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 for the Navier-Stokes equations.

Introduction

The Cauchy problem for the incompressible and homogeneous magnetohydrodynamic equations (MHD) equations in the whole space R 3 writes down as:

(MHD)

8 > > > > > < > > > > > : @ t u = u (u • r)u + (b • r)b rp + r • F, @ t b = b (u • r)b + (b • r)u, r • u = 0, r • b = 0, u(0, •) = u 0 , b(0, •) = b 0 , (1) 
⇤ LaMME, Univ Evry, CNRS, Université Paris-Saclay, 91025, Evry, France † e-mail : pedro.fernandez@univ-evry.fr ‡ Dirección de Investigación y Desarrollo (DIDE), Universidad Técnica de Ambato, Ambato, Ecuador § e-mail : or.jarrin@uta.edu.ec 1 where the fluid velocity field u : [0, +1) ⇥ R 3 ! R 3 , the magnetic field b : (0, +1) ⇥ R 3 ! R 3 and the fluid pressure p : [0, +1) ⇥ R 3 ! R are the unknowns, and the fluid velocity at t = 0: u 0 : R 3 ! R 3 , the magnetic field at t = 0: b 0 : R 3 ! R 3 , and the tensor F = (F i,j ) 1i,j3 (where

F i,j : [0, +1) ⇥ R 3 ! R 9
) whose divergence r • F represents a volume force applied to the fluid, are the data of the problem.

In this article, we will focus on the following simple generalisation of (MHD) equations:

(MHDG) 8 > > > > > < > > > > > : @ t u = u (u • r)u + (b • r)b rp + r • F, @ t b = b (u • r)b + (b • r)u rq + r • G, r • u = 0, r • b = 0, u(0, •) = u 0 , b(0, •) = b 0 , (2) 
where in the second equation we have added an extra gradient term rq, which is an unknown, and an extra tensor field G = (G i,j ) 1i,j3 which is a datum. This generalized system does not present extra mathematical di culties but it appears in physical models when Maxwell's displacement currents are considered [START_REF] Batchelor | An Introduction to Fluid Dynamics[END_REF][START_REF] Shercli↵ | A Textbook of Magnetohydrodynamics[END_REF]. Moreover, we will construct solutions for (MHDG) such that G = 0 implies q = 0 (see the equation (3) below), and it justifies the fact that (MHDG) generalizes (MHD) from the mathematical point of view.

In the recent work [START_REF] Fernández-Dalgo | Weak solutions for Navier-Stokes equations with initial data in weighted L 2 spaces[END_REF] due to P. Fernandez & P.G. Lemarié-Rieusset, which deals with the homogeneous and incrompressible Navier-Stokes equations in the whole space R 3 : (NS) 8 < :

@ t u = u (u • r)u rp + r • F, r • u = 0, u(0, •) = u 0 ,
the authors established new energy controls which allow them to develop a new theory to construct infinite-energy global weak solutions of equations (NS) arising from large initial datum u 0 belonging to the weighted space L 2 w = L 2 (w dx), where for > 0 we have w (x) = (1 + |x|) . Thereafter, in [START_REF] Bradshaw | Existence of global weak solutions to the Navier-Stokes equations in weighted spaces[END_REF], Bradshaw, Tsai & Kukavika give an improvement of main theorem in [START_REF] Fernández-Dalgo | Weak solutions for Navier-Stokes equations with initial data in weighted L 2 spaces[END_REF] with respect to the initial data, they consider a zero forcing tensor and the method of their proof does not permit to adapt easily it to other cases, essentially because of your pressure treatment. However, the pressure term is well-characterized in [START_REF] Fernández-Dalgo | Weak solutions for Navier-Stokes equations with initial data in weighted L 2 spaces[END_REF] for initial data in larger spaces that the weighted spaces considered so far in dimension 3.

For other constructions of infinite-energy weak solutions for the (NS) equations see the articles [START_REF] Basson | Solutions spatialement homogènes adaptées des équations de Navier-Stokes[END_REF][START_REF] Bradshaw | Global existence, Regularity and Uniqueness of infinite energy solutions to the Navier-Stokes equations[END_REF][START_REF] Jia | Local-in-space estimates near initial time for weak solutions of the Navier-Stokes equations and forward self-similar solutions[END_REF][START_REF] Kikuchi | Weak solutions to the Cauchy problem for the Navier-Stokes equations satisfying the local energy inequality[END_REF][START_REF] Lemarié-Rieusset | Solutions faibles d'énergie infinie pour les équations de Navier-Stokes dans R 3[END_REF] and the books [START_REF] Lemarié-Rieusset | Recent developments in the Navier-Stokes problem[END_REF][START_REF] Lemarié-Rieusset | The Navier-Stokes problem in the 21st century[END_REF].

Due to the fact that equations (NS) and (MHDG) have a similar structure, the main purpose of this article is to adapt the new energy methods given in [START_REF] Fernández-Dalgo | Weak solutions for Navier-Stokes equations with initial data in weighted L 2 spaces[END_REF] for (NS) to the more general setting of the coupled system (MHDG). These methods allow us to prove the existence of infinite-energy global weak solutions for the equations (MHDG) and our first result reads as follows:

Theorem 1 Let 0   2. Let 0 < T < +1. Let u 0 , b 0 be divergencefree vector fields such that (u 0 , b 0 ) 2 L 2 w (R 3 ). Let F and G be tensors such that (F, G) 2 L 2 ((0, T ), L 2 w ). Then, the system (MHDG) has a solution (u, b, p, q) which satisfies :

• u, b belong to L 1 ((0, T ), L 2 w ) and ru, rb belong to L 2 ((0, T ), L 2 w ). • The pressure p and the term q are related to u, b, F and G by

p = X 1i,j3 R i R j (u i u j b i b j F i,j ) and q = X 1i,j3 R i R j (G i,j ). (3) 
• The map t 2 [0, +1) 7 ! (u(t), b(t)) is weakly continuous from [0, +1) to L 2 w , and is strongly continuous at t = 0 : lim

t!0 k(u(t, •) u 0 , b(t, •) b 0 )k L 2 w = 0.
• the solution (u, b, p, q) is suitable : there exist a non-negative locally finite measure µ on (0, +1) ⇥ R 3 such that

@ t ( |u| 2 + |b| 2 2 ) = ( |u| 2 + |b| 2 2 ) |ru| 2 |rb| 2 r • ✓ [ |u| 2 2 + |b| 2 2 + p]u ◆ + r • ([(u • b) + q]b) + u • (r • F) + b • (r • G) µ. (4) 
The solutions given by Theorem 1 enjoy interesting properties as a consequence of Thorem 3 below.

On the other hand, the theory of infinite-energy global weak solutions for the (NS) equations developed in [START_REF] Fernández-Dalgo | Weak solutions for Navier-Stokes equations with initial data in weighted L 2 spaces[END_REF] has a prominent application to the construction of global weak discretely self-similar solutions. More precisely, the energy controls obtained in [START_REF] Fernández-Dalgo | Weak solutions for Navier-Stokes equations with initial data in weighted L 2 spaces[END_REF] allow the authors to give a new proof of the existence of those solutions arising from discretely self-similar initial data which are locally square integrable vector fields (proven before in [START_REF] Chae | Existence of discretely self-similar solutions to the Navier-Stokes equations for initial value in L 2 loc (R 3 )[END_REF] by Chae and Wolf and in [START_REF] Bradshaw | Discretely self-similar solutions to the Navier-Stokes equations with data in L 2 loc , to appear in Analysis and PDE[END_REF] by Bradshaw and Tsai).

In the next result, we follow this new approach to construct discretely self-similar solutions for the (MHDG) equations. We start by remember the definition of the -discretely self-similarity (see [START_REF] Chae | Existence of discretely self-similar solutions to the Navier-Stokes equations for initial value in L 2 loc (R 3 )[END_REF][START_REF] Fernández-Dalgo | Weak solutions for Navier-Stokes equations with initial data in weighted L 2 spaces[END_REF]): Definition 1.1

• A vector field u 0 2 L 2 loc (R 3
) is -discretely self-similar (u 0 is -DSS) if there exists > 1 such that u 0 ( x) = u 0 (x).

• A time dependent vector field u 2 L 2 loc ([0, +1) ⇥ R 3 ) is -DSS if there exists > 1 such that u( 2 t, x) = u(t, x).

• A forcing tensor F, 2 L 2 loc ([0, +1) ⇥ R 3 ) is -DSS if there exists > 1 such that 2 F( 2 t, x) = F(t, x).

In this setting, our second result is the following one:

Theorem 2 Let 4/3 <  2 and > 1. Let u 0 , b 0 be -DSS divergencefree vector fields which belong to L 2 w (R 3 ), and moreover, let F, G be -DSS tensors which belong to L 2 loc ((0, +1), L 2 w ). Then, the (MHDG) equations has a global weak solution (u, b, p, q) such that :

• u, b is a -DSS vector fields.

• for every 0 < T < +1, u, b belong to L 1 ((0, T ), L 2 w ) and ru, rb belong to L 2 ((0, T ), L 2 w ). • The map t 2 [0, +1) 7 ! (u(t), b(t)) is weakly continuous from [0, +1) to L 2
w , and is strongly continuous at t = 0. • (u, b, p, q) is suitable : it verifies the local energy inequality (4).

Let us emphasize that the main contribution of this work is to establish new a priori estimates for (MHDG) equations (see Theorem 3 below) and moreover, to show that it is simple to adapt for the (MHDG) equations the method given for the (NS) equations in [START_REF] Fernández-Dalgo | Weak solutions for Navier-Stokes equations with initial data in weighted L 2 spaces[END_REF]. In this setting, we warn that the proofs of the results in sections 3, 4 and 5 and Proposition 2.1 keep close to their analogous in [START_REF] Fernández-Dalgo | Weak solutions for Navier-Stokes equations with initial data in weighted L 2 spaces[END_REF], but we write them in detail for the reader understanding.

Moreover, it is worth to remark the fact that the method developed in [START_REF] Fernández-Dalgo | Weak solutions for Navier-Stokes equations with initial data in weighted L 2 spaces[END_REF] is very robust. We were able to adapt it for 3D (MHD) equations but its reach goes beyond, we emphasize that its application depends essentially on the fact that the equation admits approximate solutions with an energy balance which has a similar structure to the energy balance in the (NS) equations.

The article is organized as follows. All our results deeply base on the study of an advection-di↵usion system (AD) below and this study will be done in Section 2. Then, Section 4 is devoted to the proof of Theorem 1. Finally, in Section 5 we give a proof of Theorem 2.

The advection-di↵usion problem

From now on, we focus on the setting of the weighted Lebesgue spaces L p w . Let us start by recalling their definition. For 0 < and for all x 2 R 3 we define the weight w (x) = 1 (1+|x|) , and then and we denote L p w = L p (w (x) dx) with 1  p  +1.

As mentioned before, all our results base on the properties of the following advection-di↵usion problem: for a time 0 < T < +1, let v, c 2 L 3 ((0, T ), L 3 w 3 /2 ) be time-dependent divergence free vector-fields, then we consider the following system (AD)

8 > > > > > < > > > > > : @ t u = u (v • r)u + (c • r)b rp + r • F, @ t b = b (v • r)b + (c • r)u rq + r • G, r • u = 0, r • b = 0, u(0, •) = u 0 , b(0, •) = b 0 ,
where (u, b, p, q) are the unknowns. In the following sections, we will prove all the properties of the (AD) system that we shall need later.

2.1 Characterisation of the terms p and q and some useful results

In this section we give a characterisation of the pressure p and the term q (analogous to that made in [START_REF] Fernández-Dalgo | Weak solutions for Navier-Stokes equations with initial data in weighted L 2 spaces[END_REF]) in the (AD) system:

Proposition 2.1 Let 0  < 5 2 and 0 < T < +1. Let F(t, x) = (F i,j (t, x)) 1i,j3 and G(t, x) = (G i,j (t, x)) 1i,j3 be tensors such that F 2 L 2 ((0, T ), L 2 w ) and G 2 L 2 ((0, T ), L 2 w ). Let v, c 2 L 3 ((0, T ), L 3 w 3 /2
) be time-dependent divergence free vector-fields.

Let (u, b) be a solution of the following advection-di↵usion problem 8 > > < > > :

@ t u = u (v • r)u + (c • r)b rp + r • F, @ t b = b (v • r)b + (c • r)u rq + r • G, r • u = 0, r • b = 0, ( 5 
)
such that u, b 2 L 1 ((0, T ), L 2 w ), ru, rb 2 L 2 ((0, T ), L 2 
w ), and moreover, p and q belongs to D 0 ((0, T ) ⇥ R 3 ).

Then, the gradient terms (rp, rq) are necessarily related to (u, b, v, u) and F and G through the Riesz transforms R i = @ i p by the formulas

rp = r X 1i,j3 R i R j (u i v j b i c j F i,j ) ! , and rq = r X 1i,j3 R i R j (v i b j c i u j G i,j ) ! , where, X 1i,j3 R i R j (u i v j v i c j ), X 1i,j3 R i R j (v i b j c i u j ) 2 L 3 ((0, T ), L 6/5 w 6 5 ) (6) and X 1i,j3 R i R j F i,j , X 1i,j3 R i R j G i,j 2 L 2 ((0, T ), L 2 w ). ( 7 
)
The proof of this result deeply bases on some useful technical lemmas established in [START_REF] Fernández-Dalgo | Weak solutions for Navier-Stokes equations with initial data in weighted L 2 spaces[END_REF], Section 2 (see also [START_REF] Grafakos | Classical harmonic analysis[END_REF][START_REF] Grafakos | Modern harmonic analysis[END_REF]):

Lemma 2.1 Let 0  < 3 and 1 < p < +1. The Riesz transforms R i and the Hardy-Littlewood maximal function operator M are bounded on L p w :

kR j f k L p w  C p, kf k L p w and kM f k L p w  C p, kf k L p w .
This lemma has an important corollary which allows us to study the convolution operator with a non increasing kernel:

Lemma 2.2 Let 0  < 3 and 1 < p < +1. If ✓ 2 L 1 (R 3
) is a nonnegative, radial function and is radially non-increasing then for all

f 2 L p w , k✓ ⇤ f k L p w  C p, kf k L p w k✓k 1 .
With these lemmas at hand, we are able to give a proof of Proposition 2.1.

Proof. We define the functions p and q as follows:

p = X 1i,j3 R i R j (u i v j b i c j F i,j ) and q = X 1i,j3 R i R j (v i b j c i u j G i,j ).
Then, by the information of the functions (u, b, v, c, F, G) given above, using interpolation, Hölder inequalities and the Lemma 2.1 (as we have 0 < < 5 2 ) we obtain ( 6) and [START_REF] Fernández-Dalgo | Weak solutions for Navier-Stokes equations with initial data in weighted L 2 spaces[END_REF].

We will prove now that we have r(p p) = 0 and r(q q) = 0. Taking the divergence operator in the equations [START_REF] Bradshaw | Discretely self-similar solutions to the Navier-Stokes equations with data in L 2 loc , to appear in Analysis and PDE[END_REF], as the functions (u, b, v, c) are divergence-free vector fields we obtain (p p) = 0 and (q q) = 0. Then, let ↵ 2 D(R) be such that ↵(t) = 0 for all |t| " (with " > 0) and moreover, let 2 D(R 3 ). Thus, we have (rp⇤(↵⌦ ), rq⇤(↵⌦ )) 2 D 0 ((", T ")⇥R 3 ).

For t 2 (", T ") fix, we define

A ↵, ,t = (rp ⇤ (↵ ⌦ ) rp ⇤ (↵ ⌦ ))(t, .), B ↵, ,t = (rq ⇤ (↵ ⌦ ) rq ⇤ (↵ ⌦ ))(t, .
). Then, as rp and rq verify the equations ( 5) and moreover, by the properties of the convolution product, we can write

A ↵, ,t =(u ⇤ ( @ t ↵ ⌦ + ↵ ⌦ ) + ( u ⌦ v + b ⌦ c) • (↵ ⌦ r ))(t, .) + F • (↵ ⌦ r ))(t, .) (p ⇤ (↵ ⌦ r ))(t, .), and B ↵, ,t =(b ⇤ ( @ t ↵ ⌦ + ↵ ⌦ ) + ( b ⌦ v + u ⌦ c) • (↵ ⌦ r ))(t, .) + G • (↵ ⌦ r ))(t, .) (q ⇤ (↵ ⌦ r ))(t, .).
Recall that for ' 2 D(R With this information, and the fact that we have A ↵, ,t = (↵ ⌦ ) ⇤ ( (p p))(t, .) = 0, and similarly we have B ↵, ,t = 0, we find that A ↵, ,t and B ↵, ,t are polynomials. But, remark that for all 1 < r < +1 and 0 < < 3, the space L r w does not contain non-trivial polynomials and then we have A ↵, ,t = 0 and B ↵, ,t = 0. Finally, we use an approximation of identity 1 ✏ 4 ↵( t ✏ ) ( x ✏ ) to obtain that r(p p) = 0 and r(q q) = 0. ⇧

To finish this section, we state s Sobolev type embedding which will be very useful in the next section (for a proof see Section 2 in [START_REF] Fernández-Dalgo | Weak solutions for Navier-Stokes equations with initial data in weighted L 2 spaces[END_REF]).

Lemma 2.3 For 0. Let f 2 L 2 w such that rf 2 L 2 w then f 2 L 6 w 3 and kf k L 6 w 3  C (kf k L 2 w + krf k L 2 w ).

A priori uniform estimates for the (AD) system

In order to simplify the notation, for a Banach space X ⇢ D 0 of vector fields endowed with a norm k • k X , we will write

k(u, v)k 2 X = kuk 2 X + kvk 2 X , and kr(u, v)k 2 X = kruk 2 X + krvk 2 X .
Theorem 3 Let 0   2 and 0 < T < +1. Let u 0 , b 0 2 L 2 w (R 3 ) be a divergence-free vector fields and let F, G 2 L 2 ((0, T ), L 2 w ) be two tensors

F(t, x) = (F i,j (t, x)) 1i,j3 , G(t, x) = (G i,j (t, x)) 1i,j3 . Let v, c 2 L 3 ((0, T ), L 3 w 3 /2
) be time-dependent divergence free vector-fields. Let (u, b, p, q) be a solution of the following advection-di↵usion problem

(AD) 8 > > > > > < > > > > > : @ t u = u (v • r)u + (c • r)b rp + r • F, @ t b = b (v • r)b + (c • r)u rq + r • G, r • u = 0, r • b = 0, u(0, •) = u 0 , b(0, •) = b 0 . (8)
which satisfies :

• u, b belong to L 1 ((0, T ), L 2 w ) and ru, rb belong to L 2 ((0, T ), L 2 w ) • the pressure p and the term q are related to u, b, F and G through the Riesz transforms R i = @ i p by the formulas

p = X 1i,j3 R i R j (u i v j b i c j F i,j ) and q = X 1i,j3 R i R j (v i b j c i u j G i,j )
where, for every 0 < T < +1, X 1i,j3

R i R j (u i v j v i c j ), X 1i,j3 R i R j (v i b j c i u j ) 2 L 4 ((0, T ), L 6/5 w 6 5 
)

and

P 1i,j3 R i R j F i,j , P 1i,j3 R i R j G i,j 2 L 2 ((0, T ), L 2 w ). • the map t 2 [0, +1) 7 ! (u(t), b(t)) is weakly continuous from [0, +1) to L 2
w , and is strongly continuous at t = 0 : • the solution (u, b, p, q) is suitable : there exist a non-negative locally finite measure µ on (0, +1) ⇥ R 3 such that

@ t ( |u| 2 + |b| 2 2 ) = ( |u| 2 + |b| 2 2 ) |ru| 2 |rb| 2 r • ✓ ( |u| 2 2 + |b| 2 2 )v ◆ r • (pu) r • (qb) + r • ((u • b)c) + u • (r • F) + b • (r • G) µ. (9) 
Then we have the following controls:

• If 0 <  2,
for almost every a 0 (including 0) and for all t a,

k(u, b)(t)k 2 L 2 w + 2 Z t a (kr(u, b)(s)k 2 L 2 w )ds  k(u, b)(a)k 2 L 2 w Z t a Z r(|u| 2 + |b| 2 ) • rw dx ds + Z t a Z [( |u| 2 2 + |b| 2 2 )v] • rw dx ds + 2 Z t a Z pu • rw dx ds + 2 Z t a Z qb • rw dx ds + Z t a Z [(u • b)c] • rw dx ds X 1i,j3 ( Z t a Z F i,j (@ i u j )w dx ds + Z t a Z F i,j u i @ j (w ) • rw dx ds) X 1i,j3 ( 
Z t a Z G i,j (@ i b j )w dx ds + Z t a Z G i,j b i @ j (w ) dx ds), (10) 
which implies in particular that the map t 7 ! (u(t), b(t)) from [0, +1) to L 2 w is stronly continuous almost everywhere and

k(u, b)(t)k 2 L 2 w + Z t a kr(u, b)(s)k 2 L 2 w ds k(u, b)(a)k 2 L 2 w + C Z t a k(F, G)(s)k 2 L 2 w ds + C Z t a (1 + k(v, c)(s)k 2 L 3 w 3 /2 )(k(u, b)(s)k 2 L 2 w ) ds. (11) 
• Si = 0, for almost all a 0 (including 0) for all t a,

k(u, b)(t)k 2 L 2 + 2 Z t a (kr(u, b)(s)k 2 L 2 )ds k(u, b)(a)k 2 L 2 + X 1i,j3 ( Z t a Z F i,j @ i u j dx ds + Z t a Z G i,j @ i b j dx ds), which implies of course that the map t 7 ! (u(t), b(t)) from [0, +1) to L 2
w is stronly continuous almost everywhere.

Proof. We consider the case 0 <  2 (the changes required for the case = 0 are obvious). Let 0 < t 0 < t 1 < T , we take a non-decreasing function ↵ 2 C 1 (R) equal to 0 on ( 1, 1 2 ) and equal to 1 on (1, +1). For 0 < ⌘ < min( t 0 2 , T t 1 ), let

↵ ⌘,t 0 ,t 1 (t) = ↵( t t 0 ⌘ ) ↵( t t 1 ⌘ ). ( 12 
)
Remark that ↵ ⌘,t 0 ,t 1 converges almost everywhere to 1 [t 0 ,t 1 ] when ⌘ ! 0 and @ t ↵ ⌘,t 0 ,t 1 is the di↵erence between two identity approximations, the first one in t 0 and the second one in t 1 .

Consider a non-negative function 2 D(R 3 ) which is equal to 1 for |x|  1 and to 0 for |x| 2. We define

R (x) = ( x R ). ( 13 
)
For ✏ > 0, we let w ,✏ =

1 (1+ p ✏ 2 +|x| 2 ) (if = 0, w ,✏ = 1 ).
We have ↵ ⌘,t 0 ,t 1 (t) R (x)w ,✏ (x) 2 D((0, T )⇥R 3 ) and ↵ ⌘,t 0 ,t 1 (t) R (x)w ,✏ (x) 0. Thus, using the local energy balance [START_REF] Grafakos | Modern harmonic analysis[END_REF] and the fact that the measure µ verifies µ 0, we find

Z Z |u| 2 2 + |b| 2 2 @ t ↵ ⌘,t 0 ,t 1 R w ,✏ dx ds + Z Z |ru| 2 + |rb| 2 ↵ ⌘,t 0 ,t 1 R w ,✏ dx ds  3 X i=1 Z Z (@ i u • u + @ i b • b) ↵ ⌘,t 0 ,t 1 (w ,✏ @ i R + R @ i w ,✏ ) dx ds + 3 X i=1 Z Z [( |u| 2 2 + |b n | 2 2 )v i + pu i ]↵ ⌘,t 0 ,t 1 (w ,✏ @ i R + R @ i w ,✏ ) dx ds + 3 X i=1 Z Z [(u • b)c i + qb i ]↵ ⌘,t 0 ,t 1 (w ,✏ @ i R + R @ i w ,✏ ) dx ds X 1i,j3 ( Z Z F i,j u j ↵ ⌘,t 0 ,t 1 (w ,✏ @ i R + R @ i w ,✏ ) dx ds + Z Z F i,j @ i u j ↵ ⌘,t 0 ,t 1 R dx ds) X 1i,j3 ( Z Z G i,j b j ↵ ⌘,t 0 ,t 1 (w ,✏ @ i R + R @ i w ,✏ ) dx ds + Z Z G i,j @ i b j ↵ ⌘,t 0 ,t 1 R dx ds).
Independently from R > 1 and ✏ > 0, we have (for 0 <  2)

|w ,✏ @ i R | + | R @ i w ,✏ |  C w (x) 1 + |x|  C w 3 /2 (x).
As u, b belong to L 1 ((0, T ), L 2 w )\L 2 ((0, T ), L 6 w 3 ) hence to L 4 ((0, T ), L 3 w 3 /2 ) and T < +1, we have as well u, b 2 L 3 ((0, T ), L 3 w 3 /2 ). Also, we have pu i , qb i 2 L 1 w 3 /2 since w p, w q 2 L 2 ((0, T ), L 6/5 + L 2 ) and w /2 u, w /2 b 2 L 2 ((0, T ), L 2 \ L 6 ). Later, we will use dominated convergence using this remarks. First, we let ⌘ go to 0 and we find that lim

⌘!0 Z Z |u| 2 2 + |b| 2 2 @ t ↵ ⌘,t 0 ,t 1 R dx ds + Z t 1 t 0 Z |ru| 2 + |rb| 2 R w ,✏ dx ds  3 X i=1 Z t 1 t 0 Z (@ i u • u + @ i b • b) (w ,✏ @ i R + R @ i w ,✏ ) dx ds + 3 X i=1 Z t 1 t 0 Z [( |u| 2 2 + |b| 2 2 )v i + pu i ](w ,✏ @ i R + R @ i w ,✏ ) dx ds + 3 X i=1 Z t 1 t 0 Z [(u • b)c i + qb i ](w ,✏ @ i R + R @ i w ,✏ ) dx ds X 1i,j3 ( Z t 1 t 0 Z F i,j u j (w ,✏ @ i R + R @ i w ,✏ ) dx ds + Z t 1 t 0 Z F i,j @ i u j R dx ds) X 1i,j3 ( Z t 1 t 0 Z G i,j b j (w ,✏ @ i R + R @ i w ,✏ ) dx ds + Z t 1 t 0 Z G i,j @ i b j R dx ds)
when the limit in the left side exists. Let

A R,✏ (t) = Z (|u(t, x)| 2 + b(t, x)| 2 ) R (x)w ,✏ (x) dx, since Z Z ( |u| 2 2 + |b| 2 2 )@ t ↵ ⌘,t 0 ,t 1 R w ,✏ dx ds = 1 2 Z @ t ↵ ⌘,t 0 ,t 1 A R,✏ (s) ds
We have for all t 0 and t 1 Lebesgue points of the measurable functions A R,✏ , lim

⌘!0 Z Z ( |u| 2 2 + |b| 2 2 )@ t ↵ ⌘,t 0 ,t 1 R w ,✏ dx ds = 1 2 (A R,✏ (t 1 ) A R,✏ (t 0 )),
Then, by continuity, we can let t 0 go to 0 and thus replace t 0 by 0 in the inequality. Moreover, if we let t 1 go to t, then by weak continuity, we find that

A R,✏ (t)  lim t 1 !t A R,✏ (t 1 )
, so that we may as well replace t 1 by t 2 (t 1 , T ). Thus we find that for almost every a 2 (0, T ) (including 0) and for all t 2 (0, T ), we have:

1 2 (A R,✏ (t) A R,✏ (a)) + Z t a Z |ru| 2 + |rb| 2 R w ,✏ dx ds = 3 X i=1 Z t a Z (@ i u • u + @ i b • b) (w ,✏ @ i R + R @ i w ,✏ ) dx ds + 3 X i=1 Z t a Z [( |u| 2 2 + |b| 2 2 )v i + pu i ](w ,✏ @ i R + R @ i w ,✏ ) dx ds + 3 X i=1 Z t a Z [(u • b)c i + qb i ](w ,✏ @ i R + R @ i w ,✏ ) dx ds X 1i,j3 ( Z t a Z F i,j u j (w ,✏ @ i R + R @ i w ,✏ ) dx ds Z t a Z F i,j @ i u j R dx ds) X 1i,j3 ( Z t a Z G i,j b j (w ,✏ @ i R + R w ,✏ @ i w ,✏ ) dx ds Z t a Z G i,j @ i b j R w ,✏ dx ds),
Taking the limit when R go to +1 and then ✏ go to 0, by dominated convergence we obtain the energy control [START_REF] Jia | Local-in-space estimates near initial time for weak solutions of the Navier-Stokes equations and forward self-similar solutions[END_REF]. We let t go to a in [START_REF] Jia | Local-in-space estimates near initial time for weak solutions of the Navier-Stokes equations and forward self-similar solutions[END_REF], so that lim sup

t!0 k(u 1 , b 1 )(t)k 2 L 2 w  k(u 1 , b 1 )(a)k 2 L 2 w . Also, as u 1 is weakly continuous in L 2 w , k(u 1 , b 1 )(a)k 2 L 2 w  lim inf t!0 k(u 1 , b 1 )(t)k 2 L 2 w . Thus k(u 1 , b 1 )(a)k 2 L 2 w = lim t!0 k(u 1 , b 1 )(t)k 2 L 2
w , as we work in a Hilbert space, this fact and the weak continuity of the map t 7 ! u(t) 2 L 2 w implies strongly continuity almost everywhere. Now, to obtain [START_REF] Kikuchi | Weak solutions to the Cauchy problem for the Navier-Stokes equations satisfying the local energy inequality[END_REF], in the energy control [START_REF] Jia | Local-in-space estimates near initial time for weak solutions of the Navier-Stokes equations and forward self-similar solutions[END_REF] we have the following estimates:

Z t 0 Z r|u| 2 • rw ds ds 2 Z t 0 Z |u||ru| w dx ds  1 4 Z t 0 kruk 2 L 2 w ds + 4 2 Z t 0 kuk 2 L 2
w ds, and

Z t 0 Z r|b| 2 • rw ds ds  1 4 Z t 0 krbk 2 L 2 w ds + 4 2 Z t 0 kbk 2 L 2 w ds.
Then, for the pressure terms p and q we write p = p 1 + p 2 and q = q 1 + q 2 where

p 1 = 3 X i=1 3 X j=1 R i R j (v i u j c i b j ), p 2 = 3 X i=1 3 X j=1 R i R j (F i,j ),
and

q 1 = 3 X i=1 3 X j=1 R i R j (v i b j c i u j ), q 2 = 3 X i=1 3 X j=1 R i R j (G i,j ),
Since w 6 /5 2 A 6/5 we have the following control

Z t 0 Z (|u| 2 v + |b| 2 v + ((u • b)c) + 2p 1 u + 2q 1 b) • r(w ) dx ds  Z t 0 Z (|u| 2 |v| + |b| 2 |v| + |u||b||c| + 2|p 1 | + 2|q 1 |c| |u|) w 3/2 dx ds C Z t 0 kw 1/2 uk 6 (kw |v||u|k 6/5 + kw |c| |b|k 6/5 ) ds + C Z t 0 kw 1/2 bk 6 (kw |b||v|k 6/5 + kw |c| |u|k 6/5 ) ds  1 4 Z t 0 kruk 2 L 2 w ds + C Z t 0 kuk 2 L 2 w kvk 2 L 3 w 3 /2 + kuk 2 L 2 w kvk L 3 w 3 /2 ds + C Z t 0 kbk 2 L 2 w kck 2 L 3 w 3 /2 + kuk L 2 w kbk L 2 w kck L 3 w 3 /2 ds + 1 4 Z t 0 krbk 2 L 2 w ds + C Z t 0 kbk 2 L 2 w kvk 2 L 3 w 3 /2 + kbk 2 L 2 w kvk L 3 w 3 /2 ds + C Z t 0 kuk 2 L 2 w kck 2 L 3 w 3 /2 + kbk L 2 w kuk L 2 w kck L 3 w 3 /2 ds and since w 2 A 2 Z t a Z p 2 u • rw dx ds + Z t a Z q 2 b • rw dx ds C Z t a Z |p 2 ||u|w dx ds + C Z t a Z |q 2 ||b|w dx ds C Z t a (kuk 2 L 2 w + kp 2 k 2 L 2 w ) ds + C Z t a kbk 2 L 2 w + kq 2 k 2 L 2 w ds.
For the other terms, we have

X 1i,j3 ( Z t a Z (F i,j (@ i u j )w + F i,j u i @ j (w )) dx ds  C Z t a Z |F|(|ru| + |u|)w dx ds  1 4 Z t a kruk 2 L 2 w ds + C Z t a kuk 2 L 2 w ds + C Z t a kFk 2 L 2
w ds, and

X 1i,j3 ( Z t a Z G i,j (@ i b j )w + G i,j b i @ j (w )) dx ds  C Z t a Z |F|(|ru| + |u|)w dx ds  1 4 Z t a krbk 2 L 2 w ds + C Z t a kbk 2 L 2 w ds + C Z t a kGk 2 L 2
w ds.

Hence we have found the estimate [START_REF] Kikuchi | Weak solutions to the Cauchy problem for the Navier-Stokes equations satisfying the local energy inequality[END_REF] and Theorem 4 is proven. ⇧

3 Consequence of Grönwall type inequalities and the a priori estimates.

Control for passive transportation.

Using the Grönwall inequalities, the following corollary is a direct consequence of Theorem 3:

Corollary 3.1 Under the assumptions of Theorem 3, we have

sup 0<t<T k(u, b)k 2 L 2 w  ⇣ k(u 0 , b 0 )k 2 L 2 w + C (k(F, G)k L 2 ((0,T ),L 2 w ) ) ⌘ e C (T +T 1/3 k(v,c)k 2 L 3 ((0,T ),L 3 w 3 /2 )
)

and

kr(u, b)k L 2 ((0,T ),L 2 w )  ⇣ k(u 0 , b 0 )k 2 L 2 w + C (k(F, G)k L 2 ((0,T ),L 2 w ) ) ⌘ e C (T +T 1/3 k(v,c)k 2 L 3 ((0,T ),L 3 w 3 /2 )
)

where C only depends on .

Another direct consequence is the following uniqueness result for the advection-di↵usion problem (AD).

Corollary 3.2 . Let 0   2. Let 0 < T < +1. Let u 0 , b 0 2 L 2 w (R 3
) be divergence-free vector fields and F(t, x) = (F i,j (t, x)) 1i,j3 and G(t, x) = (F i,j (t, x)) 1i,j3 be tensors such that

F(t, x), G 2 L 2 ((0, T ), L 2 w ). Let v, c 2 L 3 ((0, T ), L 3 w 3 /2 ) be a time-dependent divergence free vector-fields. Assume moreover that v, c 2 L 2 t L 1 x (K) for every compact subset K of (0, T ) ⇥ R 3 . Let (u 1 , b 1 , p 1 , q 1 ) and (u 1 , b 1 , p 1 , q 1 ) be two solutions of the advection- di↵usion problem 8 > > > > > < > > > > > : @ t u = u (v • r)u + (c • r)b rp + r • F, @ t b = b (v • r)b + (c • r)u rq + r • G, r • u = 0, r • b = 0, u(0, •) = u 0 , b(0, •) = b 0 , which satisfies for k = 1 or k = 2 : • u k , b k belong to L 1 ((0, T ), L 2 w ) and ru k , rb k belong to L 2 ((0, T ), L 2 w ) • the terms p k , q k satisfy p k = X 1i,j3 R i R j (u k,i v j b k,i c j F i,j ), and q k = X 1i,j3 R i R j (v i b k,j c i u k,j G i,j ). • the map t 2 [0, +1) 7 ! (u k (t), b k (t)) is weakly continuous from [0, +1)
to L 2 w , and is strongly continuous at t = 0 :

Then (u 1 , b 1 , p 1 , q 1 ) = (u 1 , b 1 , p 1 , q 1 ).
Proof. We proceed as in [START_REF] Fernández-Dalgo | Weak solutions for Navier-Stokes equations with initial data in weighted L 2 spaces[END_REF] (see Corollary 5)

. Let w = u 1 u 2 , d = b 1 b 2 , p = p 1 p 2 and q = q 1 q 2 . Then we have 8 > > > > > < > > > > > : @ t w = w (v • r)w + (c • r)d rp, @ t d = d (v • r)d + (c • r)w rq, r • w = 0, r • d = 0, u(0, •) = 0, b(0, •) = 0. For all compact subset K of (0, T ) ⇥ R 3 , w ⌦ v, d ⌦ c, d ⌦ v and c ⌦ w are in L 2 t L 2
x , and these terms belong to L 3 ((0, T ), L 6/5

w 6 /5 ). Let ', 2 D((0, T ) ⇥ R 3
) such that = 1 on the neigborhood of the support of ', so that

'p = 'R ⌦ R( (v ⌦ w c ⌦ d)) + 'R ⌦ R((1 )(v ⌦ w c ⌦ d)).
We have that

k'R ⌦ R( (v ⌦ w c ⌦ d))k L 2 L 2  C ', k (v ⌦ w c ⌦ d)k L 2 L 2 and k'R ⌦ R(( 1 
)(v ⌦ w c ⌦ d))k L 3 L 1  C ', k(v ⌦ w c ⌦ d)k L 3 L 6/5 w 6 /5 with C ',  Ck'k 1 k1 k 1 sup x2Supp ' Z y2Supp (1 ) 
✓ (1 + |y|) |x y| 3 ◆ 6 ! 1/6
< +1, and we have analogue estimates for 'q. Thus, we may take the scalar product of @ t w with w and @ t d with d and find that

@ t ( |w| 2 + |d| 2 2 ) = ( |w| 2 + |d| 2 2 ) |rw| 2 |rd| 2 r • ✓ ( |w| 2 2 + |d| 2 2 )v ◆ r • (pw) r • (qd) + r • ((w • d)c) + w • (r • F) + d • (r • G).
The assumptions of Theorem 3 are satisfied then we use Corollary 3.1 to find that w = 0 and b = 0 and consequently p = 0 and q = 0. ⇧

Control for active transportation.

We remember the following lemma (for a proof see [START_REF] Fernández-Dalgo | Weak solutions for Navier-Stokes equations with initial data in weighted L 2 spaces[END_REF]) :

Lemma 3.1 If ↵ is a non-negative bounded measurable function on [0, T ) which satisfies, for two constants A, B 0,

↵(t)  A + B Z t 0 1 + ↵(s) 3 ds. If T 0 > 0 and T 1 = min(T, T 0 , 1 4B(A+BT 0 ) 2 ), we have, for every t 2 [0, T 1 ], ↵(t)  p 2(A + BT 0 ).
Now we able to prove the following result.

Corollary 3.3 Under the hypothesis of Theorem 3. Assume that (v, c) is controlled by (u, b) in the following sense: for every t 2 (0, T ),

k(v, c)(t)k 2 L 3 w 3 /2  C 0 k(u, b)(t)k 2 L 3 w 3 /2 .
Then there exists a constant C

1 such that if T 0 < T is such that C ✓ 1 + k(u 0 , b 0 )k 2 L 2 w + Z T 0 0 k(F, G)k 2 L 2 w ds ◆ 2 T 0  1 then sup 0tT 0 k(u, b)(t)k 2 L 2 w  C (1 + k(u 0 , b 0 )k 2 L 2 w + Z T 0 0 k(F, G)k 2 L 2 w ds)
and

Z T 0 0 kr(u, b)(s)k 2 L 2 w ds  C (1 + k(u 0 , b 0 )k 2 L 2 w + Z T 0 0 k(F, G)k 2 L 2 w ds).
Proof. By [START_REF] Kikuchi | Weak solutions to the Cauchy problem for the Navier-Stokes equations satisfying the local energy inequality[END_REF] we can write:

k(u, b)(t)k 2 L 2 w + Z t 0 kr(u, b)(s)k 2 L 2 w ds k(u, b)(0)k 2 L 2 w + C Z t 0 k(F, G)(s)k 2 L 2 w ds + C Z t 0 (1 + k(v, c)(s)k 2 L 3 w 3 /2 )(k(u, b)(s)k 2 L 2 w ) ds.
Then, as we have

k(v, c)(s)k 2 L 3 w 3 /2  C 0 k(u, b)(s)k 2 L 3 w 3 /2  C 0 C k(u, b)k L 2 w (k(u, b)k L 2 w +kr(u, b)k L 2 w ), we obtain k(u, b)(t)k 2 L 2 w + 1 2 Z kr(u, b)k 2 L 2 w ds k(u 0 , b 0 )k 2 L 2 w + C Z t 0 k(F, G)(s)k 2 L 2 w ds + 2C Z t 0 k(u, b)(s)k 2 L 2 w + C 2 0 k(u, b)(s)k 6 L 2 w ds.
Finally, for t  T 0 we get

k(u, b)(t)k 2 L 2 w + 1 2 Z kr(u, b)k 2 L 2 w ds  k(u 0 , b 0 )k 2 L 2 w + C Z T 0 0 k(F, G)k 2 L 2 w ds + C (1 + C 2 0 ) Z t 0 k(u, b)(t)k 2 L 2 w + k(u, b)(t)k 6 L 2
w ds and then we may conclude with Lemma 3.1. ⇧

Stability of solutions for the (AD) system

In this section we establish we following stability result for the advection-di↵usion system below:

Theorem 4 Let 0   2. Let 0 < T < +1. Let u 0,n , b 0,n 2 L 2 w (R 3 ) be divergence-free vector fields. Let F n , G n 2 L 2 ((0, T ), L 2 
w ) be tensors. Let v n , c n be time-dependent divergence free vector-fields such that v n , c n 2 L 3 ((0, T ), L 3 w 3 /2 ).

Let (u n , b n , p n q n ) be solutions of the following advection-di↵usion problems

(AD n ) 8 > > > > > < > > > > > : @ t u n = u n (v n • r)u n + (c n • r)b n rp n + r • F n , @ t b n = b n (v n • r)b n + (c n • r)u n rq n + r • G n , r • u n = 0, r • b n = 0, u n (0, •) = u 0,n , b n (0, •) = b 0,n . ( 14 
)
verifying the same hypothesis of Theorem 3.

If (u 0,n , b 0,n ) is strongly convergent to (u 0,1 , b 0,1 ) in L 2 w , if the sequence (F n , G n ) is strongly convergent to (F 1 , G 1 ) in L 2 ((0, T ), L 2 
w ), and moreover, if the sequence (v n , c n ) is bounded in L 3 ((0, T ), L 3 w 3 /2 ), then there exists u 1 , b 1 , v 1 , c 1 , p 1 , q 1 and an increasing sequence (n k ) k2N with values in N such that

• (u n k , b n k ) converges *-weakly to (u 1 , b 1 ) in L 1 ((0, T ), L 2 w ), (ru n k , rb n k ) converges weakly to (ru 1 , rb 1 ) in L 2 ((0, T ), L 2 w ). • (v n k , c n k ) converges weakly to (v 1 , c 1 ) in L 3 ((0, T ), L 3 w 3 /2 ), (p n k , q n k ) converges weakly to (p 1 , q 1 ) in L 3 ((0, T ), L 6/5 w 6 5 ) + L 2 ((0, T ), L 2 w ). • (u n k , b n k ) converges strongly to (u 1 , b 1 ) in L 2 loc ([0, T )⇥R 3
) : for every T 0 2 (0, T ) and every R > 0, we have

lim k!+1 Z T 0 0 Z |y|<R (|u n k (s, y) u 1 (s, y)| 2 +|b n k (s, y) b 1 (s, y)| 2 ) ds dy = 0. Moreover, (u 1 , b 1 , p 1 , q 1 )
is a solution of the advection-di↵usion problem

(AD 1 ) 8 > > > > > < > > > > > : @ t u 1 = u 1 (v 1 • r)u 1 + (c 1 • r)b 1 rp 1 + r • F 1 , @ t b 1 = b 1 (v 1 • r)b 1 + (c 1 • r)u 1 rq 1 + r • G 1 , r • u 1 = 0, r • b 1 = 0, u 1 (0, •) = u 0,1 , b 1 (0, •) = b 0,1 . (15) 
and verify the hypothesis of Theorem 3.

Proof. Assume that (u 0,n , b 0,n ) is strongly convergent to (u 0,1 , b 0,1 ) in L 2 w , assume that the sequence (F n , G n ) is strongly convergent to (F 1 , G 1 ) in L 2 ((0, T ), L 2 
w ), and moreover, assume that the sequence (v n , c n ) is bounded in L 3 ((0, T ), L 3 w 3 /2 ). Then, by Theorem 3 and Corollary 3.1, we know that

(u n , b n ) is bounded in L 1 ((0, T ), L 2 w ) and (ru n , rb n ) is bounded in L 2 ((0, T ), L 2 
w ). In particular, writing p n = p n,1 + p n,2 with

p n,1 = 3 X i=1 3 X j=1 R i R j (v n,i u n,j c n,i b n,j ), p 2 = 3 X i=1 3 X j=1 R i R j (F n,i,j ),
and q n = q n,1 + q n,2 with

q n,1 = 3 X i=1 3 X j=1 R i R j (v n,i b n,j c n,i u n,j ), q 2 = 3 X i=1 3 X j=1 R i R j (G n,i,j ),
we get that (p n,1 , q n,1 ) is bounded in L 3 ((0, T ), L 6/5 w 6

5

) and (p n,2 , q n,2 ) is bounded in L 2 ((0, T ), L 2 w ).

Let ' 2 D(R 3 ). We have that ('u n , 'b n ) are bounded in L 2 ((0, T ), H 1 ). Moreover, by equations ( 14) and by the expressions for p n and q n above, we get that ('

@ t u n , '@ t b n ) are bounded in L 2 L 2 + L 2 W 1,6/5 + L 2
H 1 and then they are bounded in L 2 ((0, T ), H 2 ). Thus, by a Rellich-Lions lemma there exist (u 1 , b 1 ) and an increasing sequence (n k ) k2N with values in N such that (u n k , b n k ) converges strongly to (u 1 , b 1 ) in L 2 loc ([0, T ) ⇥ R 3 ) : for every T 0 2 (0, T ) and every R > 0, we have

lim k!+1 Z T 0 0 Z |y|<R (|u n k (s, y) u 1 (s, y)| 2 + |b n k (s, y) b 1 (s, y)| 2 ) dy ds = 0. As (u n , b n ) is bounded in L 1 ((0, T ), L 2 w ) and (ru n , ru n ) is bounded in L 2 ((0, T ), L 2 w ) we have that (u n k , b n k ) converges *-weakly to (u 1 , b 1 ) in L 1 ((0, T ), L 2 
w ) and we have that (ru n k , ru n k ) converges weakly to (ru 1 , rb 1 ) in L 2 ((0, T ), L 2 w ).

Using the Banach-Alaoglu's theorem, there exist

(v 1 , c 1 ) such that (v n k , c n k ) converge weakly to (v 1 , c 1 ) in L 3 ((0, T ), L 3 w 3 /2 ).
In particular, we have that the terms

v n k ,i u n k ,j , c n k ,i b n k ,j , v n k ,i b n k ,j and c n k ,i u n k ,j
in the transport terms in equations ( 14) are weakly convergent in (L 6/5 L 6/5 ) loc and thus in D 0 ((0, T )⇥R 3 ). As those terms are bounded in L 3 ((0, T ), L Define

p 1 = p 1,1 + p 1,2 with p 1,1 = 3 X i=1 3 X j=1 R i R j (v 1,i u 1,j c 1,i b 1,j ), p 2 = 3 X i=1 3 X j=1 R i R j (F 1,i,j ),
and q 1 = q 1,1 + q 1,2 with

q 1,1 = 3 X i=1 3 X j=1 R i R j (v 1,i b 1,j c 1,i u 1,j ), q 2 = 3 X i=1 3 X j=1 R i R j (G 1,i,j ).
As the Riesz transforms are bounded the spaces L 6/5 w 6 5 and L 2 w , we find that (p n k ,1 , q n k ,1 ) are weakly convergent in L 3 ((0, T ), L 6/5 w 6

5

) to (p 1,1 , q 1,1 ), and moreover, we find that (p n k ,2 , q n k ,2 ) is strongly convergent in L 2 ((0, T ), L 2 w ) to (p 1,2 , q 1,2 ).

With those facts, we obtain that (u 1 , p 1 , b 1 , q 1 ) verify the following equations in D 0 ((0, T ) ⇥ R 3 ): 8 > > < > > :

@ t u 1 = u 1 (v 1 • r)u 1 + (c 1 • r)b 1 rp 1 + r • F 1 , @ t b 1 = b 1 (v 1 • r)b 1 + (c 1 • r)u 1 rq 1 + r • G 1 , r • u 1 = 0, r • b 1 = 0.
In particular, we have that (@ t u 1 , @ t b 1 ) belong locally to the space L 2 t H 2 x , and then these functions have representatives such that t 7 ! u 1 (t, .) and t 7 ! b(t, .) which are continuous from [0, T ) to D 0 (R 3 ) and coincides with u 1 (0, .) + R t 0 @ t u 1 ds and b 1 (0, .) + b 1 (0, .) + R t 0 @ t b 1 ds. With this information and proceeding as in [START_REF] Fernández-Dalgo | Weak solutions for Navier-Stokes equations with initial data in weighted L 2 spaces[END_REF] (see the proof of Theorem 3, page 21) we have that u 1 (0, .) = u 0,1 and b 1 (0, .) = b 0,1 and thus (u 1 , b 1 ) is a solution of [START_REF] Lemarié-Rieusset | The Navier-Stokes problem in the 21st century[END_REF].

Next, We define

A n k = @ t ( |u n k | 2 + |b n k | 2 2 ) + ( |u n k | 2 + |b n k | 2 2 ) r • ✓ ( |u n k | 2 2 + |b n k | 2 2 )v n k ◆ r • (p n k u n k ) r • (q n k b n k ) + r • ((u n k • b n k )c n k ) + u n k • (r • F n k ) + b n k • (r • G n k ),
and following the same computations as in [START_REF] Fernández-Dalgo | Weak solutions for Navier-Stokes equations with initial data in weighted L 2 spaces[END_REF] (see always the proof of Theorem 3, page 22) we have that A n k converges to A 1 in D 0 ((0, T ) ⇥ R 3 ) where

A 1 = @ t ( |u 1 | 2 + |b 1 | 2 2 ) + ( |u 1 | 2 + |b 1 | 2 2 ) r • ✓ ( |u 1 | 2 2 + |b 1 | 2 2 )v 1 ◆ r • (p 1 u 1 ) r • (q 1 b 1 ) + r • ((u 1 • b 1 )c 1 ) + u 1 • (r • F 1 ) + b 1 • (r • G 1 ).
Moreover, recall by hypothesis of this theorem we have that there exist µ n k a non-negative locally finite measure on (0, T ) ⇥ R 3 such that

@ t ( |u n k | 2 + |b n k | 2 2 ) = ( |u n k | 2 + |b n k | 2 2 ) |ru n k | 2 |rb n k | 2 r • ✓ ( |u n k | 2 2 + |b n k | 2 2 )v n k ◆ r • (p n k u n k ) r • (q n k b n k ) + r • ((u n k • b n k )c n k ) + u n k • (r • F n k ) + b n k • (r • G n k ) µ n k .

Then by definition of A n k we can write

A n k = |ru n k | 2 + |rb n k | 2 + µ n k ,

and thus we have

A 1 = lim n k !+1 |ru n k | 2 + |rb n k | 2 + µ n k . Let 2 D((0, T )⇥R 3 ) be a non-negative function. As p (ru n k +rb n k ) is weakly convergent to p (ru 1 + rb 1 ) in L 2 t L 2 x , we have Z Z A 1 dx ds = lim n k !+1 Z Z A n k dx ds lim sup n k !+1 Z Z (|ru n k | 2 + |rb n k | 2 ) dx ds Z Z (|ru 1 | 2 + |rb 1 | 2 ) dx ds.
Thus, there exists a non-negative locally finite measure µ 1 on (0, T ) ⇥ R 3

such that A 1 = (|ru 1 | 2 + |rb 1 | 2 ) + µ 1
, and then we have

@ t ( |u 1 | 2 + |b 1 | 2 2 ) = ( |u 1 | 2 + |b 1 | 2 2 ) |ru 1 | 2 |rb 1 | 2 r • ✓ ( |u 1 | 2 2 + |b 1 | 2 2 )v 1 ◆ r • (p 1 u 1 ) r • (q 1 b 1 ) + r • ((u 1 • b 1 )c 1 ) + u 1 • (r • F 1 ) + b 1 • (r • G 1 ) µ 1 .
As in [START_REF] Fernández-Dalgo | Weak solutions for Navier-Stokes equations with initial data in weighted L 2 spaces[END_REF], writing the energy control [START_REF] Shercli↵ | A Textbook of Magnetohydrodynamics[END_REF] with the functions (u n k , p n k , b n k , q n k ) and with a = 0, and moreover, taking the limsup when n k ! +1 we have lim sup

n k !+1 ✓Z ( |u n k (t, x)| 2 2 + |b n k (t, x)| 2 2 ) R w ," dx + Z t 0 Z |ru n k | 2 + |rb n k | 2 R w ,✏ dx ds ◆  Z ( |u 0,1 (x)| 2 2 + |b 0,1 (x)| 2 2 ) R w ," dx 3 X i=1 Z t 0 Z (@ i u 1 • u 1 + @ i b 1 • b 1 ) (w ,✏ @ i R + R @ i w ,✏ ) dx ds + 3 X i=1 Z t 0 Z [( |u 1 | 2 2 + |b 1 | 2 2 )v 1,i + p 1 u 1,i ](w ,✏ @ i R + R @ i w ,✏ ) dx ds + 3 X i=1 Z t 0 Z [(u 1 • b 1 )c 1,i + q 1 b 1,i ](w ,✏ @ i R + R @ i w ,✏ ) dx ds X 1i,j3 ( 
Z t 0 Z F 1,i,j u 1,j (w ,✏ @ i R + R @ i w ,✏ ) dx ds Z t 0 Z F 1,i,j @ i u 1,j R dx ds) X 1i,j3 ( 
Z t 0 Z G 1,i,j b 1,j (w ,✏ @ i R + R w ,✏ @ i w ,✏ ) dx ds Z t 0 Z G 1,i,j @ i b 1,j R w ,✏ dx ds).
Now, recall that we have

u n k = u 0,n k + Z t 0 @ t u n k ds and b n k = u 0,n k + Z t 0 @ t b n k ds and then, for all t 2 (0, T ) we have that (u n k (t, .), b n k (t, .)) converge to (u 1 (t, .), b 1 (t, .)) in D 0 (R 3 ). Moreover, as (u n k (t, .), b n k (t, .)) are bounded in L 2 w (R 3 ) we get that (u n k (t, .), b n k (t, .)) converge to (u 1 (t, .), b 1 (t, .)) in L 2 loc (R 3
). Thus, we can write

Z ( |u 1 (t, x)| 2 2 + |b 1 (t, x)| 2 2 R w ,✏ dx  lim sup n k !+1 Z ( |u n k (t, x)| 2 2 + |b n k (t, x)| 2 2 ) R w ," dx.
On the other hand, as (ru n k , rb n k ) are weakly convergent to (ru

1 , rb 1 ) in L 2 t L 2 w , we have Z t 0 Z ( |ru 1 (s, x)| 2 2 + |ru 1 (s, x)| 2 2 ) R w ," dx ds  lim sup n k !+1 Z t 0 Z |ru n k | 2 + |rb n k | 2 R w ,✏ dx ds.
Thus, taking the limit when R ! 0 and when " ! 0, for every t 2 (0, T ) we get:

k(u 1 , b 1 )(t)k 2 L 2 w + 2 Z t 0 (kr(u 1 , b 1 )(s)k 2 L 2 w )ds k(u 0,1 , b 0,1 )k 2 L 2 w Z t 0 Z (r|u 1 | 2 + r|b 1 | 2 ) • rw dx ds + Z t 0 Z [( |u 1 | 2 2 + |b 1 | 2 2 )v] • rw dx ds + 2 Z t 0 Z p 1 u 1 • rw dx ds + 2 Z t 0 Z q 1 b 1 • rw dx ds + Z t 0 Z [(u 1 • b 1 )c 1 ] • rw dx ds X 1i,j3 ( 
Z t 0 Z F 1,i,j (@ i u 1,j )w dx ds + Z t 0 Z F 1,i,j u 1,i @ j (w ) • rw dx ds) X 1i,j3 ( 
Z t 0 Z G 1,i,j (@ i b 1,j )w dx ds + Z t 0 Z G 1,i,j b 1,i @ j (w ) dx ds).
In this estimate we take now the limsup when t ! 0 and proceeding as in [START_REF] Fernández-Dalgo | Weak solutions for Navier-Stokes equations with initial data in weighted L 2 spaces[END_REF] (see the proof of Theorem 3, page 24) we find that lim

t!0 k(u 1 , b 1 )(t)k 2 L 2 w = k(u 0,1 , b 0,1 )k 2 L 2 w .
which implies strongly convergence of the solution to the initial data (since we have weak convergence and convergence of the norms in a Hilbert space). The proof is finished. ⇧ Remark 3.1 We remark that non linear versions of this stability theorem emerge from the same proof if we take u n = v n and c n = b n , in which case we obtain u 1 = v 1 and c 1 = b 1 . We consider two cases.

• if we suppose that (u n , b n ) is bounded in L 1 ((0, T ), L 2 w ) and (ru n , rb n ) is bounded in L 2 ((0, T ), L 2 
w ), the same proof give a solution on (0, T ). We will use this case in the end of the proof of Theorem 1.

• if we do not suppose that (u n , b n ) is bounded in L 1 ((0, T ), L 2 w ) and (ru n , rb n ) is bounded in L 2 ((0, T ), L 2 
w ), the same proof give a solution on (0, T 0 ), where T 0 < T using Theorem 3 and Corollary 3.3.

Global weak suitable solutions for 3D MHD equations 4.1 Proof of Theorem 1

Initially, we proof the local in time existence of solutions.

Local existence

Let 2 D(R 3 ) be a non-negative function such that (x) = 1 for |x| < 1 and (x) = 0 for |x| 2. For R > 0, we define the cut-o↵ function R (x) = ( x R ). Then, for the initial (u

0 , b 0 ) 2 L 2 w (R 3 ) we define (u 0,R , b 0,R ) = (P( R u 0 ), P( R b 0 )) 2 L 2 (R 3 ) which are divergence-free vector fields. Moreover, for the tensors F, G 2 L 2 ((0, T ), L 2 w ) we define (F R , G R ) = ( R F, R G) 2 L 2 ((0, T ), L 2 ).

Then, by Proposition

A.1 there exist u R,✏ , b R,✏ , p R,✏ , q R,✏ solving 8 > > > > > < > > > > > : @ t u R,✏ = u R,✏ ((u R,✏ ⇤ ✓ ✏ ) • r)u R,✏ + ((b R,✏ ⇤ ✓ ✏ ) • r)b R,✏ rp R,✏ + r • F R , @ t b R,✏ = b R,✏ ((u R,✏ ⇤ ✓ ✏ ) • r)b R,✏ + ((b R,✏ ⇤ ✓ ✏ ) • r)u R,✏ rq R,✏ + r • G R , r • u R,✏ = 0, r • b R,✏ = 0, u R,✏ (0, •) = u 0,R , b R,✏ (0, •) = b 0,R . such that (u R,✏ , b R,✏ ) 2 C([0, T ), L 2 (R 3 ))\L 2 ([0, T ), Ḣ1 (R 3 )) and (p R,✏ , q R,✏ ) 2 L 4 ((0, T ), L 6/5 (R 3 )) + L 2 ((0, T ), L 2 (R 3
)), for every 0 < T < +1, and satisfying the energy equality [START_REF] Leray | Essai sur le mouvement d'un fluide visqueux emplissant l'espace[END_REF]. Now, we must study the convergence of the solution (u R,✏ , b R,✏ , p R,✏ , q R,✏ ) when we let R ! +1 and ✏ ! 0 and for this we will use the Theorem 4, which was proven in the setting of the advection-di↵usion problem [START_REF] Lemarié-Rieusset | Recent developments in the Navier-Stokes problem[END_REF]. Thus, the first thing to do is to set [START_REF] Lemarié-Rieusset | Recent developments in the Navier-Stokes problem[END_REF], and then, we will prove that (v R,✏ , c R,✏ ) are uniform bounded in L 3 ((0, T 0 ), L 3 3 /2 ) for a time T 0 > 0 small enough.

(v R,✏ , c R,✏ ) = (u R,✏ ⇤✓ ✏ , b R,✏ ⇤✓ ✏ ) in
For a time 0 < T 0 < +1, by Lemma 2.1 we have

k(v R,✏ , c R,✏ )k L 3 ((0,T 0 ),L 3 w 3 /2 )  k(M u R,✏ , M b R,✏ )k L 3 ((0,T 0 ),L 3 w 3 /2 ) C k(u R,✏ , b R,✏ )k L 3 ((0,T 0 ),L 3 w 3 /2 ) .
Then, by the Hölder inequalities and by Lemma 2.3 we can write

k(u R,✏ , b R,✏ )k L 3 ((0,T 0 ),L 3 w 3 /2 ) C T 1/12 0 ⇣ (1 + p T 0 )k(u R,✏ , b R,✏ )k L 2 ((0,T 0 ),L 2 w ) ⌘ + C T 1/12 0 ⇣ (1 + p T 0 )k(ru R,✏ , rb R,✏ )k L 2 ((0,T 0 ),L 2 w )
⌘ .

At this point, remark that (u R,✏ , b R,✏ , p R,✏ , q R,✏ ) satisfy the assumptions of Theorem 3 and then we can apply Corollary 3.3. Thus, for a time T 0 > 0 such that

C ✓ 1 + k(u 0,R , b 0,R )k 2 L 2 w + Z T 0 0 k(F R , G R )k 2 L 2 w ds ◆ 2 T 0  1,
we have the estimates

sup 0tT 0 k(u R,✏ , b R,✏ )(t)k 2 L 2 w  C (1 + k(u 0,R , b 0,R )k 2 L 2 w + Z T 0 0 k(F R , G R )k 2 L 2 w ds),
and

Z T 0 0 kr(u R,✏ , b R,✏ )(s)k 2 L 2 w ds  C (1 + k(u 0,R , b 0,R )k 2 L 2 w + Z T 0 0 k(F R , G R )k 2 L 2 w ds).
Moreover, we have that

k(u 0,R , b 0,R )k L 2 w  C k(u 0 , b 0 )k L 2 w and k(F R , G R )k L 2 w  k(F, G)k L 2 w .
and thus, by the estimates above we find that (v R,✏ , c R,✏ ) are uniform bounded in L 3 ((0, T 0 ), L 3 w 3 /2 ). Now, we are able to apply the Theorem 4. For the sake of simplicity let us denote (u 0,n , b 0

,n ) = (u 0,Rn , b 0,Rn ), (F n , G n ) = (F Rn , G Rn ), (v n , c n ) = (v Rn,✏n , v Rn,✏n ) and (u n , b n ) = (u Rn,✏n , b Rn,✏n ). As (u 0,n , b 0,n ) is strongly convergent to (u 0 , b 0 ) in L 2 w , (F n , G n ) is strongly convergent to (F, G) in L 2 ((0, T 0 ), L 2 
w ), and moreover, as (v n , c n ) is uniform bounded in L 3 ((0, T 0 ), L 3 w 3 /2 ), by Theorem 4 there exist (u, b, v, c, p, q) and there exists an increasing sequence (n k ) k2N with values in N such that:

• (u n k , b n k ) converges *-weakly to (u, b) in L 1 ((0, T 0 ), L 2 w ), (ru n k , rb n k ) converges weakly to (ru, rb) in L 2 ((0, T 0 ), L 2 w ). • (v n k , c n k ) converges weakly to (v, c) in L 3 ((0, T 0 ), L 3 w 3 /2
). Moreover, p n k converges weakly to p in L 3 ((0, T 0 ), L 6/5 w 6
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) + L 2 ((0, T 0 ), L 2 w ) and similarly for q n k .

• (u n k , b n k ) converges strongly to (u, b) in L 2 loc ([0, T 0 ) ⇥ R 3 ).
Moreover, (u, b, v, c, p, q) is a solution of the advection-di↵usion problem 8 > > > > > < > > > > > :

@ t u = u (v • r)u + (c • r)b rp + r • F, @ t b = b (v • r)b + (c • r)u rq + r • G, r • u = 0, r • b = 0, u(0, •) = u 0 , b(0, •) = b 0 .
and is such that :

• the map t 2 [0, T 0 ) 7 ! (u(t), b(t)) is weakly continuous from [0, T 0 ) to L 2
w , and is strongly continuous at t = 0 • there exists a non-negative locally finite measure µ on (0, T 0 ) ⇥ R 3 such that

@ t ( |u| 2 + |b| 2 2 ) = ( |u| 2 + |b| 2 2 ) |ru| 2 |rb| 2 r • ✓ ( |u| 2 2 + |b| 2 2 )v ◆ r • (pu) r • (qb) + r • ((u • b)c) + u • (r • F) + b • (r • G) µ.
Finally we must check that v = u and c = b. As we have

v n = ✓ ✏n ⇤ (v n v) + ✓ ✏n ⇤ v, and c n = ✓ ✏n ⇤ (c n c) + ✓ ✏n ⇤ c then we get that (v n k , c n k ) are strongly convergent to (u, b) in L 3 loc ([0, T 0 ) ⇥ R 3
), hence we have v = u and c = b. Thus, (u, b, p, q) is a solution of the (MHDG) equations on (0, T 0 ).

Global existence

Let > 1. For n 2 N we consider the (MHDG) problem with the initial data (ũ 0,n , b0,n ) = ( n u 0 ( n •), b 0 ( n •)) and with the tensors

F n = 2n F( 2n •, n •) and G n = 2n G( 2n •, n •)
and then, by Section 4.1.1 we have a solution a local in time (ũ n , bn , pn , qn ) on the interval of time (0, T n ), where the time

T n > 0 is such that C ✓ 1 + k(ũ 0,n , b0,n )k 2 L 2 w + Z +1 0 k(F n , G n )k 2 L 2 w ds ◆ 2 T n = 1.
Moreover, using the scaling of the (MHDG) equations, which is the same well-know scaling of the Navier-Stokes equations, we can write

(ũ n , bn ) = ( n u n ( 2n t•, n •), n b n ( 2n t•, n •)),
where (u n , b n ) is a solution of the (MHDG) equations on the interval of time (0, 2n T n ) and arising from the data (u 0 , b 0 , F, G).

By Lemma 10 in [START_REF] Fernández-Dalgo | Weak solutions for Navier-Stokes equations with initial data in weighted L 2 spaces[END_REF] we have lim n!+1

2n

T n = +1 and then, for a time T > 0 there exist n T 2 N such that for all n > n T we have 2n

T n > T. From the solution (u n , b n ) on (0, T ) given above, for all n > n T we define the functions

( ũn , bn ) = ( n T u n ( 2n T t•, n T •), n T b n ( 2n T t•, n T •)),
which are solutions of the MHDG equations on (0, 2n T T ) with initial data (ũ 0,n T , b0,n T ) and forcing tensors

F n T , G n T Since 2n T T  T n T , we find C ✓ 1 + k(ũ 0,n T , b0,n T )k 2 L 2 w + Z +1 0 k(F n T , G n T )k 2 L 2 w ds ◆ 2 2n T T  1.
As before, sing corollary 3.3, we find sup

0t 2n T T k ( ũn , ũn )(t)k 2 L 2 w  C (1+k(ũ 0,n T , b0,n T )k 2 L 2 w + Z 2n T T 0 k(F n T , G n T )k 2 L 2 w ds) and Z 2n T T 0 kr( ũn , ũn )k 2 L 2 w ds  C (1+k(ũ 0,n T , b0,n T )k 2 L 2 w + Z 2n T T 0 k(F n T , G n T )k 2 L 2 w ds).
By other hand, proceeding as in [START_REF] Fernández-Dalgo | Weak solutions for Navier-Stokes equations with initial data in weighted L 2 spaces[END_REF] (see the proof of Theorem 1, page 30) we have the following estimates for the functions (ũ n , bn ):

n T ( 1) k(u n ,b n )( 2n T t, .)k 2 L 2 w  Z |(u n ( 2n T t, x)| 2 + b n ( 2n T t, x)| 2 ) n T ( 1) (1 + |x|) ( n T + |x|) w (x) dx k( ũn , bn )(t, •)k 2 L 2 w ,
and

n T ( 1) Z T 0 k(ru n , rb n )(s, •)k 2 L 2 'w ds  Z T 0 Z (|ru n (s, x)| 2 + |rb n (s, x)| 2 ) n T ( 1) (1 + |x|) ( n T + |x|) w (x) dx ds  Z 2n T T 0 k(r ũn , r bn )(s, •)k 2 L 2
w ds. For n > n T we have controlled uniformly (u n , b n ) and on (ru n , rb n ) in the interval of time (0, T ). Then, by Theorem 4 and a diagonal argument we find a global in time solution of the (MHDG) equations. Theorem 1 in now proven. ⇧ 4.2 Solutions of the advection-di↵usion problem with initial data in L 2 w .

Following essentially the same ideas of the proof of Theorem 1, this result is easily adapted for following advection-di↵usion problem:

Theorem 5 Within the hypothesis of Theorem 1, let v, c be a time dependent divergence free vector-field such that, for every T > 0, we have v, c 2 L 3 ((0, T ), L 3 w 3 /2 ). Then, the advection-di↵usion problem

(AD) 8 > > > > > < > > > > > : @ t u = u (v • r)u + (c • r)b rp + r • F, @ t b = b (v • r)b + (c • r)u rq + r • G, r • u = 0, r • b = 0, u(0, •) = u 0 , b(0, •) = b 0 ,
has a solution (u, b, p, q) which satisfies the statements of Theorem 1.

Proof. For the initial data (u

0,R , b 0,R ) = (P( R u 0 ), P( R b 0 )) 2 L 2 (R 3 ) and for (F R , G R ) = ( R F, R G) 2 L 2 ((0, T ), L 2 ), proceeding as in the proof of Proposition A.1, for every 0 < T < +1 we construct (u R,✏ , b R,✏ ) 2 C([0, T ), L 2 (R 3 )) \ L 2 ([0, T ), Ḣ1 (R 3 )) and (p R,✏ , q R,✏ ) 2 L 4 ((0, T ), L 6/5 (R 3 )) + L 2 ((0, T ), L 2 (R 3 )) a solution of the approximated system 8 > > > > > < > > > > > : @ t u R,✏ = u R,✏ ((v R,✏ ⇤ ✓ ✏ ) • r)u R,✏ + ((c R,✏ ⇤ ✏) • r)b R,✏ rp R,✏ + r • F R , @ t b R,✏ = b R,✏ ((v R,✏ ⇤ ✏) • r)b R,✏ + ((c R,✏ ⇤ ✏) • r)u R,✏ rq R,✏ + r • G R , r • u R,✏ = 0, r • b R,✏ = 0, u R,✏ (0, •) = u 0,R , b R,✏ (0, •) = b 0,R , such that the functions (u R,✏ , b R,✏ , p R,✏ , q R,✏
) verify all the assumptions of Theorem 3 and we can apply the Corollary 3.1. Thus, by the estimates given in Corollary 3.1, and moreover, as we have

k(u 0,R , b 0,R )k L 2 w  C k(u 0 , b 0 )k L 2 w , k(F R , G R )k L 2 w  k(F, G)k L 2 w ,
then we obtain the estimates:

sup 0<t<T k(u R,✏ , b R,✏ )k 2 L 2 w  ⇣ k(u 0 , b 0 )k 2 L 2 w + C (k(F, G)k L 2 ((0,T ),L 2 w ) ) ⌘ e C (T +T 1/3 k(v R,✏ ,c R,✏ )k 2 L 3 t L 3 w 3 /2 )
and

kr(u R,✏ , b R,✏ )k L 2 ((0,T ),L 2 w )  ⇣ k(u 0,R , b 0,R )k 2 L 2 w + C (k(F R , G R )k L 2 ((0,T ),L 2 w ) ) ⌘ e C (T +T 1/3 k(v R,✏ ,c R,✏ )k 2 L 3 t L 3 w 3 /2
) .

On the other hand, setting the functions

(v R,✏ , c R,✏ ) = (v R ⇤ ✓ ✏ , c R ⇤ ✓ ✏ ) the we have k(v R,✏ , c R,✏ )k L 3 ((0,T ),L 3 w 3 /2 )  k(M v R , M c R )k L 3 ((0,T ),L 3 w 3 /2 )  C k(v, c)k L 3 ((0,T ),L 3 w 3 /2
) ,

and we have verified the assumptions of Theorem 4.

We write (u 0,n , b 0

,n ) = (u 0,Rn , b 0,Rn ), (F n , G n ) = (F Rn , G Rn ), (v n , c n ) = (v Rn,✏n , v Rn,✏n ) and (u n , b n ) = (u Rn,✏n , b Rn,✏n ). As (u 0,n , b 0,n ) is strongly convergent to (u 0 , b 0 ) in L 2 w , (F n , G n ) is strongly convergent to (F, G) in L 2 ((0, T ), L 2 
w ), and moreover, as (v n , c n ) is bounded in L 3 ((0, T ), L 3 w 3 /2 ), by Theorem 4 there exist (u, b, V, C, p, q) and there exists an increasing sequence (n k ) k2N with values in N such that:

• (u n k , b n k ) converges *-weakly to (u, b) in L 1 ((0, T 0 ), L 2 w ), (ru n k , rb n k ) converges weakly to r(u, b) in L 2 ((0, T 0 ), L 2 w ). • (v n k , c n k ) converges weakly to (V, C) in L 3 ((0, T 0 ), L 3 w 3 /2
), p n k converges weakly to p in L 3 ((0, T 0 ), L 6/5 w 6
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) + L 2 ((0, T 0 ), L 2 w ) and similarly for q n k .

• (u n k , b n k ) converges strongly to (u, b) in L 2 loc ([0, T 0 ) ⇥ R 3 ),
and moreover, (u, b, V, C, p, q) is a solution of the advection-di↵usion problem 8 > > > > > < > > > > > :

@ t u = u (V • r)u + (c • r)b rp + r • F, @ t b = b (V • r)b + (C • r)u rq + r • G, r • u = 0, r • b = 0, u(0, •) = u 0 , b(0, •) = b 0 .
which verifies:

• the map t 2 [0, T 0 ) 7 ! (u(t), b(t)) is weakly continuous from [0, T 0 ) to L 2
w , and is strongly continuous at t = 0. • there exists a non-negative locally finite measure µ on (0, T ) ⇥ R 3 such that we have the local energy equality (4).

To finish this proof, proceeding as in the end of Section 4.1.1 we have that

V = v and C = c. ⇧
5 Discretely self-similar suitable solutions for 3D MHD equations

In this section we give a proof of Theorem 2. We fix 1 < < +1.

The linear problem.

Let ✓ be a non-negative and radially decreasing function in

D(R 3 ) with R ✓ dx = 1; We define ✓ ✏,t (x) = 1 (✏ p t) 3 ✓( x ✏ p t ).
In order to study the mollified problem

(MHD ✏ ) 8 > > > > > < > > > > > : @ t u ✏ = u ✏ ((u ✏ ⇤ ✓ ✏,t ) • r)u ✏ + ((b ✏ ⇤ ✓ ✏,t ) • r)b ✏ rp + r • F, @ t b ✏ = b ✏ ((u ✏ ⇤ ✓ ✏,t ) • r)b ✏ + ((b ✏ ⇤ ✓ ✏,t ) • r)u ✏ rq + r • G, r • u ✏ = 0, r • b ✏ = 0, u(0, •) = u 0 , b(0, •) = b 0 .
we consider the linearized problem (LM HD)

8 > > > > > < > > > > > : @ t u = u ((v ⇤ ✓ ✏,t ) • r)u + ((c ⇤ ✓ ✏,t ) • r)b rp + r • F, @ t b = b ((v ⇤ ✓ ✏,t ) • r)b + ((c ⇤ ✓ ✏,t ) • r)u rq + r • G, r • u = 0, r • b = 0, u(0, •) = u 0 , b(0, •) = b 0 . Lemma 5.1 Let 1 <  2.
Let u 0 , b 0 be a -DSS divergence-free vector fields which belong to L 2 w (R 3 ). Let F, G be a -DSS tensors wich satisfies F, G 2 L 2 loc ((0, +1), L 2 w ). Moreover, let v, c be a -DSS time-dependent divergence free vector-field such that for every T > 0, v, c 2 L 3 ((0, T ), L 3 w 3 /2 ).

Then, the linearized advection-di↵usion problem (LMHD) has a unique solution (u, b, p, q) which satisfies all the conclusions of Theorem 5. Moreover, the functions u, b are -DSS vector fields.

Proof. As we have |v(t, .) ⇤ ✓ ✏,t |  M u(t,.) then we can write

k(v(t) ⇤ ✓ ✏,t , c(t) ⇤ ✓ ✏,t )k L 3 ((0,T ),L 3 w 3 /2 )  C k(v, c)k L 3 ((0,T ),L 3 w 3 /2
) .

Theorem 5 gives solution (u, b, p, q) in the interval of time (0, T ). Moreover, as u ⇤ ✓ ✏,t , b ⇤ ✓ ✏,t belong the space to L 2 t L 1 x (K) for every compact subset K of (0, T ) ⇥ R 3 , we can use Corollary 3.2 to conclude that this solution (u, b, p, q) is unique.

We will prove that this solution is -DSS. Let ũ(t, x) = 1 u( t 2 , x ) and b(t, x) = 1 b( t 2 , x ). Remark that (v ⇤ ✓ ✏,t and c ⇤ ✓ ✏,t ) are -DSS and then we get (ũ, b, p, q), where p andq are always defined through the obvious formula, is a solution of (LM HD ✏ ) on (0, T ). Thus, we have the identities (ũ, b, p, q) = (u, b, p, q) from which we conclude that (u, b, p, q) are -DSS. ⇧

5.2

The mollified Navier-Stokes equations.

For v, c 2 L 3 ((0, T ), L 3 w 3 /2 ) the terms u, b of the solution provided by Lemma 5.1 belongs to L 3 ((0, T ), L 3 w 3 /2 ) by interpolation. Then the map

L ✏ : (v, c) 7 ! (u, b) where L ✏ (v, c) = (u, b) is well defined from X T, = {(v, c) 2 L 3 ((0, T ), L 3 w 3 /2 ) / b is DSS} to X T, .
At this point, we introduce the following technical lemmas: Lemma 5.2 For 4/3 < , X T, is a Banach space for the equivalent norms k(v, c)k L 3 ((0,T ),L 3

w 3 /2
) and k(v, c)k L 3 ((0,T / 2 ),⇥B(0, 1 )) . For a proof of this result see the Lemma 12 in [START_REF] Fernández-Dalgo | Weak solutions for Navier-Stokes equations with initial data in weighted L 2 spaces[END_REF]. Lemma 5.3 For 4/3 <  2, the mapping L ✏ is continuous and compact on X T, .

Proof. Let (v n , c n ) be a bounded sequence in X T, and let (u n , b n ) = L ✏ (v n , c n ). Remark that the sequence (v n (t) ⇤ ✓ ✏,t , c n (t) ⇤ ✓ ✏,t ) is bounded in X T, and then by Theorem 3 and Corollary 3.1 we have that the sequence (u n , b n ) is bounded in L 1 ((0, T ), L 2 w ) and moreover (ru n , rb n ) is bounded in L 2 ((0, T ), L 2 w ).

Thus, by Theorem 4 there exists u 1 , b 1 , p 1 , q 1 , V 1 , C 1 and an increasing sequence (n k ) k2N with values in N such that we have:

• (u n k , b n k ) converges *-weakly to (u 1 , b 1 ) in L 1 ((0, T ), L 2 w ), (ru n k , rb n k ) converges weakly to (ru 1 , rb 1 ) in L 2 ((0, T ), L 2 w ). • (v n k ⇤ ✓ ✏,t , c n k ⇤ ✓ ✏,t ) converges weakly to (V 1 , C 1 ) in L 3 ((0, T ), L 3 w 3 /2 ).
• The terms (p n k , q n k ) converge weakly to (p 1 , q 1 ) in L 3 ((0, T ), L 6/5 w 6

5

) +

L 2 ((0, T ), L 2 w ). • (u n k , b n k ) converges strongly to (u 1 , b 1 ) in L 2
loc ([0, T )⇥R 3 ) : for every T 0 2 (0, T ) and every R > 0, we have

lim k!+1 Z T 0 0 Z |y|<R |u n k (s, y) u 1 (s, y)| 2 +|b n k (s, y) b 1 (s, y)| 2
ds dy = 0.

• and 8 > > > > > < > > > > > :

@ t u 1 = u 1 (v 1 • r)u 1 + (c 1 • r)b 1 rp 1 + r • F, @ t b 1 = b 1 (v 1 • r)b 1 + (c 1 • r)u 1 rq 1 + r • G, r • u 1 = 0, r • b 1 = 0, u 0,1 = u 0 , b 0,1 = b 0 ,
We will prove the compactness of L ✏ . As before p w v n is bounded in

L 10/3 ((0, T ) ⇥ R 3 ) by interpolation hence strong convergence of (u n k , b n k ) in L 2 loc ([0, T ) ⇥ R 3 ) implies the strong convergence of (u n k , b n k ) in L 3 loc ((0, T ) ⇥ R 3 ).
Moreover, we have that (u 1 , b 1 ) is still -DSS (a property that is stable under weak limits). With these information we obtain that u 1 , b 1 2 X T, and we have lim

n k !+1 Z T 2 0 Z B(0, 1 ) |v n k (s, y) v 1 (s, y)| 3
ds dy = 0, which proves that L ✏ is compact.

To finish this proof, we prove the continuity of

L ✏ . Let (v n , c n ) be such that (v n , c n ) is convergent to (v 1 , c 1 ) in X T, . Then we have V 1 = v 1 ⇤✓ ✏,t , C 1 = c 1 ⇤ ✓ ✏,t
, and u 1 = L ✏ (v 1 , c 1 ), and thus, the relatively compact sequence (u n , b n ) can have only one limit point. In conclusion, it must be convergent and this proves that L ✏ is continuous.

⇧ Lemma 5.4 Let 4/3 <  2. If µ 2 [0, 1] and (u, b) solves (u, b) = µL ✏ (u, b) then k(u, b)k X T,  C u 0 ,F, ,T,
where the constant C u 0 ,F, ,T, depends only on u 0 , F, , T and (but not on µ nor on ✏).

Proof. We let (u, b) = (µũ, µ b), so that

8 > > > > > > < > > > > > > : @ t ũ = ũ ((u ⇤ ✓ ✏,t ) • r)ũ + ((b ⇤ ✓ ✏,t ) • r) b rp + r • F, @ t b = b ((u ⇤ ✓ ✏,t ) • r) b + ((b ⇤ ✓ ✏,t ) • r)ũ rq + r • G, r • ũ = 0, r • b = 0, ũ(0, •) = u 0 , b(0, •) = b 0 .
Multiplying by µ, we find that 8 > > > > > < > > > > > :

@ t u = u ((u ⇤ ✓ ✏,t ) • r)u + ((b ⇤ ✓ ✏,t ) • r)b r(µp) + r • µF, @ t b = b ((u ⇤ ✓ ✏,t ) • r)b + ((b ⇤ ✓ ✏,t ) • r)u r(µq) + r • µG, r • u = 0, r • b = 0, u(0, •) = µu 0 , b(0, •) = µb 0 .
Corollary 3.3 allows us to take T 0 2 (0, T ) such that

C ✓ 1 + k(u 0 , b 0 )k 2 L 2 w + Z T 0 0 k(F, G)k 2 L 2 w ds ◆ 2 T 0  1, which implies C ✓ 1 + kµ(u 0 , b 0 )k 2 L 2 w + Z T 0 0 kµ(F, G)k 2 L 2 w ds ◆ 2 T 0  1.
Then we have the controls

sup 0tT 0 k (u, b)(t)k 2 L 2 w  C (1 + µ 2 k(u 0 , b 0 )k 2 L 2 w + µ 2 Z T 0 0 k(F, G)k 2 L 2 w ds) and Z T 0 0 kr(u, b)k 2 L 2 w ds  C (1 + µ 2 k(u 0 , b 0 )k 2 L 2 w + µ 2 Z T 0 0 k(F, G)k 2 L 2
w ds). In particular, by interpolation Z

T 0 0 k(u, b)k 3 L 3 w 3 /2
ds is bounded by a constant C u 0 ,F, ,T and we can go back from T 0 to T , using the self-similarity property. ⇧ Lemma 5.5 Let 4/3 <  2. There is at least one solution

(u ✏ , b ✏ ) of the problem (u ✏ , b ✏ ) = L ✏ (u ✏ , b ✏ ).
Proof. The uniform a priori estimates for the fixed points of µL ✏ for 0  µ  1 given by Lemma 5.4 and Lemma 5.3 permit to apply Leray-Schauder principle and Schaefer theorem. ⇧

Proof of Theorem 2.

We

consider (u ✏ , b ✏ ) solutions of (u ✏ , b ✏ ) = L ✏ (u ✏ , b ✏ )
given by Lemma 5.5. By Lemma 5.4 and Lemma 2.2, we have u ✏ ⇤ ✓ ✏,t , b ✏ ⇤ ✓ ✏,t are bounded in L 3 ((0, T ), L 3 w 3 /2 ). Theorem 3 and Corollary 3.1 allows us to conclude that u ✏ , b ✏ are bounded in L 1 ((0, T ), L 2 w ) and ru ✏ , rb ✏ are bounded in L 2 ((0, T ), L 2 w ). Theorem 4 gives u, b, p, q, v and c and a decreasing sequence (✏ k ) k2N converging to 0, such that

• (u ✏ k , b ✏ k ) converges *-weakly to (u, b) in L 1 ((0, T ), L 2 w ), (ru ✏ k , rb ✏ k ) converges weakly to (ru, ru) in L 2 ((0, T ), L 2 w ) • (u ✏ k ⇤ ✓ ✏ k ,t , b ✏ k ⇤ ✓ ✏ k ,t ) converges weakly to (v, c) in L 3 ((0, T ), L 3 w 3 /2 ) • the associated pressures p ✏ k and q ✏ k converge weakly to p and q in L 3 ((0, T ), L 6/5 w 6 5 ) + L 2 ((0, T ), L 2 w ) • (u ✏ k , b ✏ k ) converges strongly to (u, b) in L 2 loc ([0, T ) ⇥ R 3 ) • and 8 > > > > > < > > > > > : @ t u = u (v • r)u + (c • r)b rp + r • F, @ t b = b (v • r)b + (c • r)u rq + r • G, r • u = 0, r • b = 0, u 0 = u 0 , b 0 = b 0 , The proof is finished if v = u and c = b. As we have u ✏ k ⇤ ✓ ✏ k ,t = (u ✏ k u) ⇤ ✓ ✏ k ,t + u ⇤ ✓ ✏ k ,t .
We just need to remark that u ⇤ ✓ ✏,t converges strongly in L 2 loc ((0, T ) ⇥ R 3 ) as ✏ goes to 0 (we use dominated convergence as it is bounded by M u and converges strongly to u in L 2 loc (R 3 ) for each fixed t ) and |(u u ✏ ) ⇤ ✓ ✏,t |  M u u✏ . In a similar way we prove c = b. ⇧

A Approximated system

Let ✓ 2 D(R 3 ) be a non-negative, radial and radially decreasing function

such that R R 3 ✓(x)dx = 1. For " > 0 we let ✓ " (x) = 1 " 3 ✓( x " ). Proposition A.1 Let u 0 2 L 2 (R 3 ), b 0 2 L 2 (R 3 
) be divergence free vector fields. Let F = (F i,j ) 1i,j2 and G = (G i,j ) 1i,j2 be tensor forces such that F, G 2 L 2 ((0, T ), L 2 ), for all T < T 1 .

Then there exists a unique solution (u " , b " , p " , q " ) of the following approximated system

(MHDG " ) 8 > > > > > < > > > > > : @ t u = u [(u ⇤ ✓ " ) • r]u + [(b ⇤ ✓ " ) • r]b rp + r • F, @ t b = b [(u " ⇤ ✓ " ) • r]b + [(b ⇤ ✓ " ) • r]u rq + r • G, r • u = 0, r • b = 0, u(0, •) = u 0 , b(0, •) = b 0 , on [0, T 1 ) such that: • u " , b " 2 L 1 ([0, T ), L 2 (R 3 ))\L 2 ([0, T ), Ḣ1 (R 3 )), p " , q " 2 L 2 ((0, T ), Ḣ 1 )+ L 2 ((0, T ), L 2 ), for all 0 < T < T 1
• the pressure p " and the term q " are related to u " , b " , F and G by

p " = X 1i,j3 R i R j ((u ",i ⇤ ✓ " )u ",j (b ",i ⇤ ✓ " )b ",j F i,j ), and 
q " = X 1i,j3 R i R j ([(u ",i ⇤ ✓ " )b ",j (b ",j ⇤ ✓ " )u ",i ] G ij ),
where R i = @ i p denote always the Riesz transforms. In particular, p " , q " 2 L 4 ((0, T ), L 6/5 ) + L 2 ((0, T ), L 2 ).

• The functions (u " , b " , F, G) verify the following global energy equality: x + kGk 2

@ t ( |u " | 2 + |b " | 2 2 ) = ( |u " | 2 + |b " | 2 2 ) |ru " | 2 |rb " | 2 r • ✓ ( |u " | 2 2 + |b " | 2 2 )(u " ⇤ ✓ " ) + p " u " ◆ + r • ((u " • b " )(b " ⇤ ✓ " ) + q " b " ) + u " • (r • F) + b " • (r • G). (16 
L 2 t L 2 
x ).

Proof. We consider 0 < T < T 1 < T 1 and the space E T = C([0, T ], L 2 (R 3 ))\ L 2 ((0, T ) Ḣ1 (R 3 )) doted with the norm k

• k T = k • k L 1 t L 2 x + k • k L 2 t Ḣ1
x . We will construct simultaneously u " and b " . For this we will consider the space E T ⇥ E T with the norm k(u " , b " )k T = ku " k T + kb " k T .

We use the Leray projection operator in order to express the problem (MHDG " ) in terms of a fixed point problem. We let a = e t (v 0 , c 0 ) + R i R j ((u ",i ⇤ ✓ " )u ",j (b ",i ⇤ ✓ " )b ",j F i,j ), and

q " = X 1i,j3
R i R j ([(u ",i ⇤ ✓ " )b ",j (b ",j ⇤ ✓ " )u ",i ] G ij ).

We will use the Piccard's point fixed theorem. In order to study the linear terms, recall the following estimates, for a proof see [START_REF] Lemarié-Rieusset | The Navier-Stokes problem in the 21st century[END_REF], Theorem 12.2, page 352.

Lemma A.1 Let f 2 L 2 (R 3 ) and g 2 L 2 t Ḣ 1

x . We have:

1) ke t f k T  ckf k L 2 .
2) R t 0 e (t s) g(s, •)ds

T  c(1 + p T )kgk L 2 t Ḣ 1 
x .

By this lemma we have

ke t (u 0 , b 0 )k T  c(ku 0 k L 2 + kb 0 k L 2 ), (17) and Z 
t 0 e (t s) P(r • F, r • G)(s, •)ds

T  c(1 + p T ) ⇣ kP(r • F)k L 2 t Ḣ 1 x + kP(r • G)k L 2 t Ḣ 1 x ⌘  c(1 + p T )(kFk L 2 t L 2 x + kGk L 2 t L 2 x ). ( 18 
)
Now, to study the bilinear terms recall the following estimate given in [START_REF] Lemarié-Rieusset | The Navier-Stokes problem in the 21st century[END_REF] (Theorem 12.2, page 352): 

Once we have inequalities ( 17), ( 18) and ( 19), for a time 0 < T 0 < T 1 such that

T 0 = min T 1 , c" 3 (k(u 0 , b 0 )k L 2 + kF k 2 L 2 ((0,T 1 ),L 2 )
) ! , by the Picard's contraction principle, we obtain (u " , b " , p " , q " ) a local solution of (MHD " ), where u " , b " 2 E T and p " , q " 2 L 2 ((0, T ), Ḣ 1 ) + L 2 ((0, T ), L 2 ). We can verify that this solution is unique.

To prove that p " 2 L 4 ((0, T ), L 6/5 ) + L 2 ((0, T ), L 2 ), recall that

p " = X 1i,j3
R i R j ((u ",i ⇤ ✓ " )u ",j (b ",i ⇤ ✓ " )b ",j F i,j ),

As u " , b " 2 E T = L 1 t L 2 x \ L 2 t Ḣ1
x then we have u " ⇤ ✓ " , b " ⇤ ✓ " 2 E T and thus we get u " , u " ⇤ ✓ " , b " , b " ⇤ ✓ " 2 L 1 t L 2 x \ L 2 t L 6

x . By interpolation we get u " ⇤ ✓ " , b " ⇤ ✓ " 2 L 4 t L 3

x and moreover, as (u " , b " ) 2 L 1 t L 2 x then by the Hölder inequalities, (u " ⇤ ✓ " ) ⌦ u " , (b " ⇤ ✓ " ) ⌦ b " 2 L 4 t L 6/5

x . Thus, by the continuity of the Riesz transforms R i on the Lebesgue spaces L p (R 3 ) for 1 < p < +1 we have P 1i,j3 R i R j ((u ",i ⇤ ✓ " )u ",j (b ",i ⇤ ✓ " )b ",j ) 2 L 4 ((0, T ), L 6/5 ). Similarly we treat q " . Now, we prove that (u " , b " , p " , q " ) is a global solution. We define the maximal existence time of the solution u by As ((b " ⇤ ✓ " ) • r)b " )u " = r • (b " ⌦ (b " ⇤ ✓ " ))u " belongs to L 2 ((0, T ), Ḣ 1 ), and the same for the other non linear terms, we can write d dt ku " (t)k 2 L 2 = 2h@ t u " (t), u " (t)i

Ḣ 1 ⇥ Ḣ1 = 2kru " (t)k 2 L 2 + 2 X 1i,j3
Z b ",i (b ",j ⇤ ✓ " )@ i u ",j dx +2 X 1i,j3 Z F i,j @ i u ",j dx, and

d dt kb " (t)k 2 L 2 = 2h@ t b " (t), b " (t)i Ḣ 1 ⇥ Ḣ1 = 2kb " (t)k 2 Ḣ1 + 2 X 1i,j3 Z u ",i (b ",j ⇤ ✓ " )@ i b ",j dx +2 X 1i,j3
Z G i,j @ i u ",j dx.

where we have used the fact that Z ((u

" ⇤ ✓) • r)b " • b " dx = Z X 1i,j3
((u j," ⇤ ✓)@ j b i," )b i," dx = 1 2

Z (u " ⇤ ✓) • r(|b " | 2 ) dx = 1 2 Z r • (u " ⇤ ✓ " )|b " | 2 dx = 0.
Then, an integration by parts gives X 1i,j3 Z u ",i (b ",j ⇤ ✓ " )@ i b ",j dx = X 1i,j3 Z b ",i (b ",j ⇤ ✓ " )@ i u ",j dx, so we have d dt

(ku " (t)k 2 L 2 + kb " (t)k 2 L 2 ) = 2(kru " (t)k 2 L 2 + krb " (t)k 2 L 2 ) +2 X 1i,j3
( Z F i,j @ i u j dx ds + Z G i,j @ i b j dx ds).

By integrating on the time interval [0, T ] we obtain the control (17) which implies by Grönwall inequality that k(u " , b " )(T ))k L 2 does not converges to

5 )

 5 are weakly convergent in L 3 ((0, T ), L 6/5 w 6 to b 1,i u 1,j .

Z t 0 e 0 e

 00 (t s) P(r • F, r • G)(s, •)ds and B((u, b), (v, c)) = ( B 1 ((u, b) , (v, c)), B 2 ((u, b), (v, c)) ), where B 1 ((u, b), (v, c)) = Z t (t s) P([(u ⇤ ✓ " ) • r)v [(v ⇤ ✓ " ] • r]c)(s, •)ds, B 2 ((u, b), (v, c)) =

Z t 0 e

 0 (t s) P([(u ⇤ ✓ " ) • r]c [(b ⇤ ✓ " ) • r]v)(s, •)ds. Then (u " , b " , p " , q " ) 2 E 2 T ⇥ ⇣ L 2 ((0, T ), Ḣ 1 ) + L 2 ((0, T ), L 2 ) ⌘ 2is a solution of (MHDG " ) if and only if (u " , b " ) is a fixed point for the application (u, b) 7 ! a + B((u, b), (u, b)) and p "

Lemma A. 2 0 e

 20 Let u, b 2 E T . We have Z t (t s) P(((u ⇤ ✓ " ) • r)b)(s, •)ds T  c p T " 3/2 kuk T kbk T .Applying this lemma to each bilinear term in the equation (17) we getB((u, b), (v, c))  c p T " 3/2 k(u, b)k T k(v, c)k T .

T

  MAX = sup{0 < T  T 1 : u 2 E T } If T MAX < T 1 we take 0 < T < T MAX < T 1 < T 1 , then (u, b) is a solution of (GM HD " ) on [0, T ] and (u, b) is a solution on [T, T + ]u(T ), b(T ))k L 2 + kF k L 2 ((T,T 1 ),L 2 ) ) 2 ◆ , which implies that lim T !T MAX k(u " (T ), b " (T ))k L 2 =+1, however, we will see that it is not possible.

  3 ) we have |f ⇤ '|  C ' M f and then, by Lemma 2.1, we get that a convolution with a function in D(R 3 ) is a bounded operator on

	L 2 w and on L for 0 < such that max{ , +2 6/5 w 6 /5 . Thus we have that A ↵, ,t , B ↵, ,t 2 L 2 w +L 2 } < < 5/2 , we have A ↵, ,t , A ↵, ,t 2 L 6/5 w 6 /5 . Moreover, 6/5 w 6 /5 ; and in particular, we have that A ↵, ,t and B ↵, ,t are tempered distribution.

  (s)k 2 L 2 + krb " (s)k 2 L 2 )ds =ku " (a)k 2 L 2 + kb " (a)k 2 L 2 + krb " (s)k 2 L 2 )ds  ku 0 k 2 L 2 + kb 0 k 2 L 2 + c(kFk 2

						)
	and				
					Z	t
	ku " (t)k 2 L 2 + kb " (t)k 2 L 2 + 2 X Z t Z	a	(kru " L 2
	+	1i,j3	(	a	F i,j @ L 2 t L 2

i u ",j dx ds + Z t a Z G i,j @ i b ",j dx ds), which implies in particular ku " (t)k 2 L 2 + kb " (t)k 2 L 2 + Z t 0 (kru " (s)k 2

+1 when T go to T MAX if T MAX < T 1 , hence the solution is defined on [0, T 1 ). Finally, remark that we can write

similarly we find

By adding these equations we obtain the energy equality [START_REF] Leray | Essai sur le mouvement d'un fluide visqueux emplissant l'espace[END_REF]. ⇧

We can observe that our approximated system need to consider an nonzero term q " even if G = 0. As we have seen it is not the case when we let ✏ tends to 0 and then we obtain the (MHDG) system.