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Multiaxial behavior of foams — Experiments and modeling
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Abstract. Cellular materials are strongly related to pressure level inside the material. It is therefore important to use experiments
which can highlight (i) the pressure-volume behavior, (ii) the shear-shape behavior for different pressure level. Authors propose
to use hydrostatic compressive, shear and combined pressure-shear tests to determine cellular materials behavior. Finite Element
Modeling must take into account these behavior specificities. Authors chose to use a behavior law with a Hyperelastic, a Viscous
and a Hysteretic contributions. Specific developments has been performed on the Hyperelastic one by separating the spherical
and the deviatoric part to take into account volume change and shape change characteristics of cellular materials.

1. Introduction

Foams and more generally cellular materials are specifi-
cally used as filling material in sandwich structures with
a function of energy dissipation. Their ability to resist to
impact and shock, combined with their low density, now
make them ideal candidates for passive safety and energy
dissipation [1].

Foam behavior has been studied by authors in nu-
merous publications according to simple characterization
tests that allow obtaining input parameters for the models
proposed by industrial codes [2]. Classically, only uniaxial
compressive experiments are needed to feed the numerical
model. Even if the numerical models succeed in describing
foam behavior under uniaxial loading conditions, they
are not well adapted to represent multiaxial behavior
occurring under complex loadings, such as punch impacts.
To improve mechanical description of foams, Hanssen
et al. [3] proposed several experiments. One of this test
which is very important to describe foam behavior is
the hydrostatic compressive test [4] and some numerical
models take into account the behavior under hydrostatic
pressure conditions [2].

Aware of the importance of hydrostatic pressure on
foams behavior, other authors have developed hydrostatic
compressive [4] and multi-axial tests [5]. These tests are
performed to achieve a representation of a load surface (or
behavior transition) of foams in the equivalent stress plane
as a function of hydrostatic stress. Other representation
that takes into account, independently, loading direction
characterized by the Lode angle, hydrostatic pressure and
stress intensity has also been used recently and seems to be
a good way to describe cellular materials [5].
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In this scientific framework, authors decided to inves-
tigate experimentally, and numerically, cellular materials
behavior. Foam behavior will be described numerically
using a generalist yet powerful phenomenological model,
namely HVH (Hyperelastic, Viscous, Hysteretic) model
[6]. The HVH model has been enhanced to take into
account foam specificities such as volume change and
shape change sensitivities, and the coupling behavior
between the volume change and the shape change
behaviors. Experimental study has been led to get
mechanical characteristics of the numerical model and to
guide the choice for the numerical developments. Shear
tests have therefore been performed to get shape change
behavior. Shear tests under different level of pressure can
be possible to identify the coupling between pressure and
shear by using an original hexapod device that allows
combined loadings, such as uniaxial compression/tension
and shear tests. Digital Image Correlation technique has
been used to analyze the area of the specimen that is
subjected to shear behavior and obtain the shear strain
field. The stress is calculated thanks to a 3-dimensional
sensor. Experimental results clearly show that shear
behavior is related to the level of hydrostatic pressure.
Numerical model has therefore been improved accordingly
and shows good agreement to describe foam behavior
under multiaxial loading conditions.

2. Experiments

Every tests presented is this paper have been performed on
a polypropylene (PP) foam, named Arpro© and produced
by JSP society. The density of the foam is between 90 and
100 kg.m?.

2.1. Uniaxial compressive test

Uniaxial compressive tests can be performed in quasi-
static conditions using an electromechanical device or in
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Figure 1. Classical compressive test on a PP foam. Evolution
of the nominal compressive stress versus the engineering
compressive strain.

e

Figure 2. Classical compressive test on a PP foam. Foam
specimen for engineering strain values of 0.00, 0.35 and 0.70.
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Figure 3. Classical compressive test on a PP foam. Evolution
of the pseudo Poisson’s ratio versus the engineering compressive
strain.

dynamic conditions using a flywheel device or a Split-
Hopkinson Pressure Bar device as in [7-9]. Classical foam
behavior is observed in Fig. 1 with a first elastic stage, a
second stress plateau stage and a third densification stage.
Nominal stress is classical calculated: 6., = g—o where F,
is the force along the z-axis and Sy is the cross section
area.The engineering strain is calculated as: &.,; = hhho
with 4 and h( the current and the initial height of the
sample, respectively.

It can also be noticed in Fig. 2 that the transversal dis-
placement of the foam under uniaxial compressive loading
conditions is quite small even for large transformations.

In this context of large transformations a pseudo
Poisson’s ratio v, can be calculated using image analysis.
Every images obtained during the test is analyzed with an
Image]© procedure. (i) An area is defined at the center
of the foam specimen and related to its height. (ii)) A
threshold and an outline macro give the outlines of the
specimen. (iii) The specimen width over the initial width
ratio is calculated for every image using a mean of the
position of each specimen side. The seudo Poisson’s ratio
can be calculated as: v, = —==% 7= with [ and [y the
current and the initial width, respectlvely. Its evolution can
be displayed versus the engineering compressive strain in
Fig. 3. It can be observed that during the compressive test,
the pseudo Poisson’s ratio is about 0.03.
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Figure 4. Hydrostatic compressive test on a PP foam. Evolution
of the pressure versus the volume change.
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Figure 5. Comparison of uniaxial and hydrostatic compressive
tests on a PP foam. Evolution of the o, versus the volume change.

2.2. Hydrostatic compressive test

Hydrostatic compressive tests on PP foam in quasi-static
and dynamic conditions have already been performed by
Viot and published in [4]. The results are presented Fig. 4.
The shape of the hydrostatic curve looks like the
one of the uniaxial compressive test. For this reason,
it seems interesting to plot both curves of the uniaxial
and hydrostatic compressive tests on the same figure.
With the assumption of a null-pseudo Poisson’s ratio,
the relation between the engineering strain &.,, and the
volume variation V is: V =1 — g,,,. If the results are
presented with o, vs. V, Fig. 5, it can be noticed
that the hydrostatic behavior is quite the same than the
uniaxial compressive behavior. The level of the stress
plate is almost the same and is approximately equal to
0.5-1.0 MPa. At the beginning of both tests, before a
volume change of ¢, = 0.7, the difference between two
tests does note exceed 10%. This shows the importance
of the volume change contribution on the foam behavior.

2.3. Shear test
2.3.1. Discussion about specimen dimensions

In order to evaluate the shape change contribution, shear
tests are needed. However, if we want to exhibit the
influence of the pressure on the shear behavior, combined
compressive-shear experiments should be used. With these
considerations, the shape of foam specimen must allow
to perform combined compressive-shear tests using an
hexapod device, see Figs. 6 and 7.

The Hexapod device allows to perform three trans-
lations and three rotations. An additional seventh
electromechanical jack can be independently used to
improve compressive velocity but has been locked for this
study. A three-force sensor is located at the top of the
foam specimen in order to record the force vector during
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Figure 6. Hexapod device using for combined shear-compressive
tests.

Base frame
e —

Figure 7. Foam specimen before a combined shear-compressive
test.
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Figure 8. Digital Image Correlation Technique used for a shear
test. Shear strain e,, = V‘T‘ field just before the failure.

the test. The foam specimen is glued on two grip pieces.
The top one is screwed on the force sensor and the bottom
one is screwed on a base frame which is screwed in the
ground. In order to improve the efficiency of the grips,
Smm-grooves have been machined on the grips and on
the specimen foam. The dimensions of foam specimen are
75%30x40 mm? in length, height and depth, respectively.
These dimensions do not guarantee pure shear test as
mentioned by Bouvier et al. [10]. Indeed, some flexural
phenomena occur at both side of the specimen and can not
be neglected. However this test can give some first needed
informations.

2.3.2. Shear test results

Three quasi-static shear tests have been performed at
a strain rate of y,, = 1072 s~ until a strain level of
vyt = 1. Digital Image Correlation technique has been
used to measure strain on the specimen using a zone of

interest of 128 pixels (see Fig. 8). It can be seen two areas
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Figure 9. Shear behavior with the evolution of the shear stress
T,y Vs. the strain distorsion y,, until the failure.
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Figure 10. Evolution of the shape change vs. the volume change
during an unixial compressive test with a pseudo Poisson’s ration
of v = 0.03.

on this figure. The first one is the area which is located
at both side of the specimen and is subjected to flexion
behavior. The size of this area decreases with the height of
the specimen. The second one is a non-homogeneous strain
field area which is located at the center of the specimen.
This non-homogeneity is due to foam beads with different
densities which involve localization of deformation [9]. A
average of strain field can be performed in this area to get
the mean strain distorsion. The failure occurs for the three
tested specimen at a strain level of y\*" = 0.224 £ 0.06.

Using the measurements of the three-axis force sensor,
it can be possible to plot the evolution of the shear stress
vs. the strain distorsion (see Fig. 9).

It can be shown that the results are quite repeatable
and the shear stress reach a value of 2 MPa, higher
than the stress value plateau for hydrostatic and uniaxial
compressive test. Aware of the presence of flexion behavior
on both side of the specimen, future tests on specimen with
an adapted geometry need to be performed.

2.4. Experiments summary

In order to sum up the three previous experiments using
only one diagram, authors decided to plot the evolution of
the principal stress o; vs. two independent variables:

e the volume change V,
e the shape change using the Von Mises strain ey =

%E p 1 ép where &p is the deviatoric strain tensor.
Hydrostatic compressive test and shear test assume that
no shape change and no volume change occur during
each test, respectively. Thanks to the measurement of
transversal strain during the uniaxial compressive test, i.e.
v = 0.03, it is possible to plot the evolution of the shape
change vs. the volume change, see Fig. 10.
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Figure 11. Three dimensional representation of the three
experiments. Evolution of the principal stress vs. the shape
change (Von Mises strain eyy) and vs. the volume change
(Vol. V).

It is therefore possible to plot in the three axis
(Prinicpal stress, Volume and Von Mises strain) the
evolutions of each experiment, see Fig. 11. The hydrostatic
compressive test and the shear test do not depend of
the shape change and the volume change, respectively.
Concerning the evolution of the uniaxial compressive test,
it can be noted that at the beginning of the test, the foam
is mainly subjected to volume change and progressively,
the contribution of shape change increases. With these
considerations, we can say that the shape change is related
to the pressure level inside the foam and the modeling
development must take into account this key point.

3. Modeling
3.1. HVH model

The numerical model used to describe foam behavior is
the Hyperelastic — Viscous — Hysteretic (HVH) model.
It has been used successfully to describe the behavior
of materials such as shape memory materials NiTi [11],
elastomeric materials [6] or polypropylene materials [12].
This model is based on the addition of three powers Py,
Puis and Py, describing the three behavior contributions:

Pint = Phyp + Puis + Phys
/ébd‘/:/ (&h)fp+5—vis+&hys) de (1)
D D

where P, is the internal power, 6y, 5yis and 6y, are the

hyperelastic, the viscous and the hysteretic stress tensor, D
is the strain rate tensor and D the studied domain.

The viscous model chosen for this study is the classical
generalized Maxwell’s model composed of n spring-
dashpot in parallel. The parameters of the model can be
identified by relaxation tests. The hysteretic model is the
one used in the research works of Rio, Favier et al., for
example in [11]. The hysteretic stress oy, is assumed to
be purely deviatoric and irreversible. These two previous
contributions do not concern the topic of this article and
readers can find more explanations about the hysteretic
model in [11,13,14].

The hyperelastic contribution is developed by treating
individually the spherical and the deviatoric behaviors in
order to take into account the differences between the
shape change and the volume change behaviors in cellular

materials. The hyperelastic potential wy,, can be written as

. . . sph . .
the contribution of a spherical a);,’ip and a deviatoric w}f;’}’,
contribution:

_ sph dev
a)h)’l’ - a)hyp + a)hyp' (2)

3.2. Hyperelastic model — spherical behavior

The spherical contribution of the hyper elastic model
is only related to the volume change V. With a
phenomenological approach, it is possible to describe
hydrostatic behavior using a polynomial form of potential
equation which check (i) the positivity of the potential
over the volume change and (ii) the null-value of the
potential for null-volume change, i.e. V = 1. With these
considerations, a hyperelastic potential is proposed:

o (V) = a; Vi (V = 1) 3)

where a; are the parameters of the i-order polynom. The
pressure can be obtained easily from the potential. The free
energy E can be obtained by:

E:/ dez/ /g db’ “4)
D Dyef

where g is the determinant of the metric tensor and 6;
the material coordinates. The power E can be calculated
using classical equations of continuum mechanics with the

Cauchy stress tensor & and the strain rate tensor D based
on the Almansi’s strain:

. d . o .
E:/ Md@':/ &:D.Jgdo. (5
Doy dt Dies

This involves that:

1 ioy®)

5:D = (6)
J& ot
In the case of an hydrostatic compressive test,
. = 1%
6:D:—pll=):—pv (7)

where I is the first invariant, i.e. the trace, of the tensor

D. By developing equation 6 with V =, /g/./go and using
Eq. (7), it finally comes:

ow

It is therefore possible to express the pressure p(V) with
the a; parameters of the model and for a 4"-order polynom,
it gives for example:

w(V)=ag + (—2ay + al)V1 + (ap — 2a; + az)V2
+ (a1 — 2ar + a3)V? + (an — 2a3 + as)V* )
+ (a3 — 2a9)V° + (ag)V°®

— p(V) = ag + 2(—2ay + a))V' + 3(ap — 2a; + a2)V?
+ 4(a; — 2a, + a3)V3 + 5(a, — 2a3 + a4)V4
+ 6(az — 2as)V> + 1(as)V® (10)
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DYMAT 2015

" Experiments
Potential identification
FEM implementation 3¢

Sigma_| [MPa]

0.4 05 0.6 0.7 0.8 0.9 1
v

Figure 12. Spherical potential w;’;z identification thanks to
equation 11 and FEM implementation validation in Herezh++
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Figure 13. Spherical potential @),

shape.

The determination of the spherical model parameters
becomes easy with the results of an hydrostatic
compressive test. The Figs. 12 and 13 show the identified
model compared to experimental results and the shape of
the spherical potential.

The use of a polynomial function for the spherical
hyperelastic potential is quite accurate to model spherical
behavior (see Fig. 12). This potential check the

. ops . ops h
thermodynamic conditions with a positive value of a)ff;p

0VV and a null-value of w}”» = 0 < V = 1 (see Fig. 13).

>

3.3. Hyperelastic model — deviatoric behavior

Many deviatoric potentials exist and can be used for
hyperelastic behavior. The Money-Rivlin [16,17] and
Ogden [18] models are the famous ones. These potentials
are based on the invariants of the Cauchy-Green stress

tensor B as the Mooney-Rivlin (MR) one:
our(Iz, Uz, M3) = CioIz — 3) + Cor(Mz —3) (11)
with:
I =1 + A3+ A3
I = A{A3 + ATAS + 233 (12)
I; = A3a2a3
where A; are the stretches of the Cauchy-Green tensor and:

B

Wi

- 1 _ _
I;=I; IL* and M;=0; OL°.  (13)

S

The use of the Cauchy-Green stress tensor is a good way
to separate shape change and volume change. However,
the parameters of the MR potential are difficult to identify
directly and moreover in a case of shear test. Indeed, the

Expériments
MR potential identification
New potential identification

Shear stress [MPa]
&

0 0.05 0.1 0.15 0.2 0.25
Strain distorsion

*Ph identification thanks to

Figure 14. Deviatoric potential w),,,

Eq. (18).

25

MR potential Identification
New potential identification
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dev
hyp

Figure 15. Deviatoric potential w{° shape.

shear test involves these three principal stretches:

2= (147 v’ 2_
1.2 = +7 + Y 1+I and )\3—1

(14)
with y is the strain distorsion and the invariants can be
calculated as:

_ 1
=M =2+ = +1 (15)

I e

+-Tl]

which leads to an indetermination to identify separately the
C1o and the Cy; parameters. With these considerations, a
new model based on the potential of Favier used in [6] and
using the Cauchy-Green stress tensor invariants has been
proposed.

2
=% In [cosh ( d; — 3))] + uo Iz = 3)

(16)
with Q,, w1 and p, the three parameters of the deviatoric
potential.

It is therefore possible to calculate the stress from the
expression of the deviatoric tensor:

o dw 8i1=3 oy

ol = =2 (17)
38Aij 8I§ 8]/ 88Al'j
and gives:
12 153!
o~ = Q. tanh (Q y) +2un y. (18)

The three parameters of the deviatoric potential has been
identified with u; = 56.2 MPa, Q, = 1.84 MPa and u,
has been fixed to 0 MPa in order to prevent the potential
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from being negative. Results are presented in Figs. 14 and
15. New potential identification can be performed easily
compared with MR potential because the value of | + o
is the slope of the first part of the identified curve, u, is the
slope of the second part of the identified curve and Q, is
the intersection of the second slope and the ordinate axis.

4. Conclusion

This research work proposed to study a PP foam by
performing some experiments to exhibit its volume change
and its shape change by using hydrostatic compressive test
and shear test, respectively. The dependance of pressure
level for cellular materials leads the authors to develop
an original combined pressure-shear test using an hexapod
device.

Finite Element modeling must take into account
spherical and deviatoric contributions separately. With
these considerations, two Hyperelastic models have been
proposed and studied. The first spherical one is based on
a polynomial function and can be easy identified from a
hydrostatic compressive test. The second deviatoric one
is based on the first invariant of the Cauchy-Green stress
tensor and can also be easy to identify using a shear test.

Further works will focus on the combined compressive-
shear test to get the shape change under different pressure
level. These experiments will give informations about
the coupling between shape change and volume change.
Hyperelastic model will be therefore adapted.
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