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Abstract
We present a new dataset, dedicated to the development of simultaneous localization and mapping methods for
underwater vehicles navigating close to the seabed. The data sequences composing this dataset are recorded in
three different environments: a harbor at a depth of a few meters, a first archaeological site at a depth of 270 meters
and a second site at a depth of 380 meters. The data acquisition is performed using Remotely Operated Vehicles
equipped with a monocular monochromatic camera, a low-cost inertial measurement unit, a pressure sensor and
a computing unit, all embedded in a single enclosure. The sensors’ measurements are recorded synchronously on
the computing unit and seventeen sequences have been created from all the acquired data. These sequences are
made available in the form of ROS bags and as raw data. For each sequence, a trajectory has also been computed
offline using a Structure-from-Motion library in order to allow the comparison with real-time localization methods.
With the release of this dataset, we wish to provide data difficult to acquire and to encourage the development of
vision-based localization methods dedicated to the underwater environment. The dataset can be downloaded from:
http://www.lirmm.fr/aqualoc/

Keywords
Dataset, Underwater robotics, Monocular Vision, IMU, Pressure, SLAM

1 Introduction

Accurate localization is critical for mobile robotics. In open
outdoor areas, it can be obtained from Global Positioning
System (GPS). However, in GPS-denied environments, such
as indoor or beneath the sea surface, robots’ position must be
estimated from other sensors.

In underwater robotics, the localization problem is often
solved by coupling high-grade Inertial Measurement Units
(IMU) with compass, Doppler Velocity Logs (DVL) and
pressure sensors (Paull et al. (2014)). Such solutions,
classified as dead-reckoning (DR) localization, are highly
dependent of the sensors quality and suffer from unbounded
drift. While these methods can be employed quite safely
for vehicles navigating in the middle of the water column
(i.e. in obstacle free areas), they are not accurate enough for
navigation in cluttered areas. In such places, Simultaneous
Localization And Mapping (SLAM) methods are preferred.
SLAM requires exteroceptive sensors, such as Lidar, sonar
or camera, to measure the 3D structure of the environment.
From these data, the localization is estimated while a 3D map
is progressively built.

Visual SLAM (VSLAM) and Visual-Inertial Odometry
(VIO) have been a hot research topic during the past
decades (Cadena et al. (2016)). VSLAM consists in
estimating localization from visual data, possibly enhanced
by complementary sensors, through the mapping of the
observed scenes. In ground and aerial robotics, the
availability of many public datasets, such as KITTI
(Geiger et al. (2012)), Malaga (Blanco et al. (2014)) or
EuRoC (Burri et al. (2016)), to cite a few, has greatly
impacted the development of VSLAM methods. Recent

algorithms, relying on monocular cameras (Mur-Artal et al.
(2015); Forster et al. (2017); Engel et al. (2018)) or on
visual-inertial sensors (Leutenegger et al. (2015); Mur-
Artal and Tardos (2017); Qin et al. (2018)), have shown
impressive results, with centimetric localization accuracy. In
underwater robotics, many operations occur near the seabed
(biology, Oil&Gas Industry, mine warfare, archaeology...),
making visual information available. Nonetheless, in such
conditions, the acquired images suffer from degradation like
turbidity, backscattering and illumination issues, due to the
medium properties. These poor imaging conditions must be
accounted for in the development of underwater VSLAM
or VIO systems, thus preventing use of the previously cited
algorithms (Quattrini Li et al. (2017); Weidner et al. (2017);
Zhang et al. (2018)). Some previous works have investigated
the use of monocular camera for underwater localization
(Burguera et al. (2015); Ferrera et al. (2019)), sometimes
coupled to low-cost IMU and pressure sensor (Shkurti et al.
(2011); Creuze (2017)), sonars (Rahman et al. (2018)) or
even as a mean of detecting loop-closures in DR systems
(Kim and Eustice (2013)). However, the limited amount
of public datasets dedicated to this localization challenge
prevent a fair comparison of these methods on common
data. Moreover, the fact that these data are difficult to
acquire, because of the required equipment and logistic,
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limits the development of new methods. Bender et al.
(2013) proposed a dataset containing the measurements of
navigational sensors, stereo cameras and a multibeam sonar.
Mallios et al. (2017) released another dataset dedicated to
localization and mapping in an underwater cave from sonar
measurements. Images acquired by a monocular camera
are also given for the detection of cones precisely placed
in order to have a mean of estimating drift. However, in
both datasets, the acquisition rate of the cameras is too
low (<10 Hz) for most of VSLAM and VIO methods.
Duarte et al. (2016) created a synthetic dataset simulating
the navigation of a vehicle in an underwater environment
and containing monocular cameras measurements at a frame-
rate of 10 Hz. Many public datasets have also been made
available by the Oceanography community through national
websites (https://www.data.gov/, http://www.
marine-geo.org). However, these datasets have not
been gathered with the aim of providing data suitable for
VSLAM or VIO and often lack essential information such
as the calibration of their sensors’ setup.

In this paper, we present AQUALOC, a new dataset
aiming at the development of VSLAM and VIO methods
dedicated to the underwater environment. The dataset
sequences have been recorded using acquisition systems
composed of a monochromatic camera, a Micro Electro-
Mechanical System (MEMS) based IMU, a presssure sensor
and a computing unit for synchronous recordings. These
acquisition systems have been embedded on ROVs equipped
with lighting systems and navigating close to the seabed.
The recorded video sequences exhibit the typical visual
degradation induced by the underwater environment such as
turbidity, backscattering, shadows and strong illumination
shifts caused by the artificial lighting systems. Three
different sites have been explored to create the dataset:
a harbor and two archaeological sites. The recording of
the sequences occurred at different depths, going from a
few meters, for the harbor, to several hundred meters, for
the archaeological sites. The provided video sequences are
hence highly diversified in terms of scenes (low-textured
areas, very texture repetitive areas...) and of scenarios
(exploration, photogrammetric surveys, manipulations...).
As the acquisition of ground truth is very difficult in
natural underwater environments, we have used the state-
of-the-art Structure-from-Motion (SfM) library Colmap
(Schönberger and Frahm (2016)) to compute comparative
baseline trajectories for each sequence. Colmap processes
offline the sequences and performs a 3D reconstruction to
estimate the positions of the camera. This 3D reconstruction
is done by matching exhaustively all the images composing
a sequence, which allows the detection of many loop-
closures and, hence, the computation of accurate trajectories,
assessed by low average reprojection errors. Along with the
computed trajectories, we also provide the list of matched
images for each sequence which could be used to evaluate
relocalization or loop-closure detection methods. We further
include statistics on the 3D reconstruction to assess their
accuracy.

With the release of this dataset, we provide to the
community the opportunity to work on data difficult to
acquire. Indeed, the logistic (ship availability) and the
required equipment (deep-sea compliant underwater vehicles

(a) System A (b) System B

Figure 1. The acquisition systems equipped with a monocular
monochromatic camera, a pressure sensor, an IMU and a
computer along with the sensors’ reference frames.

and sensors), as well as regulations (official authorizations),
can be a barrier preventing possible works on this topic. We
are convinced that the availability of this dataset will increase
the development of algorithms dedicated to the underwater
environment. Both raw and ROS bag formatted field data
are provided along with the full calibration of the sensors
(camera and IMU). Moreover, the provided comparative
baseline makes this dataset suitable for benchmarking
VSLAM and VIO algorithms.

The rest of this paper is organized as follows. First, we
present the design of the acquisition systems used and the
calibration procedures employed. Then, an overview of the
dataset is given and the acquisition conditions on each site
are detailed, highlighting the associated challenges for visual
localization. Next, the processing of the data sequences to
create a baseline is described. Finally, we detail how the
dataset is organized and in which way the data are formatted.

2 The Acquisition Systems

In order to acquire the sequences of the dataset, we have
designed two similar underwater systems. These acquisition
systems have been designed to allow the localization of
underwater vehicles from a minimal set of sensors in order
to be as cheap and as versatile as possible. Both systems are
equipped with a monochromatic camera, a pressure sensor,
a low-cost MEMS-IMU and an embedded computer. The
camera is placed behind an acrylic dome to minimize the
distortion effects induced by the difference between water
and air refractive indices. The image acquisition rate is
20 Hz. The IMU delivers measurements from a 3-axes
accelerometer, 3-axes gyroscope and 3-axes magnetometer
at 200 Hz. The embedded computer is a Jetson TX2 running
Ubuntu 16.04 and is used to record synchronously the
sensors’ measurements thanks to the ROS middleware. The
Jetson TX2 is equipped with a carrier board embedding
the mentioned MEMS-IMU and a 1 To NVME SSD to
directly store the sensors measurements, thus avoiding any
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bandwidth or package loss issue. An advantage of the self-
contained systems that we have developed, is that they are
independent of any robotic architecture and can thus be
embedded on any kind of Remotely Operated Vehicle (ROV)
or Autonomous Underwater Vehicle (AUV). The interface
can either be Ethernet or a serial link, depending on the host
vehicle’s features.

To record data at different depths, we have designed two
systems that we will refer to as “System A” and “System B”.
These systems have the same overall architecture, but they
differ on the camera model, the pressure sensor type and the
diameter and material of the enclosure. System A (Fig. 1a)
is designed for shallow waters and was used to acquire the
sequences in the harbor. Its camera has been equipped with
a wide-angle lens, which can be modelled by the fisheye
distortion model. The pressure sensor is rated for 30 bars and
delivers depth measurements at a maximum rate of 10 Hz.
System A is protected by an acrylic enclosure, rated for a
depth of 100 meters. System B (Fig. 1b) was used to record
the sequences on the archaeological sites at larger depths.
Its camera has a slightly lower field of view and the lens
can be modelled by the radial-tangential distortion model. It
embeds a pressure sensor rated for 100 bars delivering depth
measurements at 60 Hz. Its enclosure is made of aluminum
and is 400 meters depth rated. The technical details about
both systems and their embedded sensors are given in table 1.

Each camera-IMU setup has been cautiously calibrated to
provide the intrinsic and extrinsic parameters required to use
it for localization purpose. We have used the toolbox Kalibr
(Furgale et al. (2012, 2013)) along with an apriltag target to
compute all the calibration parameters.

The cameras calibration step allows to obtain an
estimate of the focal lengths, principal points and distortion
coefficients. These parameters can then be used to undistort
the captured images and to model the image formation
pipeline, with the following notation:

[
u
v

]
= ΠK (Rcam

w Xw + tcam
w ) (1)

[
u
v

]
=

[
fx.

xcam
zcam

+ cx
fy.

ycam
zcam

+ cy

]
= ΠK (Xcam) (2)

with K =

fx 0 cx
0 fy cy
0 0 1

 and Xcam =

xcam
ycam
zcam


where ΠK(·) denotes the projection: R3 7→ R2, K is the
calibration matrix, Xw ∈ R3 is the position of a 3D landmark
in the world frame, Rcam

w ∈ SO(3) and tcam
w ∈ R3 denote the

rotational and translational components of the transformation
from the world frame to the camera frame, Xcam ∈ R3 is the
position of a 3D landmark in the camera frame, fx and fy
denotes the focal lengths and (cx, cy) is the principal point
of the camera.

As these parameters are medium dependant, the calibra-
tion has been performed in water to account for the additional
distortion effects at the dome’s level. The results of the
calibration of the fisheye camera can be seen in figure 2.

Figure 2. Distortion effects removal from Kalibr calibration on
one of the harbor sequences. Left: raw image. Right:
undistorted image.

The camera-IMU setup calibration allows to estimate the
extrinsic parameters of the setup, that is the relative position
of the camera with respect to the IMU, and the time delay
between camera’s and IMU’s measurements. This relative
position is represented by a rotation matrix Rimu

cam and a
translation vector timu

cam. Camera and IMU’s poses relate to
each other through:

Tw
cam = Tw

imuT
imu
cam (3)

with Timu
cam

.
=

[
Rimu

cam timu
cam

01×3 1

]
∈ R4×4

and (Tw
cam)

−1
= Tcam

w
.
=

[
Rcam

w tcam
w

01×3 1

]
∈ R4×4

where Rimu
cam ∈ SO(3), timu

cam ∈ R3, Tw
cam ∈ SE(3), Tcam

w ∈
SE(3), Timu

cam ∈ SE(3) and Tw
imu ∈ SE(3). Tw

cam and Tw
imu

respectively represent the poses of the camera and of the
body, with respect to the world frame. Tcam

w is the inverse
transformation of Tw

cam and Timu
cam is the transformation from

the camera frame to the IMU frame.
Before estimating these extrinsic parameters, the IMU

noise model parameters have been derived from an Allan
standard deviation plot, obtained by recording the gyroscope
and accelerometer measurements for several hours, while
keeping the IMU still. These noise parameters are then
fed into the calibration algorithms to model the IMU
measurements. As these parameters (IMU noises, camera-
IMU relative transformation and measurements time delay)
are independent of the medium (air or water), they have been
estimated in air. Doing this calibration step in air allowed to
perform easily the fast motions required to correlate the IMU
measurements to the camera’s ones.

All the calibration results are included in the dataset, that
is the cameras’ models (including the intrinsic parameters
and the distortion coefficients), the IMUs’ noise parameters,
the relative transformation from the camera to the IMU
and the time delay between the cameras’ and the IMUs’
measurements.

3 Dataset Overview
As explained in section 2, System A was used to record
the shallow harbor sequences, while System B was used
on the two deep archaeological sites. We propose a total
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System A
(Harbor

sequences)

Camera sensor UEye - UI-1240SE
Resolution 640×512 px
Sensor Monochromatic
Frames per second 20 fps
Lens Kowa LM4NCL C-Mount
Focal length 3.5mm
Pressure Sensor MS5837 - 30BA
Depth range 0 - 290m
Resolution 0.2 mbar
Output frequency 5-10 Hz
Inertial Measurement Unit MEMS - MPU-9250
Gyroscope frequency 200 Hz
Accelerometer frequency 200 Hz
Magnetometer frequency 200 Hz
Embedded Computer Nvidia - Tegra Jetson TX2
Carrier board Auvidea J120 - IMU
Storage NVME SSD 1 To
Housing 4” Blue Robotics Enclosure
Enclosure 33.4 x 11.4 cm
Enclosure Material Acrylic
Dome 4” Blue Robotics Dome End Cap

System B
(Archaeo.
sequences)

Camera sensor UEye - UI-3260CP
Resolution 968×608 px
Sensor Monochromatic
Frames per second 20 fps
Lens Kowa LM6NCH C-Mount
Focal length 6mm
Pressure Sensor Keller 7LD - 100BA
Depth range 0 - 990m
Resolution 3 mbar
Output frequency 60 Hz
Inertial Measurement Unit Same as System A
Embedded Computer Same as System A
Housing 3” Blue Robotics Enclosure
Enclosure 25.8 x 8.9 cm
Enclosure Material Aluminium
Dome 3” Blue Robotics Dome End Cap

Table 1. Technical details about the acquisition systems.

Figure 3. The Remotely Operated Vehicle Dumbo and the
acquisition system A, used to record the harbor sequences.

of 17 sequences: 7 recorded in the harbor, 4 on the first
archaeological site and 6 on the second site. As each of
these environments is in some ways different from the others,
we describe the sequences recorded in each environment
separately. Table 2 summarizes the specificities of each
data sequence. Note that, for each sequence, the starting
and ending points are approximately the same. In most of
the sequences, there are closed loops along the performed
trajectories. Some sequences also slightly overlap, which can
be useful for the development of relocalization features.

Figure 4. The Remotely Operated Vehicle Perseo, used on the
archaeological sites.
Credit: F. Osada - DRASSM / Images Explorations.

3.1 Harbor sequences
The harbor sequences were recorded in April 2018. System
A was embedded on the lightweight ROV Dumbo (DRASSM-
LIRMM) with the camera facing downward, as shown in
figure 3. The ROV was navigating at a depth of 3 to 4 meters
over an area of around 100 m2. Although the sun illuminates
this shallow environment, a lighting system was used in
order to increase the signal-to-noise ratio of the images
acquired by the camera. The explored area was mostly planar
but the presence of several big objects made it a real 3D
environment, with significant relief.

For each sequence, loops are performed and an apriltag
calibration target is used as a marker for starting and
ending points. On these sequences, vision is mostly
degraded by light absorption, strong illumination variations
and backscattering. In two sequences, visual information
even becomes unavailable for a few seconds because of
collisions with surrounding objects. Another challenge is
the presence of areas with seagrass moving because of the
swell. Moreover, the ROV is sensitive to waves and tether
disturbances, which results in roll and pitch variations.

3.2 Archaeological sites sequences
The archaeological sites sequences were recorded in the
Mediterranean sea, off Corsica’s shore. The System B,
designed for deep waters, was embedded on the Perseo ROV
(Copetech SM Company) displayed in Fig. 4. In the way
it was attached to the ROV, the camera viewing direction
made a small angle with the vertical line (≈ 20− 30◦).
Perseo is equipped with two powerful led lights (250,000
lumens each) and with two robotics arms for manipulation
purposes. As localization while manipulating objects is a
valuable information, to grab an artifact for instance, in some
sequences the robotic arms are in the camera’s field of view.
A total of 10 sequences have been recorded on these sites,
with 3 sequences taken on the first site and 7 on the second
one.

The first archaeological site explored was located at a
depth of approximately 270 meters and hosted the remains
of an antic shipwreck. Hence, this site is mostly planar and
presents mainly repetitive textures, due to numerous small
rocks that were used as ballast in this antic ship (Fig. 5a).
These sequences are affected by turbidity and moving
sand particles, increasing backscattering and creating sandy
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(a) Sandy cloud

(b) Texture repetitive area

Figure 5. Images acquired on the first archaeological site
(depth: 270m).

clouds (Fig. 5b). These floating particles are stirred up from
the seabed by the water flows of the ROV’s thrusters and
lead to challenging visual conditions. A shadow is also
omnipresent in these sequences in the left corner of the
recorded images, because of the limits of the lighting system.

The second visited archaeological site was located at a
depth of approximately 380 meters. On this site a hill of
amphorae is present (Fig. 6b), whose top is culminating a
few meters above the surrounding seabed level. During these
sequences, the ROV was mainly operated for manipulation
and photogrammetry purposes. While the amphorae present
high texture, the ROV was also hovering low-textured sandy
areas around the hill of amphorae (Fig. 6a). Because of
the presence of these amphorae, marine wildlife has been
growing on this site. Hence, the environment is quite
dynamic, with many fishes getting in the field of view of
the camera and many shrimps moving in the vicinity of the
amphorae. In one of the sequence, both arms get in front of
the camera. Otherwise, the visual degradation are the same
as on the first site.

4 Comparative Baseline

As the acquisition of a ground truth is very difficult in
natural underwater environment, we have used the state-
of-the-art Structure-from-Motion (SfM) software Colmap
(Schönberger and Frahm (2016)) to offline compute a 3D
reconstruction for each sequence and extract a reliable
trajectory from it. By setting very low the features extraction
parameters, we were able to extract enough SIFT features
(Lowe (2004)) to robustly match the images of each

(a) Low texture area

(b) Hill of amphorae

Figure 6. Images acquired on the second archaeological site
(depth: 380m).

sequence. Performing a matching of the images in an
exhaustive way, that is trying to match each image to
all the other ones, allows to get a reliable trajectory
reconstruction as many closed loops can be found (Fig. 7).
In Table 3, we provide statistics for each sequence about
Colmap’s 3D reconstructions to highlight the reliability of
the reconstructed models. These statistics include the number
of images used, the number of estimated 3D points, the
average track length of each 3D points (i.e. the number
of images observing a given 3D point) and the average
reprojection error. The high average track lengths for each
sequence (going from 6.7 to more than 20) assess the
accuracy of the 3D points’ estimation as it leads to a
high redundancy in the bundle adjustment steps of the
reconstruction. Moreover, given these high track lengths, the
average reprojection error is a good indicator of the overall
quality of a SfM 3D model and for each one of the sequences
this error is below 0.9 pixel.

The extracted trajectories have been scaled using the
pressure sensor measurements and hence provide metric
positions. Although these trajectories cannot be considered
as being perfect ground truths, we believe that it provides
a fair baseline to evaluate and compare online localization
methods. Evaluation of such methods can be done using the
standard Relative Pose Error (RPE) and Absolute Trajectory
Error (ATE) metrics (Sturm et al. (2012)).

Furthermore, we have made available the list of
overlapping images (i.e. matching) according to Colmap for
each sequence. These files could hence be used to evaluate
the efficiency of loop-closure or image retrieval methods.
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Site Sequence Duration Length Visual Disturbances

Turbidity Collisions Backscattering Sandy clouds Dynamics Robotic Arm

Harbor
(depth ≈ 4 m)

Acquired by system A,
embedded on a lightweight ROV

#01 3’49” 39.3m X - X - - -
#02 6’47” 75.6m X - X - - -
#03 4’17” 23.6m X - X - - -
#04 3’26” 55.8m X X X - - -
#05 2’52” 28.5m X - X - - -
#06 2’06” 19.5m X - X - - -
#07 1’53” 32.9m X X X - - -

First Archaeological Site
(depth ≈ 270 m)

Acquired by System B,
embedded on a medium workclass ROV

#01 14’39” 32.4m X - X X X X
#02 7’29” 64.3m X - X X X -
#03 5’16” 10.7m X - X X - -

Second Archaeological Site
(depth ≈ 380 m)

Acquired by System B
embedded on a medium workclass ROV

#04 11’09” 18.1m X - X X X X
#05 3’19” 42.0m X - X - X -
#06 2’49” 31.8m X - X - X -
#07 9’29” 122.1m X - X - X -
#08 7’49” 41.2m X - X - X -
#09 5’49” 65.4m X - X - X -
#10 11’54” 83.5m X - X - X -

Table 2. Details on all the AQUALOC sequences and their associated visual disturbances.

5 Data Sequences Format

As explained in the introduction, the sequences are all
available as ROS bags and as raw data. The dataset is split
into two folders, one for the harbor sequences and the other
for the archaeological ones.

The dataset repository architecture is the following:

Harbor site sequences/

Calibration files/

camera calib.txt

imu camera calib.txt

imu noises.txt

ground truth files/

colmap traj sequence X.txt

...

colmap detected loop sequence X.txt

...

sequence X bag.tar.gz/

sequence X.bag

...

sequence X raw data.tar.gz/

imu.csv

mag.csv

images.csv

images/

frameXXXXX.png

...

The archaeological sites sequences do not appear here but are
organized exactly in the same manner.

The calibration files are given in the output format of
Kalibr (Furgale et al. (2012, 2013)).

The trajectories computed by Colmap for each sequence
are available as text files and contain the pose in a translation-
quarternion form. These files format is the following:

#Frame tx ty tz qx qy qz qw
0. -1.88 2.41 -0.47 0.01 0.06 0.14 0.91
20. -1.83 2.35 -0.46 0.05 0.64 0.14 0.99
40. -1.80 2.10 -0.34 0.04 0.58 0.12 0.98
...

The files containing the loop closures detected by Colmap
provide information in the following format:

1,1,0,0,1
1,1,1,0,0
0,1,1,0,0
0,0,0,1,1
1,0,0,1,1
...

where a 1 indicates an overlapping between row i and
column j, with i and j standing for the frame numbers. Note
that only a subset of the images has been used to compute
the offline reconstruction with Colmap (1 image out of 5
for the harbor sequences and 1 out 20 for the archaeological
ones). Therefore, the frame number given in these ground
truth files is the number of their corresponding frame in the
full sequence.

About the bag files, each sequence is stored in a separate
bag containing the following topics:

• /camera/image raw: Images recorded from the
camera.
• /camera/camera info: Images width and height info.
• /rtimulib node/imu: Accelerometer and gyroscope

measurements.
• /rtimulib node/mag: Magnetometer measurements.
• /barometer node/pressure: Pressure measurements

in millibars.
• /barometer node/depth: Depth measurements in

meters.
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(a) Colmap reconstruction - Harbor #02

(b) Colmap reconstruction - Archeological Site #07

(c) Colmap reconstruction - Archeological Site #10

Figure 7. Examples of trajectories reconstructed with Colmap.

Harbor sequences Archeological sites sequences

#01 #02 #03 #04 #05 #06 #07 #01 #02 #03 #04 #05 #06 #07 #08 #09 #10

Nb. of used images 918 1590 1031 770 692 508 447 880 445 311 637 200 170 569 470 350 715
Nb. of 3D points 112659 305783 355130 194407 236845 188807 181964 196857 174514 160531 249048 42877 45799 251620 237882 114814 329686
Mean tracking length 14.9 13.2 17.2 9.7 10.7 12.1 9.5 23.5 12.6 8.4 8.5 7.6 6.7 7.4 9.1 7.9 9.2
Mean reproj. err. (px) 0.896 0.816 0.713 0.715 0.688 0.733 0.846 0.746 0.621 0.474 0.673 0.601 0.569 0.645 0.616 0.660 0.661

Table 3. Colmap trajectories reconstruction statistics. The number of provided images, the number of reconstructed 3D points, the
mean tracking length for the 3D points and the mean reprojection error for the 3D reconstruction are given for each sequence.
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• /barometer node/temperature: Pressure sensor’s
temperature measurements.

In their raw format, each sequence contains the following
data:

• : The directory containing the sequence images.
• frameXXXXX.png: The images recorded from the

camera.
• images.csv: The timestamps related to each image of

the sequence.
• imu.csv: The accelerometer and gyroscope measure-

ments and their timestamps.
• mag.csv: The magnetometer measurements and their

timestamps.
• depth.csv: The pressure measurements converted in

meters and their timestamps.

For each csv files, the first row starts with a # and then
gives the name of the different fields along with their related
measurements unit into squared brackets. The following
rows contain the values of the measurements. In all these
files, the first field is the acquisition timestamp of the
measurements. For instance, the depth.csv files look like:

#timestamp [ns], depth [m]
1542828791719540119,271.988866935
1542828791735507011,272.01910918
...

6 Conclusion
In this paper, we have presented a new dataset of subsea
monocular video sequences synchronized with inertial
and pressure measurements. This dataset is intended for
encouraging the development of localization methods for
underwater robots navigating close to the seabed. The
sequences have been recorded from Remotely Operated
Vehicles in three different environments at different depths:
a harbor at a depth of 4 meters, a first archaeological site
at a depth of 270 meters and a second one at a depth
of 380 meters. The diversity of the recorded environments
allowed to capture video sequences with different visual
perturbations typical in underwater scenarios. For each
sequence, trajectories have been computed offline using a
Structure-from-Motion library and are provided as a baseline
for performance comparisons of localization methods. The
datasets are available both as ROS bags and as raw data. In
future work, we plan to perform new acquisition missions in
different underwater environments in order to augment this
dataset and increase its diversity.
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