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Introduction

In obtaining the uncountable spectrum of any classifiable theory T in [START_REF] Hart | The uncountable spectra of countable theories[END_REF], localizations of ω-stability near certain regular types were considered. A regular type p ∈ S(M ) over a countable M is locally totally transcendental (locally t.t.) if it is not orthogonal to a q ∈ S(M ) that is strongly regular and for which there is a constructible (and hence prime) model over M and any realization of q. There are examples of depth zero non-trivial regular types in classifiable theories which are not locally t.t (see for instance Example 2.3). We intend to consider the manner in which models dominated by such types are constructed in future papers. In this paper, we concentrate on nonlocally modular regular types p and prove that they are all locally t.t. in a very strong way. The two main results build on the dichotomy theorem of Hrushovski and Shelah in [START_REF] Hrushovski | A dichotomy theorem for regular types[END_REF]. Here, we prove that if a stationary q ∈ S(A) is p-semiregular then • q is strongly p-semiregular (see Definition 3.1); and

• q is depth-zero like and "domination implies isolation" (DI), (see Definitions 5.12 and 6.2) hence if q is based on a model M then there is a constructible model N ⊇ M b for any realization b of q|M , and moreover, any N ⊇ M b that is dominated by b over M is constructible.

It is this last result which produces in particular the following easy to state theorem:

Theorem 5.17 Suppose that T is classifiable and M is any model. If p ∈ S(M ) is regular but not locally modular and b is any realization of p then every model N containing M that is dominated by b over M is both constructible and minimal over M b.

Section 2 contains some background information and as well there is an appendix (section 7) with a review of basic geometric stability theory. Section 3 contains the introduction of the notion of strongly semi-regular types and before proceeding to the main theorem, we provide some applications in section 4. The main theorem is found in section 5 and the paper proper concludes with an examination of other circumstances under which domination implies isolation in section 6.

Preliminaries and historical background

One of the major accomplishments of stability theory was Shelah's proof of the Main Gap in [START_REF] Shelah | Classification Theory[END_REF] where the notion of classifiable was introduced.

Definition 2.1 A complete theory T in a countable language is classifiable if T is superstable, has prime models over pairs (PMOP) and does not have the dimension order property (NDOP).

We assume that the reader is familiar with superstability and adopt the usual convention when working with stable theories that we are working in a large, saturated model C of the theory and all models mentioned are small elementary submodels of C, sets are small subsets of C and tuples are from C. We will also assume that T eliminates imaginaries i.e. T = T eq . We include for the reader's convenience an appendix at the end of this paper where we recall many of the basic definitions and notions from classification theory which we will refer to throughout.

The two properties, NDOP and PMOP, refer to independent triples M = (M 0 , M 1 , M 2 ) of models of T , where M 0 ⊆ M 1 , M 0 ⊆ M 2 , and M 1 M 0 M 2 . A superstable theory does not have the dimension order property (NDOP) if, for every triple M of a-saturated models, the a-prime model M * over M 1 M 2 (which exists in any superstable theory) is minimal among all a-saturated models containing M 1 M 2 . Shelah proves that NDOP is equivalent to the statement that any regular type q non-orthogonal to M * is either non-orthogonal to M 1 or M 2 .

A superstable theory T has prime models over pairs (PMOP) if, for any independent triple (M 0 , M 1 , M 2 ) of models, there is a constructible1 model over M 1 M 2 .

After Shelah defined PMOP, Harrington gave another treatment, which was developed in [START_REF] Hart | An exposition of OTOP. Classification theory[END_REF]. Given two independent triples M = (M 0 , M 1 , M 2 ), N = (N 0 , N 1 , N 2 ) of models, say that

N extends M if M 0 ⊆ N 0 , N 0 M 0 M 1 M 2 , and N i is dominated by M i over N 0 for i = 1, 2. Call a strong type stp(b/M 1 M 2 ) V -isolated if b M 1 M 2 N 1 N 2
for every extension N of M. Among countable superstable theories with NDOP, PMOP is equivalent to "every V -isolated strong type is isolated."

This notion of V -isolation will not be used directly in the paper, but it is an example of how, in classifiable theories, certain forms of domination or "weak" isolation, imply actual isolation. This is a theme that occurs throughout the paper and is highlighted in section 6.

In [START_REF] Shelah | On the existence of regular types[END_REF] but building extensively on [START_REF] Shelah | Classification Theory[END_REF], Shelah and Buechler prove that among complete countable theories T , T is classifiable if and only if every model is prime and minimal over an independent tree of countable, elementary substructures. We shall call such a tree a classifying tree.

Since then, there has been a considerable amount of work analyzing the 'fine structure' of classifiable theories. The fine structure to a large extent revolves around understanding the leaves of classifying trees. The leaves are controlled by depth zero types and so we remind the reader of the definition (for more definitions and classical results see the appendix, section 7). Definition 2.2 A regular type p in a superstable theory is said to have depth zero if for any a-model M on which p is based and any realization b of p|M , any type q over M [b] (the a-saturated prime model over M b), is non-orthogonal to M i.e. p does not support a regular type.

A leaf is a triple (M, b, N ) where M ⊂ N , b ∈ N , tp(b/M ) is regular and depth zero, and N is dominated by b over M . As one can imagine, the computation of the uncountable spectrum of a countable theory depends on, among other things, understanding the isomorphism types of leaves that appear in the classifying trees of models. Through the coarseness of cardinal arithmetic, in [START_REF] Hart | The uncountable spectra of countable theories[END_REF], it was not necessary to determine all possible isomorphism types of leaves in order to determine the uncountable spectra of countable theories. Still, the techniques available from classification theory are suitable to do this and demonstrate a deeper understanding of the structure of models of countable, classifiable theories. In this paper and subsequent papers, we intend to explore the isomorphism types of leaves (M, b, N ) at least when tp(b/M ) is non-trivial; in a classifiable theory, non-trivial types necessarily have depth zero. We recall two separate facts about leaves that were known before this investigation.

First of all, if (M, b, N ) is a leaf in a classifiable theory, tp(b/M ) is non-trivial and M ⊆ a C (all strong types of finite tuples from C over finite tuples in M are realized in M ) then the isomorphism type of N is determined up to isomorphism over M ; see [START_REF] Shelah | Classification Theory[END_REF]. Of course such an M would typically have size at least the continuum but this still shows that the geometry of tp(b/M ) plays a role in the isomorphism types of leaves.

Secondly, recall that if T is countable and stable, then for any set A, there is an -constructible model N over A (see Definition in Section 7.3). In particular, if M ⊂ N and N is -constructible over M b, then N is dominated by b over M . In fact, if T is countable, superstable, and NDOP, and (M, b, N ) is a leaf then N is -constructible over M b. This doesn't say that the isomorphism type of N is determined by M b but it does put constraints on how such N can be built.

Our goal is to measure the extent to which these results can be extended to constructible models assuming classifiability. Within the context of ω-stable theories, this is easy. As ω-stable theories have constructible models over any set, an ω-stable theory is classifiable if and only if it has NDOP. For such theories, if (M, b, N ) is a leaf then N is constructible over M b. Unfortunately, for an arbitrary classifiable theory, there are leaves (M, b, N ) for which N is not constructible over M b as this following example shows.

Example 2.3

The language will consist of countably many sorts U n and a collection of relations R n η for η ∈ 2 <ω for n ∈ N . There will also be a function + n for each n. Between sorts U n+1 and U n there will be a function f n . The canonical model of our theory in this language is as follows:

1. U n will be interpreted as the product of n + 1 many copies of 2 ω ; 2. R n η will hold of an n+1-tuple x 0 , . . . , x n iff η is an initial segment of x n ; 3. + n is interpreted as coordinatewise addition modulo 2, and 4. f n is the projection onto the first n coordinates.

The theory T of this structure is classifiable; in fact, it is superstable and unidimensional but not ω-stable. Now suppose that M is a model of T and N is an elementary weight one extension of M -the type of thing that would happen with leaves on a classifying tree. The claim is that if b ∈ N \M is any finite tuple then N is not constructible over M . To see this, suppose we have such a b. By presence of addition in all the sorts and the model M , we can assume that b is a singleton in some sort U n . But then if one considers the preimage of b under f n , one sees that this formula in the sort U n+1 does not contain an isolated type -the predicates R n η preclude this. This example is suggestive of the result we will prove in subsequent papers: if we don't restrict ourselves to finite tuples then of course N is determined by making a coordinated choice of elements from each sort.

In the example, all the regular types are locally modular (non trivial). It is not clear in advance that this is important but in this paper we will show that if (M, b, N ) is a leaf in a countable, classifiable theory and tp(b/M ) is not locally modular then N is constructible over M b.

Strongly p-semiregular types

Definitions of semi-regular types, p-simplicity and other related notions can be found in the appendix. Definition 3.1 A stationary type q ∈ S(B) is strongly p-semiregular of weight k > 0 if q is p-semiregular of weight k and there is a psimple formula θ(x) ∈ q of weight k such that if d realizes θ and C ⊇ B with d B C and w p (d/C) = w p (q), then tp(d/C) = q|C, the non-forking extension of q to S(C).

The goal of this whole section is to prove the following Theorem. Its proof is patterned after the argument in [START_REF] Hrushovski | A dichotomy theorem for regular types[END_REF], where Hrushovski and Shelah prove that in a classifiable theory, every non-locally modular stationary, regular type is strongly regular (i.e., strongly psemiregular of p-weight one). We will refer to precise Lemmas in their paper quite a few times in this section. When there is a risk of ambiguity, these Lemmas will be denoted as "Lemma x.y [START_REF] Hrushovski | A dichotomy theorem for regular types[END_REF]". Theorem 3.2 If T is classifiable and p is a non-locally modular regular type, then every stationary p-semiregular type is strongly psemiregular.

Remark 3.3

It appears that all is needed is T superstable, PMOP, and p is non-locally modular of depth zero.

Remark 3.4

By the open mapping theorem, this notion is parallelism invariant. In particular, if d E with tp(d/∅) stationary, then if tp(d/E) is strongly p-semiregular via θ(x, ē), then tp(d/∅) will be strongly p-semiregular via d r yθ(x, y), where r = stp(e/∅).

We will use this Remark as justification for freely adding independent parameters in many places.

Triples

In this subsection, T is superstable and p is a stationary regular type over ∅. We adopt the data structure of a triple and then show that a given triple can be massaged to get matching triples with more and more desirable properties. The key will be to obtain a minimal triple as a normal cover of a given one.

Definition 3.5

• A triple is a sequence (a, b, C) such that a, b ∈ D(p, C), i.e., stp(ab/C) is p-simple.

• A triple (a, b, C) is normal if the three strong types stp(ab/C), stp(a/Cb), and stp(b/Ca) are all p-semiregular.

• A triple (a, b, C) is p-disjoint if cl p (Ca) ∩ cl p (Cb) = cl p (C).
• There is a canonical way of extending a p-disjoint triple (a, b, C) to a matching, normal p-disjoint triple (a , b , C ). Lemma 3.9 Given any p-disjoint, normal (a, b, C), the normalization (a , b , C ) of any simple extension is a p-disjoint, matching extension of (a, b, C).

Proof. That all three species of simple extensions are matching is clear. Next, we show that each of the simple extensions preserves p-disjointness. This is clear for the first two, as cl p (Ca * ) = cl p (Ca) in the first case and cl p (Cb * ) = cl p (Cb) in the second. As (a, b, C) normal implies stp(ab/C) is p-semiregular, p-disjointness of the third species is preserved by Lemma 7.20.

The Lemma now follows from Lemma 3.7. 2 Definition 3.10 Suppose that (a, b, C) is a p-disjoint normal triple.

• A normal cover is any p-disjoint normal (a , b , C ) obtained as a sequence of extensions as in Lemma 3.9.

• Clearly, by superstability and the transitivity of being a normal cover, every normal triple (a, b, C) has a minimal, normal cover (a , b , C ). In fact, one can find one with the additional property that a ∈ dcl(C a). At present, this improvement does not seem to be necessary. Lemma 3.11 Given any p-disjoint, normal triple (a, b, C), there is a matching minimal, normal, p-disjoint triple (a , b , C ) that is a normal cover of (a, b, C).

Proof. Among all normal covers (a , b , C ) of (a, b, C), choose the one of smallest strength.

2

We close with two lemmas concerning p-disjointness. Proof. In light of Lemma 7.20, then p-disjointness of (a

1 , b 1 , C) implies that cl p (a 1 a 2 b 2 C) ∩ cl p (b 1 a 2 b 2 C) ⊆ cl p (a 2 b 2 C), so cl p (a 1 a 2 C) ∩ cl p (b 1 b 2 C) ⊆ cl p (a 2 b 2 C) Arguing in reverse, the p-disjointness of (a 2 , b 2 , C) yields cl p (a 1 a 2 C) ∩ cl p (b 1 b 2 C) ⊆ cl p (a 1 b 1 C)
Furthermore, it follows immediately from Lemma 3.12 that

cl p (a 1 b 1 C) ∩ cl p (a 2 b 2 C) ⊆ cl p (C)
and the result follows. 2

Triples over semi-regular types

Suppose that we have a fixed p-semi-regular type stp(e/∅). To find a formula as in Theorem 3.2 one first encapsulates e into the first component of a triple. 

Using triples

We recall in the appendix basic definitions and facts about regular locally modular types (Section 7.1)

The following Proposition is the content of Lemma 3.2 of [START_REF] Hrushovski | A dichotomy theorem for regular types[END_REF]. By the p-weight computations, at least one of {a 1 , a 2 } must be independent from b over M , so by passing to an automorphism of C, we may assume that d ⊆ a and d M b. Thus, (a, b, M ) is over d. Now, apply the Normalization Lemma 3.7, and then choose a minimal normal cover via Lemma 3.11.

2

The following generalization is the point of all these definitions.

Proposition 3.17 Proof. First, by p-semi-regularity, choose E and an E-independent (d i : i < k) realizations of p|E such that e E and e and (d i : i < k) are domination equivalent over E. Without loss, we may assume

E = ∅.
Fix (a 0 , b 0 , C 0 ) as in Proposition 3.16. Without loss, we may assume that it is over d 0 . Next, choose {a i b i : i < k} to be C 0independent with stp(a i b i /C 0 ) = stp(a 0 b 0 /C 0 ) for each i. Again, we may assume that each d i is over (a i , b i , C 0 ). As notation, let ā denote {a i : i < k} and b denote {b i : i < k}.

By iterating Lemma 3.13, we have that the triple (ā, b, C 0 ) is pdisjoint. As well, it follows from the independence that w

p (ā/C 0 ) = w p ( b/C 0 ) = 2k, w p (ā b/C 0 ) = 3k, and w p (ā/C 0 b) = w p ( b/C 0 ā) = k. It also follows that (ā, b, C 0 ) is normal.
As w p (e/d 0 , . . . , d k-1 ) = 0, it follows that w p (e/āC 0 ) = 0. Thus, the triple (eā, b, C 0 ) is a simple extension of (ā, b, C 0 ). By employing Lemmas 3.9, 3.11, and 3.15, there is a matching, minimal, normal cover (a, b, C) of (eā, b, C 0 ) that is p-disjoint and over e.

2

We continue literally along the lines of Section 3 of [START_REF] Hrushovski | A dichotomy theorem for regular types[END_REF], with our Proposition 3.17 taking the place of their Lemma 3.2. A key point is that we have the following Lemma, which takes the place of their Lemma 3.3.

From now on, fix a triple (a, b, C) as in Proposition 3.17. 

i < k, w p (a i /b i C 0 ) = 1. As stp(a i /b i C 0 ) is p-semi-
regular, we additionally have w p (a i /bC) = 1 as well. So, in order to establish [START_REF] Hart | An exposition of OTOP. Classification theory[END_REF], it suffices to prove that w p (a i /bb C) = 0 for each i < k.

Fix an i < k. We will actually prove that a i / C 0 b i b , which suffices.

To see this, by p-disjointness we have

cl p (Ca) ∩ cl p (Cb) ⊆ cl p (C) Thus, acl(C 0 a i )∩acl(C 0 b i ) ⊆ cl p (C). Coupling this with the fact that stp(a i b i /C 0 ) is p-semi-regular implies a i b i C 0 cl p (C), hence acl(a i C 0 ) ∩ acl(b i C 0 ) ⊆ acl(C 0 ) Now, on one hand, b Ca b, so in particular b i Ca b . By p-semi-regularity, a i b i C 0 Cab, so b i C 0 a i Ca hence, by transitivity b i C 0 a i b On the other hand, since stp(b /Ca) = stp(b/Ca), there is b i ∈ b (corresponding to b i ) such that b i / C 0 a i , hence b / C 0 a i b i
Combining the last three displayed expressions with Lemma 7.22 (where b takes the role of X) we obtain a i /

C 0 b i b .
(2) Given (1), this is identical to the p-weight computation given in Lemma 3.3 [START_REF] Hrushovski | A dichotomy theorem for regular types[END_REF] just multiplied by k.

(3) This is just like 3.3(c) [START_REF] Hrushovski | A dichotomy theorem for regular types[END_REF], with the minimality playing the same role here as it did there. More precisely, in order to establish a Cbb BB , one splits BB into its the p-weight zero part and its psemi-regular part. The independence of the first half is due to (a, b, C) having minimal strength, and the independence of the second half is due to the fact that w p (a/Cbb ) = 0 from [START_REF] Hart | An exposition of OTOP. Classification theory[END_REF].

2

Continuing, Lemma 3.4 [START_REF] Hrushovski | A dichotomy theorem for regular types[END_REF] goes through, with the following changes:

• In (1), multiply all inequalities by k;

• Replace (2)ii by 'w p (b /Cab) < k';

• (2)iii remains as stated, 'ρ(a, b, b ) holds and w p (a/Cbb ) = 0.' With these changes, Lemma 3.5 [START_REF] Hrushovski | A dichotomy theorem for regular types[END_REF] goes through. Finally, the Proof of 3.1 [START_REF] Hrushovski | A dichotomy theorem for regular types[END_REF] goes through verbatim, noting our definition of (a, b, C) being 'over e' implies e Cb. In particular, stp(e/Cb) is strongly psemiregular. In light of Remark 3.4, so is stp(e/∅). 2

4 Applications of Theorem 3.2

In this brief section, we give two applications of Theorem 3.2, although they will not be used in the proof of our main results.

Lemma 4.1 If T is superstable, if H is an infinitely definable connected group (over A), with generic strongly p-semiregular, then H is definable over A.

Proof. Let r be the generic of H and ϕ(x) ∈ L(A) be the formula such that r is the unique type of p-weight k in ϕ. By superstability, there is a definable group H with connected component H. The formula ϕ(x) contains the principal generic, hence H is a finite union of translates of ϕ. Each translate of ϕ contains a unique type of p-weight equal to k. Every other generic type of H must also be of p-weight k, so there are only finitely many generic types in H . This means that H, its connected component, has finite index in H , hence that H itself is in fact definable (H is a closed subgroup in H , if it has finite index it must be also open).

2

Together with Theorem 3.2, this immediately yields the following corollary: Corollary 4.2 Let T be classifiable and p a non-locally modular regular type. If H is an infinitely definable connected group (over A), with generic p-semiregular, then H is definable over A.

The second application connects binding group constructions with isolation of p-semiregular types, in the spirit of [START_REF] Hrushovski | Stability and omitting types[END_REF] or more recently [START_REF] Moosa | Isolated types of finite rank; an abstract Dixmier-Moeglin equivalence[END_REF].

First, an easy remark :

Remark 4.3 In general, if there is a B-definable group G acting transitively on a complete type q over B, then q is isolated over B: Let e realize q, consider the formula ϕ(x) ∈ L(Be) : ∃g ∈ G x = g.e.

Then ϕ(x) holds if and only if x |= q. So q is isolated by a formula over e. On the other hand , q is B-invariant, so in fact, q is isolated by a formula over B.

Let us now recall some definitions and notation.

Definition 4.4 Let B = acl(B) and q be a (partial) type over B and r a complete type over B. We say that r is q-internal over B if there is D ⊃ B such that for every e |= r|D, e ∈ dcl(q() ¸).

Proposition 4.5 ([7] or [START_REF] Poizat | Stable groups, Mathematical surveys and monographs[END_REF])

Let B = acl(B) ⊃ M , q ∈ S(B), q ⊥ M , but q ⊥ a M . Let p ∈ S(M ) such that q ⊥ p.
Then for all a |= q, there is a ∈ dcl(Ba) \ dcl(B) such that tp(a /B) is p-internal.

Lemma 4.6 Let B = acl(B) ⊇ M , q ∈ S(B), q ⊥ M , but q ⊥ a M . Let p ∈ S(M ) be regular such that q ⊥ p and suppose that q is psemiregular. Then a Proof. Let a realize q and let E ⊆ p(C) be finite. Let E 1 ⊆ E be a maximal M -independent subset of E, and let E 2 be a maximal subset of E 

Let B = acl(B) q ∈ S(B), p ∈ S(B) such that q is p(C)-internal.Let G := Aut(q(C)/B ∪ p(C)).
Then G and its action are infinitely definable in the following sense: there is G 1 an infinitely definable group over B and a B-definable action of G 1 on q(C) such that, as permutation groups of q(C) over C, G and G 1 are isomorphic. If a B p(C) for all a realizing q, then G and hence also G 1 act transitively on q(C).

Note that by stability, the group G is also the group of restrictions to q(C) of the automorphisms of C fixing p(C) ∪ B pointwise. Recall that G is infinite if and only if q is not algebraic over p(C)) ∪ B.

We can always suppose that the action is faithful (that is, that the subgroup of G 1 which fixes all of q(C) pointwise is trivial).

The next proposition tells us that we can always suppose that G is connected. Proposition 4.8 If the infinitely definable group G and its connected component G 0 are defined over B = acl(B) and G acts definably transitively on the type q over B, then so does its connected component G 0 .

Proof. Let Q denote the set of realizations of the type q in C and let B = ∅. As G 0 is a subgroup of G, everything is clear except that G 0 acts transitively on Q. We obtain this via two claims and a brief argument.

Claim 1. There is some pair (e, e * ) realizing q ⊗ q and some h ∈ G 0 such that h.e = e * .

Proof. Choose a set of representatives R ⊆ G(C) such that every g ∈ G can be written as ch for some c ∈ R and h ∈ G 0 , i.e., R contains an element of every G 0 -coset of G. As the index [G : G 0 ] is bounded, we may choose R of bounded size (2 ℵ 0 if the language is countable). Choose any e realizing q|R and any e realizing q|Re.

By the transitivity of the action, as both e, e realize q, choose g ∈ G such that g.e = e . By choice of R, choose c ∈ R and h ∈ G 0 such that g = ch.

Now, as c ∈ R, both g and h are equi-definable over R. Thus, g.e and h.e are equi-definable over Re. As g.e = e and e ∅ Re, we conclude that h.e ∅ Re. Thus, e * := h.e satisfies the Claim. 2

Claim 2. For every (e, e ) realizing q ⊗ q there is h ∈ G 0 such that h.e = e . Proof. Homogeneity of C/B. Fix (e, e * ) and h as in Claim 1, and let (e 1 , e 2 ) be any other realization of q ⊗ q. Choose an automorphism σ of C, fixing B pointwise with σ(e) = e 1 and σ(e * ) = e 2 . Then, as G and the action are B-definable, σ(h) ∈ G 0 and σ(h).e 1 = e 2 . 2

To complete the proof of the Lemma, choose any e, f ∈ Q. Choose e * realizing q|{e, f }. By Claim 2, choose h 1 ∈ G 0 such that h 1 .e = e * and choose h 2 ∈ G 0 such that h 2 .e * = f . Then h 2 h 1 ∈ G 0 and h 2 h 1 .e = f , so G 0 acts transitively on Q.

2

The following results give a sufficient condition for a non locally modular type to be isolated. These results will be used as part of the forthcoming work of the authors on the analysis of weight one models in classifiable theories.

The following definition appears already in [START_REF] Hrushovski | Stability and omitting types[END_REF]. Definition 4.9 We say that q ∈ S(B) is c-isolated (following Hrushovski-Shelah in [START_REF] Hrushovski | Stability and omitting types[END_REF]) if there is a formula θ(x) ∈ L(B), q θ(x) such that R ∞ (θ(x) = R ∞ (q) = α and furthermore, for any r ∈ S(B), such that r θ(x), R ∞ (r) = α. Proposition 4.10 Let q ∈ S(B) be p-strongly semiregular and cisolated via the formula ϕ(x) and let G 1 be an infinitely definable group over B, with a B-definable faithful transitive action of G 1 on q(C). Then q is isolated.

Proof. By the usual construction, find a B-definable overgroup of G 1 , H, a B-definable set X containing q, and a B-definable (faithful) transitive action of H on X which extends the action of G 1 on q(C), and such that X ⊂ ϕ(C).

So X has the property that every type over B in X has same R ∞ rank as q, say α, that every type in X is p-simple, of p-weight at most equal to k, the p-weight of q, and that q is the unique type in X of p-weight exactly k. We show that X isolates q.

Claim 1. Let e realize q, and let h ∈ H be independent from e over B, then h.e also realizes q.

Proof. Then e and h, h -1 are also independent over B. If d = h.e, then d and e are interdefinable over B, h, h -1 . As X ⊂ ϕ(C), t(d/B) is p-simple of p-weight at most k. As e is independent from h, h -1 over B, it remains of p-weight k. By interdefinablity, d and e must have same p-weight over B, h, h -1 , that is k. It follows that t(d/B) must already have p-weight k over B, and hence must be equal to q. 2 Claim 2. Let h be any element of H, not necessarily independent from e, and let d = h.e. Then d realizes q.

Proof. Let g be a generic in H, independent from h, e ( and hence from h, e, d) over B. It follows that g -1 h and e are independent over B : g -1

Bh

e by choice of g, hence (g -1 h) Bh e. As g -1 is generic and independent from h, g -1 h is also generic independent from h, so it follows that g -1 h and e are independent over B. Hence by Claim 1, f := (g -1 h).e realizes q.

But, by c isolation of q, g and f are also independent over B: Note that d and f are interdefinable over Bg, as f = g -1 .d, hence they must have same ∞-rank over Bg. By our choice of g, g

B d, hence R ∞ (d/Bg) = R ∞ (d/B) = α = R ∞ (f /Bg) = R ∞ (f /B).
It follows that f and g are independent over B. Thus, by Claim 1, g.f must realize q, but g.f = d.

2

As the action of H on X is transitive, we have shown that any element in the formula X must realize q, that is, that the type q is isolated.

2

Corollary 4.11 Let T be classifiable and p regular non-locally modular. If q ∈ S(B) (B = acl(B)) is p-semiregular, c-isolated and q ⊥ a M , then q is isolated.

Proof. First by Theorem 3.2, q is p-strongly semiregular. By classifiability, q ⊥ M (Fact labelNDOP); by Proposition 4.5 and the binding group Theorem (Proposition 4.7), there is an infinitely definable group G, defined over B which acts transitively on q(C). It now follows by Proposition 4.10 that q is isolated. 2

Note that we have used two conditions on the type q to prove isolation: the strong p-semiregularity condition goes up to non forking extensions, but the c-isolation does not necessarily.

Let us finish this section by mentioning another way to prove isolation, without group actions, in the case of a strongly regular type. It is not clear if this could be generalized to the case of strong p-semiregularity. Suppose that tp(c/B) := q is non-orthogonal to M . Let p be a regular type based over M . As q ⊥ a M , in particular, over B, q is almost orthogonal to p (ω) . By Fact 7.16 choose ϕ ∈ q that is p-simple, such that p-weight is defined and continuous in ϕ. As q is strongly regular, by strengthening ϕ we may additionally assume q is the only type over B containing ϕ of positive p-weight. Now choose n least such that there are ā = (a 1 , . . . , a n ) with each a i realizing ϕ and tp(ā/B) is not almost orthogonal to p (ω) . We know that such a finite n exists, since q non-orthogonal to p implies that some q ( ) is not almost orthogonal to p (ω) . Remark: Here, however, we are minimizing n without assuming ā is B-independent.

Note that n ≥ 2. Indeed, if a 1 realizes q, then a 1 /B is almost orthogonal to p (ω) by assumption. On the other hand, if a 1 realizes ϕ but not q, then w p (a 1 /B) = 0, so a 1 cannot fork over B with any any independent set of realizations of p.

Once n is fixed, choose k such that ā/B is not almost orthogonal to p (k) . To save writing, let n = m + 1 and r(ȳ) := (p|B) (k) . Choose a specific realization c of r such that ā / B c, and choose an L(B)-

formula θ(x, ȳ) ∈ tp(āc/B) witnessing the forking. Let γ(x 0 ) := ϕ(x 0 ) ∧ d r ȳ ∃x 1 . . . ∃x m ( ϕ(x i ) ∧ θ(x 0 , x 1 , . . . , x m , ȳ))
As B is algebraically closed, γ is over B. We argue that γ isolates q.

To see this, choose any b 0 realizing γ. Proof. By classifiability of T , tp(c/B) is then also strongly regular and depth zero. So the above Proposition applies. 2

Constructible, minimal models over realizations of non-locally modular types

The basic definitions and facts about locally modular regular types can be found in the appendix (Section 7.1). The following proposition follows from Section 7.1 of the appendix:, Proposition 5.2 Over any a-model M , if p ∈ S(M ) is a regular type, then p is non-locally modular if and only if there is a witness to non-modularity for p over M . Lemma 5.3 Suppose M is any countable model, and p ∈ S(M ) is regular, but not locally modular. There is an -finite set E (E is contained in the algebraic closure of some finite set) such that for any countable model M containing M ∪ E, there is a witness (a, b, c, d) to non-modularity over M .

Witnesses to non-modularity

Proof. Let M * ⊇ M be any a-model, and let q denote the non-forking extension of p to M * . As q is not locally modular, it follows from Proposition 5.2 that there is a witness (a, b, c, d) to non-modularity over M * . Choose a countable, -finite E over which tp(abcd/M * ) is based and stationary. To see that E suffices, choose any countable M containing M ∪ E. As M * is sufficiently saturated, we may assume that M M * . We argue that (a, b, c, d) is a witness to non-modularity over M . To see this, note that abcd 

A definable witness to non-modularity

In this section we assume throughout that T is classifiable. By Lemma 5.3, if p ∈ S(B) is any non-locally modular stationary, regular type over a countable set B, then there is a countable M containing B with a witness to non-modularity (a, b, c, d) over M (relative to the non-forking extension of p to M ). We first explore how definable such a witness is. For this, we recall some theorems of Hrushovski and Shelah in [START_REF] Hrushovski | A dichotomy theorem for regular types[END_REF]. Proof. For a given ordering of the variables, let S 0 be the conjunction of 4 i=1 θ(x i ) with formulas in tp(a, b, c, d) demonstrating that each variable has p-weight zero over the other three. Then, for any three coefficients, which we write as (x 2 , x 3 , x 4 ) for definiteness, if (b , c , d ) realizes p (3) and S 0 (a , b , c , d ) holds, then tp(d /M b c a ) forks over M b c . As tp(d /M b c ) is a non-forking extension of p, this implies w p (a /M ) > 0. Combined with θ(a ), this implies that tp(a /M ) = p. Easy p-weight computations show that (a , b , c , d ) is 4-dependent. To find a symmetric S, take the disjunction of the 24 S 0 's, with respect to each ordering of (x 1 , . . . , x 4 ). 2

Next, among all 4-dependent quadruples (a, b, c, d), we want to distinguish those that are witnesses to non-modularity over M . This will require some Lemmas. we show that w p (cdef /M ) = 4, i.e., that (c, d, e, f ) realizes p (4) . By way of contradiction, assume that this were not the case, i.e, that w p (cdef /M ) ≤ 3. We compute the following p-weights:

• w p (ef /M abcd) = 1 [it is ≥ 1 because of e, but < 2 since f ∈ cl p (M abe)].
• w p (ef /M cd) = 1 [it is ≥ 1 from the former line, but if it was = 2, then we would have w p (cdef /M ) = 4]. Then there is an M -definable δ(x 1 , x 2 , x 3 , x 4 , y, z) such that

• w p (ef /M ab) = 1 [it is > 0 because of e, but < 2 because f ∈ cl p (M abe)].
R(x 1 , . . . , x 4 ) := d p y∀z [(θ(z) ∧ β(x 2 , x 1 , y, z)) → δ(x 1 , . . . , x 4 , y, z)] is in tp(abcd/M ).
Proof. Immediate, by Lemma 5.6 and compactness.

2

We now consider the negation of the condition. n, and choose c 0 . . . , c n from N satisfying the hypotheses. Let M * be dominated by {c i : i ≤ n} over M . To see that M * is minimal, choose any M M * containing M ∪ {c i : i ≤ n}. Let M 0 M be dominated by {c i : i < n} over M . As M ⊆ na M , we can apply the Lemma to conclude that both M 0 ⊆ na M and that any regular type q non-orthogonal to M 0 is non-orthogonal to M . Now choose M 1 M to be dominated by c n over M 0 , by induction M 1 ⊆ na M * . In order to show that M * is minimal over M ∪{c i : i ≤ n}, it certainly suffices to prove that M 1 = M * . If this were not the case, then there would be a regular type q = tp(d/M 1 ) realized in the difference. As tp(c n /M 0 ) is a non-forking extension of tp(c n /M ), it is regular and of depth zero. Thus, by definition of depth zero, q ⊥ M 0 . Thus, by the inductive hypothesis, q is non-orthogonal to M . So, by the 3-model Lemma (Fact 7.4) applied to the triple (M, M 1 , M * ), there would be e ∈ M * such that tp(e/M ) is regular and non-orthogonal to q, with e M M 1 .

As {c i : i ≤ n}, this implies e M c 0 , . . . , c n , which contradicts M * being dominated by {c i : i ≤ n} over M . Thus, M * is minimal over

M { c i : i ≤ n}, proving (1).
Next, by Fact 7.3 there is a model N ⊆ na N that contains and is dominated by M * over M . Such an N is clearly dominated by {c i : i ≤ n} over M , so the previous paragraph applies to N . Thus, N = M * , so M * ⊆ na N , which gives [START_REF] Hart | The uncountable spectra of countable theories[END_REF].

Finally, choose any regular q non-orthogonal to M * = M 1 . As tp(c n /M 0 ) has depth zero, q is non-orthogonal to M 0 , hence is nonorthogonal to M by our inductive assumption.

2

The following definition extends the concept of depth zero to both finite, independent tuples of depth zero types as well as to types dominated by such tuples. Definition 5.12 A strong type p is depth-zero like if every regular type q non-orthogonal to p is of depth zero.

As examples, if a regular type p has depth 0, then any p-semiregular type q is depth zero-like. The following Proposition uses classifiability to obviate the need for M ⊆ na C in Lemma 5.11(1). Proposition 5.13 Suppose p is depth zero-like. Proof. (1) First, only assume T is superstable. Fix an a-model M on which p is based and a realization b of p|M . We first argue that if a regular type q is non-orthogonal to any a-prime model M [b] over M b, then q is non-orthogonal to M . To see this, choose a maximal M -independent set {c 1 , . . 

M * b. Also, c ∈ N 2 .
As N 0 N , by PMOP again we can find N 1 N 2 that is constructible over N 0 ∪ M * . The minimality of N 2 over M * b implies that

N 2 = N 1 , hence c ∈ N 1 . As N 1 is atomic over N 0 M * , we have that tp(c/N 0 M * ) is isolated. However, as cN 0 is dominated by b over M , the fact that b M M * implies that cN 0 M M * . As M N 0 , the Open Mapping Theorem implies that tp(c/N 0 ) is isolated, hence c ∈ N 0 . 2

The main theorem

Proposition 5.13 suggests the following notation. If M ⊆ na C and {c i : i ≤ n} are M -independent and realize regular, depth zero types over M , then the notation M (c 0 , . . . , c n ) refers to any model dominated by c 0 . . . , c n over M . Thus, even when tp(b/M ) = tp(c/M ) are the same regular type, the notations M (b) and M (c) represent possibly different isomorphism types of models dominated over M by b or c, respectively. If the theory is classifiable, then given any M (c), we let M (c) (4) denote the prime model over four M -independent copies of M (c). (It exists by PMOP and, via the Proposition above, it is both prime and minimal over i<4 M (c i ). Thus, the isomorphism type of M (c) (4) over M is uniquely determined by M (c).

Proposition 5.14 is the most technical result of this paper.

Proposition 5.14 Suppose T is classifiable, M ⊆ na C, p ∈ S(M ) is regular and there is a witness to the non-modularity of p over M . Then for any realizations b, c of p and any choice of models M (b) and M (c) as above, M (b) embeds into M (c) (4) over M .

Proof. Without loss of generality, we may assume b and c are independent. Fix choices for M (b) and M (c). Choose d realizing p|M bc and choose M (d) to be isomorphic to M (c) over M . Let M (bcd) denote the prime model over M (b)M (c)M (d). As there is a witness to the non-modularity of p over M and as (b, c, d) realizes p (3) , by Proposition 5.9 there is a "definable" one, and hence there is a ∈ M (bcd) such that (a, b, c, d) is a witness to non-modularity over M . Since M ⊆ na M (bcd), we can use Fact 7. Clearly, M * is dominated by abc over M and (a, b, c) realizes p (3) , so we can write it as M (abc).

Claim 1. M * = M (bcd).

Proof. If not, then choose g ∈ M (bcd) \ M * to realize a regular type q. By Lemma 5.11 we have q ⊥ M , so by the 3-model Lemma (Fact 7.4) there would be h ∈ M (bcd) such that tp(h/M ) is regular and non-orthogonal to q, with h M M * . This h is dominated by bcd over M , so tp(h/M ) must be non-orthogonal to p. But then h, a, b, c are independent realizations of regular types non-orthogonal to p, which is impossible since w p (M (bcd)/M ) = 3.

2 We now use the fact that (a, b, c, d) is a witness to non-modularity. By construction, ef and cd have the same type over M (ab), so it follows from Lemma 5.6 that {c, d, e, f } are independent over M . It follows that the four models M (c), M (d), M (e), M (f ) are Mindependent, and the construction shows that they are pairwise isomorphic over M .

So
As each of M (c), M (d), M (e), M (f ) are contained in N * , let N N * be prime over M (c) ∪ M (d) ∪ M (e) ∪ M (f ). Note that N is isomorphic to M (c) (4) over M and M (b) M (ab) N * . Thus, the Proposition is proved once we establish the following claim.

Claim 2. N = N * .
Proof. If not, then choose g ∈ N * \ N with q := tp(g/N ) regular. By Lemma 5.11, q is non-orthogonal to M . Thus, by the 3-model Lemma (Fact 7.4), there is h ∈ N * \ M such that tp(h/M ) is regular and non-orthogonal to q, with h M N . We split into cases depending on the non-orthogonality class of q.

First, assume that q is non-orthogonal to p. On one hand, {h, c, d, e, f } ⊆ N * consist of 5 independent realizations of regular types non-orthogonal to p. On the other hand, w p (M (ab)/M ) = 2 and w p (N * /M (ab)) = 2, so w p (N * /M ) = 4, which is a contradiction.

Finally, assume that q is orthogonal to p. Then clearly tp(h/M (ab)) does not fork over M . But N * is dominated by ce over M (ab), and by the orthogonality, h Proof. Fix n. For any q ∈ Q n , choose a realization dq of q and let N q be any countable, -constructible model over M c dq . Note that N q is dominated by dq c (and hence by c) over M . By Proposition 5.14, choose an embedding f q : N q → M (c) (4) fixing M pointwise. If Q n were uncountable, there would be distinct q = q with f q ( dq c) = f q ( dq c). As both f q and f q fix M pointwise, f q (c) = f q (c) realizes p, which would imply q = q , a contradiction. 6 When domination implies isolation

We begin this section with a recasting of Theorem 5.17.

Corollary 6.1 Suppose that A is any set, p ∈ S(A) is a regular, stationary, non-locally modular type, and b is any realization of p.

Then for any e, if be is dominated by b over A, tp(e/Ab) is isolated.

Proof. Let M ⊆ na C be free from b over A and choose anconstructible model N ⊇ M be over M be. As be is dominated by b over M , hence N is dominated by b over M . By Theorem 5.17, N is constructible, hence atomic over M b, so tp(e/M b) is isolated. Also, e Ab M b, hence tp(e/Ab) is isolated by the Open Mapping Theorem. 2

This result suggests the following definition. Definition 6.2 A strong type p satisfies DI (read 'domination implies isolation') if, for every set A on which p is based and stationary and for every realization b of p|A, for every c ∈ C, if bc is dominated by b over A, then tp(c/Ab) is isolated.

In the remainder of this section, we explore this notion in classifiable theories. We begin with two results that only require stability. Lemma 6.3 Suppose T is stable, M is a model, A ⊇ M is any set, and ϕ(x, a) isolates a type p ∈ S(A) Then:

1. For every B M A, p has a unique extension q ∈ S(AB) that is also isolated by ϕ(x, a) and 2. For any c realizing ϕ(x, a), cA is dominated by A over M .

Proof.

For (1), the unique type q := {ψ(x, b, a ) : ϕ(x, a) d r yψ(x, y, a ), where a ∈ A, b ∈ B, ψ(x, y, z) over M , and r = tp(b/M )}.

For [START_REF] Hart | The uncountable spectra of countable theories[END_REF], choose any B satisfying B M A. As p has a non-forking extension to S(B), it must be the q from (1). 2

Among depth zero-like types, the notion of DI has many equivalents. Proposition 6.4 Suppose T is classifiable. The following are equivalent for a depth zero-like strong type p: Proof. We prove (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (1). Then (4) ⇒ (5) is trivial and we will show (5) ⇒ (2).

(1) ⇒ (2). Assume (1) and choose a countable M , b, and n as in [START_REF] Hart | The uncountable spectra of countable theories[END_REF]. Let ϕ(x, b, m) be any consistent formula with lg(x) = n. Choose any model N that is dominated by b over M (e.g., an -constructible one). Choose any c ∈ N realizing ϕ(x, b, m). As cb is dominated by b over M , it follows from (1) that tp(c/M b) is isolated.

( 3. If p and q are both depth zero-like and DI, then so is p ⊗ q.

Proof. (3) As both p and q are depth zero-like, it is immediate that p ⊗ q is as well. As for DI, let M be any model on which p ⊗ q is based and let (c 1 , c 2 ) realize p ⊗ q. As both p and q are DI, there is a constructible model N 1 over M c 1 and a constructible model N 2 over M c 2 . As c 1 M c 2 , by iterating Lemma 6.3 it follows that N 1 is constructible over M c 1 c 2 and N 2 is constructible model over N 1 c 2 . However, by PMOP there is a model N * that is constructible over N 1 N 2 . It follows that N * is constructible over M c 1 c 2 , so p ⊗ q is DI by Proposition 6.4(4).

2

We can combine several of our results in the following Corollary which generalizes Corollary 5.18. Corollary 6.6 T classifiable. Suppose p is a regular depth zero DI type (for example a non-locally modular regular type) and let tp(a/M ) be p-semiregular of weight k. Then there is a constructible, minimal model N over M a.

Proof. Choose an a-model M * independent from a over M and choose an M * -independent tuple c = c i : i < k of realizations of p|M * such that a and c are domination equivalent over M * .

As tp(a/M * ) is p-semiregular, it is depth-zero like. By Proposition 6.5(3) and (1), tp(c/M * ) is depth zero-like and DI. To show that tp(a/M * ) is DI, by Proposition 6.5(2) it suffices to show tp(c/M * a) is isolated. First choose ϕ(y) ∈ p|M witnessing that p|M is strongly regular. Next, for each i < k, choose a formula θ i (y, x) ∈ tp(c i /M * a) such that θ i (y, a) forks over M * . Finally, as w p (a/M * c) = 0, it does so provably: tp(a/M*) is p-semiregular so, by Fact 7.16, we can find a formula ψ(x, ȳ) ∈ tp(ac/M * ) such that w p (a , M * c ) = 0 whenever a c realizes ψ(x, ȳ).

Then tp(c/M * a) is isolated by

i<k ϕ(y i ) ∧ i<k θ i (y i , a) ∧ ψ(ȳ, a)
As tp(a/M * ) is depth zero-like and DI, an application of Proposition 6.4(3) completes the proof. 2

p-simplicity and locally modular regular types

Let p be any stationary regular type, which for convenience we take to be over ∅. Consider p(C) the set of realizations of the type p, then (p(C), cl f ork ) forms a homogeneous pre-geometry (see e.g., Chapter 7 of [START_REF] Pillay | Geometric Stability Theory[END_REF]), where a ∈ cl f ork (B) means that a forks with B over ∅. Now suppose that M is an a-model, let p|M denote the nonforking extension of p to S(M ). Call a subset X ⊆ p|M (C) closed if whenever a ∈ p(C) does not fork over M , but a / M X, then a ∈ X. Because of the van der Waerden axioms, closed sets X come equipped with a dimension dim(X), which here is equal to the cardinality of a maximal M -independent subset I ⊆ M . Definition 7.5 The regular type p is locally modular if, for any asaturated M and for any closed subsets X, Y ⊆ (p|M

)(C), dim(cl(X ∪ Y )) + dim(cl(X ∩ Y )) = dim(X) + dim(Y )
Proposition 7.6 [START_REF] Pillay | Geometric Stability Theory[END_REF] Suppose that M is an a-model. The following are equivalent for a regular type p ∈ S(M ):

1. The type p is not locally modular; In fact it will be useful to work in a wider space than (p(C), cl fork ). We recall the definition of p-simplicity.

Definition 7.7

• A strong type stp(a/A) is hereditarily orthogonal to p if stp(a/B) is orthogonal to p for every B ⊇ A.

• A strong type stp(a/A) is p-simple if for some a-model M independent from a over A, there is an M -independent set {b 1 , . . . , b k } of realizations of p|M such that stp(a/M b 1 , . . . , b k ) is hereditarily orthogonal to p. We say that stp(a/A) is p-simple of weight k if k is least such.

• If stp(a/A) is p-simple of p-weight k we write w p (a/A) = k.

• A formula θ(x) over A is p-simple of p-weight k if every type extending θ is p-simple and k is the maximum of {w p (a/A) : θ(x) ∈ stp(a/A)}.

• For a p-simple θ(x) over A, we say p-weight is definable and continuous inside θ(x) if, for all C ⊇ A and for all a realizing θ, if w p (a/C) = m, then there is a formula ϕ(x, c) ∈ tp(a/C) of p-weight m and a formula ψ(y) ∈ tp(c/A) such that w p (ϕ(x, c )) ≤ m for all c realizing ψ.

Non-orthogonality to p gives the existence of p-simple types:

Fact 7.8 (Lemma 1.17, Chapter 7 in [START_REF] Pillay | Geometric Stability Theory[END_REF]). Let X be algebraically closed and tp(a/X) be non-orthogonal to p. Then there is e ∈ dcl(aX) such that tp(e/X) is p-simple of positive p-weight.

Following [START_REF] Hrushovski | Contributions to stable model theory[END_REF] and [START_REF] Pillay | Geometric Stability Theory[END_REF], for a set 

p-semiregular types

Within this space, it will be useful to identify the p-semiregular types.

Definition 7.11 stp(a/A) is p-semi-regular of weight k if it is psimple and is (eventually) domination equivalent to p (k) for some finite k ≥ 1, i.e., for some (equivalently, for all) a-models M independent from a over A, there is an M -independent sequence b = b 1 , . . . , b k of realizations of the non-forking extension p|M witnessing the p-simplicity of stp(a/A), with a and b domination equivalent over M (for any set X, X M a if and only if

X M b.)
There is a natural Criterion for determining whether a p-simple type is p-semiregular. This Criterion appears as either Fact 1.4 of [START_REF] Hrushovski | A dichotomy theorem for regular types[END_REF] or 7.1.18 of [START_REF] Pillay | Geometric Stability Theory[END_REF]): Criterion 7.12 Suppose stp(a/X) is p-simple of positive p-weight, and choose Y ⊆ dcl(aX). Then stp(a/Y ) is p-semi-regular of positive p-weight if and only if a ∈ acl(Y ), but w p (e/Y ) > 0 for every e ∈ dcl(aY ) \ acl(Y ).

• If T has NDOP, then any non trivial regular type must have depth zero. Proof. Choose any e ∈ acl(Ca)∩acl(Cb). As acl(Ca) ⊆ cl p (Ca) and acl(Cb) ⊆ cl p (Cb), our hypothesis implies that e ∈ cl p (C). However, as stp(ab/C) is p-semi-regular, this implies ab C e. As e ∈ acl(abC), this implies e ∈ acl(C) as desired.

p-disjointness

2

Thanks to Lemma 7.21 we will be able to apply the following general result below about forking to p-disjoint p-semiregular types. Proof. To ease notation, assume C = ∅. It suffices to prove this for finite sets X. For left to right, fix an X, and let D denote the canonical base of tp(X/ab). On one hand, D ⊆ acl(a), and on the other hand, D ⊆ acl(b). Thus, by our assumption, D ⊆ acl(∅), implying that X ab.

For the converse, choose any h ∈ acl(a) ∩ acl(b). Then, for trivial reasons we have h a b and h b a, so by our hypothesis we have h ab. But, as h ∈ acl(ab), this implies h ∈ acl(∅).

2

  Two triples (a, b, C), (a , b , C ) are matching if w p (ab/C) = w p (a b /C ), w p (a/Cb) = w p (a /C b ), and w p (b/Ca) = w p (b /C a ).

Definition 3 . 6 A 2

 362 soft extension of a triple (a, b, C) is a triple (a , b , C ) such that 1. a b C ⊆ dcl(abC); 2. C ⊆ C ⊆ cl p (C) with C \ C finite and C C ab 3. a ⊆ a ⊆ cl p (C a) and b ⊆ b ⊆ cl p (C b). Note that cl p (C ) = cl p (C), cl p (C a ) = cl p (Ca), and cl p (C b ) = cl p (Cb) in any soft extension. Lemma 3.7 (Normalization) Given any (a, b, C), there is a soft extension to a matching, normal triple (a , b , C ), called the normalization of (a, b, C). If (a, b, C) is p-disjoint, then (a , b , C ) will be p-disjoint as well. Proof. First, apply Lemma 7.14 to ab/C to get C ⊆ dcl(Cab)∩ cl p (C) such that stp(ab/C ) is p-semi-regular. Note that cl p (C ) = cl p (C), cl p (C a) = cl p (Ca), and cl p (C b) = cl p (Cb). Next, apply the Lemma to b/aC to get a and stp(b/C a ) p-semi-regular, and finally apply the Lemma to a /C b to get b . It is easily checked that (a , b , C ) is normal and matches (a, b, C). The preservation of pdisjointness is clear because of the equality of the p-closed sets mentioned above. Next we describe three ways of extending a given triple (a, b, C) to a larger, matching (a , b , C ) that preserves p-disjointness. Definition 3.8 A simple extension of a triple (a, b, C) is any of: 1. (a * , b, C), where a ⊆ a * ⊆ cl p (Ca); 2. (a, b * , C), where b ⊆ b * ⊆ cl p (Cb); 3. (a, b, C * ), where C * ⊇ C and C * C ab.

  The strength of (a, b, C) which we denote by α(a, b, C), is equal to R ∞ (a/bb C), where b is (any) element satisfying stp(b /Ca) = stp(b/Ca) and b Ca b. (This is well-defined, as stp(abb /C) is independent of our choice of b .)• A normal triple (a, b, C) is minimal if α(a, b, C) ≤ α(a , b , C )for all of its normal covers (a , b , C ).

Lemma 3 .

 3 12 Suppose a/C and b/C are both p-semi-regular and a C b. Then the triple (a, b, C) is p-disjoint. Proof. Choose any e ∈ cl p (Ca) ∩ cl p (Cb). Then w p (e/Ca) = w p (e/Cb) = 0. As stp(b/Ca) is p-semi-regular, this implies b But this, coupled with w p (e/Cb) = 0 implies e ∈ cl p (C). 2 Lemma 3.13 Suppose (a 1 , b 1 , C) and (a 2 , b 2 , C) are both normal and p-disjoint. If, moreover, a 1 b 1 C a 2 b 2 , then the triple (a 1 a 2 , b 1 b 2 , C) is also p-disjoint.

Definition 3 .

 3 14 A triple (a, b, C) is over e if e ∈ dcl(a) and e Cb. Lemma 3.15 Suppose that (a, b, C) is over e. Then every soft extension (a , b , C ) is also over e. In particular, the normalization (a , b , C ) given by Lemma 3.7 is also over e. Proof. Since a ⊆ a , e ⊆ dcl(a ). Also, since C C ab, we get C Cb e, implying that stp(e/C b) does not fork over ∅. Again, by p-semiregularity, we have e C b cl p (C b), so stp(e/C b ) does not fork over ∅. 2

Proposition 3 .

 3 16 Suppose p ∈ S(∅) is a stationary, non-locally modular regular type. Then, for every realization d of p, there is a minimal, normal, p-disjoint triple (a, b, C) over d. Moreover, w p (a/C) = w p (b/C) = 2, w p (ab/C) = 3, and w p (a/bC) = w p (b/aC) = 1. Proof. By the first paragraph of the proof of Lemma 3.2 in [4], there is a triple (a, b, M ), where M is an a-model, a and b each consist of two M -independent realizations of p|M , with w p (a/M b) = w p (b/M a) = 1 and the triple (a, b, M ) being p-disjoint.

  Suppose p ∈ S(∅) is stationary, regular, but nonlocally modular. For any k ≥ 1 and any e such that stp(e/∅) is psemi-regular with w p (e) = k, there is a minimal, normal, p-disjoint (a, b, C) over e such that w p (ab/C) = 3k, w p (a/C) = w p (b/C) = 2k, and w p (a/bC) = w p (b/aC) = k.

Lemma 3 . 3 .

 33 18 Choose any b realizing stp(b/Ca) with b Ca b. Then: 1. w p (a/bb C) = 0; stp(a/Cbb ) is isolated. (This is slightly stronger than what is stated in the text. The 'improvement' is not needed.) Proof. (1) Here is where p-disjointness plays a leading role. Recall that (a, b, C) covers (ā, b, C 0 ), where for each

Proposition 4 .

 4 12 T superstable M ⊆ na C. Suppose B is algebraically closed with M ⊆ B, tp(c/B) is strongly regular depth zero, and that tp(c/B) ⊥ a M . Then either tp(c/B) ⊥ M or tp(c/B) is isolated. Proof. If tp(c/B) is trivial, tp(c/B) ⊥ a M implies that tp(c/B) ⊥ M . So we can suppose that tp(c/B) is non trivial.

2 Corollary 4 .

 24 Choose d realizing r|Bb 0 , and choose witnesses b 1 , . . . , b m . Thus, the n elements b 0 , . . . , b m each realize ϕ and θ( b, d) holds. We argue that in fact, every b i realizes q. Let I = {i ≤ m : b i realizes q}. Let bI be the subsequence of b induced by I. By way of contradiction, assume |I| < m + 1 = n. By the minimality of n, we must have bI B d. But also, by our choice of ϕ, if i ∈ I, then w p (b i /B) = 0. Thus, w p ( b/B bI ) = 0. But d is a Morley sequence in p, hence d/B bI is p-semiregular. Thus, b B bI d. It follows by transitivity that b B d, which is contradicted by θ( b, d). 13 Let T be classifiable, M ⊆ na C, M ⊂ B and tp(c/B) be regular non locally modular. Suppose that tp(c/B) ⊥ a M . Then either tp(c/B) ⊥ M or tp(c/B) is isolated.

Definition 5 . 1

 51 Let M be any model (not necessarily an a-model) and let p ∈ S(M ) be regular. A quadruple (a, b, c, d) is 4-dependent if 1. Any three elements realize p (3) , but 2. w p (abcd/M ) = 3. A witness to non-modularity for p over M is a set of parallel lines, i.e., some 4 -dependent quadruple (a, b, c, d) such that cl p (M ab) ∩ cl p (M cd) = cl p (M ).

MM

  * . Thus, (a, b, c, d) is 4-dependent with respect to the non-forking extension of p to M . For the final clause, let C := dcl(M abcd) ∩ cl p (M ). Note that abcd C M * and stp(abcd/C) is p-semi-regular by Criterion 7.12. Thus, cl p (M * ab) ∩ cl p (M * cd) = cl p (M * ) implies that cl p (Cab) ∩ cl p (Ccd) = cl p (C) by Proposition 7.20. However, cl p (C) = cl p (M ), cl p (Cab) = cl p (M ab), and cl p (Ccd) = cl p (M cd), so we finish. 2

Theorem 5 . 4

 54 If T is classifiable, B is algebraically closed, and p ∈ S(B) is a regular, non-locally modular type, then there is a formula θ ∈ p such that (recall Definition 7.7): 1. θ is p-simple of p-weight one 2. p-weight is defined and continuous inside θ 3. p is strongly regular via the formula θ, i.e., for every C ⊇ B and every e ∈ θ(C), if w p (e/C) > 0, then tp(e/C) is the non-forking extension of p to C. Lemma 5.5 Suppose that p ∈ S(M ) is regular and (a, b, c, d) is a 4-dependent sequence of realizations of p. Then there is a symmetric formula S(x 1 , . . . , x 4 ) ∈ tp(abcd/M ) such that for any (b , c , d ) realizing p (3) and for any element a realizing S(x 1 , b , c , d ), we have (a , b , c , d ) is 4-dependent.

Lemma 5 . 6

 56 Suppose p ∈ S(M ) is a regular, non-locally modular type and (a, b, c, d) is a witness to non-modularity over M . Then for every e realizing p|M abcd and for every f ∈ θ(C) that satisfies b ∈ cl p (M aef ), we have (c, d, e, f ) realizes p (4) and w p (ab/M cdef ) = 0. Proof. First, since θ(f ) holds, tp(f /M ) is p-simple. As b realizes p, b M ae, but b ∈ cl p (M aef ), we must have w p (f /M ) > 0, hence tp(f /M ) = p. Thus, all six elements a, b, c, d, e, f realize p. Next, note that w p (abcdef /M ) = 4, since w p (abcd/M ) = 3 (by 4dependence), e M abcd, and w p (f /M abcde) = 0 by exchange. Next,

Thus, as both 2 For

 2 stp(ef /cl p (M ab)) and stp(ef /cl p (M cd)) are p-semiregular, we have ef clp(M ab) abcd and ef clp(M cd) abcd Hence, Cb(ef /M abcd) ⊆ cl p (M ab) ∩ cl p (M cd) = cl p (M ) with the last equality holding since (a, b, c, d) is a witness to nonmodularity. This would imply ef clp(M ) abcd, which contradicts f ∈ cl p (M abe). Finally, since w p (abcdef /M ) = w p (cdef /M ) = 4, it follows immediately that w p (ab/M cdef ) = 0. the Corollary that follows, note that if (a, b, c, d) is 4-dependent, then there is an M -definable formula β(x 2 , a, c, d) ∈ tp(b/M acd) that implies both θ(x 2 ) and w p (x 2 /M acd) = 0. Corollary 5.7 Suppose (a, b, c, d) is a witness to non-modularity over M and fix any formula β(x 2 , a, c, d) ∈ tp(b/M acd) as above.

Lemma 5 . 8 2 Proposition 5 . 9

 58259 Suppose that p ∈ S(M ) is a regular, non-locally modular type and (a, b, c, d) is 4-dependent, but is not a witness to nonmodularity over M . Then there are realizations e of p|abcd and f of p such that stp(ef /M ab) = stp(cd/M ab), yet w p (ab/M abcd) = 0.Proof. Choose e realizing p|M abcd and choose any f such that ef and cd have the same strong type over cl p (M ab) and efclp(M ab) cd.By superstability, there is a finite g such that cl p (M g) = cl p (M ab) ∩ cl p (M cd). Now tp(g/M ) is p-simple and, since (a, b, c, d) is 4-dependent but not a witness to non-modularity, w p (g/M ) = 1. Next, as w p (cd/M ) = 2 and cd / clp(M ) g, we have w p (cd/M g) ≤ 1. As M g ⊆ cl p (M ab) we have stp(ef /M g) = stp(cd/M g), so w p (ef /M g) ≤ 1 as well. Thus, w p (cdef g/M ) ≤ 3, hence w p (cdef /M ) ≤ 3. But, since w p (abcd/M ) = 3 and e realizes p|abcd, we have w p (abcdef ) ≥ 4. It follows that w p (ab/M cdef ) > 0. Suppose that p ∈ S(M ) is a regular, non-locally modular type, and that (a, b, c, d) is a witness to non-modularity over M . Then there is a symmetric formula R * ∈ tp(abcd/M ) such that for any (b , c , d ) realizing p(3) and any a , if R * (a , b , c , d ), then (a , b , c , d ) is a witness to non-modularity over M .

1 .

 1 If T is superstable and M is an a-model on which p is based, then for any realization b of p|M , every model N that is dominated by b over M is minimal over M b.

  . , c n } ⊆ M [b] with tp(c i /M ) regular. Then M [b] = M [c 1 , . . . , c n ] and as each tp(c i /M ) is of depth zero, we finish by Lemma 5.11(3). Next, we argue that the same holds for any model N 0 ⊇ M b dominated by b over M . Choose any regular q non-orthogonal to N 0 . By superstability, choose a finite d ∈ N 0 such that q ⊥ M bd. As bd is dominated by b over M , choose an a-prime M [b] over M b that contains d. Then q is non-orthogonal to M by the argument above. Now, choose any model N that is dominated by b over M . To see that N is minimal over M b, choose any N N containing M b and assume by way of contradiction that N = N . By superstability, choose c ∈ N \ N such that q = tp(c/N ) is regular. As N is dominated by b over M , it follows from the previous paragraph that q ⊥ M . By the 3-model Lemma (Fact 7.4) , there is c * ∈ N -M that does not fork with N over M . As b ∈ N we conclude that c * M b, which contradicts N being dominated by b over M . (2) Now assume that T is classifiable. Fix any model M on which p is based and fix a realization b of p|M . Suppose N is dominated by b over M . To show that N is minimal over M b, choose any N 0 N containing M b. To see that N 0 = N , choose any c ∈ N and we will conclude that c ∈ N 0 . To start, choose any a-model M * M with b M M * . Note that N continues to be dominated by b over M * . By PMOP, let N 2 be constructible over N ∪ M * . Thus, N 2 is also dominated by b over M * . It follows from (1) that N 2 is minimal over

  3 to find M (a) M (bcd). Note that M (a)⊆ na M (bcd) by Lemma 5.11. As M (a), M (b), M (c) M (bcd), by PMOP there is a prime model M * M (bcd) over M (a)M (b)M (c).

  M * is equal to both M (abc) and M (bcd). Next, let M (ab) M (abc) be the unique model that is prime over M (a) ∪ M (b). For the moment we work over M (ab). Choose e to realize p|M abcd fix an isomorphism Φ : M (abc) → M (abe) fixing M (ab) pointwise. As both d and M (d) are contained in M (abc), we let f := Φ(d) and M (f ) := Φ(M (d)). Let N * be prime over M (abc) ∪ M (abe) over M (ab). Note that N * is dominated by ce over M (ab).

M 2 Corollary 5 .

 25 (ab) ce. Thus, by transitivity, h M N * , which is absurd since h ∈ N * \ M . 15 T classifiable. Suppose M ⊆ na C is countable, tp(c/M ) = p, and p has a witness to non-local modularity over M . Then for each n, Q n := {q ∈ S n (M c) : dc is dominated by c over M and d |= q } is countable.

2 Theorem 5 . 2 Corollary 5 .

 2525 16 T classifiable. Suppose M ⊆ na C is countable, tp(c/M ) = p, and p has a witness to non-local modularity over M . Then there is a constructible, minimal model over M c. by PMOP, remains a construction sequence over M b. Now takes N * , a constructible model over N and M , inside N . As N is minimal over M b, N * = N so N is constructible over M b. 18 T classifiable. Suppose that M N and N/M has weight one, non-orthogonal to a non-locally modular type p. Then N is both constructible and minimal over M b for any element b ∈ N \M . Proof. Recall that N/M having weight one means that wt(b/M ) = 1 and N is dominated by b over M for any b ∈ N \ M . Choose any such b.As b/M is not orthogonal to p, there is a ∈ dcl(M b) \ M that is p-simple of positive p-weight (Fact 7.8). As a ∈ N and as N/M has weight one, it follows that tp(a/M ) is regular, non-orthogonal to p. Thus, by Theorem 5.17, N is constructible and minimal over M a. As a ∈ dcl(M b), it follows that N is constructible and minimal over M b as well.2

1 .; 4 .

 14 p is DI; 2. For every countable M on which p is based and for every b realizing p|M , and for every n, the isolated types in S n (M b) are dense; 3. For every countable M on which p is based, for every b realizing p|M , there is a constructible model N over M b. Moreover, every model N that is dominated by b over M is constructible over M bSame as (3), but for every model M on which p is based; 5. There is some a-model M on which p is based and some b realizing p|M for which there is a constructible model N over M b.

  ) ⇒ (3). Fix M and b as in (3). As M is countable and the isolated types are dense, it follows from Vaught that a constructible model N over M b exists. For the final sentence, let N * be any model dominated by b over M . As N is prime over M b, we may assume N N * . But, as N * is minimal over M b by Proposition 5.13(2), N = N * , so N * is constructible over M b.(3) ⇒ (4). Fix M and b as in[START_REF] Hrushovski | A dichotomy theorem for regular types[END_REF]. Choose a countable model M 0 M such that b M 0 M . By (3), let N 0 be constructible over M 0 b.

Fix a construction 2 Proposition 6 . 5 1 .

 2651 sequence c i : i < ω for N 0 over M b. By iterating Lemma 6.3, c i : i < ω is a construction sequence over M b. Now, by PMOP, let N be constructible over N 0 M . It follows that N is constructible over M b. For the final sentence, let N * be any model dominated by b over M . As N is prime over M b, we may assume N N * . But then N = N * by minimality. (4) ⇒ (1). Choose any set A on which p is based and stationary and let b be any realization of p|A. Choose any element c ∈ C such that bc is dominated by b over M . Choose any model M ⊇ A satisfying M A bc. It follows that bc is dominated by b over M . Choose any model N dominated by bc over M . By transitivity we have that N is dominated by b over M . Thus, by (4), N is constructible, and hence atomic over M b. In particular, tp(c/M b) is isolated. (4) ⇒ (5) is immediate. (5) ⇒ (2). Let M * and b * be any a-model and witness exemplifying (5). Given any countable M on which p is based and b realizing p|M , the saturation of M * implies there is an M M * such that tp(M b) = tp(M b * ). Thus, without loss, assume M M * and b = b * . As b realizes p|M * , we have that b M M * . Let ϕ(x, b, m) be any consistent formula with m ∈ M . By (5), choose a constructible (and hence atomic) N over M * b. Choose any c ∈ N realizing ϕ(x, b, m). Then tp(c/M * b) is isolated, hence tp(c/M b) is as well by the Open Mapping Theorem. Let T be classifiable. Suppose stp(b/A) is depth zero-like and DI and bc is dominated by b over A. Then stp(bc/A) is both depth zero-like and DI. 2. Suppose tp(bc/M ) is depth zero-like and DI, and tp(c/M b) is isolated. Then tp(b/M ) is depth zero-like and DI as well.

( 1 )

 1 That stp(bc/A) is depth zero-like is clear. As for DI, choose an a-model M and b as in Proposition 6.4(5). Without loss, we may assume A ⊆ M , so b A M . It follows that bc is dominated by b over M , hence tp(c/M b) is a-isolated. Thus, there is an a-prime model M [b] over M b with c ∈ M [b]. [Think of c as being the first step of an a-construction sequence over M b.] Then M [b] is also a-prime over M bc. However, M [b] is constructible over M b, so tp(c/M b) is actually isolated. It follows that M [b] is constructible over M bc, so stp(bc/A) is DI by Proposition 6.4(5). (2) That tp(b/M ) is depth zero-like is immediate. For DI, choose an a-model M * witnessing that tp(bc/M ) is DI. Without loss, we may assume M M * , so bc M M * . It follows from Lemma 6.3 that tp(c/M * b) is isolated as well. As tp(bc/M * ) is DI, let N * be constructible over M bc. As tp(c/M * b) is isolated, N * is also constructible over M * b. Thus, tp(b/M * ) is DI by Proposition 6.4(5).

2 .

 2 There is a set of four realizations {a 1 , a 2 , b 1 , b 2 } of p, that are dependent over M , yet the closures of {a 1 , a 2 } and {b 1 , b 2 } in p|M (C) are disjoint.

Definition 7 . 9 Fact 7 . 10

 79710 C, let D(p, C) := {a ∈ C : stp(a/C) is p-simple of finite p-weight} We equip D(p, C) with a closure operator cl p , namely for a, B from D(p, C), a ∈ cl p (B) if and only if w p (a/BC) = 0. Technically, the closure relation cl p depends on C, but much of the time we will take C = ∅, so we do not muddy our notation by referring to it explicitly. Because of the regularity of p, the closure space (D(p, C), cl p ) is wellbehaved, but formally is not a pre-geometry as the Exchange Axiom fails. Fix any set C. D(p, C) is modular if w p (a/C) + w p (b/C) = w p (ab/C) + w p ((cl p (a) ∩ cl p (b))/C) for all a, b ∈ D(p, C).As shown for example in 7.2.4 of[START_REF] Pillay | Geometric Stability Theory[END_REF]: The regular type p is locally modular (as defined above) if and only if D(p, C) is modular for all sets C

Definition 7 . 2 Lemma 7 .

 727 19 Suppose a, b ∈ D(p, C). We say that a and b are p-disjoint over C if cl p (Ca) ∩ cl p (Cb) = cl p (C). The next two Lemmas discuss the relationship between p-disjointness and forking, at least when stp(ab/C) is p-semiregular. Lemma 7.20 Suppose that stp(ab/C) is p-semiregular, C ⊆ D and stp(ab/D) does not fork over C. Then cl p (Ca) ∩ cl p (Cb) = cl p (C) if and only if cl p (Da) ∩ cl p (Db) = cl p (D). Proof. First, assume there is a 'bad element' e for the triple (a, b, C), that is e ∈ cl p (Ca) ∩ cl p (Cb) \ cl p (C). As the existence of such an e is clearly determined by tp(ab/C), by replacing D by some independent D * realizing the same strong type as D over Cab, we may assume that abe C D. It follows immediately that e ∈ [cl p (Da) ∩ cl p (Db)] \ cl p (D) so e is bad for (a, b, D) as well. Conversely, if e is a 'bad element' for (a, b, D), let h := Cb(De/Cab). We first claim that h ∈ cl p (C). If it were, then as stp(ab/C) is p-semiregular, we would have ab C h. But, as ab Ch De, this would imply ab D e, contradicting e ∈ cl p (D). Thus, h ∈ cl p (C). So, arguing by symmetry between a and b, it suffices to prove that h ∈ cl p (Ca). Choose a Morley sequence D 1 e 1 , . . . , D n e n in stp(De/Cab) with D 1 e 1 = De such that h ∈ dcl(e 1 . . . e n D 1 . . . D n ). The standard argument yields D 1 , . . . , D n C ab As well, h ∈ acl(Cab), hence D 1 , . . . , D n Ca h. Because of this, it suffices to prove that stp(h/CaD 1 . . . D n ) is hereditarily orthogonal to p, i.e., has p-weight zero. However, for each i, w p (e i /aD i ) = 0, so w p (e i /CaD 1 . . . D n ) = 0 for each i. But h ∈ dcl(e 1 . . . e n D 1 . . . D n ), so w p (h/CaD 1 . . . D n ) = 0. 21 Suppose that stp(ab/C) is p-semiregular and cl p (Ca)∩ cl p (Cb) = cl p (C). Then acl(Ca) ∩ acl(Cb) = acl(C).

Lemma 7 .

 7 22 For all a, b, C, acl(Ca) ∩ acl(Cb) = acl(C) if and only if for every set X, if X Ca b and X Cb a both hold, then X C ab holds as well.

  1 satisfying E 2 Note that E 2 realizes a Morley sequence (p|B)(k) of the non-forking extension of p to B.Claim. w p (E/E 2 B) = 0.Proof. First, choose any e ∈ E 1 \ E 2 . Because maximality implies that eE 2 / tp(e/BE 2 ) is a forking extension of a regular type, hence w p (e/E 2 B) = 0. It follows that w p (E 1 /E 2 B) = 0 as well. Now choose any e ∈ E \ E 1 . By the maximality of E 1 , e / so w p (e/E 1 ) = 0. Thus, w p (e/E 1 B) = 0. As this holds for every e ∈ E \ E 1 , w p (E/E 1 B) = 0. Combining the two arguments yields w p (E/E 2 B) = 0.

	M	E 1

M B. M B, 2 Because tp(E 2 /B) does not fork over M and q ⊥ a M , we have that a B E 2 . As q is p-semiregular, that a B E follows immediately from the Claim. 2 Theorem 4.7 (Binding group) ([7] 7.4.8 or [8] 2.2.20)

Recall that a model N is constructible over a set B if its universe can be enumerated as {c i : i < α} with tp(c i /B ∪ {c j : j < i}) isolated for each i. Any two constructible models over B are isomorphic.

Bp(C) for any a realizing q.

If T is classifiable, then (1) holds for every model M on which p is based.

* Partially supported by NSERC † Partially supported by NSF grant DMS-1855789.

Proof. Fix an enumeration (x 1 , . . . , x 4 ) of the variables. Choose a formula S(x 1 , . . . , x 4 ) ∈ tp(abcd/M ) as in Lemma 5.5 and choose β(x 2 , a, c, d) ∈ tp(b/M acd) as in the note preceding Corollary 5.7. Take R(x 1 , . . . , x 4 ) from Corollary 5.7 and let R := S ∧ R. Now, if (b , c , d ) realizes p (3) and a satisfies R (x 1 , b , c , d ), then (a , b , c , d ) is 4-dependent by Lemma 5.5, and hence is a witness to non-modularity by Lemma 5.8. We obtain a symmetric R * by taking a disjunction over all orderings of (x 1 , . . . , x 4 ). 2

Corollary 5.10 If T is classifiable, then for any model M and any p ∈ S(M ) that is not locally modular, there is a witness (a, b, c, d) to the non-modularity of p over M .

Proof. Choose any triple (abc) realizing p (3) and choose any amodel M * M independent from abc over M . By Proposition 5.2 there is a witness (a , b , c , d ) to the non-modularity of p|M * over M * . As tp(abc/M * ) = tp(a b c /M * ), there is d such that (a, b, c, d) is a witness to the non-modularity of p|M * over M * . Choose R * ∈ tp(a, b, c, d/M * ) as in Proposition 5.9, and let e be a finite subset from M * over which tp(abcd/M * ) is based and which contains the parameters over which R * is defined. Write R * as R * (x 1 , . . . , x 4 , e). So tp(abce/M ) implies ∃x 4 R * (a, b, c, x 4 , e). As abc M e, it follows from finite satisfiability that there is some e ∈ M with ∃x 4 R * (a, b, c, x 4 , e ). Choose any d witnessing this and check that (a, b, c, d) is a witness to the non-modularity of p over M . 2

Depth-zero like types and minimality

The following Lemma is routine, but it is interesting that its proof does not require NDOP (although the verification that a non-trivial regular type has depth zero does).

Lemma 5.11 Suppose T is superstable, M ⊆ na N , and {c i : i < n} ⊆ N are M -independent, with tp(c i /M ) regular of depth zero for each i. Let M * N be any model dominated by {c i : i < n} over M . Then:

3. If q is regular and q ⊥ M * , then q ⊥ M .

Proof. We argue by induction on n. For n = 0, M * = M , so there is nothing to prove. Assume the Lemma holds for sets of size The following is the main result of this section.

Theorem 5.17 Suppose that T is classifiable and M is any model. 

Appendix

In this appendix, we bring together for the reader's convenience, many of the basic definitions and facts from classification theory and geometric stability theory which are used throughout the paper and can be found for example in [START_REF] Pillay | Geometric Stability Theory[END_REF]. We assume that the reader is familiar with stability theory, independence and the basics of superstability. Throughout this appendix, T will be a stable theory. Definition 7.1

• We say that M is an a-model if every strong type over every finite B ⊆ M is realized in M . In the original notation of Shelah ( [START_REF] Shelah | Classification Theory[END_REF]) this corresponds to F a ℵ 0 -saturation. • Let M N be models of T , N is an na-extension of M , denoted M ⊆ na N , if for every formula ϕ(x, y), for every tuple a from M and every finite subset F of M , if N contains a solution to ϕ(x, a) not in M , then M contains a solution to ϕ(x, a) that is not algebraic over F .

Definition 7.2

• If B ⊆ A, types p ∈ S(A) and q ∈ S(B) are almost orthogonal, denoted p ⊥ a q, if for all a realizing p and b realizing q, if b B A, then a B b. p is almost orthogonal to the set B, p ⊥ a B if p ⊥ a q for every q ∈ S(B).

• Two types p ∈ S(A) and q ∈ S(B) are orthogonal, denoted p ⊥ q, if p|C ⊥ a q for all C ⊇ AB. p ∈ S(A) is orthogonal to a set B, p ⊥ B, if p ⊥ q for every q ∈ S(B).

• A set C is dominated by E over D if for all b such that b is independent from E over D, b is independent from C over D.

• A stationary type p is regular if it is orthogonal to all its forking extensions.

Note that if B ⊆ A and p ∈ S(A), then p ⊥ a B if and only if Aa is dominated by A over B for some/every a realizing p.

The following fact is a consequence of Lemma 5.3 in [START_REF] Shelah | On the existence of regular types[END_REF]:

Suppose a ∈ M 2 and tp(a/M 1 ) is regular non-orthogonal to M 0 . Then there is b ∈ M 2 such that tp(b/M 1 ) is regular and does not fork over M 0 and b is not independent from a over M 1 .

To get the existence of a p-semiregular type nearby a given psimple type, we couple this with the following easy Lemma, whose proof only requires superstability. Lemma 7.13 Suppose a and X are given with a finite, and Y is chosen arbitrarily such that X ⊆ Y ⊆ acl(Xa). Then there is a finite sequence b from Y such that Y ⊆ acl(Xb).

Proof. Recursively construct a sequence b i : i from Y of maximal length such that a / B i b i , where B i := X ∪ {b j : j < i}. Clearly, R ∞ (a/B i ) is strictly decreasing with i, so any such sequence has finite length. But, for the sequence to terminate, it must be that Y ⊆ acl(B i * ) for the terminal i * .
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Finally, we get our existence lemma.

Lemma 7.14 If stp(a/X) is p-simple of positive p-weight, then there is a finite b from dcl(aX)∩cl p (X) such that stp(a/Xb) is p-semiregular and w p (a/Xb) = w p (a/X).

Proof. Let Y = dcl(aX) ∩ cl p (X) and choose a finite b from Y such that Y ⊆ acl(Xb). Now dcl(Y a) = dcl(Xa), so if e ∈ dcl(Y a) \ acl(Y ), we must have w p (e/Y ) > 0, lest we would have e ∈ Y . Thus, Criterion 7.12 for p-semi-regularity applies.
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Next we record ways in which an existing p-semi-regular type is persistent.

Lemma 7.15 Suppose stp(e/X) is p-semi-regular.

1. If e ∈ acl(eX) \ acl(X), then stp(e /X) is p-semi-regular; Proof.

(1) As dcl(e X) ⊆ dcl(eX), the result follows by Criterion 7.12.

(2) This is immediate, as 'domination equivalent to p (k) ' is preserved.

(3) Since stp(e/X) is p-semi-regular, we automatically have e X Y , so (3) follows from (2). 2

The following fact is Theorem 2(b) in [START_REF] Hrushovski | A dichotomy theorem for regular types[END_REF].

Fact 7.16 Let T be superstable, let p be a non trivial regular type of depth zero and let stp(a/B) be p-semiregular. Then a lies in some acl(B)-definable set D such that p-weight is continuous and definable inside D.

Classifiable theories and isolation

We now recall definitions and facts about isolation and constructibility.

A type p ∈ S(A) is isolated if there is some formula ϕ(x, a) ∈ p such that ϕ(x, a) p. A construction sequence over A is a sequence a α : α < β such that tp(a α /A ∪ {a γ : γ < α}) is isolated for every α < β. A model N is constructible over A if there is a construction sequence over A whose union is N . If N is constructible over A then it is both prime and atomic over A. Any two constructible models over A are isomorphic over A. As T is countable, it follows from results of Vaught that for A countable, there is a constructible model over A.

If T is ℵ 0 -stable, then constructible models exist over every set A. In a superstable theory it is not always true that there are constructible models over all sets. Indeed, one of the main goals of this paper is to determine when constructible models over particular sets exist.

A weaker notion is -isolation. A type p ∈ S(A) is -isolated if, for every formula ϕ(x, y) there is a formula ψ(x, a) ∈ p such that ψ(x, a) p ϕ , the restriction of p to instances of ±ϕ(x, b) for b ∈ A. -construction sequences and N being -constructible over A are defined analogously. An advantage is that for a superstable theory T , -constructible models over A exist. However, there can be many non-isomorphic -constructible models over A.

Recall the definitions of NDOP and PMOP from the introduction: Definition 7.17 1. A superstable theory does not have the dimension order property (NDOP) if, for every independent triple M = (M 0 , M 1 , M 2 ) of a-saturated models, the a-prime model M * over M 1 M 2 (which exists in any superstable theory) is minimal among all asaturated models containing M 1 M 2 . 2. A superstable theory has prime models over pairs (PMOP) if, for any independent triple (M 0 , M 1 , M 2 ) of models, there is a constructible model over M 1 M 2 . 3. A complete theory T in a countable language is classifiable if T is superstable, has prime models over pairs (PMOP) and does not have the dimension order property (NDOP).

The following are essential facts: Fact 7.18

• T has NDOP if and only if, for M = (M 0 , M 1 , M 2 ) any independent triple of a-saturated models and M * a-prime model over M 1 M 2 , any regular type q non-orthogonal to M * is either non-orthogonal to M 1 or M 2 .