
HAL Id: hal-02332527
https://hal.science/hal-02332527v3

Preprint submitted on 13 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Non-locally modular regular types in classifiable theories
Elisabeth Bouscaren, Bradd Hart, Ehud Hrushovski, Michael C Laskowski

To cite this version:
Elisabeth Bouscaren, Bradd Hart, Ehud Hrushovski, Michael C Laskowski. Non-locally modular
regular types in classifiable theories. 2024. �hal-02332527v3�

https://hal.science/hal-02332527v3
https://hal.archives-ouvertes.fr


Non-locally modular regular types in
classifiable theories

Elisabeth Bouscaren∗ Bradd Hart† Ehud Hrushovski
Michael C. Laskowski‡

April 11, 2024

Abstract

We introduce the notion of strong p-semiregularity and show that
in a classifiable theory, if p is a regular type that is not locally modu-
lar then any p-semiregular type is strongly p-semiregular. Moreover,
for any such p-semiregular type, “domination implies isolation” which
allows us to prove the following: Suppose that T is countable, clas-
sifiable and M is any model. If p ∈ S(M) is regular but not locally
modular and b is any realization of p then every model N containing
M that is dominated by b over M is both constructible and minimal
over Mb.

1 Introduction

In obtaining the uncountable spectrum of any classifiable theory T in
[2], localizations of ω-stability near certain regular types were consid-
ered. A regular type p ∈ S(M) over a countable M is locally totally
transcendental (locally t.t.) if it is not orthogonal to a q ∈ S(M)
that is strongly regular and for which there is a constructible (and
hence prime) model over M and any realization of q. There are ex-
amples of depth zero non-trivial regular types in classifiable theories
which are not locally t.t (see for instance Example 2.4). We intend to
consider the manner in which models dominated by such types are
constructed in future papers. In this paper, we concentrate on non-
locally modular regular types p and prove that they are all locally t.t.

∗Partially supported by ANR AAPG2019 GeoMod and NSF grant DMS-1855789.
†Partially supported by NSERC.
‡Partially supported by NSF grants DMS-1855789 and 2154101.
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in a very strong way. The two main results build on the dichotomy
theorem of Hrushovski and Shelah in [4]. Here, we prove that if a
stationary q ∈ S(A) is p-semiregular then

• q is strongly p-semiregular (see Definition 3.1); and

• q is depth-zero like and “domination implies isolation” (DI),
(see Definitions 5.13 and 6.2) hence if q is based on a model M
then there is a constructible, minimal model N ⊇Mb over Mb
for any realization b of q|M , and moreover, any N ⊇Mb that is
dominated by b over M is constructible and minimal over Mb.

It is this last result which produces in particular the following easy
to state theorem:

Theorem 5.20 Suppose that M is any model of a classifiable theory.
If p ∈ S(M) is regular but not locally modular and b is any realization
of p, then every model N containing M that is dominated by b over
M is both constructible and minimal over Mb.

We assume that the reader is familiar with superstability and
adopt the usual convention when working with stable theories that
we are working in a large, saturated model C of the theory and all
models mentioned are small elementary submodels of C, sets are small
subsets of C and tuples are from C. We will also assume that T elimi-
nates imaginaries i.e. T = T eq. This paper has an extensive Appendix
that records a number of definitions and facts from basic geomet-
ric stability theory. Section 2 contains some background information
and gives an example indicating the necessity of non-local modu-
larity in Theorem 5.20. Section 3 introduces the notion of strongly
p-semiregular strong types and proves that when p is any non-locally
modular regular type, every p-semiregular strong type is strongly p-
semiregular. We provide some applications of this in Section 4 before
proving our main theorem in Section 5. The paper proper concludes
with an examination of other circumstances under which domination
implies isolation in Section 6.

We are grateful to the anonymous referee, as his/her thorough
reading of this paper has led to many expositional improvements.

For the whole of this article we assume T is (at least) stable.

2 A brief historical background

One of the major accomplishments of stability theory was Shelah’s
proof of the Main Gap in [10] where the notion of a classifiable theory
was introduced.
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Definition 2.1 A complete theory T in a countable language is clas-
sifiable if T is superstable, has prime models over pairs (PMOP) and
does not have the dimension order property (NDOP)

The definitions of these terms, along with equivalents we will use
are given in Definition A.27 and Facts A.28 and A.29. The signifi-
cance of classifiability is given by two results. On one hand, in [9],
building extensively on [10], Shelah and Buechler prove that if T is
classifiable, then every model of T is constructible1 and minimal over
an independent tree of countable elementary substructures. By con-
trast, if a countable theory is not classifiable, then I(T, κ) = 2κ for
every uncountable cardinal κ. The reader is cautioned that these two
properties are not exclusive – a classifiable, deep theory has both the
structure theorem and has maximally many non-isomorphic models
in every uncountable cardinality.

After Shelah defined PMOP, Harrington gave an alternate treat-
ment of PMOP that was developed in [1]. Following the notation pre-
ceding Fact A.29, call a type p ∈ S(A1A2) over an independent triple
(A0, A1, A2) of sets V -dominated if, for every extension (B0, B1, B2)
of (A0, A1, A2), and for any realization c of p with c ^

A1A2

B0, we

have c ^
A1A2

B1B2. Then, as in Fact A.29(4), Harrington notes that

the statement “Every V -dominated type is isolated” is equivalent
to PMOP for countable, superstable theories with NDOP. The form
of this statement is indicative of what we do here. In Section 6 we
investigate conditions under which ‘domination implies isolation’ in
various settings.

Since the proof of the structure theorem, there has been a con-
siderable amount of work analyzing the ‘fine structure’ of classifiable
theories. The fine structure to a large extent revolves around under-
standing the leaves of classifying trees. The leaves are controlled by
depth zero types and so we remind the reader of the definition (for
more definitions and classical results consult the Appendix).

Definition 2.2 A regular type p in a superstable theory is said to
have depth zero if for any a-model M on which p is based and any
realization b of p|M , any non-algebraic type q over M [b] (the a-prime
model over Mb), is non-orthogonal to M i.e. p does not support a
regular type.

A leaf is a triple (M, b,N) where M � N , b ∈ N , tp(b/M) is regular
and depth zero, and N is dominated by b over M . The computa-
tion of the uncountable spectrum of a countable theory depends on,
among other things, understanding the isomorphism types of leaves

1See Section A.1 of the Appendix.
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that appear in the classifying trees of models. Through the coarse-
ness of cardinal arithmetic, in [2], it was not necessary to determine
all possible isomorphism types of leaves in order to determine the un-
countable spectra of countable theories. Still, the techniques available
from classification theory are suitable to do this and demonstrate a
deeper understanding of the structure of models of classifiable the-
ories. In this paper and subsequent papers, we intend to explore
the isomorphism types of leaves (M, b,N) at least when tp(b/M) is
non-trivial; in a classifiable theory, non-trivial types necessarily have
depth zero (Fact A.28). Our main result here is that if (M, b,N) is
a leaf with tp(b/M) regular and non-locally modular, then there is
only one choice for the isomorphism type of N over Mb. This leads
to an amusing corollary to Theorem 5.20.

Corollary 2.3 If T is any countable, complete theory and its spec-
trum of uncountable models is any of 4,5,7, or 10 (in the notation of
Theorem 6.1 of [2]) then an infinite group is interpretable in models
of T . In particular, if I(T,ℵα) = min{2ℵα ,i2} (i.e., the spectrum of
Th(Z,+)), then T must interpret an infinite group.

Proof. Hrushovski proves that if T does not interpret an infinite
group, then every non-trivial regular type is non-locally modular, see
e.g., 7.3.3 of [7]. Thus, by Theorem 1b of [4] and Theorem 5.20 here,
any non-trivial regular type p ∈ S(M) is locally t.t. in M . So, in
the notation of [2], for any n ≥ 1, ‘non-trivial failure’ NTF (n) is
impossible, hence TT (n) holds if and only if TF (n) fails. The result
follows by considering the case analysis for each spectrum given in
Section 5 of [2]. 2

The results of this paper are concerned with non-locally modular
regular types over models. It is natural to ask for other circumstances
under which leaves are constructible. This is always possible if T
is ω-stable, as such a theory has constructible models over any set.
However, we close this section with an example of a classifiable theory
that has leaves (M, b,N) for which N is not constructible over Mb.

Example 2.4 The language will consist of countably many sorts
{Un : n ≥ 1}, a collection of unary relations {Rnη : η ∈ 2<ω, n ≥ 1},
and on each sort Un, there is a binary operation +n : U2

n → Un.
The language also includes projection functions fn : Un+1 → Un for
each n ≥ 1. The canonical model of our theory in this language is as
follows:

1. Un is interpreted as the product of n copies of 2ω;

2. +n is interpreted as coordinate-wise addition modulo 2;
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3. If b ∈ Un codes the n-tuple ν1 . . . , νn, then Rnη (b) holds iff η is
an initial segment of νn, and

4. fn is the projection onto the first n coordinates.

The theory T of this structure is classifiable; in fact, it is superstable
and unidimensional but not ω-stable. Now suppose that M is a model
of T and N is an elementary weight one extension of M - the type of
thing that would happen with leaves on a classifying tree. The claim
is that if b ∈ N \M is any finite tuple then N is not constructible
over Mb. To see this, suppose we have such a b. By the presence of
addition in all the sorts and the model M , we can assume that b is
a singleton in some sort Un. But then, if one considers the preimage
of b under fn, one sees that this formula in the sort Un+1 does not
contain an isolated type - the predicates Rn+1

η preclude this.

This example is suggestive of the result we will prove in subse-
quent papers: if we don’t restrict ourselves to finite tuples then of
course N is determined by making a coordinated choice of elements
from each sort. In the example, all the regular types are locally mod-
ular (non-trivial). It is not clear in advance that this is important
but in this paper we will show that if (M, b,N) is a leaf in a count-
able, classifiable theory and tp(b/M) is not locally modular, then N
is constructible over Mb.

3 Strongly p-semiregular types

Definitions of p-semiregular types, p-simplicity and other related no-
tions can be found in the Appendix.

Definition 3.1 A stationary type q ∈ S(B) is strongly p-semiregular
of weight k > 0 if q is p-semiregular of p-weight k and there is a p-
simple formula θ(x) ∈ q of weight k such that if d realizes θ and
C ⊇ B with d^

B
C and wp(d/C) = wp(q), then tp(d/C) = q|C, the

non-forking extension of q to S(C).

The goal of this entire section is to prove the following Theorem.
Its proof is patterned after the argument in [4], where Hrushovski and
Shelah prove that in a classifiable theory, every non-locally mod-
ular stationary, regular type is strongly regular (i.e., strongly p-
semiregular of p-weight one).

Theorem 3.2 If T is classifiable and p is a non-locally modular
regular type, then every stationary p-semiregular type is strongly p-
semiregular.
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Remark 3.3 By the open mapping theorem, this notion is paral-
lelism invariant. In particular, if d^E with tp(d/∅) stationary, then
if tp(d/E) is strongly p-semiregular via θ(x, e), then tp(d/∅) will be
strongly p-semiregular via

∨
dryθ(x, y), the (finite) disjunction of θ-

definitions of each r ∈ Sθ(C) consistent with tp(e/∅).

We will use this Remark as justification for freely adding inde-
pendent parameters in many places.

3.1 p-triples

In this subsection, T is superstable and p is a stationary regular type
over ∅. The reader is encouraged to review the definitions and basic
facts in Sections A.2 and A.3 of the Appendix. We adopt the data
structure of a p-triple and then show that a given p-triple can be
massaged to get matching p-triples with more and more desirable
properties. The key will be to obtain a minimal p-triple as a normal
cover of a given one.

Definition 3.4 • A p-triple is a sequence (a, b, C) such that a, b ∈
D(p, C), i.e., stp(ab/C) is p-simple, with both wp(a/Cb) > 0
and wp(b/Ca) > 0.

• A p-triple (a, b, C) is normal if the three strong types stp(ab/C),
stp(a/Cb), and stp(b/Ca) are all p-semiregular.

• A p-triple (a, b, C) is p-disjoint if clp(Ca) ∩ clp(Cb) = clp(C).

• Two p-triples (a, b, C), (a′, b′, C ′) are matching if wp(ab/C) =
wp(a

′b′/C ′), wp(a/Cb) = wp(a
′/C ′b′), and wp(b/Ca) = wp(b

′/C ′a′).

We seek p-triples (a, b, C) that embed a realization of a given
p-semiregular strong type in its first component.

Definition 3.5 Suppose stp(e/∅) is p-semiregular. A p-triple (a, b, C)
envelops e if e ∈ dcl(a) and e^Cb.

There is a canonical way of extending a p-disjoint p-triple (a, b, C)
to a matching, normal p-disjoint p-triple (a′, b′, C ′).

Definition 3.6 A soft extension of a p-triple (a, b, C) is a p-triple
(a′, b′, C ′) such that

1. a′b′C ′ ⊆ dcl(abC);

2. C ⊆ C ′ ⊆ clp(C) with C ′ \ C finite;

3. a ⊆ a′ ⊆ clp(C
′a) and b ⊆ b′ ⊆ clp(C

′b).
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Note that clp(C
′) = clp(C), clp(C

′a′) = clp(Ca), and clp(C
′b′) =

clp(Cb) in any soft extension.

Lemma 3.7 (Normalization) Given any p- triple (a, b, C), there
is a soft extension to a matching normal p-triple (a′, b′, C ′), called
a normalization of (a, b, C). If (a, b, C) is p-disjoint, then (a′, b′, C ′)
will be p-disjoint as well. Moreover, if stp(e/∅) is p-semiregular and
(a, b, C) envelops e, then (a′, b′, C ′) also envelops e.

Proof. First, apply Lemma A.20 to stp(ab/C) to get C ′ ⊆
dcl(Cab) ∩ clp(C) such that stp(ab/C ′) is p-semiregular. Note that
clp(C

′) = clp(C), clp(C
′a) = clp(Ca), and clp(C

′b) = clp(Cb). Next,
apply the Lemma to stp(b/aC ′) to get a′ and stp(b/C ′a′) p-semiregular,
and finally apply the Lemma to stp(a′/C ′b) to get b′. It follows from
Lemma A.21 that (a′, b′, C ′) is normal and matches (a, b, C). The
preservation of p-disjointness is clear because of the equality of the
p-closed sets mentioned above. Finally, suppose (a, b, C) envelops e.
Since a ⊆ a′, e ∈ dcl(a′). Also, since C ′b′ ⊆ clp(Cb), stp(e/∅) p-
semiregular and e^Cb implies e^C ′b′, so (a′, b′, C ′) envelops e as
well. 2

Next we describe three ways of extending a given p-triple (a, b, C)
to a larger, matching (a′, b′, C ′) that preserves p-disjointness and en-
veloping.

Definition 3.8 A simple extension of a p-triple (a, b, C) is any of:

1. (a∗, b, C), where a ⊆ a∗ ⊆ clp(Ca);

2. (a, b∗, C), where b ⊆ b∗ ⊆ clp(Cb);

3. (a, b, C∗), where C∗ ⊇ C and C∗^
C
ab.

Lemma 3.9 Given any p-disjoint, normal p-triple (a, b, C), the nor-
malization (a′, b′, C ′) of any simple extension is a matching p-disjoint
extension of (a, b, C). Moreover, if stp(e/∅) is p-semiregular and (a, b, C)
envelops e, then (a′, b′, C ′) envelops e as well.

Proof. That all three species of simple extensions are matching
is clear. Next, we show that each of the simple extensions preserves
p-disjointness. This is clear for the first two, as clp(Ca

∗) = clp(Ca)
in the first case and clp(Cb

∗) = clp(Cb) in the second. As (a, b, C)
normal implies stp(ab/C) is p-semiregular, p-disjointness of the third
species is preserved by Lemma A.24. If (a, b, C) envelops e, then
obviously e ∈ dcl(a∗) for any of the three species of simple extensions.
For the first species, e^Cb holds vacuously. For the second we have
Cb∗ ⊆ clp(Cb), so e^Cb∗ follows from stp(e/∅) p-semiregular, and
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for the third, since eb^
C
C∗, we obtain e^C∗b by the transitivity of

non-forking.
The Lemma now follows from Lemma 3.7. 2

Definition 3.10 Suppose that (a, b, C) is a p-disjoint normal p-
triple.

• A normal cover is any p-disjoint normal (a′, b′, C ′) obtained as
a sequence of extensions as in Lemma 3.9.

• The strength of (a, b, C) which we denote by α(a, b, C), is equal
toR∞(a/bb′C), where b′ is (any) element satisfying stp(b′/Ca) =
stp(b/Ca) and b′^

Ca
b. (This is well-defined, as stp(abb′/C) is in-

dependent of our choice of b′.)

• A normal p-triple (a, b, C) is minimal if α(a, b, C) ≤ α(a′, b′, C ′)
for all of its normal covers (a′, b′, C ′).

Clearly, by superstability and the transitivity of being a normal
cover, every normal p-triple (a, b, C) has a minimal, normal cover
(a′, b′, C ′). In fact, one can find one with the additional property
that a′ ∈ dcl(C ′a). At present, this improvement does not seem to
be necessary.

Lemma 3.11 Given any p-disjoint, normal p-triple (a, b, C), there
is a matching minimal, normal, p-disjoint p-triple (a′, b′, C ′) that is
a normal cover of (a, b, C). If stp(e/∅) is p-semiregular and (a, b, C)
envelops e, then (a′, b′, C ′) envelops e as well.

Proof. Among all normal covers (a′, b′, C ′) of (a, b, C), choose
the one of smallest strength. 2

We record how the minimality assumption will be used in the
proof of Theorem 3.2.

Lemma 3.12 Suppose (a, b, C) is a minimal normal p-triple with
strength α. For every C ⊇ C with C ^

C
ab and every B with b ⊆ B ⊆

clp(Cb), R
∞(a/CBB′) = α for some/every B′ with stp(B′/Ca) =

stp(B/Ca) and B^
Ca
B′.

Proof. This is immediate since (a, b, C) is a simple extension
of (a, b, C), and (a,B,C) is a simple extension of (a, b, C), hence
(a,B,C) is a normal cover of (a, b, C). 2

We close with two lemmas concerning p-disjointness.
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Lemma 3.13 Suppose stp(a/C) and stp(b/C) are both p-semiregular
and a^

C
b. Then the p-triple (a, b, C) is p-disjoint.

Proof. Choose any e ∈ clp(Ca) ∩ clp(Cb). Then wp(e/Ca) =
wp(e/Cb) = 0. By Lemma A.21(1), stp(b/Ca) is p-semiregular, so
b^
C
e. But this, coupled with wp(e/Cb) = 0 implies e ∈ clp(C). 2

Lemma 3.14 Suppose (a1, b1, C) and (a2, b2, C) are both normal
and p-disjoint. If, moreover, a1b1 ^

C
a2b2, then the p-triple (a1a2, b1b2, C)

is also p-disjoint.

Proof. In light of Lemma A.24, then p-disjointness of (a1, b1, C)
implies that clp(a1a2b2C) ∩ clp(b1a2b2C) ⊆ clp(a2b2C), so

clp(a1a2C) ∩ clp(b1b2C) ⊆ clp(a2b2C)

Arguing in reverse, the p-disjointness of (a2, b2, C) yields

clp(a1a2C) ∩ clp(b1b2C) ⊆ clp(a1b1C)

Furthermore, it follows immediately from Lemma 3.13 that

clp(a1b1C) ∩ clp(a2b2C) ⊆ clp(C)

and the result follows. 2

3.2 Proof of Theorem 3.2

We proceed to prove Theorem 3.2, following the proof of Proposi-
tion 3.1 in [4]. For the whole of this subsection, assume T is clas-
sifiable and p is a (stationary) regular, non-locally modular type p
over ∅. By Fact A.28, p has depth zero. We will often use Fact A.22,
which says that every p-semiregular type contains a p-simple formula
D inside which p-weight is continuous and definable. Fix some e such
that tp(e/∅) is stationary and p-semiregular with wp(e) = k ≥ 1. Our
goal is to show that tp(e/∅) is strongly p-semiregular. For the whole
of this subsection, we work inside Deq, which suffices. Thus, all types
under consideration will be p-simple.

The following Proposition is the content of Lemma 3.2 of [4].

Proposition 3.15 For every realization d of p, there is a minimal,
normal, p-disjoint p-triple (a, b, C) enveloping d. Moreover, wp(a/C) =
wp(b/C) = 2, wp(ab/C) = 3, and wp(a/bC) = wp(b/aC) = 1.

9



Proof. By the first paragraph of the proof of Lemma 3.2 in [4],
there is a p-triple (a, b,M), where M is an a-model, a and b each
consist of two M -independent realizations of p|M , with wp(a/Mb) =
wp(b/Ma) = 1 and thep- triple (a, b,M) being p-disjoint.

By p-weight computations, at least one of {a1, a2} must be in-
dependent from b over M , so by passing to an automorphism of C,
we may assume that d ⊆ a and d^Mb. Thus, (a, b,M) envelops d.
Now, apply the Normalization Lemma 3.7, and then choose a mini-
mal normal cover via Lemma 3.11. 2

The following generalization is the point of all these definitions.

Proposition 3.16 For e as above, there is a minimal, normal, p-
disjoint (a, b, C) enveloping e such that wp(ab/C) = 3k, wp(a/C) =
wp(b/C) = 2k, and wp(a/bC) = wp(b/aC) = k.

Proof. First, by p-semiregularity, choose E and an E-independent
sequence d̄ = (di : i < k) of realizations of p|E such that e^E and
e and d̄ are domination equivalent over E.

By Proposition 3.15, choose a triple (a0, b0, C0) enveloping d0

as there. Since d0 realizes p|C0 and p|E, we may assume E ⊆ C0

and d̄ is independent over C0. Next, choose (aibi : i < k) to be
C0-independent with stp(aibidi/C0) = stp(a0b0d0/C0) for each i. In
particular, (ai, bi, C0) envelops di for each i < k. As notation, let
ā denote (ai : i < k) and b̄ denote (bi : i < k). Note that by the
independence, bi ^

C0ai
ā for each i.

By iterating Lemma 3.14, we have that the p-triple (ā, b̄, C0) is
p-disjoint. As well, it follows from the independence that wp(ā/C0) =
wp(b̄/C0) = 2k, wp(āb̄/C0) = 3k, and wp(ā/C0b̄) = wp(b̄/C0ā) = k.
It also follows that (ā, b̄, C0) is normal.

As wp(e/d0, . . . , dk−1) = 0, we have wp(e/āC0) = 0. Thus, the
p-triple (eā, b̄, C0) is a simple extension of (ā, b̄, C0) enveloping e. By
Lemmas 3.7 and 3.11 there is a matching, minimal, normal cover
(a, b, C) of (eā, b̄, C0) that is p-disjoint and envelops e. 2

From now on, fix a p-triple (a, b, C) as in Proposition 3.16.

We continue along the lines of Section 3 of [4], with our Proposi-
tion 3.16 taking the place of their Lemma 3.2. The following Lemma
takes the place of their Lemma 3.3.

Lemma 3.17 Choose any b′ realizing stp(b/Ca) with b′^
Ca
b. Then:

1. wp(a/bb
′C) = 0;
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2. b′^
C
b;

3. There is a formula ρ(x, b, b′) (possibly with hidden parameters
from C) isolating tp(a/Cbb′).

4. For any a′ and any b′′ satisfying stp(b′′/C) = stp(b/C) and
b′′^

C
b, if ρ(a′, b, b′′) holds, then tp(a′/Cb) = tp(a/Cb).

Proof. (1) Here is where p-disjointness plays a leading role. Re-
calling the notation from the proof of Proposition 3.16, (a, b, C) is a
normal cover of (eā, b̄, C0), and for each i < k we have wp(ai/biC0) =
1 and bi ^

C0ai
ā. We claim that ai /̂

C0bi
b′ for each i < k. Since stp(ai/biC0)

is p-semiregular, the claim implies that wp(ai/bib
′C) = 0 for each i,

hence wp(a/bb
′C) = 0, completing the verification of (1).

To establish the claim, fix i < k. The forking is attained in three
steps. First, by p-disjointness we have

clp(Ca) ∩ clp(Cb) ⊆ clp(C)

Thus, acl(C0ai)∩acl(C0bi) ⊆ clp(C). Coupling this with the fact that
stp(aibi/C0) is p-semiregular implies aibi^

C0

clp(C), hence

acl(aiC0) ∩ acl(biC0) ⊆ acl(C0)

Second, from the proof of Proposition 3.16, bi ^
C0ai

ā. By the normality

of (ai, bi, C0), stp(bi/C0ai) is p-semiregular, so since Ca ⊆ clp(C0ā)
we have bi ^

Cai
a. Our assumption was that b^

Ca
b′, so in particular,

bi^
Ca
b′. Thus, by the transitivity of non-forking

b′ ^
Cai

bi

Finally, since stp(b′/Ca) = stp(b/Ca), there is b′i ∈ b′ (corresponding
to bi) such that b′i /̂

C0

ai, hence

b′ /̂
C0

aibi

Combining the last three displayed expressions with Lemma A.26
(where b′ takes the role of X) we obtain ai /̂

C0bi
b′.

(2) Given (1), this is analogous to the p-weight computation given
in Lemma 3.3(b) of [4], just multiplied by k. First, wp(abb

′/C) =
wp(a/C)+2wp(b/Ca) = 4k. Using (1), 4k = wp(abb

′/C) = wp(bb
′/C).

Since wp(b/C) = wp(b
′/C) = 2k, we conclude that wp(bb

′/C) =
wp(b/C)+wp(b

′/C). As stp(b/C) is p-semiregular, this implies b^
C
b′.

11



(3) This is analogous to 3.3(c) of [4]. We employ Fact A.29(4) and
the notation immediately preceding it. By (2), (C,Cb, Cb′) is an inde-
pendent triple, so it suffices to show that tp(a/Cbb′) is V -dominated.
Choose any independent triple (C,B,B′) extending (C, b, b′), i.e.,
C ⊇ C with C ^

C
abb′ and B ⊇ Cb, B′ ⊇ Cb′ with B^

C
B′. We

show that a ^
Cbb′

BB′ by partitioning BB′. into its p-weight zero part

and its p-semiregular part. More precisely, let B0 := dcl(B)∩clp(Cb)
and B′0 := dcl(B′)∩ clp(Cb

′). Since b^
Ca
b′, there is an automorphism

σ ∈ Aut(C) fixing acl(Ca) pointwise and σ(b) = b′. Note that σ maps
clp(Cb) onto clp(Cb

′), so we can find B1 with B0 ⊆ B1 ⊆ clp(Cb) and
B′0 ⊆ σ(B1). As our original normal triple (a, b, C) is minimal, it
follows from Lemma 3.12 that R∞(a/CB1σ(B1)) = R∞(a/Cbb′). In
particular,

a ^
Cbb′

B0B
′
0

Continuing, recall that we are working entirely within a p-simple
formula D. Thus, by Lemma A.20, both stp(B/B0) and stp(B′/B′0)
are p-semiregular, with at least one of positive p-weight. As well,
C ⊆ B0 ∩B′0 and B^

C
B′, hence stp(BB′/B0B

′
0) is p-semiregular of

positive p-weight as well. By (1) wp(a/B0B
′
0) = 0, so a ^

B0B′0
B1B

′
1.

Thus, stp(a/Cbb′) is V -dominated, and hence by Fact A.29(4) there is
ρ(x, b, b′) (possibly with hidden parameters from C) isolating tp(a/Cbb′).

(4) By (2), any such b′′ satisfies tp(bb′′/C) = tp(bb′/C), so ρ(a′, b, b′′)
implies tp(a′/Cb) = tp(a/Cb). 2

Continuing, we get an analogue of Lemma 3.4[4].

Lemma 3.18 There is a formula α(x) over Cb such that, for any
a′, α(a′) implies:

1. wp(a
′/C) ≤ 2k, wp(a

′/Cb) ≤ k, wp(b/Ca
′) ≤ k; and

2. For all b′, if stp(b′/Ca′) = stp(b/Ca′) and wp(b
′/Ca′b) ≥ k,

then both ρ(a′, b, b′) and wp(a
′/Cbb′) = 0 hold.

Proof. First, all of the inequalities involving p-weight are de-
finable by Lemma A.22. In particular, (1) holds. As for (2), we first
note that it holds for a. Choose any b′ with stp(b′/Ca) = stp(b/Ca)
and wp(b

′/Cab) ≥ k. Since wp(b/Ca) = k by Proposition 3.16,
we conclude that wp(b

′/Ca) = wp(b/Ca) = k. As both stp(b/Ca)
and stp(b′/Ca) are p-semiregular, we conclude that b^

Ca
b′. Thus

ρ(a, b, b′) = 0 and wp(a/Cbb
′) = 0 hold by Lemma 3.17. As the im-

plication holds for every b′ and since ‘having the same strong type’
is describable by a set of formulas, it follows by compactness that a
Cb-definable formula α(x) exists. 2

12



Next, Lemma 3.5 of [4] becomes:

Lemma 3.19 For any a′, if wp(a
′/Cb) = k and α(a′) holds, then

tp(a′/Cb) = tp(a/Cb).

Proof. Fix any such a′ and choose b′ such that stp(b′/Ca′) =
stp(b/Ca′) and b′ ^

Ca′
b. We first compute wp(a

′b/C) = wp(a
′/bC) +

wp(b/C) = k + 2k = 3k. Since wp(a
′/C) ≤ 2k, we have wp(b/Ca

′) =
k. Since stp(b′/Ca′) = stp(b/Ca′), we have wp(b

′/Ca′) = k as well.
Thus, by Lemma 3.18 we conclude that wp(a/Cbb

′) = 0 and ρ(a′, b, b′).
But then

wp(bb
′/C) = wp(a/C)+wp(b/Ca)+wp(b

′/Cab)−wp(a′/Cbb′) = 2k+k+k−0 = 4k

As stp(b/C) is p-semiregular with wp(b/C) = 2k, the same holds for
stp(b′/C), hence b^

C
b′. Thus, tp(a′/Cb) = tp(a/Cb) by Lemma 3.17(4).

2

We now finish the proof of Theorem 3.2. Recall that tp(e/∅)
is stationary and p-semiregular with wp(e/∅) = k. Since (a, b, C)
envelops e, e^Cb and there is a 0-definable function h such that
h(a) = e. Let α∗(x) := ∃x′(α(x′)∧h(x′) = x). We claim that tp(e/Cb)
is k-strongly regular via α∗(x). To see this, suppose α∗(e′) holds
and wp(e

′/Cb) = k. Choose a′ ∈ h−1(e′) with α(a′) holding. Then
wp(a

′/Cb) = k as well, so tp(a′/Cb) = tp(a/Cb) by Lemma 3.19. In
particular, tp(e′/Cb) = tp(e/Cb), so tp(e/Cb) is k-strongly regular.
In light of Remark 3.3, so is tp(e/∅). 2

4 Applications of Theorem 3.2

In this brief section, we give three applications of Theorem 3.2, al-
though they will not be used in the proof of our main results.

Lemma 4.1 Suppose T is superstable. If H is an infinitely definable
connected group (over A) whose generic type is strongly p-semiregular,
then H is definable over A.

Proof. Let r be the generic type of H and ϕ(x) ∈ r be a formula
such that r is the unique type of p-weight k in ϕ. By superstability,
there is a definable group H ′ with connected component H. The
formula ϕ(x) contains the principal generic, hence H ′ is a finite union
of translates of ϕ. Each translate of ϕ contains a unique type of p-
weight equal to k. Every other generic type of H ′ must also be of
p-weight k, so there are only finitely many generic types in H ′. This
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means that H, its connected component, has finite index in H ′, hence
that H itself is in fact definable (H is a closed subgroup in H ′, if it
has finite index it must be also open). 2

Together with Theorem 3.2, this immediately yields the following
corollary.

Corollary 4.2 Let T be classifiable and p a non-locally modular reg-
ular type. If H is an infinitely definable connected group (over A),
with generic p-semiregular, then H is definable over A.

The second application connects binding group constructions with
isolation of p-semiregular types, in the spirit of [5] or more recently
[6]. First, we record an easy remark.

Remark 4.3 In general, if there is a B-definable group G with a
B-definable transitive action on a complete type q over B, then q is
isolated over B: Let e realize q, consider the formula ϕ(x) ∈ L(Be)
asserting ∃g ∈ G(x = g.e). Then ϕ(x) holds if and only if x |= q. So q
is isolated by a formula over Be. On the other hand, q is B-invariant,
so in fact, q is isolated by a formula over B.

Let us now recall some definitions and notation.

Definition 4.4 Let B = acl(B) and let p, q ∈ S(B) with p regular.
We say that q is p-internal if there is D ⊇ B such that for some
a |= q|D, a ∈ dcl(D ∪ p(C)).

The following existence result is Corollary 7.4.6 of [7].

Proposition 4.5 Let T be stable. Suppose B is algebraically closed
and p, q ∈ S(B) are non-orthogonal with p regular. Then for any a
realizing q, there is a′ ∈ dcl(Ba)\B such that tp(a′/B) is p-internal.

Lemma 4.6 Let T be stable. Suppose B = acl(B) ⊇ M , p ∈ S(M)
regular and q ∈ S(B) is p-semiregular. If q ⊥a M then a^

B
p(C) for

any a realizing q.

Proof. Let a realize q and let E ⊆ p(C) be finite. Let E1 ⊆ E
be a maximal M -independent subset of E, and let E2 be a maxi-
mal subset of E1 satisfying E2 ^

M
B. Note that E2 realizes a Morley

sequence (p|B)(k) of the non-forking extension of p to B.

Claim. wp(E/E2B) = 0.

Proof. First, choose any e ∈ E1 \ E2. Because maximality im-
plies that eE2 /̂

M
B, tp(e/BE2) is a forking extension of a regular
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type, hence wp(e/E2B) = 0. It follows that wp(E1/E2B) = 0 as
well. Now choose any e ∈ E \ E1. By the maximality of E1, e /̂

M
E1

so wp(e/E1) = 0. Thus, wp(e/E1B) = 0. As this holds for every
e ∈ E \ E1, wp(E/E1B) = 0. Combining the two arguments yields
wp(E/E2B) = 0. 2

Because tp(E2/B) does not fork over M and q ⊥a M , we have
that a^

B
E2. As q is p-semiregular, that a^

B
E follows immediately

from the Claim. 2

Theorem 4.7 (Binding group) ([7] 7.4.8 or [8] 2.2.20) Suppose T
is stable. Let B = acl(B) and let p, q ∈ S(B) with p regular and q
p-internal. Let G := Aut(q(C)/B ∪ p(C)). Then G and its action are
infinitely definable in the following sense: there is G1 an infinitely
definable group over B and a B-definable action of G1 on q(C) such
that, as permutation groups of q(C) over B ∪ p(C), G and G1 are
isomorphic. Additionally, if a^

B
p(C) for all a realizing q, then G

and hence also G1 act transitively on q(C).

Note that by stability, the group G is also the group of restrictions
to q(C) of the automorphisms of C fixing B ∪ p(C) pointwise. G is
infinite if and only if q is not algebraic over B ∪ p(C). The next
proposition tells us that we get a transitive action from the connected
component of G1.

Proposition 4.8 If an infinitely definable group G is defined over
B = acl(B) and there is a B-definable, transitive action of G on
a complete type q ∈ S(B), then the restriction of the action to the
connected component G0 of G is also transitive.

Proof. For notational simplicity suppose B = ∅.

Claim 1. There is some pair (e, e∗) realizing q⊗ q and some h ∈ G0

such that h.e = e∗.
Proof. Choose a set of representatives R ⊆ G(C) such that

every g ∈ G can be written as ch for some c ∈ R and h ∈ G0, i.e.,
R contains an element of every G0-coset of G. As the index [G : G0]
is bounded, we may choose R of bounded size (2ℵ0 if the language is
countable). Choose any e realizing q|R and any e′ realizing q|Re.

By the transitivity of the action, as both e, e′ realize q, choose
g ∈ G such that g.e = e′. By choice of R, choose c ∈ R and h ∈ G0

such that g = ch and put e′ := h.e. We need to show that e∗^e. For
this, note that

e∗ = (c−1g).e = c−1.e′ ∈ dcl(Re′)
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But e′^Re and e^R imply e′R^e, hence e∗^e as required. 2

Claim 2. For every (e, e′) realizing q ⊗ q there is h ∈ G0 such that
h.e = e′.

Proof. Homogeneity of C/B. Fix (e, e∗) and h as in Claim 1,
and let (e1, e2) be any other realization of q⊗ q. Choose an automor-
phism σ of C, fixing B pointwise with σ(e) = e1 and σ(e∗) = e2. As
G0 and the action are B-definable, σ(h) ∈ G0 and σ(h).e1 = e2. 2

To complete the proof of the Proposition, choose any e, f ∈ q(C).
Choose e∗ realizing q|{e, f}. By Claim 2, choose h1 ∈ G0 such that
h1.e = e∗ and choose h2 ∈ G0 such that h2.e

∗ = f . Then h2h1 ∈ G0

and (h2h1).e = f , so G0 acts transitively on q(C). 2

The following results give a sufficient condition for a non-locally
modular type to be isolated. These results will be used as part of the
forthcoming work of the authors on the analysis of weight one models
in classifiable theories. The following definition appears already in [5].

Definition 4.9 Suppose T is superstable. We say that q ∈ S(B) is
c-isolated (following Hrushovski-Shelah in [5]) if there is a formula
θ(x) ∈ q such that R∞(θ(x)) = R∞(q) = α and furthermore, for any
r ∈ S(B), θ(x) ∈ r implies R∞(r) = α.

Proposition 4.10 Suppose T is superstable. Let q ∈ S(B) be p-
strongly semiregular and c-isolated via the formula ϕ(x) and let G1

be an infinitely definable group over B, with a B-definable, transitive
action of G1 on q(C). Then q is isolated.

Proof. By the usual construction (e.g., Lemma 1.6.19 in [7])
find a B-definable supergroup H ⊇ G1, a B-definable set X contain-
ing q, and a B-definable, transitive action of H on X which extends
the action of G1 on q(C), and such that X ⊂ ϕ(C).

So X has the property that every type over B in X has the same
R∞ rank as q, say α, that every type in X is p-simple, of p-weight
at most equal to k, the p-weight of q, and that q is the unique type
in X of p-weight exactly k. We show that X isolates q.

Claim 1. Let e realize q, and let h ∈ H be independent from e over
B, then h.e also realizes q.

Proof. Letting d = h.e, d and e are inter-definable over Bh.
Since e realizes q|Bh, wp(e/Bh) = k, hence wp(d/B) ≥ k. By our
assumptions on X, wp(d/B) = k, so d realizes q. 2

Claim 2. Let h be any element of H, not necessarily independent
from e, and let d = h.e. Then d realizes q.
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Proof. Let g be a generic in H, independent from h, e (and
hence from h, e, d) over B. It follows that g−1h and e are independent
over B : g−1

^
Bh
e by choice of g, hence (g−1h)^

Bh
e. As g−1 is generic

and independent from h, g−1h is also independent from h (see e.g.,
1.6.9(iv) of [7]), so it follows that g−1h and e are independent over
B. Hence by Claim 1, f := (g−1h).e realizes q.

We next show g and f are independent over B: Since f = g−1.d, d
and f are inter-definable over Bg, hence they have same∞-rank over
Bg. By c-isolation, R∞(d/B) = α. By our choice of g, g ^

B
d, hence

α = R∞(d/B) = R∞(d/Bg) = R∞(f/Bg). As f ∈ X, R∞(f/B) ≤
α, so R∞(f/Bg) = R∞(f/B), implying f and g are independent
over B.

Thus, by Claim 1, g.f must realize q, but g.f = d. 2

As the action of H on X is transitive, Claim 2 implies that any
d ∈ X must realize q. That is, X isolates q. 2

Corollary 4.11 Let T be classifiable with M ⊆na C and B ⊇ M
algebraically closed and suppose p is a non-locally modular regular
type with p 6⊥ M . If q = tp(a/B) is p-semiregular, c-isolated, but
q ⊥a M , then there is a′ ∈ dcl(Ba) \ B such that q′ := tp(a′/B) is
isolated.

Proof. Since M ⊆na C and p 6⊥M is regular, there is a regular
p0 ∈ S(M) non-orthogonal to p by Fact A.5. To ease notation, we
may assume that our p is the non-forking extension of p0 to S(B).
By Proposition 4.5 choose a′ ∈ dcl(Ba) \B such that q′ := tp(a′/B)
is p-internal. It is easily checked that q′ remains c-isolated and p-
semiregular and that q′ ⊥a M . Since T is classifiable and p is non-
locally modular, q′ is strongly p-semiregular by Theorem 3.2.

As q ⊥a M , by Lemma 4.6 we have a′^
B
p0(C), hence a′^

B
p(C)

as well. Thus, by Lemma 4.7, there is an infinitely B-definable group
G1 with a B-definable, transitive action on q′(C). Hence q′ is isolated
by Proposition 4.10. 2

Note that in Corollary 4.11 we used two conditions on the type
q′ to prove isolation: the strong p-semiregularity condition goes up
to non forking extensions, but the c-isolation does not necessarily.

We finish this section with a third way of proving isolation, with-
out group actions, in the case of a strongly regular type. It is not
clear if this method could be generalized to the case of strong p-
semiregularity.

Proposition 4.12 Suppose that T superstable, M ⊆na C, B ⊇ M
is algebraically closed, and q ∈ S(B) is strongly regular, depth zero,
and that q ⊥a M . Then either q ⊥M or q is isolated.
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Proof. If q is trivial, q ⊥a M implies that q ⊥ M (see, e.g., X
7.3(6) of [10]). So we can suppose that q is non-trivial. Henceforth,
assume that q is non-orthogonal to M . By Fact A.5 choose a regular
p ∈ S(M) with q 6⊥ p. As q ⊥a M , in particular, over B, q is almost
orthogonal to p(ω). As q, and hence p, is non-trivial of depth 0, use
Fact A.22 to choose ϕ ∈ q that is p-simple, such that p-weight is de-
fined and continuous in ϕ. As q is strongly regular, by strengthening
ϕ we may additionally assume q is the only type over B containing
ϕ of positive p-weight.

Now choose n least such that there are ā = (a1, . . . , an) with each
ai realizing ϕ and tp(ā/B) is not almost orthogonal to p(ω). We know
that such a finite n exists, since q non-orthogonal to p implies that
some q(`) is not almost orthogonal to p(ω) (see e.g., 4.3.1(iii) of [7]).
Remark: Here, however, we are minimizing n without assuming ā is
B-independent.

Note that n ≥ 2. Indeed, if a1 realizes q, then a1/B is almost
orthogonal to p(ω) by assumption. On the other hand, if a1 realizes
ϕ but not q, then wp(a1/B) = 0, so a1 cannot fork over B with any
any independent set of realizations of p.

Once n is fixed, choose k such that ā/B is not almost orthogonal
to p(k). To save writing, let n = m+ 1 and r(ȳ) := (p|B)(k). Choose
a specific realization c̄ of r such that ā /̂

B
c̄, and choose an L(B)-

formula θ(x, ȳ) ∈ tp(āc̄/B) witnessing the forking. Let

γ(x0) := ϕ(x0) ∧ drȳ
[
∃x1 . . . ∃xm(

∧
ϕ(xi) ∧ θ(x0, x1, . . . , xm, ȳ))

]
As B is algebraically closed, γ is over B. We argue that γ isolates q.

To see this, choose any b0 realizing γ. Choose d̄ realizing r|Bb0,
and choose witnesses b1, . . . , bm. Thus, the n elements b0, . . . , bm each
realize ϕ and θ(b̄, d̄) holds. We argue that in fact, every bi realizes
q. Let I = {i ≤ m : bi realizes q}. Let b̄I be the subsequence of b̄
induced by I. By way of contradiction, assume |I| < m+ 1 = n. By
the minimality of n, we must have b̄I ^

B
d̄. But also, by our choice

of ϕ, if i 6∈ I, then wp(bi/B) = 0. Thus, wp(b̄/Bb̄I) = 0. But d̄ is
a Morley sequence in p, hence stp(d̄/Bb̄I) is p-semiregular. Thus,
b̄ ^
Bb̄I

d̄. It follows by transitivity that b̄ ^
B
d̄, which is contradicted by

θ(b̄, d̄). 2

Corollary 4.13 Let T be classifiable, M⊆na C, B ⊇M algebraically
closed, and let q ∈ S(B) be regular, but non locally modular. If q 6⊥M
but q ⊥a M , then q is isolated.

Proof. By the classifiability of T , q must also be strongly regular
of depth zero, so Proposition 4.12 applies. 2
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5 Constructible, minimal models over

realizations of non-locally modular types

Recall our global assumption that all theories T are (at least) stable.
The basic definitions and facts about locally modular regular types
can be found in the Appendix (Section A.2).

5.1 Witnesses to non-modularity

We describe a minimal counterexample to non-modularity in our
context.

Definition 5.1 Let M be any model (not necessarily an a-model)
and let p ∈ S(M) be regular. A quadruple (a, b, c, d) is 4-dependent
if

1. Any three elements realize p(3), but

2. wp(abcd/M) = 3.

A witness to non-modularity for p over M is a set of parallel lines,
i.e., some 4-dependent quadruple (a, b, c, d) such that clp(Mab) ∩
clp(Mcd) = clp(M).

The following proposition follows from Section A.2 of the ap-
pendix.

Proposition 5.2 Over any a-model M , if p ∈ S(M) is a regular
type, then p is non-locally modular if and only if there is a witness
to non-modularity for p over M .

Lemma 5.3 Suppose M is any countable model, and p ∈ S(M) is
regular, but not locally modular. There is an ε-finite set E (E is
contained in the algebraic closure of some finite set) such that for any
countable model M ′ containing M ∪ E, there is a witness (a, b, c, d)
to non-modularity over M ′.

Proof. Let M∗ ⊇ M be any a-model, and let q denote the
non-forking extension of p to M∗. As q is not locally modular, it
follows from Proposition 5.2 that there is a witness (a, b, c, d) to
non-modularity over M∗. Choose a countable, ε-finite E over which
tp(abcd/M∗) is based and stationary. To see that E suffices, choose
any countable M ′ containing M ∪E. As M∗ is sufficiently saturated,
we may assume that M ′ �M∗. We argue that (a, b, c, d) is a witness
to non-modularity over M ′. To see this, note that abcd^

M ′
M∗. Thus,

(a, b, c, d) is 4-dependent with respect to the non-forking extension
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of p to M ′. For the final clause, let C := dcl(M ′abcd) ∩ clp(M
′).

Note that abcd^
C
M∗ and stp(abcd/C) is p-semiregular by Crite-

rion A.18. Thus, clp(M
∗ab) ∩ clp(M

∗cd) = clp(M
∗) implies that

clp(Cab)∩clp(Ccd) = clp(C) by Proposition A.24. However, clp(C) =
clp(M

′), clp(Cab) = clp(M
′ab), and clp(Ccd) = clp(M

′cd), so we fin-
ish. 2

5.2 A definable witness to non-modularity

In this section we assume throughout that T is classifiable. Under
this assumption, we obtain a definable witness to non-modularity
over an arbitrary model M on which a non-locally modular type is
based. The starting point is the following, which melds Theorem 1b
of [4] with Theorems A.22 and A.28 from the appendix.

Theorem 5.4 If T is classifiable, B is algebraically closed, and p ∈
S(B) is a regular, non-locally modular type, then there is a formula
θ ∈ p such that (recall Definition A.12):

1. θ is p-simple of p-weight one;

2. p-weight is defined and continuous inside θ; and

3. p is strongly regular via the formula θ, i.e., for every C ⊇ B and
every e ∈ θ(C), if wp(e/C) > 0, then tp(e/C) is the non-forking
extension of p to C.

For the next few Lemmas, fix a model M and non-locally modular
p ∈ S(M). Also fix θ(x,m) ∈ p as in Theorem 5.4 with θ(x, ȳ) 0-
definable.

Lemma 5.5 Suppose p ∈ S(M) is regular and (a, b, c, d) is 4-dependent
over M . Then there is some h ⊆ M and an m-definable formula
R(x, y, z, w, u) ∈ tp(abcdh) such that for any (a′, b′, c′, d′) with some
triple realizing p(3) and for any h′ ⊆ M , if R(a′, b′, c′, d′, h′) holds,
then (a′, b′, c′, d′) is 4-dependent over M .

Proof. First, as wp(a/bcdM) = 0 and θ(a) holds, choose h1 ⊆
M and α1(x, y, z, w, u) ∈ tp(abcdh1) such that for any a′, b′, c′, d′

and any h′1 ⊆ M , if α1(a′, b′, c′, d′, h′1) holds, then θ(a′) holds and
wp(a

′/b′c′d′M) = 0. Similarly, choose h2, h3, h4 ⊆ M and α2, α3, α4

such that e.g., α2(a′, b′, c′, d′, h′2) implies θ(b′) and wp(b
′/a′c′d′M) =

0. Put h := h1h2h3h4 and put R(x, y, z, w, u) :=
∧4
i=1 αi.

We argue that R is as claimed. By symmetry, choose b′c′d′ realiz-
ing p(3) and h′ ⊆M . We verify that for every a′ ∈ C, ifR(a′, b′, c′, d′, h′)
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holds, then (a′, b′, c′, d′) is 4-dependent over M . To see this, since
α1(a′, b′, c′, d′, h′) holds, we have θ(a′) and wp(a

′/b′c′d′M) = 0. Be-
cause of α2 holding, wp(b

′/a′c′d′M) = 0. As b′c′d′ realizes p(3), we
must have wp(a

′/M) > 0. Thus, by strong regularity, tp(a′/M) = p.
To verify 4-dependence over M , it remains to show that each of
a′b′c′, a′b′d′ and a′c′d′ realize p(3). We check this for a′b′c′, with
the other two following by symmetry. As α4(a′, b′, c′, d′, h′) holds,
wp(d

′/a′b′c′d′h′) = 0. But, as b′c′d′ realizes p(3) this implies d′ /̂
Mb′c′

a′.

As tp(d′/Mb′c′) is regular, this implies a′^
M
b′c′, so a′b′c′ realizes p(3).

2

Next, among all 4-dependent quadruples (a, b, c, d), we want to
distinguish those that are witnesses to non-modularity over M . This
is the content of the next two Lemmas.

Lemma 5.6 Suppose p ∈ S(M) is a regular, non-locally modular
type and (a, b, c, d) is a witness to non-modularity over M . Then for
every e realizing p|Mabcd and for every f ∈ θ(C) that satisfies b ∈
clp(Maef), we have (c, d, e, f) realizes p(4) and wp(ab/Mcdef) = 0.

Proof. First, since θ(f) holds, tp(f/M) is p-simple. As b re-
alizes p, b^

M
ae, but b ∈ clp(Maef), we must have wp(f/M) > 0,

hence tp(f/M) = p. Thus, all six elements a, b, c, d, e, f realize p.
Next, note that wp(abcdef/M) = 4, since wp(abcd/M) = 3 (by 4-
dependence), e^

M
abcd, and wp(f/Mabcde) = 0 by exchange. Next,

we show that wp(cdef/M) = 4, i.e., that (c, d, e, f) realizes p(4). By
way of contradiction, assume that this were not the case, i.e, that
wp(cdef/M) ≤ 3. We compute the following p-weights:

• wp(ef/Mabcd) = 1 [it is ≥ 1 because of e, but < 2 since f ∈
clp(Mabe)].

• wp(ef/Mcd) = 1 [it is ≥ 1 from the former line, but if it was
= 2, then we would have wp(cdef/M) = 4].

• wp(ef/Mab) = 1 [it is > 0 because of e, but < 2 because
f ∈ clp(Mabe)].

As both stp(ef/clp(Mab)) and stp(ef/clp(Mcd)) are p-semiregular,

ef ^
clp(Mab)

abcd and ef ^
clp(Mcd)

abcd

Hence,

Cb(ef/Mabcd) ⊆ clp(Mab) ∩ clp(Mcd) = clp(M)
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with the last equality holding since (a, b, c, d) is a witness to non-
modularity. This would imply ef ^

clp(M)
abcd, which contradicts f ∈

clp(Mabe).
Finally, since wp(abcdef/M) = wp(cdef/M) = 4, it follows im-

mediately that wp(ab/Mcdef) = 0. 2

By contrast:

Lemma 5.7 Suppose (a, b, c, d) is 4-dependent over M , but clp(Mab)∩
clp(Mcd) 6= clp(M). Then there are ef such that stp(ef/Mab) =
stp(cd/Mab) with e realizing p|Mabcd, but wp(cdef/M) = 3.

Proof. Choose g ∈ (clp(Mab) ∩ clp(Mcd)) \ clp(M). Since g ∈
clp(Mab), tp(g/M) is p-simple. As g 6∈ clp(M), wp(g/M) > 0, but
since c 6∈ clp(Mab), we cannot have wp(g/M) ≥ 2. Then wp(g/M) =
1 and wp(cd/Mg) = 1. Now choose any ef such that stp(ef/Mabg) =
stp(cd/Mabg) with ef ^

Mabg
cd. Then e realizes p|Mabcd and wp(ef/Mg) =

1. So

wp(cdef/M) ≤ wp(cdefg/M) ≤ wp(cd/Mg)+wp(ef/Mg)+wp(g/M) = 3

2

Lemma 5.8 Suppose p ∈ S(M) is regular and that (a, b, c, d) wit-
nesses non-modularity over M . Fix an L(M)-formula θ(x,m) ∈ p
from Theorem 5.4. Then there is some h ⊆ M and an m-definable
R∗(x, y, z, w, u) ∈ tp(a, b, c, d, h) such that, for any h′ ⊆ M , any
b′c′d′ realizing p(3), and any a′ ∈ C, if R∗(a′, b′, c′, d′, h′) holds, then
(a′, b′, c′, d′) witnesses the non-modularity of p over M .

Proof. As (a, b, c, d) is 4-dependent over M choose h ⊆M and
R(x, y, z, w, u) as in Lemma 5.5. Choose any e |= p|Mabcd. Then, for
every f , if R(a, b, e, f, h) holds, then since wp(b/aefM) = 0 we have
a ∈ clp(Mcdef) by Lemma 5.6. Thus, by compactness (and since
p-weight 0 formulas are closed under finite disjunctions) there is an
L-formula γ(x, y, z, w, v1, v2, u) such that

• γ(a, b, c, d, e, f, h) holds for any e |= p|Mabcd and any f for
which R(a, b, e, f, h) holds; and

• For all (a′, b, c′, d′, e′, f ′, h′), γ(a′, b′, c′, d′, e′, f ′, h′) holding im-
plies wp(a

′/c′d′e′f ′h′) = 0.

Put R∗(x, y, z, w, u) :=

R(x, y, z, w, u) ∧ dpv1∀v2[R(x, y, v1, v2, u)→ γ(x, y, z, w, v1, v2, u)]
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From above, R∗ ∈ tp(a, b, c, d, h). Now choose any h′ ⊆ M and
(a′, b′, c′, d′) such that R∗(a′, b′, c′, d′, h′) holds. By Lemma 5.5 we
know that (a′, b′, c′, d′) is 4-dependent over M . By way of contradic-
tion, suppose that (a′, b′, c′, d′) is not a witness to the non-modularity
of M . Choose any e′ |= p|Ma′b′c′d′. By Lemma 5.7, there is f ′ such
that stp(e′f ′/Ma′b′) = stp(c′d′/Ma′b′) but wp(c

′d′e′f ′/M) = 3. Since
R(a′, b′, c′, d′, h′) holds, we have R(a′, b′, e′, f ′, h′) holding as well.
Thus, γ(a′, b′, c′, d′, e′, f ′, h′) holds, hence wp(a

′/c′d′e′f ′M) = 0. By
R(a′, b′, e′, f ′, h′) again, we have wp(b

′/a′e′f ′M) = 0, so wp(a
′b′c′d′e′f ′/M) =

3. But this is impossible since b′c′d′ realizes p(3) and e′ |= p|Mb′c′d′.
2

Proposition 5.9 If T is classifiable, then for any model M and any
p ∈ S(M) that is regular but not locally modular, there is a wit-
ness (a, b, c, d) to the non-modularity of p over M . Thus, there is an
L(M)-formula S(x, y, z, w) ∈ tp(abcd/M) such that for any b′c′d′ re-
alizing p(3), S(x, b′, c′, d′) is consistent and (a′, b′, c′, d′) is a witness to
non-modularity of p over M for every realization a′ of S(x, b′, c′, d′).

Proof. It suffices to show that a witness to the non-modularity
of p exists, since the second sentence follows from this via Lemma 5.8.
Choose θ(x,m) ∈ p as in Theorem 5.4 and choose any bcd realizing
p(3). Choose any a-model M∗ �M independent from bcd over M . By
Proposition 5.2 there is a witness (a0, b0, c0, d0) to the non-modularity
of p|M∗ over M∗. As tp(bcd/M∗) = tp(b0c0d0/M

∗), there is some
a such that (a, b, c, d) is a witness to the non-modularity of p|M∗
over M∗. Choose an m-definable R∗(x, y, z, w, h) with h ⊆M∗ from
Lemma 5.8.

So ∃xR∗(x, b, c, d, h) holds. As bcd^
M
h, finite satisfiability gives

some h′ ⊆M for which ∃xR∗(x, b, c, d, h′). Choose any a′ ∈ R∗(C, b, c, d, h′)
with a′ ^

Mbcd
M∗. By Lemma 5.8 (a′, b, c, d) witnesses the non-modularity

of p|M∗ over M∗, but also abcd^
M
M∗. It follows by non-forking cal-

culus that (a′, b, c, d) is 4-dependent over M . As well, it follows from
the ‘easy half’ of Lemma A.24 (not requiring p-semiregularity) that
clp(a

′bM)∩ clp(cdM) = clp(M). [In more detail, if there were a ‘bad’
g, then taking g′ such that stp(g′/a′bcdM) = stp(g/a′bcdM) but
g′ ^
Ma′bcd

M∗, we would have g′ ∈ (clp(a
′bM∗)∩ clp(cdM

∗)) \ clp(M
∗),

contradicting (a′, b, c, d) a witness to the non-modularity of p|M∗
over M∗.] 2

The following Corollary codifies what we will use in the subse-
quent sections.
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Corollary 5.10 Suppose T is classifiable, M � N |= T , and p ∈
S(M) is regular but not locally modular. If there are (b, c, d) ∈ N \M
realizing p(3), then there is a ∈ N \M such that (a, b, c, d) is a witness
to the non-modularity of p over M .

Proof. Choose an L(M)-formula S as in Proposition 5.9. Then
C |= ∃xS(x, b, c, d) so N |= ∃xS(x, b, c, d) by elementarity. By Propo-
sition 5.9, any a ∈ N satisfying S(a, b, c, d) suffices. 2

5.3 Depth-zero like types and minimality

Recall the definition of a regular type p being of depth zero given in
Definition 2.2. By working with a-models, it is easily checked that a
regular type being of depth zero is preserved under non-orthogonality.

Lemma 5.11 Suppose T is superstable.

1. For M any model, if p = tp(c/M) is regular of depth zero,
then for any model M ′ dominated by c over M , every regular q
non-orthogonal to M ′ is non-orthogonal to M .

2. Suppose M ⊆na N , c ∈ N \M is such that p = tp(c/M) is
regular of depth zero, and let M ′ � N be any model dominated
by c over M . Then M ′ is minimal over Mc and M ′ ⊆na N .

Proof. (1) Fix M , c, M ′ and q, and suppose q ∈ S(A). By
superstability choose a finite B ⊆ M ′ such that q 6⊥ B. Choose any
a-model M∗ �M with M∗^

M
ABc. By Fact A.8(2), Bc is dominated

by c over M∗, so by Fact A.8(3) there is an a-prime model M∗[c]
containing B. As q 6⊥M∗[c] and since M∗[c] is an a-model, there is a
regular q′ ∈ S(M∗[c]) with q′ 6⊥ q. As tp(c/M∗) also has depth zero,
q′ (and hence q) is non-orthogonal to M∗. As A is independent from
M∗ over M , we conclude that q 6⊥M .

(2) We first show that M ′ is minimal over Mc. By way of con-
tradiction, assume there were a proper M ′′ ≺ M ′ containing Mc.
By Fact A.4 there is a regular type q ∈ S(M ′′) realized in M ′. By
(1), q 6⊥ M , so as M ⊆na M ′, it follows from the 3-model Lemma
(Fact A.7) that there is some a ∈ M ′ \M with a^

M
M ′′. But this

contradicts M ′′ being dominated by c over M . Thus, M ′ is minimal
over Mc. To see that M ′ ⊆na N , as M ⊆na N , apply Fact A.6, taking
A to be M ′, to obtain M∗ ⊆na N containing M ′ with M∗ dominated
by M ′ over M . As M ′ was dominated by c over M , the same holds
for M∗ by Fact A.8(1). From the previous sentences, M∗ is minimal
over Mc, hence M∗ = M ′. 2
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The following Lemma extends this to independent tuples of depth
zero types.

Lemma 5.12 Suppose T is superstable and M⊆naN . For every n, if
{ci : i < n} ⊆ N are M -independent with tp(ci/M) regular of depth
zero for each i, then a model M∗ � N containing M ∪ {ci : i < n}
and dominated by {ci : i < n} over M exists. Moreover, any such
M∗ satisfies the following properties:

1. M∗ is minimal over M ∪ {ci : i < n};
2. M∗⊆naN ;

3. If q is regular and q 6⊥M∗, then q 6⊥M .

Proof. For any n, the existence of a model M∗ � N dominated
by c0, . . . , cn−1 over M is immediate by Fact A.6. We argue by in-
duction on n that (1)–(3) hold for any model M∗ � N dominated by
c0, . . . , cn−1 over M . For n = 1, this is given by Lemma 5.11. Assume
these conclusions hold for sets of size n, and choose c0 . . . , cn from
N satisfying the hypotheses. Let M∗ be dominated by {ci : i ≤ n}
over M . We first show M∗ is minimal over M ∪ {ci : i ≤ n}. Choose
any M ′ � M∗ containing M ∪ {ci : i ≤ n}. As M ⊆na M ′ we work
inside M ′. Let M0 � M ′ be dominated by {ci : i < n} over M . By
our inductive hypothesis, both M0 ⊆na M ′ and any regular type q
non-orthogonal to M0 is non-orthogonal to M . By Fact A.6, choose
M1 � M ′ to be dominated by cn over M0. By Lemma 5.11, any
regular type non-orthogonal to M1 is non-orthogonal to M0. We ar-
gue that M1 = M∗, which implies our desired M ′ = M∗. For this,
suppose M1 6= M∗. By Fact A.4, there is some d ∈ M∗ \M1 with
q := tp(d/M1) regular. From above, q is also non-orthogonal to M0

and hence to M . So, by the 3-model Lemma (Fact A.7) applied to
the triple (M,M1,M

∗), there would be e ∈ M∗ such that tp(e/M)
is regular and non-orthogonal to q, with e^

M
M1. As {ci : i ≤ n},

this implies e^
M
c0, . . . , cn, contradicting M∗ being dominated by

{ci : i ≤ n} over M . Thus, M∗ is minimal over M ∪ {ci : i ≤ n},
proving (1).

Next, by Fact A.6 there is a model N ′⊆naN that contains and
is dominated by M∗ over M . By Fact A.8(1), N ′ is dominated by
{ci : i ≤ n} over M , so by (1) applied to N ′, it is minimal over
M ∪ {ci : i ≤ n}. Thus, N ′ = M∗, so M∗⊆naN , giving (2).

Finally, choose any regular q non-orthogonal to M∗ = M1, us-
ing the notation in (1). Since tp(cn/M0) has depth zero, q is non-
orthogonal to M0 by Lemma 5.11, hence is non-orthogonal to M by
our inductive hypothesis. 2
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The following definition extends the concept of depth zero to both
finite, independent tuples of depth zero types as well as to types
dominated by such tuples.

Definition 5.13 A strong type p is depth-zero like if every regular
type q non-orthogonal to p is of depth zero.

As examples, if a regular type p has depth zero, then any p-
semiregular type q is depth zero-like. The following Proposition uses
classifiability to obviate the need for M⊆na C in Lemma 5.12(1).

Proposition 5.14 Suppose p is depth zero-like.

1. If T is superstable and M is an a-model on which p is based,
then for any realization b of p|M and every model N ⊇Mb that
is dominated by b over M we have:

(a) every regular type q non-orthogonal to N is non-orthogonal
to M : and

(b) N is minimal over Mb.

2. If T is classifiable, then (1) holds for every model M on which
p is based.

Proof. (1) Assume T is superstable. Fix an a-model M on
which p is based and a realization b of p|M . We first show (a) holds
when N = M [b], any a-prime model over Mb. To see this, choose a
maximal M -independent set {c1, . . . , cn} ⊆M [b] with tp(ci/M) reg-
ular. (n is finite because tp(b/M) has finite weight.) As each ci forks
with b over M , tp(ci/M) is of depth zero. Let M [c1, . . . , cn] � M [b]
be any model dominated by {c1, . . . , cn) over M . We claim that
M [c1, . . . , cn] = M [b]. For, if not, then by Fact A.4 there would be
some d ∈ M [b] \M [c1, . . . , cn] with r := tp(d/M [c1, . . . , cn] regular.
By Lemma 5.12(3), we would have r 6⊥ M , hence by Fact A.7 there
would be e ∈ M [b] \ M with tp(e/M) regular, but e^

M
c1, . . . , cn,

contradicting the maximality of {c1, . . . , cn}. Thus, (a) holds for
M [b] = M [c1, . . . , cn] by Lemma 5.12(3). For the general case, take
N ⊇Mb to be any model dominated by b over M . Choose any regular
q non-orthogonal to N . By superstability, choose a finite d ⊆ N such
that q 6⊥Mbd. As bd is dominated by b over M , apply Fact A.8(3) to
find an a-prime M [b] over Mb containing d. Then q 6 perpM [b], hence
q 6⊥M by the special case above.

For (b), choose any model N ⊇ Mb that is dominated by b over
M . Choose any N ′ � N containing Mb and assume by way of con-
tradiction that N ′ 6= N . By Fact A.4, choose c ∈ N \ N ′ such that
q = tp(c/N ′) is regular. By (a) applied to N ′ and M we have q 6⊥M .
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So, by the 3-model Lemma (Fact A.7) , there is c∗ ∈ N −M that
does not fork with N ′ over M . As b ∈ N ′ we conclude that c∗^

M
b,

which contradicts N being dominated by b over M .
(2) Now assume that T is classifiable. Fix any model M on which

p is based and fix a realization b of p|M . Suppose N is dominated by
b over M . To show that N is minimal over Mb, choose any N0 � N
containing Mb. To see that N0 = N , choose any c ∈ N and we will
conclude that c ∈ N0. To start, choose any a-model M∗ � M with
b^
M
M∗. By Fact A.8(2), N is dominated by b over M∗. By PMOP,

choose a constructible model N2 over N ∪M∗. By Fact A.9(2) N2

is dominated by N over M∗, hence N2 is also dominated by b over
M∗ by Fact A.8(1). It follows from (1) that N2 is minimal over M∗b.
Also, c ∈ N2.

As N0 � N , by PMOP again we can find N1 � N2 that is con-
structible over N0∪M∗. The minimality of N2 over M∗b implies that
N2 = N1, hence c ∈ N1. As N1 is atomic over N0M

∗, we have that
tp(c/N0M

∗) is isolated. However, as cN0 is dominated by b over M ,
the fact that b^

M
M∗ implies that cN0 ^

M
M∗. As M � N0, we have

c^
N0

M∗. The Open Mapping Theorem implies that tp(c/N0) is iso-

lated, hence c ∈ N0. 2

5.4 The main theorem

Lemma 5.12 suggests the following notation. If M⊆na C and {ci : i ≤
n} are M -independent and realize regular, depth zero types over M ,
then the notation M(c0, . . . , cn) refers to any model dominated by
c0 . . . , cn over M . The reader is cautioned that even when tp(b/M) =
tp(c/M) are the same regular type, the notations M(b) and M(c)
represent possibly different isomorphism types of models dominated
over M by b or c, respectively.

Now suppose that T is classifiable, so in particular, a constructible
model N exists over any independent triple of models.

Lemma 5.15 Suppose T is classifiable, {ci : i < n} independent
over a model M and for each i, tp(ci/M) has depth zero and M(ci)
is dominated by ci over M . Then the constructible model N over⋃
{M(ci) : i < n} is dominated by {ci : i < n} over M . Thus, N is

minimal over M ∪ {ci : i < n} and its isomorphism type over M is
uniquely determined by the isomorphism types {M(ci) : i < n} over
M .

Proof. As {ci : i < n} are M -independent and as each M(ci) is
dominated by ci over M , it follows by forking calculus that {M(ci) :
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i < n} are M -independent. Thus, by PMOP, a constructible model
N over A :=

⋃
{Mi : i < n} exists. By Fact A.9(2) N is dominated

by A over M . Thus, N is dominated by {ci : i < n} over M by
Fact A.8(1). By Lemma 5.12(1), N is minimal over M ∪{ci : i < n}.
As N is constructible over A, its isomorphism type over M depends
only on the isomorphism type of A over M . By independence and M
being a model, the isomorphism type over A over M is determined
by the set of isomorphism types of its component pieces. 2

In light of Lemma 5.15, we write such an N as M(c0, . . . , cn−1).
In particular, if tp(c/M) has depth zero and M(c) is chosen, we
let M(c)(4) denote the prime model over four M -independent copies
of M(c). It follows from Lemma 5.15 that the isomorphism type of
M(c)(4) over M is uniquely determined by the type of M(c) over M .

For the next few results, recall that by Fact A.28, any non-locally
modular type has depth zero. Proposition 5.16 is the most technical
result of this paper.

Proposition 5.16 Suppose T is classifiable, M⊆na C, p ∈ S(M) is
regular but not locally modular. Then for any realizations b, c of p and
any choice of models M(b) and M(c) as above, M(b) elementarily
embeds into M(c)(4) over M .

Proof. Without loss of generality, we may assume b and c are
independent. Fix choices for M(b) and M(c). Choose d realizing
p|Mbc and choose M(d) to be isomorphic to M(c) over M . Let
M(bcd) denote the prime model over M(b)M(c)M(d). Since p is
not locally modular and as (b, c, d) realizes p(3), Corollary 5.10 gives
an a ∈ M(bcd) such that (a, b, c, d) is a witness to non-modularity
over M . Since M⊆naM(bcd), we can use Fact A.6 to find some
M(a) ⊆na M(bcd). As M(a),M(b),M(c) �M(bcd), by PMOP there
is a prime model M∗ �M(bcd) over M(a)M(b)M(c). Clearly, M∗ is
dominated by abc over M and (a, b, c) realizes p(3), so we can write
it as M(abc).

Claim 1. M∗ = M(bcd).
Proof. If not, then use Fact A.4 to choose g ∈M(bcd) \M∗ to

realize a regular type q. By Lemma 5.12 we have q 6⊥ M , so by the
3-model Lemma (Fact A.7) there would be h ∈ M(bcd) such that
tp(h/M) is regular and non-orthogonal to q, with h^

M
M∗. This h

is dominated by bcd over M , so tp(h/M) must be non-orthogonal
to p. But then h, a, b, c are independent realizations of regular types
non-orthogonal to p, contradicting wp(M(bcd)/M) = 3. 2

So M∗ is equal to both M(abc) and M(bcd). Next, let M(ab) �
M(abc) be the unique model that is prime over M(a) ∪M(b). For
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the moment we work over M(ab). Choose e to realize p|Mabcd and
fix an isomorphism

Φ : M(abc)→M(abe)

fixing M(ab) pointwise with Φ(c) = e. Put M(e) := Φ(M(c)). As
both d and M(d) are contained in M(abc), we let f := Φ(d) and
M(f) := Φ(M(d)). Let N∗ be prime over M(abc) ∪ M(abe) over
M(ab). Note that N∗ is dominated by ce over M(ab).

We now use the fact that (a, b, c, d) is a witness to non-modularity.
By construction, ef and cd have the same type over M(ab), so
it follows from Lemma 5.6 that {c, d, e, f} are independent over
M . It follows that the four models M(c),M(d),M(e),M(f) are M -
independent. Since M(d) was chosen to be isomorphic to M(c) over
M , M(e) = Φ(M(c)), and M(f) = Φ(M(d)), the four models are
pairwise isomorphic over M .

As each of M(c),M(d),M(e),M(f) are contained in N∗, let N �
N∗ be constructible over M(c)∪M(d)∪M(e)∪M(f). Note that N
is isomorphic to M(c)(4) over M and M(b) � M(ab) � N∗. Thus,
the Proposition is proved once we establish the following claim.

Claim 2. N = N∗.
Proof. If not, then by Fact A.4 choose g ∈ N∗ \ N with q :=

tp(g/N) regular. By Lemma 5.12, q is non-orthogonal to M . Thus,
by the 3-model Lemma (Fact A.7), there is h ∈ N∗ \M such that
tp(h/M) is regular and non-orthogonal to q, with h^

M
N . We split

into cases depending on the non-orthogonality class of q.
First, assume that q is non-orthogonal to p. On one hand, {h, c, d, e, f} ⊆

N∗ consists of 5 independent realizations of regular types non-orthogonal
to p. On the other hand, wp(M(ab)/M) = 2 and wp(N

∗/M(ab)) = 2,
so wp(N

∗/M) = 4, which is a contradiction.
Finally, assume that q is orthogonal to p. Then clearly tp(h/M(ab))

does not fork over M . But N∗ is dominated by ce over M(ab), and
by the orthogonality, h ^

M(ab)
ce. Thus, by transitivity, h^

M
N∗, which

is absurd since h ∈ N∗ \M . 2

Corollary 5.17 T classifiable. Suppose M⊆na C is countable and
p := tp(c/M) is regular but not locally modular. Then for each n,
Qn := {q ∈ Sn(Mc) : d̄c is dominated by c over M when d̄ |= q} is
countable.

Proof. Fix a model M(c) dominated by c over M and fix an
n ≥ 1. For any q ∈ Qn, choose a realization d̄q of q and let Nq

be any countable, `-constructible model over Mcd̄q. By Fact A.9(2)
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Nq is dominated by d̄qc (and hence by c) over M . By Proposi-
tion 5.16, choose an elementary embedding fq : Nq → M(c)(4) fix-
ing M pointwise. If Qn were uncountable, there would be distinct
q 6= q′ with fq(d̄qc) = fq′(d̄q′c). Thus, tp(d̄qcM) = tp(d̄q′cM), i.e.,
tp(d̄q/Mc) = tp(d̄q′/Mc), contradicting q 6= q′. 2

The following technical Lemma, which is true in any superstable
theory, is implicit in the proof of Lemma 5.3 of [9], but is included
here at the request of the referee.

Lemma 5.18 T superstable. Suppose M ⊆na C and A ⊇ M . For
every non-algebraic ψ(x, a0) (with a0 ⊆ A), suppose ϕ(x, a) is of
least R∞-rank satisfying the following conditions:

• a ⊆ A, ϕ(x, a) ` ψ(x, a0), and ϕ(x, a) consistent, but non-
algebraic.

Then cA is dominated by A over M for every c realizing ϕ(x, a).

Proof. The driving force is the equivalent of M ⊆na C prof-
fered by Lemma 2.9(c) of [5]. Choose any such ϕ(x, a) and by way
of contradiction, assume that cA is not dominated by A over M
for some c with ϕ(c, a). Choose an element b ∈ C such that b^

M
A,

but b /̂
M
Ac. Possibly enlarging a within A, choose an L(M)-formula

θ(x, y, z) ∈ tp(cab/M) such that θ(x, a, b) forks over Ma. Fix a fi-
nite F ⊆M containing the hidden parameters from θ with cab^

F
M .

Then a^
F
Mb and ϕ(x, a) ∧ θ(x, a, b) is consistent and forks over

Fa. Thus, by Lemma 2.9(c) of [5], there is some b′ ∈ M and some
L(M)-formula θ′(x, a, b′) such that ϕ(x, a) ∧ θ′(x, a, b′) is consistent
and forks over Fa. Thus, R∞(ϕ(x, a)∧ θ(x, a, b′)) < R∞(ϕ(x, a)). As
b′ ⊆ A, this contradicts the minimality of R∞(ϕ(x, a)). 2

Theorem 5.19 T classifiable. Suppose M⊆na C is countable and p :=
tp(c/M) is regular but not locally modular. Then there is a con-
structible, minimal model over Mc.

Proof. Assume by way of contradiction that there is no con-
structible model over Mc. As Mc is countable, there is a finite b̄
such that tp(b̄/Mc) is isolated, and a consistent, non-algebraic for-
mula θ(x) over Mb̄c that has no complete extension ψ(x) ` θ(x) over
Mcb̄. Among all consistent, non-algebraic formulas ϕ(x, b̄c) ` θ(x),
choose one of minimal R∞-rank. By Lemma 5.18 db̄c is dominated
by b̄c over M for every realization of ϕ(x, b̄c). However, tp(b̄/Mc) is
isolated, hence b̄c is dominated by c over M by Fact A.9(2). Thus,
by Fact A.8(1), db̄c is dominated by c over M for every d realizing
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ϕ(x, b̄c). However, ϕ(x, b̄c) has no complete extension, so there are a
perfect set of complete types in Sk(Mb̄c) extending ϕ(x, b̄c), where
k = lg(x). Thus, there are uncountably many distinct types in Qn
(where n = k + lg(b̄)) contradicting Corollary 5.17.

Thus, a constructible model N over Mc exists. As N is dominated
by c over M by Fact A.9(2), its minimality over M follows from
Lemma 5.11(2). 2

The following strengthening, obviating the requirements that M
be countable and M ⊆na C, is the main result of this section.

Theorem 5.20 Let M be any model of a classifiable theory T . If
p ∈ S(M) is regular but not locally modular and b is any realization
of p then every model N containing Mb that is dominated by b over
M is both constructible and minimal over Mb.

Proof. As T is classifiable and p is non-locally modular, then
p has depth zero by Fact A.28. We first prove the Theorem when M
is countable. Choose any N � M that is dominated by b over M ,
e.g., an `-constructible model over Mb. By Proposition 5.14(2), N is
minimal over Mb, hence N must be countable as well.

To show that N is constructible over Mb, choose any countable
M∗ � M with N ^

M
M∗ such that M∗⊆na C. By PMOP, choose a

countable N∗ that is prime over N ∪M∗. As N ^
M
M∗ and N is dom-

inated by b over M , N is also dominated by b over M∗ by Fact A.8(2).
As N∗ is atomic over M∗ ∪ N , it is dominated by N over M∗ by
Fact A.9(2), hence N∗ is dominated by b over M∗ by Fact A.8(2). By
Lemma 5.11 N∗ is minimal over M∗b. By Theorem 5.19, as M∗⊆na C
there is a countable S, constructible and minimal over M∗b. As S is
prime overM∗b, we may assume S � N∗. AsN∗ is minimal overM∗b,
N∗ = S, so N∗ is constructible overM∗b. To finish, since N ⊂ N∗,
N (as a set) is atomic over M∗b. By the Open mapping theorem, it
follows that N is already atomic over Mb. As N is a countable, it is
constructible over Mb.

Now suppose M is arbitrary. Choose any N ⊇ Mb that is domi-
nated by b over M . By Proposition 5.14(2), N is minimal over Mb.
To show that N is constructible over Mb, consider the pair (N,M)
in a language with a predicate U for M . Take a countable elementary
substructure in the pair language, (N ′,M ′) � (N,M) with b ∈ N ′.
It follows that, in the original language, N ′ and M are independent
over M ′.

As N ′ ⊂ N , b dominates N ′ over M . By the independence of
N ′ and M over M ′, b also dominates N ′ over M ′ by Fact A.8(2).
As N ′ is countable, it follows from the argument above that N ′ is
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constructible over M ′b by a construction sequence c̄ = 〈cα : α < β〉.
By Fact A.10, c̄ is also a construction sequence over Mb. Now by
PMOP, take N∗ � N , a constructible model over N ′ and M , inside
N . As Mbc̄ = N ′ as a set, it follows that N∗ is constructible over
Mb. As N is minimal over Mb, N∗ = N so N is constructible over
Mb. 2

Corollary 5.21 T classifiable. Suppose that M � N and N/M has
weight one, non-orthogonal to a non-locally modular type p. Then N
is both constructible and minimal over Mb for any element b ∈ N\M .

Proof. Choose any b ∈ N \ M . Since M ≺ N , by Fact A.4,
choose a ∈ N \ M such that p′ := tp(a/M) is regular. As N/M
is weight one, non-orthogonal to p, p′ 6⊥ p, so p′ is also non-locally
modular (see e.g., 7.2.4 of [7]). By Theorem 5.20, N is constructible
and minimal over Ma. In particular, tp(b/Ma) is isolated by some
L(M)-formula α(a, y). Dually, we have the following.

Claim. tp(a/Mb) is isolated.

Proof. As p′ ∈ S(M) is non-locally modular, choose θ(x) ∈ p′
as in Theorem 5.4. Also, since N/M has weight one, a /̂

M
b. Choose

an L(M)-formula β(x, b) witnessing this forking. Put

ψ(x, b) := θ(x) ∧ α(x, b) ∧ β(x, b)

Clearly, ψ(a, b) holds and we show it isolates tp(a/Mb). For this,
choose any L(M)-formula δ(x, y) and assume δ(a, b) holds. AsN � C,
it suffices to show that any a′ ∈ N realizing ψ(x, b) satisfies δ(x, b).
So choose any a′ ∈ ψ(N, b). Since θ(a′) holds, tp(a′/M) is p-simple.
Since β(a′, b) holds, tp(a′/Mb) forks over M , so a′ 6∈ M . Thus, as
N/M has weight one, a /̂

M
a′. Since tp(a/M) is regular, this implies

wp(a
′/M) > 0, so by Theorem 5.4(3), tp(a′/M) = p′ = tp(a/M).

Finally, as α(a, y) isolates tp(b/Ma), we have ∀y(α(a, y)→ δ(a, y)) ∈
tp(a/M). Thus, ∀y(α(a′, y) → δ(a′, y)) holds as well. Since α(a′, b)
was assumed to hold, we conclude that δ(a′, b) holds.. 2

Given the Claim, N is constructible over Mb, since from above it
is constructible over Mab and tp(a/Mb) is isolated. To see that N is
minimal over Mb, note that in fact, N is minimal over Ma′ for any
realization of p′ in N . So, choose any model N ′ � N containing Mb.
By the Claim there is some a′ ∈ N ′ realizing p′, hence N ′ = N . 2
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6 When domination implies isolation

We begin this section with a recasting of Theorem 5.20.

Corollary 6.1 Suppose T is classifiable, A is any set, p ∈ S(A) is a
regular, stationary, non-locally modular type, and b is any realization
of p. Then for any e, if be is dominated by b over A, tp(e/Ab) is
isolated.

Proof. Let M⊆na C be free from b over A and choose an `-
constructible model N ⊇ Mbe over Mbe. As be is dominated by b
over M , hence N is dominated by b over M . By Theorem 5.20, N is
constructible, hence atomic over Mb, so tp(e/Mb) is isolated. Also,
e^
Ab
Mb, hence tp(e/Ab) is isolated by the Open Mapping Theorem.

2

This result suggests the following definition.

Definition 6.2 A strong type p satisfies DI (read ‘domination im-
plies isolation’) if, for every set A on which p is based and stationary
and for every realization b of p|A, for every c ∈ C, if bc is dominated
by b over A, then tp(c/Ab) is isolated.

In the remainder of this section, we explore this notion in clas-
sifiable theories. Among depth zero-like types, the notion of DI has
many equivalents.

Proposition 6.3 Suppose T is classifiable. The following are equiv-
alent for a depth zero-like strong type p:

1. p is DI;

2. For every countable M on which p is based and for every b
realizing p|M , and for every n, the isolated types in Sn(Mb)
are dense;

3. For every countable M on which p is based, for every b realizing
p|M , there is a constructible model N over Mb. Moreover, every
model N that is dominated by b over M is constructible over
Mb;

4. Same as (3), but for every model M on which p is based;

5. There is some a-model M on which p is based and some b real-
izing p|M for which there is a constructible model N over Mb.

Proof. We prove (1)⇒ (2)⇒ (3)⇒ (4)⇒ (1). Then (4)⇒ (5)
is trivial and we will show (5)⇒ (2).
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(1)⇒ (2). Assume (1) and choose a countable M , b, and n as in
(2). Let ϕ(x, b,m) be any consistent formula with lg(x) = n. Choose
any model N that is dominated by b over M (e.g., an `-constructible
one). Choose any c ∈ N realizing ϕ(x, b,m). As cb is dominated by
b over M , it follows from (1) that tp(c/Mb) is isolated.

(2) ⇒ (3). Fix M and b as in (3). As M is countable and the
isolated types are dense, it follows from Vaught that a constructible
model N over Mb exists. For the final sentence, let N∗ be any model
dominated by b over M . As N is prime over Mb, we may assume
N � N∗. But, as N∗ is minimal over Mb by Proposition 5.14(2),
N = N∗, so N∗ is constructible over Mb.

(3) ⇒ (4). Fix M and b as in (4). Choose a countable model
M0 �M such that b ^

M0

M . By (3), let N0 be constructible over M0b.

Fix a construction sequence c̄ = 〈cα : α < β〉 for N0 over M0b. By
Fact A.10 c̄ is a construction sequence over Mb. Now, by PMOP, let
N be constructible over N0M . By concatenation, it follows that N
is constructible over Mb. For the final sentence, let N∗ be any model
dominated by b over M . As N is prime over Mb, we may assume
N � N∗. But then N = N∗, again by Proposition 5.14(2).

(4) ⇒ (1). Choose any set A on which p is based and stationary
and let b be any realization of p|A. Choose any element c ∈ C such
that bc is dominated by b over A. Choose any modelM ⊇ A satisfying
M ^

A
bc. It follows that bc is dominated by b over M . Choose any

model N dominated by bc over M . By transitivity we have that N is
dominated by b over M . Thus, by (4), N is constructible, and hence
atomic over Mb. In particular, tp(c/Mb) is isolated. Thus, tp(c/Ab)
is also isolated by the Open Mapping Theorem.

(4)⇒ (5) is immediate.
(5)⇒ (2). Let M∗ and b∗ be any a-model and witness exemplify-

ing (5). Given any countable M on which p is based and b realizing
p|M , the saturation of M∗ implies there is an M ′ � M∗ such that
tp(Mb) = tp(M ′b∗). Thus, without loss, assume M �M∗ and b = b∗.
As b realizes p|M∗, we have that b^

M
M∗. Let ϕ(x, b,m) be any con-

sistent formula with m ∈ M . By (5), choose a constructible (and
hence atomic) N over M∗b. Choose any c ∈ N realizing ϕ(x, b,m).
Then tp(c/M∗b) is isolated, hence tp(c/Mb) is as well by the Open
Mapping Theorem. 2

Proposition 6.4 Let T be classifiable.

1. Suppose stp(b/A) is depth zero-like and DI and bc is dominated
by b over A. Then stp(bc/A) is both depth zero-like and DI.

2. Suppose tp(bc/M) is depth zero-like and DI, and tp(c/Mb) is
isolated. Then tp(b/M) is depth zero-like and DI as well.
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3. If p and q are both depth zero-like and DI, then so is p⊗ q.

Proof. (1) That stp(bc/A) is depth zero-like is clear. As for DI,
choose an a-model M ⊇ A with b^

A
M . By Fact A.8 bc is dominated

by b over M , hence there is an a-prime model M [b] over Mb with
c ∈M [b]. As tp(b/M) is DI, M [b] is constructible over Mb by Propo-
sition 6.3(4). Thus, tp(c/Mb) is isolated, so M [b] is also constructible
over Mbc. Hence stp(bc/A) is DI by Proposition 6.3(5).

(2) That tp(b/M) is depth zero-like is immediate. For DI, choose
an a-model M∗ as in Proposition 6.3(5) witnessing that tp(bc/M) is
DI. Without loss, we may assume M � M∗, so bc^

M
M∗. It follows

from Lemma A.9(3) that tp(c/M∗b) is isolated as well. As tp(bc/M∗)
is DI, let N∗ be constructible over M∗bc. As tp(c/M∗b) is isolated,
N∗ is also constructible over M∗b. Thus, tp(b/M∗) is DI by Propo-
sition 6.3(5).

(3) As both p and q are depth zero-like, it is immediate that p⊗q is
as well. As for DI, let M be any model on which p⊗q is based and let
(c1, c2) realize p⊗ q. As both p and q are DI, there is a constructible
model N1 over Mc1 and a constructible model N2 over Mc2. As
c1 ^

M
c2, domination implies N1 ^

M
N2. It follows from Fact A.10 that

the set N2 is constructible over Mc1c2. By Fact A.10 again, the
set N1 is constructible over N2c1. Concatenating these construction
sequences, we get that the set N1 ∪N2 is constructible over Mc1c2.
Finally, by PMOP there is a model N∗ that is constructible over
N1N2. It follows that N∗ is constructible over Mc1c2, so p⊗ q is DI
by Proposition 6.3(4). 2

We can combine several of our results in the following Corollary
which both generalizes Corollary 5.21 and extends Theorem 3.2.

Corollary 6.5 T classifiable. Suppose p is a regular, non-trivial,
depth zero, DI type (for example a non-locally modular regular type)
and let tp(a/M) be p-semiregular of weight k. Then there is a con-
structible, minimal model N over Ma.

Proof. Choose an a-model M∗ independent from a over M and
choose an M∗-independent tuple c̄ = 〈ci : i < k〉 of realizations of
p|M∗ such that a and c̄ are domination equivalent over M∗.

As tp(a/M∗) is p-semiregular, it is depth-zero like. By Proposi-
tion 6.4(3) and (1), both tp(c̄/M∗) and tp(ac̄/M∗) are depth zero-like
and DI. To show that tp(a/M∗) is DI, by Proposition 6.4(2) it suf-
fices to show tp(c̄/M∗a) is isolated.

To see the isolation, first note that since tp(c̄/M∗) is DI, there is
an L(M∗)-formula α(x, c̄) isolating tp(a/M∗c̄). Next, choose L(M∗)-
formulas ϕ(x) ∈ tp(a/M∗) and θ(y) ∈ p|M∗ as in Fact A.22 and
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Theorem 5.4, respectively. As wp(a/M
∗c̄) = 0, the definability of p-

weight inside ϕ(x) implies there is a formula β(a, ȳ) ∈ tp(c̄/M∗a)
such that wp(a/M

∗d̄) = 0 for all d̄ realizing β(a, ȳ). Put

ψ(a, ȳ) :=
∧
i<k

θ(yi) ∧ α(a, ȳ) ∧ β(a, ȳ)

Visibly, ψ(a, ȳ) ∈ tp(c̄/M∗a). To see that it isolates tp(c̄/M∗a),
choose any L(M∗)-formula δ(x, ȳ) and suppose δ(a, c̄) holds. Choose
any d̄ such that ψ(a, d̄) holds and it suffices to show that δ(a, d̄)
holds. For this, we first show that d̄ realizes (p|M∗)(k). Since θ(di)
holds, tp(di/M

∗) is p-simple of p-weight ≤ 1 for each i < k. However,
wp(a/M

∗) = k and β(a, d̄) implies that wp(a/M
∗d̄) = 0. It follows

that we must have wp(di/M
∗) = 1 for each i < k and moreover,

{di : i < k} is independent over M∗. As p|M∗ is strongly regular,
i.e., by Theorem 5.4(3), each di realizes p|M∗, hence tp(d̄/M∗) =
(p|M∗)(k) = tp(c̄/M∗). To finish, since α(x, c̄) isolates tp(a/M∗c̄)
and since δ(a, c̄) holds, ∀x(α(x, ȳ) → δ(x, ȳ)) ∈ tp(c̄/M∗), so we
have ∀x(α(x, d̄) ∧ δ(x, d̄)) holding. Thus δ(a, d̄) holds, so tp(c̄/M∗a)
is isolated.

As tp(a/M∗) is depth-zero like and DI, the same is true of tp(a/M).
Let N be any `-constructible model over Ma. By Fact A.9(2), N is
dominated by a over M . So Proposition 6.3(4) implies that N is con-
structible over Ma and Proposition 5.14(2) gives the minimality of
N over Ma. 2

A Appendix

In this appendix, we bring together for the reader’s convenience,
many of the basic definitions and facts from classification theory
and geometric stability theory that are used throughout the paper.
Many of these can be found in e.g., Chapters 1,7, 8 of [7]. We assume
that the reader is familiar with stability theory, independence and
the basics of superstability. Throughout this appendix, T will be (at
least) a stable theory.

Definition A.1 • We say that M is an a-model if every strong
type over every finite B ⊆ M is realized in M . In the original
notation of Shelah ([10]) this corresponds to Fa

ℵ0-saturation.

• Let M � N be models of T , N is an na-extension of M , denoted
M⊆naN , if for every formula ϕ(x, y), for every tuple a from M
and every finite subset F of M , if N contains a solution to
ϕ(x, a) not in M , then M contains a solution to ϕ(x, a) that is
not algebraic over F .
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Obviously, if M is an a-model, then M ⊆na C, hence M ⊆na
N for any N � M . We see below (e.g., Facts A.5 and A.6) many
of the desirable attributes of working over a-models are reflected
in na-substructures. The utility of this notion is that by an easy
Löwenhiem-Skolem argument, models M ⊆na C of size |T | exist,
whereas typically a-models have larger cardinality.

Definition A.2 • If B ⊆ A, types p ∈ S(A) and q ∈ S(B) are
almost orthogonal, denoted p ⊥a q, if for all a realizing p and b
realizing q, if b^

B
A, then a^

B
b. p is almost orthogonal to the

set B, p ⊥a B if p ⊥a q for every q ∈ S(B).

• Two stationary types p ∈ S(A) and q ∈ S(B) are orthogonal,
denoted p ⊥ q, if p|C ⊥a q for all C ⊇ AB. p ∈ S(A) is
orthogonal to a set B, p ⊥ B, if p ⊥ q for every q ∈ S(B).

• A set C is dominated by E over D if for all b such that b is
independent from E over D, b is independent from C over D.

• A non-algebraic stationary type p is regular if it is orthogonal
to all its forking extensions.

• A non-algebraic stationary type p ∈ S(A) is strongly regular if
there is a formula ϕ(x) ∈ p such that, for any B ⊇ A, every
stationary type q ∈ S(B) containing ϕ(x) is either equal to p|B
or orthogonal to p.

Note that if B ⊆ A and p ∈ S(A), then p ⊥a B if and only if Aa
is dominated by A over B for some/every a realizing p.

We frequently use the following fact without mention (see e.g.,
1.4.4.2(ii) of [7]). Because of it, many of our adjectives for regular
types (e.g., local modularity, depth zero, p-weight) are really features
of the non-orthogonality class of the regular type.

Fact A.3 Non-orthogonality is an equivalence relation on set of reg-
ular types.

We list two existence theorems for regular types between models,
which are respectively Propositions 8.3.2 and 8.3.5 of [7].

Fact A.4 If T is superstable and M ≺ N with M 6= N , then there
is some a ∈ N \M with tp(a/M) regular.

Fact A.5 If T is superstable, M ⊆na N , and q is a regular type with
tp(N/M) 6⊥ q, then there is an a ∈ N \M with tp(a/M) regular and
non-orthogonal to q.

The following fact is a consequence of Lemma 5.3 in [9]:
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Fact A.6 Suppose T is superstable, M⊆naN are models of T and
M ⊆ A ⊆ N . Then there exists a model N ′, M ⊆ A ⊆ N ′⊆naN such
that N ′ is dominated by A over M .

Fact A.7 [The 3-model lemma] (Proposition 8.3.6 in [7]) Suppose T
superstable. Let M0 �M1 �M2 be models of T such that M0⊆naM2.
Suppose a ∈M2 and tp(a/M1) is regular non-orthogonal to M0. Then
there is b ∈M2 such that tp(b/M1) is regular and does not fork over
M0 and b is not independent from a over M1.

A.1 Domination and isolation in stable theo-
ries

In this subsection we list a number of facts about domination and
isolation that hold in arbitrary stable theories.

The first two of the following facts are obtained by forking calcu-
lus, and the third appears in 1.4.3.4 of [7].

Fact A.8 Let T be stable.

1. For any a, b, c,D, if abc is dominated by bc over D and bc is
dominated by c over D, then abc is dominated by c over D.

2. If E ⊇ D and ab^
D
E, then ab is dominated by b over D if and

only if ab is dominated by b over E.

3. If M is an a-model, then bc is dominated by b over M if and
only if stp(b/Mc) is a-isolated if and only if c is contained in
some a-prime model M [b] over Mb.

We now recall definitions and facts about isolation and constructibil-
ity.

A type p ∈ S(A) is isolated if there is some formula ϕ(x, a) ∈ p
such that ϕ(x, a) ` p. A construction sequence over A is a sequence
〈aα : α < β〉 such that tp(aα/A ∪ {aγ : γ < α}) is isolated for every
α < β. A model N is constructible over A if there is a construction
sequence over A whose union is N . If N is constructible over A then
it is both prime and atomic over A. Any two constructible models
over A are isomorphic over A.

If T is ℵ0-stable, then constructible models exist over every set
A. In a superstable theory it is not always true that there are con-
structible models over all sets. Indeed, one of the main goals of this
paper is to determine when constructible models over particular sets
exist.

A weaker notion is `-isolation. A type p ∈ S(A) is `-isolated
if, for every formula ϕ(x, y) there is a formula ψ(x, a) ∈ p such
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that ψ(x, a) ` p�ϕ, the restriction of p to instances of ±ϕ(x, b)
for b ∈ A. `-construction sequences and N being `-constructible
over A are defined analogously. An advantage is that for any count-
able stable theory T , for any set A and any consistent ϕ(x, a) with
a ⊆ A, an `-isolated p ∈ S(A) extending ϕ(x, a) exists (see e.g.,
IV 2.18(4) of [10]). By iterating this fact, `-constructible models over
A exist over any set A. The disadvantage is that there can be many
non-isomorphic `-constructible models over A. The following facts
are well known.

Fact A.9 Suppose T is stable, A,B are independent over a model
M and tp(c/MA) is `-isolated. Then:

1. tp(c/MA) ` tp(c/MAB), so tp(c/MAB) is `-isolated via the
same formulas witnessing the `-isolation of tp(c/MA);

2. Ac is dominated by A over M ; and

3. tp(c/MA) is isolated if and only if tp(c/MAB) is isolated.

Proof. (1) Choose any L-formula ϕ(x, y) and assume θ(x,ma) `
tpϕ(c/MA). If θ(x,ma) 6` tpϕ(c/MAB), then ∃x1∃x2(θ(x1,ma) ∧
θ(x2,ma)∧¬[ϕ(x1,mab)↔ ϕ(x2,mab)]). As A^

M
B, finite satisfiabil-

ity would imply the existence of b′ ∈M satisfying this, contradicting
θ(x,ma) ` tpϕ(c/Ma).

(2) Choose any e withA^
M
e. A non-forking extension of tp(c/MA)

to S(MAe) exists, and by (1) it is implied by tp(c/MA). Thus, c ^
MA

e.

(3) Left to right is (1) and the converse is the Open Mapping
Theorem. 2

Iterating this yields

Fact A.10 If T is stable and A,B are independent over a model M ,
then for any sequence c̄ = 〈cα : α < β〉, c̄ is a construction sequence
over MA if and only if c̄ is a construction sequence over MAB.
In particular, if N is constructible over MA, then N (as a set) is
a construction sequence over MAB and hence is dominated by AB
over M .

The following will be useful under the assumption of PMOP (see
Section A.5).

Fact A.11 Suppose T is stable, (M0,M1,M2) is an independent
triple of models with b ∈ M1, and suppose that M1 is constructible
over Mb and M∗ is constructible over M1 ∪M2. If M1 is dominated
by b over M , then M∗ is constructible over M2b and dominated by b
over M2.
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Proof. By Fact A.10 the set M1 is a construction sequence over
M2b, so since M∗ is constructible over M1M2, M∗ is constructible
over M2b simply by concatenating the two construction sequences.
The domination is by Fact A.9(2). 2

A.2 p-simplicity and locally modular regular
types

Let p be any (stationary) regular type, which for convenience we take
to be over ∅. Consider p(C) the set of realizations of the type p, then
(p(C), clfork) forms a homogeneous pre-geometry (see e.g., Chapter 7
of [7]), where a ∈ clfork(B) means that a forks with B over ∅. Recall
that a pre-geometry (G, cl) is modular if, for all closed sets X,Y ⊆ G
we have

dim(cl(X ∪ Y )) + dim(X ∩ Y ) = dim(X) + dim(Y )

and is locally modular if the above holds whenever dim(X ∩ Y ) 6= 0.
By considering a minimal counterexample, it is well known that if
(G, cl) is not modular, then one can find closed sets X,Y, Z ⊆ G,
each of finite dimension, such that X ⊇ Z, Y ⊇ Z, dim(X/Z) =
dim(Y/Z) = 2, X ∩ Y = Z, but dim(cl(X ∪ Y )/Z) = 3.

Now suppose that M is an a-model, let p|M denote the non-
forking extension of p to S(M). Since p(M) contains closed sets of
infinite dimension, the induced pre-geometry (p|M(C), clM ), where
a ∈ clM (B) iff a forks with B over M , is locally modular if and only
if it is modular. Moreover, if (p|M, clM ) is not modular, then there
exist four realizations (a1, a2, b1, b2) of p|M such that (a1, a2) and
(b1, b2) are each independent pairs over M , dim(a1a2, b1, b2/M) = 3,
but clM (a1a2) ∩ clM (b1b2) ∩ p|M(C) = ∅.

For many applications it is useful to work in a wider space than
(p(C), clfork). We recall the definition of p-simplicity.

Definition A.12 Suppose that a regular type p is non-orthogonal
to a set A.

• A strong type stp(a/A) is hereditarily orthogonal to p if stp(a/B)
is orthogonal to p for every B ⊇ A.

• A strong type stp(a/A) is p-simple if for some a-model M
independent from a over A, there is an M -independent set
{b1, . . . , bk} of realizations of p|M such that stp(a/Mb1, . . . , bk)
is hereditarily orthogonal to p. We say that stp(a/A) is p-simple
of weight k if k is least such.

• If stp(a/A) is p-simple of p-weight k we write wp(a/A) = k.
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• A formula θ(x) over A is p-simple of p-weight k if every strong
type extending θ is p-simple and k is the maximum of {wp(a/A) :
θ(x) ∈ stp(a/A)}.

• For a formula θ(x) over A, put (θA)eq := dcleq(A ∪ θ(C)). [If
θ(x) is p-simple, then stp(b/A) is p-simple for every b ∈ (θA)eq.]

• For a p-simple θ(x) over A, we say p-weight is definable and
continuous inside θ(x) if, for any b ∈ (θA)eq and any c ∈ Ceq, if
wp(b/Ac) = n, then there is some ϕ(x, y) ∈ tp(bc/A) such that
for any b′c′ realizing ϕ, wp(ϕ(x, c′) = n [hence wp(b

′/Ac′) ≤ n].

The following facts will be used repeatedly.

Fact A.13 Suppose p is a regular type non-orthogonal to a set A.

1. If A ⊆ B and a^
A
B, then stp(a/A) is hereditarily orthogonal to

p if and only if stp(a/B) is hereditarily orthogonal to p. [7.1.3’
of [7]]

2. In particular, (taking B to be an a-model) wp(a/A) = 0 if and
only if stp(a/A) is hereditarily orthogonal to p.

3. If stp(a/A) and stp(b/A) are p-simple, then so is stp(ab/A).
Moreover, wp(ab/A) = wp(a/Ab) + wp(b/A). [Lemmas 7.1.4(i)
and 7.1.11 of [7].]

4. If stp(a/A) is p-simple and b ∈ acl(Aa), then stp(b/A) is p-
simple. [Lemma 7.1.4(ii) of [7]]

5. If stp(a/A) is p-simple then stp(a/B) is p-simple for every B ⊇
A. [Lemma 7.1.10 of [7]]

6. p is p-simple and wp(p) = 1.

Non-orthogonality to p gives the existence of p-simple types within
the definable closure:

Fact A.14 (Lemma 1.17, Chapter 7 in [7]). Let X be algebraically
closed and tp(a/X) be non-orthogonal to p. Then there is e ∈ dcl(aX)
such that tp(e/X) is p-simple of positive p-weight.

Following [3] and [7], for any set A with p 6⊥ A, let

D(p,A) := {a ∈ C : stp(a/A) is p-simple of finite p-weight}

We equip D(p,A) with a closure operator clp, namely for a,B from
D(p,A), a ∈ clp(B) if and only if wp(a/BA) = 0. Technically, the
closure relation clp depends on A, but much of the time we will take
A = ∅, so we do not muddy our notation by referring to it explic-
itly. In light of Fact A.13, the closure space (D(p,A), clp) admits a
good dimension theory, but it is not a pre-geometry as the Exchange
Axiom fails.
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Definition A.15 Fix any set A with p 6⊥ A, D(p,A) is modular
if wp(a/A) + wp(b/A) = wp(ab/A) + wp((clp(a) ∩ clp(b))/A) for all
a, b ∈ D(p,A).

As shown for example in 7.2.4 of [7]:

Fact A.16 The regular type p is locally modular (as defined above)
if and only if D(p,A) is modular for all sets A 6⊥ p.

A.3 p-semiregular types

Within the space D(p,A), it is useful to identify the p-semiregular
types.

Definition A.17 stp(a/A) is p-semiregular of weight k if it is p-
simple and is (eventually) domination equivalent to p(k) for some
finite k ≥ 1, i.e., for some (equivalently, for all) a-models M inde-
pendent from a over A, there is an M -independent sequence b̄ =
〈b1, . . . , bk〉 of realizations of the non-forking extension p|M witness-
ing the p-simplicity of stp(a/A), with a and b̄ domination equivalent
over M (for any set X, X ^

M
a if and only if X ^

M
b̄.)

There is a natural Criterion for determining whether a p-simple
type is p-semiregular. This Criterion appears as either Fact 1.4 of [4]
or 7.1.18 of [7]):

Criterion A.18 Suppose stp(a/X) is p-simple of positive p-weight,
and choose Y ⊆ dcl(aX). Then stp(a/Y ) is p-semiregular of positive
p-weight if and only if a 6∈ acl(Y ), but wp(e/Y ) > 0 for every e ∈
dcl(aY ) \ acl(Y ).

To get the existence of a p-semiregular type nearby a given p-
simple type, we couple this with the following easy Lemma, whose
proof only requires superstability.

Lemma A.19 Suppose a and X are given with a finite, and Y is
chosen arbitrarily such that X ⊆ Y ⊆ acl(Xa). Then there is a finite
sequence b from Y such that Y ⊆ acl(Xb).

Proof. Recursively construct a sequence 〈bi : i〉 from Y of max-
imal length such that a /̂

Bi
bi, where Bi := X ∪ {bj : j < i}. Clearly,

R∞(a/Bi) is strictly decreasing with i, so any such sequence has
finite length. But, for the sequence to terminate, it must be that
Y ⊆ acl(Bi∗) for the terminal i∗. 2

Finally, we get our existence lemma.
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Lemma A.20 If stp(a/X) is p-simple of positive p-weight, then
there is a finite b from dcl(aX) ∩ clp(X) such that stp(a/Xb) is p-
semiregular and wp(a/Xb) = wp(a/X).

Proof. Let Y = dcl(aX) ∩ clp(X) and choose a finite b from Y
such that Y ⊆ acl(Xb). Now dcl(Y a) = dcl(Xa), so if e ∈ dcl(Y a) \
acl(Y ), we must have wp(e/Y ) > 0, lest we would have e ∈ Y . Thus,
Criterion A.18 for p-semiregularity applies. 2

Next we record ways in which an existing p-semiregular type is
persistent.

Lemma A.21 Suppose stp(e/X) is p-semiregular.

1. If e′ ∈ acl(eX) \ acl(X), then stp(e′/X) is p-semiregular;

2. If stp(e/Y ) is parallel to stp(e/X), then stp(e/Y ) is p-semiregular
of the same p-weight;

3. If X ⊆ Y ⊆ clp(X), then stp(e/Y ) is p-semiregular of the same
p-weight.

Proof. (1) As dcl(e′X) ⊆ dcl(eX), the result follows by Crite-
rion A.18.

(2) This is immediate, as ‘domination equivalent to p(k)’ is pre-
served.

(3) Since stp(e/X) is p-semiregular, we automatically have e^
X
Y ,

so (3) follows from (2). 2

Recalling Definition A.12, the following fact is Theorem 2(b) in
[4].

Fact A.22 Let T be superstable, let p be a non-trivial regular type
of depth zero and let stp(a/B) be p-semiregular. Then a lies in some
acl(B)-definable set D such that p-weight is continuous and definable
inside D.

A.4 p-disjointness

Definition A.23 Suppose a, b ∈ D(p, C). We say that a and b are
p-disjoint over C if clp(Ca) ∩ clp(Cb) = clp(C).

The next two Lemmas discuss the relationship between p-disjointness
and forking, at least when stp(ab/C) is p-semiregular.

Lemma A.24 Suppose that stp(ab/C) is p-semiregular, C ⊆ D and
stp(ab/D) does not fork over C. Then clp(Ca) ∩ clp(Cb) = clp(C) if
and only if clp(Da) ∩ clp(Db) = clp(D).
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Proof. First, assume there is a ‘bad element’ e for the triple (a, b, C),
that is e ∈ clp(Ca)∩ clp(Cb) \ clp(C). As the existence of such an e is
clearly determined by tp(ab/C), by replacing D by some independent
D∗ realizing the same strong type as D over Cab, we may assume that
abe^

C
D. It follows immediately that e ∈ [clp(Da)∩ clp(Db)] \ clp(D)

so e is bad for (a, b,D) as well.
Conversely, if e is a ‘bad element’ for (a, b,D), let h := Cb(De/Cab).

We first claim that h 6∈ clp(C). If it were, then as stp(ab/C) is p-
semiregular, we would have ab^

C
h. But, as ab^

Ch
De, this would im-

ply ab^
D
e, contradicting e 6∈ clp(D). Thus, h 6∈ clp(C).

So, arguing by symmetry between a and b, it suffices to prove
that h ∈ clp(Ca). Choose a Morley sequence 〈D1e1, . . . , Dnen〉 in
stp(De/Cab) with D1e1 = De such that h ∈ dcl(e1 . . . enD1 . . . Dn).
The standard argument yields

D1, . . . , Dn^
C
ab

As well, h ∈ acl(Cab), hence D1, . . . , Dn^
Ca
h. Because of this, it

suffices to prove that stp(h/CaD1 . . . Dn) is hereditarily orthogonal
to p, i.e., has p-weight zero. However, for each i, wp(ei/aDi) = 0, so
wp(ei/CaD1 . . . Dn) = 0 for each i. But h ∈ dcl(e1 . . . enD1 . . . Dn),
so wp(h/CaD1 . . . Dn) = 0. 2

Lemma A.25 Suppose that stp(ab/C) is p-semiregular and clp(Ca)∩
clp(Cb) = clp(C). Then acl(Ca) ∩ acl(Cb) = acl(C).

Proof. Choose any e ∈ acl(Ca)∩acl(Cb). As acl(Ca) ⊆ clp(Ca)
and acl(Cb) ⊆ clp(Cb), our hypothesis implies that e ∈ clp(C).
However, as stp(ab/C) is p-semiregular, this implies ab^

C
e. As e ∈

acl(abC), this implies e ∈ acl(C) as desired. 2

Thanks to Lemma A.25 we will be able to apply the following
general result below about forking to p-disjoint p-semiregular types.

Lemma A.26 For all a, b, C, acl(Ca)∩acl(Cb) = acl(C) if and only
if for every set X, if X ^

Ca
b and X ^

Cb
a both hold, then X ^

C
ab holds

as well.

Proof. To ease notation, assume C = ∅. It suffices to prove
this for finite sets X. For left to right, fix an X, and let D denote
the canonical base of tp(X/ab). On one hand, D ⊆ acl(a), and on
the other hand, D ⊆ acl(b). Thus, by our assumption, D ⊆ acl(∅),
implying that X^ab.
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For the converse, choose any h ∈ acl(a) ∩ acl(b). Then, for triv-
ial reasons we have h^

a
b and h^

b
a, so by our hypothesis we have

h^ab. But, as h ∈ acl(ab), this implies h ∈ acl(∅). 2

A.5 Classifiable theories

Definition A.27 Let T be any stable theory.

• An independent triple is a sequence (A0, A1, A2) satisfying A1∩
A2 = A0 and A1 ^

A0

A2.

• A superstable theory does not have the dimensional order prop-
erty (NDOP) if, for every independent tripleM = (M0,M1,M2)
of a-models, the a-prime model M∗ over M1M2 (which exists
in any superstable theory) is minimal among all a-models con-
taining M1M2.

• A superstable theory has prime models over pairs (PMOP) if,
for any independent triple (M0,M1,M2) of models, there is a
constructible model over M1M2.

• A complete theory T in a countable language is classifiable if T
is superstable, has prime models over pairs (PMOP) and does
not have the dimensional order property (NDOP).

The following are essential facts about NDOP. These appear as
Lemma X 2.2 and Lemma X 7.2 of [10]. The second is also Fact 8.4.5
of [7].

Fact A.28 • T has NDOP if and only if, forM = (M0,M1,M2)
any independent triple of a-saturated models and M∗ a-prime
model over M1M2, any regular type q non-orthogonal to M∗ is
either non-orthogonal to M1 or M2.

• If T has NDOP, then any non-trivial regular type has depth
zero.

For countable, superstable theories with NDOP, the condition
PMOP has many equivalents. As notation due to Harrington, we
say that an independent triple (B0, B1, B2) extends the indepen-
dent triple (A0, A1, A2) if B0 ⊇ A0, B0 ^

A0

A1A2, B1 ⊇ A1B0, B2 ⊇
A2B0, and B1 ^

B0

B2. If (A0, A1, A2) is any independent triple then a

type p ∈ Sn(A1A2) is V -dominated if, for every independent triple
(B0, B1, B2) extending (A0, A1, A2), and every realization c of p, if
c ^
A1A2

B0, then c ^
A1A2

B1B2. The best known equivalent of PMOP is

NOTOP, the negation of the Omitting Types Order Property, see
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e.g., Definition XII 4.2 of [10]. Although it is not mentioned in the
statement of Fact A.29 below, Shelah says that T has the (ℵ0, 2)-
extension property if there is a constructible model over any inde-
pendent triple (M0,M1,M2) of countable models. As the notion of
NOTOP is not used in this paper, we merely note its equivalence to
the notions (2)–(4) that are used.

Fact A.29 The following are equivalent for a countable, superstable
theory T with NDOP:

1. T has NOTOP;

2. T has PMOP, i.e., for every independent triple (M0,M1,M2)
of models, a constructible model M∗ over M1M2 exists;

3. For every independent triple (M0,M1,M2) of models and every
n ≥ 1, every `-constructible p ∈ Sn(M1M2) is isolated;

4. For every independent triple (A0, A1, A2), every V -dominated
p ∈ S(A1A2) is isolated.

Proof. The equivalence of (1) and (2) are Theorem XII, 4.3 and
Lemma XII 6.2 of [10].

(2)⇒ (4): This is Lemma 8.5.10 of [7].
(4) ⇒ (3): Fix any independent triple (M0,M1,M2) of models

and any `-isolated p ∈ S(M1M2). To check that p is V -dominated, it
suffices to take an independent triple (N0, N1, N2) of models extend-
ing (M0,M1,M2). So choose such an (N0, N1, N2) and choose any c
realizing p with c ^

M1M2

N0. By Lemma 1.3 of [1], M1M2 ⊆TV N1N2,

i.e., every L(M1M2)-formula ϕ(x) with a solution in N1N2 has a
solution in M1M2. Thus, by [10], p ` tp(c/N1N2), so in particular,
c ^
M1M2

N1N2. Hence p is V -dominated, so p is isolated by (4).

(3) ⇒ (2): First, choose any independent triple (M0,M1,M2) of
countable models. As T is countable and stable, there is a countable
`-constructible model M∗ over M1M2. As each finite tuple from M∗

is `-isolated, it follows from (3) that M∗ is atomic over M1M2. As T
and M∗ are countable, this implies M∗ is constructible over M1M2.
Thus, in Shelah’s notation, we have proved that (3) implies that T
has the (ℵ0, 2)-extension property. The whole of Section XII 5 of
[10], culminating in Conclusion 5.14, is an inductive argument show-
ing that this implies the (λ, 2)-extension property for every infinite
cardinal λ, i.e., that (2) holds. An alternate approach to this induc-
tive argument is given in Theorem 3.5 of [1]. 2

Remark A.30 In fact, under the hypotheses of Fact A.29, if follows
from Theorem XII 4.17 of [10] that any constructible model M∗

occurring in the definition of PMOP is also minimal over M1M2.

46



References

[1] B. Hart, An exposition of OTOP. Classification theory (Chicago,
IL, 1985), 107–126, Lecture Notes in Math., 1292, Springer,
Berlin-New York, 1987.

[2] B. Hart, E. Hrushovski and M.C. Laskowski, The uncountable
spectra of countable theories, Annals of Mathematics, 152, 2000,
207 – 257.

[3] E. Hrushovski, Contributions to stable model theory, doctoral
thesis, UC Berkeley, 1986.

[4] E. Hrushovski and S. Shelah, A dichotomy theorem for regular
types, APAL, 45 (2), 1989, 157–169.

[5] E. Hrushovski and S. Shelah, Stability and omitting types, Israel
J. Math, 74 (2-3), 1991, 289–321

[6] R. Moosa and O.L. Sanchez, Isolated types of finite rank; an ab-
stract Dixmier-Moeglin equivalence, Selecta Mathematica, vol-
ume 25 (2019), number 1, Art.10.

[7] A. Pillay, Geometric Stability Theory, Oxford University Press,
1996.

[8] B. Poizat, Stable groups, Mathematical surveys and mono-
graphs, Vol. 87, AMS, 2001.

[9] S. Shelah and S. Buechler, On the existence of regular types,
APAL, 45 (3), 1989, 277–308

[10] S. Shelah, Classification Theory , (revised edition) North Hol-
land, Amsterdam, 1990.

47


