-21461-5 16

Padon, O., Hoenicke, J., Losa, G., Podelski, A., Sagiv, M., Shoham, S.: Reduc-
ing liveness to safety in first-order logic. PACMPL 2(POPL), 26:1-26:33 (2018).
https://doi.org/10.1145/3158114

Padon, O., McMillan, K.L., Panda, A., Sagiv, M., Shoham, S.: Ivy: safety
verification by interactive generalization. In: Proceedings of the 37th ACM
SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2016, Santa Barbara, CA, USA, June 13-17, 2016. pp. 614-630 (2016).
https://doi.org/10.1145/2908080.2908118

17

https://doi.org/10.1017/cbo9781139195881
https://doi.org/10.1007/s10009-010-0145-y
https://doi.org/10.1016/j.entcs.2007.01.052
https://doi.org/10.5281/zenodo.3271455
https://doi.org/10.23919/fmcad.2018.8603001
https://hal.archives-ouvertes.fr/hal-01862755
https://doi.org/10.1145/2815400.2815428
https://doi.org/10.1007/978-3-540-30186-8_23
https://doi.org/10.1145/571860.571863
https://doi.org/10.1145/2950290.2950318
https://doi.org/https://doi.org/10.1016/j.tcs.2018.10.025
http://www.sciencedirect.com/science/article/pii/S0304397518306467
https://doi.org/10.1007/978-3-642-21461-5_16
https://doi.org/10.1145/3158114
https://doi.org/10.1145/2908080.2908118

16.

17.

18.

19.

20.

21.

22.

23.

Risson, J., Robinson, K., Moors, T.: Fault tolerant active rings for structured
peer-to-peer overlays. In: Local Computer Networks, 2005. 30th Anniversary. The
IEEE Conference on. pp. 18-25. IEEE (2005). https://doi.org/10.1109/1cn.2005.69
Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.:
Chord: A scalable peer-to-peer lookup service for internet applications.
ACM SIGCOMM Computer Communication Review 31(4), 149-160 (2001).
https://doi.org/10.1145/964723.383071

Stoica, 1., Morris, R., Liben-Nowell, D., Karger, D.R., Kaashoek, M.F., Dabek,
F., Balakrishnan, H.: Chord: a scalable peer-to-peer lookup protocol for internet
applications. IEEE/ACM Transactions on Networking (TON) 11(1), 17-32 (2003).
https://doi.org/10.1109 /tnet.2002.808407

Wilcox, J.R., Woos, D., Panchekha, P., Tatlock, Z., Wang, X., Ernst, M.D., Ander-
son, T.E.: Verdi: a framework for implementing and formally verifying distributed
systems. In: Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation, Portland, OR, USA, June 15-17, 2015. pp.
357-368 (2015). https://doi.org/10.1145/2737924.2737958

Zave, P.: Why the Chord ring-maintenance protocol is not correct. Tech. rep.,
AT&T Research, Tech. Rep (2011)

Zave, P.. Using lightweight modeling to understand Chord. ACM
SIGCOMM Computer Communication Review 42(2), 49-57 (2012).
https://doi.org/10.1145/2185376.2185383

Zave, P.: A practical comparison of Alloy and SPIN. Formal Aspects of Computing
27(2), 239 (2015). https://doi.org/10.1007/s00165-014-0302-2

Zave, P.. Reasoning about identifier spaces: How to make Chord correct.
IEEE Transactions on Software Engineering 43(12), 1144-1156 (Dec 2017).
https://doi.org/10.1109/TSE.2017.2655056

18

https://doi.org/10.1109/lcn.2005.69
https://doi.org/10.1145/964723.383071
https://doi.org/10.1109/tnet.2002.808407
https://doi.org/10.1145/2737924.2737958
https://doi.org/10.1145/2185376.2185383
https://doi.org/10.1007/s00165-014-0302-2
https://doi.org/10.1109/TSE.2017.2655056

	Mechanically Verifying the Fundamental Liveness Property of the Chord Protocol
	Introduction
	The Chord Protocol
	Network Structure
	Identifier Space
	Chord Network

	Chord Operations
	Formal Model
	Model-Specific State Variables
	Events

	Proof Engineering

	Chord Correctness
	Generic Properties
	Chord Properties
	Chord Invariants
	Always-True Properties

	Phase-based Convergence Proof
	Reaching MS1: Rectifying and prdc in members
	Reaching MS2: the first successor is a member
	Reaching MS3: Stabilizing only includes members
	Reaching MS4: prdc is the inverse of bestSucc and the Rectifying and Stabilizing sets of each node are empty
	Reaching MS5: the tail of the successor list of each node is equal to the successor list of its first successor
	Reaching the ideal state

	Related Work
	Conclusion

