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Discrete modeling of strain accumulation in granular soils under low

amplitude cyclic loading

Ngoc-Son Nguyen∗, Stijn François, Geert Degrande

KU Leuven, Department of Civil Engineering, Kasteelpark Arenberg 40, B-3001 Leuven, Belgium

Abstract

An advanced understanding of the strain accumulation phenomenon in granular soils subjected to low

amplitude cyclic loading with relatively high frequency is needed to enhance the ability to predict the

settlement of granular soils induced by vibrations. In the current study, the discrete element method is used

to study this phenomenon. A loose and a medium dense sample composed of a relatively large number of

spheres are considered. A series of stress controlled cyclic triaxial tests with different excitation amplitudes

and frequencies is performed on these samples at different static stress states. The response of these samples

at the macroscopic and microscopic scales is analyzed. The sample density, the cyclic stress amplitude and

the static stress state importantly affect strain accumulation. However, the cyclic excitation frequency has

a small effect on strain accumulation. At the microscopic scale, frictional sliding occurring at a few contacts

continuously dissipates energy and the fraction of these contacts varies periodically during cyclic loading.

The coordination number of these samples increases slightly as strain accumulates. However, the anisotropy

remains almost constant during low amplitude cyclic excitation. A qualitatively good agreement between

numerical and experimental results is found.

Keywords: Granular soils, cyclic loading, low amplitude, high frequency, strain accumulation, discrete

element method

1. Introduction

Granular soils under the foundation of buildings are subjected to vibrations arising from several sources

such as road and railway traffic, construction activities and reciprocating machines. Vibrations cause the

stress state in these media to vary cyclically with low amplitude compared to the static stress state. The

excitation frequency can be typically up to 20 Hz for road traffic induced vibrations [1] and 150 Hz for

railway traffic induced vibrations [2]. Due to hysteresis, each loading cycle results in a small residual
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deformation. This deformation accumulates with increasing number of cycles and may become significant

after a large number of cycles, causing differential settlement of soils under foundations and hence damage

to buildings. Several phenomenological models have been proposed to predict the differential settlement

of granular media subjected to low amplitude cyclic loading [3–6], which are based on a large number of

laboratory experiments. These models present significant drawbacks as some of their parameters do not

have a clear physical meaning and are difficult to identify. Consequently, there is still an increasing need to

advance the understanding of strain accumulation in granular materials under low amplitude cyclic loading

and the ability to predict this phenomenon.

Many laboratory experiments have been conducted to study strain accumulation in granular media under

cyclic loading. Wichtmann et al. [7, 8] performed a complete experimental study of strain accumulation in

sand samples: low amplitude cyclic triaxial tests with a large number of cycles (up to 105) were conducted

at low frequencies varying from 0.05 Hz to 2 Hz. It was shown that strain accumulation in sand samples

depends on several factors such as the sample density, the cyclic stress amplitude, the cyclic frequency, the

average stress, the loading history and the grain size distribution. Cyclic triaxial tests on sand samples at

higher frequencies were performed by Karg [6] and Rascol [9]. Karg has found that strain accumulation

is not influenced by loading frequencies ranging from 2 to 10 Hz. His study turned out, however, that

the performance of cyclic tests is significantly reduced at frequencies above 2 Hz as the pneumatic loading

system could not follow exactly the sinusoidal loading curve. Suiker [10] and Indraratna et al. [11] studied

strain accumulation in ballast samples through high amplitude cyclic triaxial tests at frequencies up to 40

Hz. These studies showed that strain accumulation in ballast samples is not influenced by cyclic frequencies

under 5 Hz [10], but it is importantly influenced by frequencies ranging from 10 to 40 Hz [11].

The discrete element method (DEM) pioneered by Cundall and Strack [12] can complement laboratory

experiments. O’Sullivan [13] gives a full description of this method. The DEM is able to simulate complex

loading tests which are difficult to conduct experimentally and enables access to information at the particle

level so the local behavior at the particle scale can be investigated. This method has been widely used

to simulate monotonic and cyclic loading tests. Most of cyclic loading tests were performed with high

amplitude. Alonso-Marroqúın et al. [14, 15] simulated cyclic tests with large amplitude on assemblies of

polygons to study the ratcheting phenomenon in granular media. A few simulations of low amplitude cyclic

tests are found. Recently, Hu et al. [16, 17] have reported numerical simulations of low amplitude cyclic

biaxial tests at constant mean stress on 2D loose granular samples composed of a relatively small number

(896) of disks. They focused on the evolution of the internal structure of 2D granular media during low

amplitude cyclic loading at low frequencies (< 1 Hz). The effect of the average stress state and cyclic

stress amplitude on the accumulation of the axial strain was also analyzed. It was not shown, however, how

these factors influence the accumulation of the volumetric and deviatoric strains and the direction of strain

accumulation.
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The present paper presents a study of strain accumulation in 3D granular samples under the action

of traffic induced vibrations by simulating low amplitude cyclic triaxial tests at relatively high frequency.

While it is difficult to conduct low amplitude cyclic tests at high frequency in the laboratory, the DEM is an

alternative option to simulate this kind of cyclic tests. Moreover, this method allows an investigation of the

microscopic behavior of granular samples during cyclic excitation. The first purpose of the current study is

to analyze the influence of different factors such as the sample density, the amplitude and the frequency of

the cyclic excitation and the static stress state on strain accumulation in granular soils. For this purpose,

the DEM has a great advantage compared to laboratory experiments since different loadings can be applied

on the same sample. The second purpose is to investigate the energetic behavior and the evolution of the

internal structure of granular materials during low amplitude cyclic loading. The main novelty of the current

study compared to the study of Hu et al. [16, 17] resides in the high frequency of cyclic loading and the more

detailed analysis of strain accumulation. In addition, 3D samples considered in the current study reproduce

better the packing density and the deformation of real granular materials and allow a confrontation between

numerical results and experimental data reported in [7, 8].

This paper is organized as follows. Section 2 presents two numerical samples considered in the current

study. The behavior of these samples during triaxial compression tests is briefly discussed in section 3.

Strain accumulation in these samples during low amplitude cyclic triaxial tests and the influence of different

parameters on this phenomenon are analyzed in section 4.

2. Numerical samples

The software PFC3D [18] is used to simulate low amplitude cyclic triaxial tests on 3D granular samples.

To simulate a large number of loading cycles within a reasonable computation time, spherical non-crushable

particles, a linear contact model and a rigid wall boundary are adopted in the current study. Two samples

A and B with different densities are created, each of which is composed of 10342 spheres with mass density

ρ = 2650 kg/m3. The particle size for both samples is uniformly distributed from dmin = 4 mm to dmax = 8

mm. This particle size is larger than that of actual sand samples whose maximum grain diameter is about

2 mm. In the DEM, the time step is proportional to the square root of the particle mass. As a result, a

very small time step (typically of the order 10−7 s) is required to simulate samples with particle size smaller

than 2 mm; therefore, computation time is very long. Samples A and B correspond actually to fine gravels.

They are used to keep computation time reasonable.

The parameters of the linear contact model are the normal and tangential stiffnesses kn = ks = 5× 106

N/m and the friction coefficient µ = 0.6. No viscous damping is added at the contact points; therefore, only

friction dissipates energy in the samples. To justify the quasi-rigidity assumption for particles, the ratio

kn/(σod) with σo the confinement stress and d the mean particle diameter must be sufficiently high. In the

3



current study σo ≤ 100 kPa hence kn/(σod) > 8× 103 which is acceptable. The resulting time step is of the

order 10−6 s.

The particles of each sample are randomly generated in a parallelepiped composed of 6 rigid walls. The

samples are then isotropically compacted until reaching a given target stress state. To obtain different

densities, the friction coefficient µ for samples A and B is set to 0.6 and 0.3 during the compaction phase,

respectively. When about 90% of the target stress state is reached, µ is reset to its original value. Figure 1

shows sample A after compaction with height H = 17.0 cm and width L = 11.4 cm.

2
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H = 17.0 cm

L = 11.4 cm

Figure 1: Configuration of sample A contained by a parallelepiped box composed of 6 rigid walls.

Particle breakage might occur in granular materials during cyclic loading, particularly at high amplitude

and high hydrostatic stress [11, 19]. It can be expected that only a small number of particles would be

crushed during low amplitude cyclic loading at low hydrostatic stress. As indicated in [10], particle breakage

is indeed small in ballast samples subjected to high amplitude cyclic loading tests at a hydrostatic stress

p < 193 kPa. Donohue et al. [19] observed that the amount of particle breakage in carbonate sand, which

is quite fragile, is small during cyclic loading tests at a hydrostatic stress p = 100 kPa. Consequently, it is

relevant to neglect particle breakage in the current study.

The rigid wall boundary is used in the current study as it is easily implemented and a small computational

effort is needed. However, this rigid boundary inhibits the natural development of shear bands that are

clearly observed during physical triaxial compression tests. To enable shear bands to develop, a stress

controlled membrane has been introduced in [20, 21], which simulates the flexible latex membrane used in

physical tests. However, the implementation of this membrane boundary is quite complex, in particular for

3D materials, and a significant computational effort is needed to update it during simulation. The stress

4



controlled membrane has been used by Hu et al. [17] to simulate low amplitude biaxial cyclic tests on 2D

materials. When the membrane boundary is used, only the post-peak response (after the failure) of granular

samples during a triaxial compression differs notably from that obtained with the rigid wall boundary [21].

As a result, it can be expected that, for low amplitude cyclic tests, the rigid wall boundary and the membrane

boundary give close results as cyclic excitations are applied before the failure limit.

Characteristics of samples A and B

The stress tensor σ and strain tensor ε of each sample are defined from the contact forces applied by the

walls on the sample and the displacement of the walls [13]. The sign convention used in this paper is that

tensile stresses and strains are positive. For triaxial loading, the mean stress p and the deviatoric stress q

are defined as p = (σ11 + 2σ33)/3 and q =| σ11 − σ33 |. The volumetric strain εv and the deviatoric strain

εd are defined as εv = ε11 + 2ε33 and εd = 2 | ε11 − ε33 | /3.

The coordination number N and the fabric tensor H are used to describe the internal structure of each

sample. The coordination number N is the average number of contacts per particle

N = 2
Nc

Np

, (1)

with Nc the number of contacts and Np the number of particles. Kuhn [22] introduced the effective coordi-

nation number N eff by removing all the floating particles (particles that have no more than 3 contacts with

their neighbors) from the sample when calculating the coordination number N . The fabric tensor is defined

as:

Hij =
1

Nc

Nc
∑

k=1

nk
i n

k
j , (2)

where nk
i is the i-th component of the unitary normal vector at contact k [23]. For triaxial loading, H11,

H22 and H33 are the three principal values and H22 ≈ H33. In this case, the anisotropy of a sample can be

measured by Hd = H11 −H33.

Sample n N N eff Hd

A 0.427 3.20 4.36 0.01

B 0.409 3.60 4.60 0.01

Table 1: Porosity n, coordination number N , effective coordination number Neff and anisotropy measure Hd of samples A and

B at a confinement stress σo = 50 kPa.

Table 1 presents some characteristics of samples A and B at the end of the compaction phase for an

isotropic stress state σ11 = σ22 = σ33 = σo = 50 kPa. Sample B is denser than sample A. Moreover,

for each sample the effective coordination number N eff is significantly higher than N . Both samples are
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approximately isotropic. The following sections show that the difference in density of these samples leads

to a marked difference in their behavior during triaxial compression tests and cyclic triaxial tests.

3. Triaxial compression tests

A2

A3
B3

B1

B2

A1

q/
|
p
|

ε v

ε11

LALB

Figure 2: Stress ratio η = q/ | p | and volumetric strain εv versus axial strain ε11 for two triaxial compression tests applied on

samples A (dashed line) and B (solid line) at a confinement stress σo = 50 kPa.

Quasi-static triaxial compression tests are performed on samples A and B by approaching slowly the top

and bottom walls and keeping the lateral stresses σ22 and σ33 equal to the confinement stress σo using a

servo-control procedure. Figure 2 shows the stress ratio η = q/ | p | and the volumetric strain εv versus

the axial strain ε11 for two tests performed on samples A and B at σo = 50 kPa. Data obtained from the

numerical simulation are relatively noisy, particularly for the computed stress. Therefore, the Savitzky-

Golay filtering method is used to smooth the data. The figure shows that sample A presents the behavior of

a loose granular sample, while sample B presents the behavior of a medium dense one. These samples first

contract and then dilate. The state at which this transition occurs is called the characteristic state (phase

transformation state). For sample A the characteristic state occurs at large deformation (ε11 ≈ -0.074),

while for sample B this state occurs at small deformation (ε11 ≈ -0.009). Lines LA and LB drawn in figure 2

depict the characteristic state for samples A and B, respectively. The stress ratio η at the characteristic
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state is higher for sample A (0.67) than for sample B (0.59). This result is in good agreement with the

findings in [24].

Points A1, A2 and A3 drawn on the curve for sample A and points B1, B2 and B3 drawn on the curve for

sample B represent the stress states at which low amplitude cyclic excitations are applied (these loadings are

presented in section 4). The arrows indicate the volumetric behavior of each sample at the corresponding

stress states. At each point, the volumetric behavior of the corresponding sample is quantified by the

dilatancy rate ε̇v/ε̇d which is negative if the sample is contracting. Table 2 shows the stress ratio η and the

dilatancy rate ε̇v/ε̇d at these points. Sample A tends to contract less from point A1 to point A3; the same

tendency is observed for sample B from point B1 to point B3. In particular, at point B3, sample B slightly

dilates. It is shown in the next section that samples A and B behave differently during the cyclic excitations

applied at these points.

Sample Point η ε̇v/ε̇d

A1 0.2 -0.7

A A2 0.4 -0.26

A3 0.6 -0.16

B1 0.2 -0.4

B B2 0.4 -0.06

B3 0.6 0.01

Table 2: Stress ratio η and dilatancy rate ε̇v/ε̇d of samples A and B at points A1, A2, A3, B1, B2 and B3 in figure 2.

4. Low amplitude cyclic triaxial tests

The cyclic triaxial tests presented in this paper are performed in a stress controlled manner. The axial

stress σ11 is cycled between the lower and upper values σ11 ± σcyc
11 where σ11 is the average or static axial

stress and σcyc
11 is the cyclic axial stress amplitude. The lateral stresses σ22 and σ33 are kept equal to the

confinement stress σo. The phase in which the stress state is brought to the average stress state (σ11 = σ11

and σ22 = σ33 = σo) is called the consolidation phase. In the current study, a sample is consolidated by

performing a triaxial compression test. Once the target average stress state has been reached, the cyclic

stress σ11 is applied by moving cyclically the top and bottom walls inward and outward until σ11 reaches

the upper and lower values, respectively. The velocity of these walls is changed smoothly to avoid shocks
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to the samples. By doing so, the amplitude σcyc
11 can be controlled exactly; however, a sinusoidal stress

excitation with a given frequency cannot be correctly applied due to the difficulty in choosing the velocity of

the top and bottom walls to reach a given value of σ11 at a given instant t. This is a significant limitation of

using rigid walls without mass to confine granular samples because the force cannot be applied on massless

bodies. Indraratna et al. [11] report to have developed a subroutine in the software PFC2D to apply a stress

controlled cyclic biaxial test with a given amplitude and frequency but give no implementation detail. In

the current study, the frequency f of a cyclic excitation is an average value computed as f = N/Tf with N

the number of cycles and Tf the duration of the test. The frequency f is approximately controlled within a

given range by trial and error.

A cyclic triaxial test has four parameters: the average stress ratio η = q/ | p |, the confinement stress

σo, the cyclic stress amplitude σcyc
11 and the excitation frequency f . A low amplitude cyclic excitation

corresponds to a small value of the ratio ζcyc = σcyc
11 / | p |. Table 3 summarizes the parameters of the cyclic

triaxial tests performed on samples A and B.

In DEM simulations, the number of particles in a sample should be large enough such that the sample is

representative. One way to check the representativity of a sample composed of a given number of particles

is to increase the number of particles. The sample is representative if its behavior does not significantly

change. To do so, four samples composed of 6000, 8000, 10000 and 12000 spheres with porosities close to

0.416 are created and then subjected to the same cyclic triaxial loading test with η = 0.4, σo = 50kPa, σcyc
11

= 6kPa and f ≈ 67 Hz. The magnitude εacc of the accumulated strain is defined as the Frobenius norm of

the accumulated strain tensor εacc. For cyclic triaxial loading, εacc is diagonal; therefore, εacc = ‖εacc‖F =
√

(εacc11 )2 + (εacc22 )2 + (εacc33 )2. Figure 3 shows the accumulated strain εacc in these four samples versus the

cycle number N . The accumulated strain in the sample of 10000 particles is quite different from that in the

samples of 6000 and 8000 particles but close to that in the sample of 12000 particles. This result reveals

that, for cyclic triaxial loading test, the samples composed of 10000 particles used in our simulations are

representative.

N

εa
cc

Figure 3: Accumulated strain εacc versus the cycle number N for four samples composed of 6000 (thin solid line), 8000 (thin

dashed line), 10000 (bold solid line) and 12000 (bold dashed line) particles.

In the following, test B2 is first presented in subsection 4.1 to demonstrate strain accumulation in sample
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Sample Test η σo (kPa) σcyc
11 (kPa) f (Hz)

A1 0.2 6 62

A2 3 25

A3 24

A A4 0.4 50 6 67

A5 93

A6 30

A7 100 12 66

A8 0.6 50 6 67

B1 0.2 63

B2 25

B B3 0.4 50 6 68

B4 100

B5 0.6 66

Table 3: Cyclic triaxial tests performed in the current study.

B. Next, the influence of the sample density, the cyclic stress amplitude σcyc
11 , the cyclic excitation frequency

f , the average stress ratio η and the confinement stress σo on strain accumulation is analyzed in subsections

4.2 to 4.6.

4.1. Test B2

Figure 4 shows the time history and frequency content of the cyclic axial stress σ11 applied on sample B

in test B2. The stress σ11 is not perfectly sinusoidal as mentioned previously and its dominant frequency is

about 25 Hz.

The stress-strain response of the sample under the applied cyclic excitation is shown in figure 5. For

clarity, this plot is split into three subplots with equal intervals of the axial strain ε11. This figure shows

clearly that sample B accumulates strain during cyclic excitation even at small amplitude. The first two

cycles involve a large accumulated strain. The strain accumulation slows down as the cyclic loading continues.
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Figure 4: (a) Time history and (b) frequency content of the cyclic axial stress σ11 applied in test B2.

However, at several moments the strain accumulation suddenly accelerates and then rapidly stabilizes. At

these moments, internal instability might occur in the sample, which is most likely due to the collapse of

some strong force chains that carry essentially the deviatoric stress in the sample as explained by Hu et al.

[17]. Afterwards, a particle rearrangement is triggered to create new strong force chains and the sample

recovers its bearing capability. Except for the first two cycles, the strain amplitude and the residual strain

increment in each cycle are relatively small. The amplitude of ε11 is of the order of 10
−4 and ε11 accumulates

an amount of the order of 10−5 after each cycle. Although a small strain is accumulated after each cycle,

the total accumulated strain becomes large after a large number of cycles. Hu et al. [16] also observed strain

accumulation in 2D granular samples under low amplitude cyclic loading in their numerical simulations.

σ
1
1
(k
P
a)

σ
1
1
(k
P
a)

σ
1
1
(k
P
a)

ε11

Figure 5: Cyclic axial stress σ11 versus axial strain ε11 in test B2.
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When a granular sample is loaded, the work Wext done by the external loading is converted into (i)

kinetic energy Ek of the particles, (ii) elastic energy Ee stored at the contacts and (iii) energy Ef dissipated

by frictional sliding between particles and by other dissipative mechanisms such as viscosity and plasticity

[18]. The current study assumes that the energy dissipation is only caused by frictional sliding between

particles. This assumption might be justified for quasi-static loadings where frictional sliding might be the

dominant mechanism. Figure 6 shows the evolution of these quantities for cycles N = 1 − 60. Almost all

the work done by the external forces during the cyclic excitation is dissipated by frictional sliding between

particles. The kinetic energy of the particles is negligible. Moreover, the elastic energy is completely released

after each cycle, except for the first cycle. These results indicate that the strain accumulation phenomenon

observed at the macroscale is accompanied by energy dissipation due to frictional sliding at the microscale.

t (s)

E
n
er
gy

(J
)

Figure 6: Time history of the external work Wext (bold solid line), kinetic energy Ek (dashed-dotted line), elastic energy Ee

(thin solid line) and energy Ef dissipated by friction (dashed line) for cycles N = 1− 60.

Figure 7 shows the evolution of Wext, Ee and Ef during two cycles N = 60 and 600. The increments

∆Wext, ∆Ee, ∆Ef and ∆ε11 are computed with respect to the beginning of each cycle. Lines AA’, BB’, CC’

and DD’ correspond to the beginning of each cycle, the end of the loading phase, the end of the unloading

phase and the end of each cycle, respectively. For each loading cycle, the work done by the external loading is

converted into elastic energy and dissipated by frictional sliding during the loading phase. The elastic energy

is then released and frictional sliding continues to dissipate slightly energy during the unloading phase. At

the end of each cycle, the total external work is entirely dissipated by frictional sliding and the elastic energy

is completely released. The energy dissipated by frictional sliding remains small compared to the elastic

energy during each loading cycle, turning out that the behavior of the sample during low amplitude cyclic

excitation is highly elastic. This would not be the case for large amplitude cyclic excitation, for which

frictional sliding would dissipate a large amount of the external work. The behavior of the sample during

cycle N = 600 is almost elastic with a negligible dissipated energy compared to that observed for cycle N

= 60. This is consistent with the fact that the accumulated strain for cycle N = 600 is much smaller than

for cycle N = 60.
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Figure 7: Increments of the external work ∆Wext (bold solid line), elastic energy ∆Ee (thin solid line) and energy dissipated

by friction ∆Ef (dashed line) versus the axial strain increment ∆ε11 for cycles (a) N = 60 and (b) N = 600.

When a granular sample deforms, frictional sliding occurs at the so-called sliding contacts. Figure 8

shows the evolution of the fraction Φsc of sliding contacts for cycles N = 170− 181. Under low amplitude

cyclic excitation, the number of sliding contacts in the sample is small (Φsc < 0.04); however, these contacts

dissipate the main part of energy. Moreover, Φsc changes periodically. For each cycle, Φsc increases during

the loading phase. Unloading the sample does not lead to disappearance of the sliding contacts; conse-

quently, energy is still dissipated by frictional sliding during this phase. In addition, Φsc does not decrease

monotonically during the unloading phase: it rapidly drops during the first half of the unloading phase, then

increases again during the second half. This non-monotonic trend of Φsc during the unloading phase can be

explained by the fact that the sample behaves almost elastically at the transition from the loading to the

unloading phase; as a result, Φsc drops rapidly. As the unloading continues, sliding between particles occurs

and Φsc increases again to dissipate energy. As shown in figure 7, the energy dissipated by frictional sliding

increases during the second half of the unloading phase. Figure 8 also shows that the transition from the

unloading to the reloading causes Φsc to drop again (the sample behaves almost elastically at the beginning

of the reloading phase). Afterwards, Φsc increases again to dissipate energy. The periodic variation of the

fraction of sliding contacts during cyclic loading was also observed in [14, 15, 25].

4.2. Influence of the sample density

The influence of the sample density on the intensity and the direction of strain accumulation as well as

the evolution of the internal structure is analyzed by considering test A3 performed on sample A and test B2

performed on sample B. The frequencies of these tests are about 24 Hz. The other parameters are identical

(table 3).

The accumulated volumetric and deviatoric strains εaccv and εaccd are calculated from the total accumulated

strain tensor εacc after each cycle. Figure 9 shows εaccv and εaccd for samples A and B versus cycle number
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Φ
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Figure 8: Time history of the fraction Φsc of sliding contacts for cycles N = 170− 181.

N . The sample density influences greatly strain accumulation. Strain accumulates much more strongly in

sample A than in sample B. Both samples accumulate more deviatoric than volumetric strain. In particular,

sample A accumulates much more volumetric strain than sample B. This means that loose granular soils are

more likely to be compacted during low amplitude cyclic loading than dense soils.

(a) N

εa
cc v

(b) N

εa
cc d

Figure 9: Accumulated (a) volumetric strain εaccv and (b) deviatoric strain εacc
d

versus cycle number N for samples A (solid

line) and B (dashed line).

When plasticity theory is used to predict strain accumulation in granular materials, it is important to

know the direction of plastic flow or the direction of strain accumulation [8, 26]. The strain ratio εaccv /εaccd

is used as a measure of the direction of strain accumulation in a granular sample: it quantifies the change in

volume of the sample compared to the change in shear strain and, by definition, takes values between −3/2

(the strongest contractive behavior) and +3/2 (the strongest dilative behavior). As indicated in figure 10,

the direction of strain accumulation in both samples changes first and then stabilizes after about 200 cycles.

Moreover, it depends substantially on the sample density: sample A presents a much stronger volumetric

behavior during cyclic loading than sample B.

As observed experimentally by many authors [7, 26, 27], the volumetric behavior of a granular sample

during cyclic excitation depends on its volumetric behavior at the average stress state. If the sample tends
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Figure 10: Strain ratio εaccv /εacc
d

versus cycle number N for samples A (solid line) and B (dashed line).

to contract at the average stress state then it contracts during low amplitude cyclic excitation. The opposite

is observed if the sample tends to dilate at the average stress state. In particular, if the cyclic excitation

is applied at the characteristic state, the strain accumulates in the sample with no volume change. These

experimental observations can be confirmed by numerical simulation. Indeed, at point A2 in figure 2, sample

A contracts strongly; as a result it contracts strongly during test A3. On the other hand, at point B2 which

is near to line LB, sample B contracts weakly during test B2.

To study the evolution of the internal structure of samples A and B during cyclic loading, the effective

coordination number N eff and the anisotropy measure Hd are monitored. Figure 11 shows the evolution of

Neff and Hd for samples A and B. The effective coordination number Neff of both samples increases slightly

with the number of cycles, particularly for sample A. The increase in N eff results from the densification of

these samples during cyclic excitation (figure 9). The increase in N eff does not mean that the fraction of

floating particles decreases during low amplitude cyclic loading. It indeed remains almost constant as shown

in figure 12, revealing that low amplitude cyclic loadings do not promote more particles to take part in force

chains.

(a) N

N
eff

(b) N

H
d

Figure 11: Evolution of (a) the effective coordination number Neff and (b) the anisotropy measure Hd for samples A (solid

line) and B (dashed line).

Figure 11 indicates that the anisotropy of both samples remains almost constant during the applied

cyclic excitations. Compared to the anisotropy induced by the consolidation phase, the anisotropy induced
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Figure 12: Fraction Nf/N of floating particles versus the number of cycles N for sample A (solid line) and sample B (dashed

line).

by low amplitude cyclic loading is not significant. This result reveals a difference between the effect of cyclic

loading with low and high amplitude. For the latter, the internal structure of granular materials evolves

substantially [28–30]. Hu et al. [17] studied the evolution of the coordination number and the anisotropy of

2D loose granular materials during low amplitude cyclic loading, revealing similar results as obtained here

for 3D materials.

4.3. Effect of the cyclic stress amplitude σcyc
11

Tests A2, A3 and A6 are performed on sample A at point A2 with different cyclic stress amplitudes

σcyc
11 = 3, 6 and 12 kPa. Figure 13 shows that σcyc

11 influences greatly the strain accumulation in sample A.

Both accumulated volumetric and deviatoric strains εaccv and εaccd increase as σcyc
11 increases. In addition,

at a higher value of σcyc
11 strain accumulates more rapidly, particularly for about the first 100 cycles. Hu et

al. [17] also observed that the accumulation of the axial strain in 2D materials during low amplitude cyclic

loading increases with the cyclic stress amplitude. The increase in εaccv and εaccd with σcyc
11 can be explained

by the fact that a higher excitation amplitude causes more sliding motion between particles to dissipate

energy. Indeed, figure 14 shows clearly that the energy dissipated by frictional sliding is much higher for

σcyc
11 = 12 kPa than for σcyc

11 = 6 kPa.

(a) N

εa
cc v

(b) N

εa
cc d

Figure 13: Accumulated (a) volumetric strain εaccv and (b) deviatoric strain εacc
d

of sample A versus cycle number N for a

cyclic stress amplitude σcyc
11 = 3 kPa (thin solid line), 6 kPa (dashed line) and 12 kPa (bold solid line).
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Figure 14: Evolution of the incremental external work ∆Wext (solid line) and the incremental dissipated energy ∆Ef (dashed

line) during cycle N = 600 for a cyclic stress amplitude (a) σcyc
11 = 6 kPa and (b) σcyc

11 = 12 kPa.

The cyclic stress amplitude σcyc
11 has little effect on the direction of strain accumulation in sample A,

except for the few first cycles, as shown in figure 15. The strain ratio εaccv /εaccd after 1000 cycles is about -0.6

for σcyc
11 = 3 kPa, compared to a value of -0.4 for σcyc

11 = 12 kPa. This numerical result is in good agreement

with the experimental result showing that the direction of strain accumulation in sand under low amplitude

cyclic loading is independent of the cyclic excitation amplitude [7, 8, 26].

N

εa
cc v
/ε
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c

d

Figure 15: Accumulated strain ratio εaccv /εacc
d

of sample A versus cycle number N for a cyclic stress amplitude σcyc
11 = 3 kPa

(thin solid line), 6 kPa (dashed line) and 12 kPa (bold solid line).

At the microscopic scale, the cyclic stress amplitude σcyc
11 influences significantly the evolution of the

effective coordination number Neff of sample A, as indicated in figure 16. A marked increase of N eff is

observed for σcyc
11 = 12 kPa, while N eff remains almost constant for σcyc

11 = 3 kPa. The dependence of Neff

on σcyc
11 results from the fact that the sample densifies more strongly at a higher value of σcyc

11 (figure 13).
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Figure 16: Effective coordination number Neff of sample A versus cycle number N for a cyclic stress amplitude σcyc
11 = 3 kPa

(thin solid line), 6 kPa (dashed line) and 12 kPa (bold solid line).

4.4. Influence of the cyclic excitation frequency f

Tests A3, A4 and A5 are performed on sample A at different excitation frequencies f = 24, 67 and 93

Hz and tests B2, B3 and B4 are performed on sample B at f = 25, 68 and 100 Hz. The magnitude εacc of

the accumulated strain is plotted versus the cycle number N for samples A and B in figure 17. The cyclic

excitation frequency f has little effect on strain accumulation in these samples. For sample A, εacc is about

0.015 at 24 Hz after 1000 cycles, compared to a value of 0.016 at 93 Hz. This result might be explained

by the fact that, for the considered values of the excitation frequency, samples A and B are still in the

quasi-static regime. Monitoring the unbalanced force ratio Iuf introduced by Ng [31] shows that Iuf < 10−2

throughout the performed tests, which is small enough for a quasi-static loading. Moreover, the kinetic

energy Ek is negligible compared to the external work Wext during the performed tests (Ek/Wext < 10−4).

(a)

εa
cc

N (b) N

εa
cc

Figure 17: Accumulated strain εacc versus cycle number N (a) for sample A at a cyclic excitation frequency 24 Hz (bold solid

line), 67 Hz (dashed line) and 93 Hz (thin solid line) and (b) for sample B at 25 Hz (bold solid line), 68 Hz (dashed line) and

100 Hz (thin solid line).

In the literature, reports on the effect of the cyclic excitation frequency on strain accumulation in granular

materials are contradictory. Karg [6] found that the frequency within the range 0.1 Hz ≤ f ≤ 10 Hz does not

have a significant influence on strain accumulation in sand samples. A similar result was found by Shenton

[32] on ballast samples with frequencies 0.1 Hz ≤ f ≤ 30 Hz. On the other hand, a clear dependence of
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strain accumulation in ballast samples on the frequency within the range 10 Hz ≤ f ≤ 40 Hz was observed

by Indraratna et al. [11]. This experimental observation was also confirmed by numerical simulations

performed with the DEM. The question is why such a dependence is not found in our simulations. This

might be explained by two reasons. The first reason is that the particles considered in our simulations are

much smaller than those considered in [11] in which the particle diameter varies from 19 mm to 45 mm.

In view of the inertial effect, the latter are more sensitive to the loading rate than the former. The second

reason is that the cyclic excitation amplitude considered in [11] is much larger than in our simulations.

The time step used to simulate samples A and B is about 1.5× 10−6 s. As a result, about 27000 steps

are needed for each loading cycle at 25 Hz, which is computationally expensive. To save computation time,

cyclic loading tests at higher frequencies 60 Hz < f < 70 Hz are considered in the sequel of this paper.

4.5. Effect of the average stress ratio η

Tests A1, A4 and A8 on sample A at points A1, A2 and A3 and tests B1, B3 and B5 on sample B at

points B1, B2 and B3 are considered to analyze the effect of the average stress ratio η on strain accumulation.

Note that η = 0.2 at points A1 and B1, η = 0.4 at points A2 and B2 and η = 0.6 at points A3 and B3

(figure 2). These tests are performed at a high frequency of approximately 65 Hz. The number of cycles is

about 8000 for the tests performed on sample A and 2000 for the tests performed on sample B.

(a) N

εa
cc v

(b) N

εa
cc d

Figure 18: Accumulated (a) volumetric strain εaccv and (b) deviatoric strain εacc
d

versus cycle number N for sample A at an

average stress ratio η = 0.2 (thin solid line), 0.4 (dashed line) and 0.6 (bold solid line).

The accumulated strain in sample A depends strongly on the average stress ratio η, particularly for the

accumulated deviatoric strain εaccd , as indicated in figure 18. Strain accumulates much more strongly in

sample A for η = 0.6 than for η = 0.2 and 0.4, in particular for the first 10 cycles. After 6000 cycles, εaccd

reaches a large value of 0.06 for η = 0.6, compared to a value of 0.015 for η = 0.4 and 0.01 for η = 0.2. In

addition, for η = 0.6 strain still accumulates substantially in sample A after 7000 cycles, while for η = 0.2

and 0.4, strain accumulation almost ceases after 1000 cycles.
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Figure 19: Accumulated (a) volumetric strain εaccv and (b) deviatoric strain εacc
d

versus cycle number N for sample B at an

average stress ratio η = 0.2 (thin solid line), 0.4 (dashed line) and 0.6 (bold solid line).

A similar effect of the average stress ratio η on strain accumulation is observed on sample B (figure 19).

The accumulated volumetric strain εaccv is negligible compared to the deviatoric strain εaccd . The accumulated

strain is almost zero during the cyclic excitation applied at η = 0.2 as the behavior of sample B is highly

elastic at this average stress state (figure 2). These results mean that strain accumulation during low

amplitude cyclic loading in granular materials depends strongly on stress history, which has also been found

in [17].
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Figure 20: Accumulated strain ratio εaccv /εacc
d

versus cycle number N for samples (a) A and (b) B at an average stress ratio η

= 0.2 (thin solid line), 0.4 (dashed line) and 0.6 (bold solid line).

Figure 18 also shows that, for a higher value of the average stress ratio η, sample A accumulates more

deviatoric strain εaccd but less volumetric strain εaccv . For η = 0.6, εaccv is very small compared to εaccd , while

these quantities are comparable for η = 0.2. This result means that η affects greatly the direction of strain

accumulation in sample A as shown in figure 20 where the accumulated strain ratio εaccv /εaccd is plotted versus

the cycle number N . For η = 0.2, εaccv /εaccd is near to its minimum value of -3/2 (maximum contractive

behavior). On the other hand, εaccv /εaccd is near to 0 for η = 0.6, meaning that sample A accumulates only

the deviatoric strain at this average stress state. A similar result is observed for sample B, although the

influence of η on the direction of strain accumulation is less marked than in sample A.

These results demonstrate the close relation between the direction of strain accumulation in a granular
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sample at a given average stress state and its volumetric behavior at this stress state, as mentioned earlier in

subsection 4.2. The strong contractive behavior of sample A at point A1 leads to a strong accumulation of

the volumetric strain and a weak accumulation of the deviatoric stress, while its weak contractive behavior at

point A3 leads to a weak accumulation of the volumetric strain and a strong accumulation of the deviatoric

strain. These results are in accordance with experimental results obtained by Luong [27], Chang and

Whitman [26] and Wichtmann et al. [7, 8] who showed a strong dependence of strain accumulation in sand

samples on the average stress ratio.

H
d

N

Figure 21: Anisotropy measure Hd versus cycle number N for sample A at an average stress ratio η = 0.2 (thin solid line), 0.4

(dashed line) and 0.6 (bold solid line).

The effect of the average stress ratio η on the evolution of the anisotropy of sample A is shown in

figure 21. The average stress ratio η affects greatly the anisotropy induced by the consolidation phase, but

not the anisotropy induced by low amplitude cyclic excitation. The anisotropy of the sample remains almost

constant during the applied cylic excitations whatever the value of η is. This result confirms what has been

observed previously in subsection 4.2.

4.6. Influence of the confinement stress σo

Tests A4 and A7 are performed on sample A at point A2 with different confinement stresses σo = 50 kPa

and 100 kPa. The cyclic stress amplitude σcyc
11 is chosen such that the parameter ζcyc = σcyc

11 / | p |= 0.1 for

both tests; hence σcyc
11 = 6 kPa for test A4 and σcyc

11 = 12 kPa for test A7. Figure 22 shows the accumulated

strain in sample A at both values of σo. The strain accumulates less at σo = 100 kPa than at σo = 50 kPa,

although the cyclic stress amplitude σcyc
11 is higher for the former than for the latter. However, as shown

in figure 23, the confinement stress has little influence on the direction of strain accumulation except for

some first cycles. These results indicate that an increase in the confinement stress tends to reduce strain

accumulation in granular samples during low amplitude cyclic excitation without changing remarkably the

direction of strain accumulation. A similar result was also observed in laboratory experiments by Wichtmann

et al. [7, 8].
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Figure 22: Accumulated (a) volumetric strain εaccv and (b) deviatoric strain εacc
d

versus cycle number N for sample A at a

confinement stress σo = 50 kPa (solid line) and 100 kPa (dashed line).
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Figure 23: Accumulated strain ratio εaccv /εacc
d

versus cycle number N for sample A at a confinement stress σo = 50 kPa (solid

line) and 100 kPa (dashed line).

5. Conclusions

A series of simulations with the DEM was carried out to study strain accumulation in granular materials

subjected to low amplitude cyclic loading. While cyclic triaxial tests at high frequency are difficult to

perform in the laboratory, they can easily be simulated with the DEM. A loose and a medium dense sample

composed of 10342 spheres were considered in these simulations. The influence of different factors such

as the packing density, the cyclic stress amplitude, the excitation frequency and the average stress state

on strain accumulation in these samples was analyzed. In addition, the DEM allowed the study of the

energetic behavior and the evolution of the internal structure of these samples during the performed cyclic

loading tests. Although the granular samples considered in this study are somewhat idealized, the following

conclusions regarding strain accumulation in granular materials during low amplitude cyclic loading at high

frequency can be formulated:

• Strain accumulation in granular samples under low amplitude cyclic loading is clearly observed in the

performed simulations.
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• Strain accumulation observed at the macroscale is accompanied by a dissipative process caused by

frictional sliding occurring at a few contacts. The fraction of sliding contacts varies periodically

during cyclic excitation.

• During each low amplitude loading cycle, the behavior of these samples is highly elastic and a small

amount of energy is dissipated by frictional sliding. However, after a large number of loading cycles,

the amount of cumulative dissipated energy becomes substantial compared to the elastic energy which

is completely released after each cycle.

• The internal structure of these samples evolves slightly during the performed cyclic loading tests. An

increase in the coordination number observed for the loose sample is due to its densification during

cyclic excitation. However, the anisotropy of these samples induced by low amplitude cyclic excitation

is negligible compared to the anisotropy induced by the consolidation phase.

• Strain accumulation in granular samples depends greatly on the packing density, the excitation ampli-

tude and the average stress state. This dependence was also observed in laboratory experiments. The

excitation frequency (up to 100 Hz), however, does not substantially affect strain accumulation. It

appears that the considered samples are still in quasi-equilibrium during the performed cyclic loading

tests within this range of frequencies.

These results indicate that the DEM is able to reproduce, at least in a qualitative sense, the strain

accumulation phenomenon observed in laboratory experiments. To advance the use of the DEM to study

this topic, more realistic particle shapes and more realistic boundary conditions such as the stress-controlled

membrane should be accounted for in simulations. Crushable particles should be considered in the case

of low amplitude cyclic tests at high confinement stress to investigate whether particle breakage plays an

important role in strain accumulation. Moreover, the effect of some properties at the microscopic scale

such as the friction coefficient, the particle size distribution, the particle shape and the initial fabric of

granular materials on strain accumulation in these media is not yet well understood and needs to be further

investigated.
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