Anthony Coutant
email: anthony.coutant@lipn.univ-paris13.fr

Céline Rouveirol

Generative Learning of Dynamic Structures using Spanning Arborescence Sets

Motivation:

We focus on the problem of learning generative Gene Regulatory Network structures from scarce gene expression time series, where the (#variables/#individuals) ratio is high. Results: We propose the ELSA method computing a composite model using Bayesian Model Averaging from optimal spanning arborescences built from perturbed versions of the original dataset. We introduce various strategies to build composite from component models, including the use of both high and low ranked model traits to discriminate models, and validate them on the recent DREAM D8C1 challenge.

Introduction

Constructing accurate gene-regulatory networks (GRN) from gene expression data remains a challenge, although many contributions have been proposed since the two last decades. Assuming the GRN is modelled as a directed graph, the main difficulty remains that, in many gene expression datasets, the number of observations is small compared with the number of genes measured: network reconstruction is therefore an underdetermined problem in which many models fit the data and an exponentially large space of networks needs to be considered.

Early GRN reconstruction methods used gene co-expression profiles to identify relationships between genes. These approaches proposed measures such as mutual information to score candidate links [START_REF] Butte | Mutual information relevance networks: Functional genomic clustering using pairwise entropy measurements[END_REF]. Pairwise score approaches aim at finding networks optimizing a sum of node-to-node scores measuring the level of correlation or dependency between them. Most of the time, pairwise scoring functions only use local data to considered nodes, and a post-processing phase is often executed to filter out dependencies (cf. the CLR algorithm [START_REF] Faith | Large-scale mapping and validation of escherichia coli transcriptional regulation from a compendium of expression profiles[END_REF] and ARACNE [START_REF] Margolin | Aracne: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context[END_REF]). While simple and computationally effective, pairwise score approaches have trouble distinguishing direct from indirect dependencies and thus cannot extract complex dependencies involving more than two genes.

More expressive models have been considered for learning GRNs. Some authors model complex gene dependencies as probabilistic graphical models [START_REF] Friedman | Inferring cellular networks using probabilistic graphical models[END_REF][START_REF] Pe'er | Minreg: A scalable algorithm for learning parsimonious regulatory networks in yeast and mammals[END_REF]. Learning such models has however a high complexity and must rely on biased heuristics (e.g. strongly limiting the number of node parents) to keep the search tractable. Alternative methods break the global network inference problem into a set of k sub-problems where the objective is to find the best local dependencies explaining/predicting each target gene. Such methods usually adopt a two steps strategy: 1) selecting relevant regulators for each target gene, (using, for instance, Partial Least Square based method [START_REF] Guo | Gene regulatory network inference using PLS-based methods[END_REF], random forests [START_REF] Huynh-Thu | Inferring regulatory networks from expression data using tree-based methods[END_REF], LARS [START_REF] Haury | Tigress: Trustful inference of gene regulation using stability selection[END_REF], cooperative regulator mining [START_REF] Chebil | Hybrid method inference for the construction of cooperative regulatory network in human[END_REF][START_REF] Nicolle | Coregnet: reconstruction and integrated analysis of co-regulatory networks[END_REF]); 2) fitting a more complex model in this reduced search space. Other approaches probabilistically constrain GRNs to reveal modulelevel organization of regulatory networks and learn both gene-specific and module-level regulatory information [START_REF] Roy | Integrated module and gene-specific regulatory inference implicates upstream signaling networks[END_REF].

Despite some successes, these methods still require large datasets and may have difficulties to take into account available prior knowledge (distributions or models) that could help discriminating between models of comparable performances.

Gene expression regulation is intrinsically a dynamic process, and time series data allow to account for more subtle phenomena than static data do, e.g. temporal responses to knockouts or different phenotypes, and we therefore focus in this paper on the problem of identifying an underlying GRN structure from gene expression time series.

Adaptations of static methods have thus been proposed to handle timeseries datasets, such as TD-ARACNE [START_REF] Zoppoli | TimeDelay-ARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach[END_REF], or adaptation of PLSR method to dynamic data [START_REF] Nguyen | Semi-supervised network inference using simulated gene expression dynamics[END_REF]. [START_REF] Rubiolo | Extreme learning machines for reverse engineering of gene regulatory networks from expression time series[END_REF] propose a supervised neural model with a single hidden layer, to reconstruct a GRN from temporal gene expression data only. Automatically choosing the number of hidden neurons may be difficult for such methods, also requiring large datasets to be performant. Learning large GRNs from expression data in this context is still an open issue.

Some models have been specifically developed to handle time-series datasets. Ordinary Differential Equations (ODE) methods aim at modeling i i "output" -2019/10/24 -15:32 -page 2 -#2

i i i i i i 2 Sample et al.
a dynamic network as a set of differential equations, describing some of its features' variation over time. Each equation describes the dynamic of a given feature as a function of a subset of other features' (including itself) previous states. Some recent methods have been proposed for learning the equations themselves [START_REF] Greenfield | Robust data-driven incorporation of prior knowledge into the inference of dynamic regulatory networks[END_REF]. A recent hybrid method [START_REF] Sanguinetti | Combining tree-based and dynamical systems for the inference of gene regulatory networks[END_REF] first selects parents for a given gene of interest using an adaptation of GENIE3 algorithm and then learns the parameters of Stochastic Differential Equation for such gene. ODE models are quite expressive, but the computational cost of learning them makes them only suitable for modelling small biological systems. Boolean Networks are a much simpler family of models allowing to represent the dynamics of a regulatory system. Given the structure of a prior knowledge network (PKN) and assuming each gene is represented as a boolean variable, the goal is to learn a set of boolean formulas describing the dynamics of the network, i.e. computing the state of target genes at time t+1 given the state of their parents at time t. These models have been extensively studied, learned and used for simulating complex organisms, including human cell lines [START_REF] Razzaq | Computational discovery of dynamic cell line specific boolean networks from multiplex time-course data[END_REF]. Although such methods are able to "simplify" PKNs to a given context -the learnt boolean functions do not necessarily involve all parents of non root nodes -the method is not designed to recover from neither an incorrect nor incomplete PKN.

Dynamic Bayesian Networks (DBN) [START_REF] Kim | Inferring gene networks from time series microarray data using dynamic Bayesian networks[END_REF][START_REF] Yu | Advances to Bayesian network inference for generating causal networks from observational biological data[END_REF] can model probabilistic relationships between regulator and target gene random variables. Learning a DBN structure often relies on the use of regularized probabilistic likelihood scores to find trade-offs between complex models and data-representative ones. DBN models space size is however super-exponential with the number of variables, thus local improvement heuristics are often used to learn them, with the usual consequences associated with using local optimization algorithm. Still their interest lies in their ability to be generative, thus allowing to perform many conditional probabilistic queries on them, while taking into account biological knowledge into the modelling of prior network structures.

Together, the data scarcity and the objective of finding dynamic models reinforce the data fragmentation issue, since considering several time points in space for each variable in the model both increases the number of actually considered variables in the network to learn, and reduces the samples size of the original dataset, due to the underlying sliding window.

A possible strategy to prevent overfitting and thus increase learning robustness in such a scarce data regime is to reduce the algorithm variance by reducing the number of possible models. This can be achieved for example by constraining the search space so that the resulting subspace has good properties, or by constraining the search algorithm so that a subset of possible models is reachable. Used alone, this strategy can find a good local, even global, optimum, but relatively to a potentially inadequate space where a good solution for the overall learning problem is not embedded in it. Another possibility is to find an asymptotic structure which is the result of a consensus between different models learned from the dataset [Friedman et al., 1999;[START_REF] Broom | Model averaging strategies for structure learning in bayesian networks with limited data[END_REF]. This way, the lack of sufficient statistics on data is partly offset by an attempt to compute sufficient statistics on potentially very noisy intermediate models. In this article, we propose to use both solutions to handle data fragmentation in the context of time series datasets. The general behaviour of our algorithm ELSA is to compute an expected composite model using Bayesian Model Averaging [Friedman et al., 1999] theory and a set of expected model traits, the expected edge existence, computed from the learning of many component models. These components are themselves highly biased models, more precisely spanning arborescences [START_REF] Edmonds | Optimum branchings[END_REF], with the interesting properties of global optimality and polynomial time computation [START_REF] Heckerman | Learning bayesian networks: The combination of knowledge and statistical data[END_REF]. Due to optimality, it is necessary to introduce variance in the dataset for each component learning task, in order to browse more of the models space and compute asymptotic model traits. This variance is obtained here by: 1) perturbing the original dataset through sampling; 2) forbidding the use of some edges in the spanning arborescence, the edge blacklist being randomly generated for each component. We also introduce diverse strategies to build global models from model components, implementing pruning strategies that take into account the bias introduced by learning tree components, and also proposing variants learning either only top-ranked component edge rankings or top and low-ranked ones.

The paper is organized as follows. We first provide the background material through the description of required theory and previous works in section 2. Then, we describe our mixture algorithm in section 3 and introduce a pruning strategy handling some side effects of the "tree" bias introduced while computing simple components. A variant involving to also consider low-ranked edges in components is then proposed in 4. Both ELSA variants and pruning strategies are validated in section 5 on experiments from the popular DREAM D8C1 recent challenge [START_REF] Hill | Inferring causal molecular networks: empirical assessment through a community-based effort[END_REF] before discussing the algorithm and its perspectives in section 6.

Background

Dynamic Bayesian networks (DBN) are an extension of Bayesian networks (BN) aiming at modeling multivariate time series probabilistic structures. Let us consider a multivariate time series dataset D over a set of features F for a set of nt time points with constant time granularity between consecutive points: D = {∀f ∈ F : f 0 , . . . , fn t }. A DBN M = (B 0 , Bt) describes a factorized joint distribution over D using both a regular static BN B 0 = (S 0 , Θ 0), to model probabilistic dependencies between features at a single time point, and a conditional temporal BN Bt = (St, Θt) describing the probabilistic dependencies between feature values at a given time point and values at previous time points.

The static BN structure S 0 defines a directed acyclic graph (DAG) of direct probabilistic dependencies between the elements of F and Θ 0 contains for each f ∈ F a conditional distribution P (f | parents(f : S 0)) for f given the values of its parents in S 0 . The product of conditional probabilities gives a joint distribution over all features in F for a given time:

P (F : B 0) = f ∈F P (f | parents(f : S 0)),
which is mainly used for inferring first time series multivariate point, i.e. to perform probabilistic initialization, whenever unknown.

The temporal BN structure St is parameterized by a window size k describing the temporal depth of the model, and defines a DAG of direct probabilistic dependencies between elements in F × {t, t + 1, . . . , t + (k -1)} = {∀f ∈ F : ft, . . . , f t+(k-1) }. The conditional BN parameters Θt finally contains one conditional distribution

P (f t+k-1 | parents(f t+k-1 : St)) for each f ∈ F . Unlike B 0 , the conditional BN Bt factorizes a conditional joint distribution of the elements of F t+k-1 = {∀f ∈ F : f t+k-1 } given the elements of F × {t, t + 1, . . . , t + (k -1)}.
DBN learning algorithms [START_REF] Zou | A new dynamic bayesian network (dbn) approach for identifying gene regulatory networks from time course microarray data[END_REF] main task aim at finding the best factorization of the conditional joint distribution encoded by Bt involving the features at different consecutive time steps, as a product of conditional distributions (one per feature). Due to the extreme combinatorial size of models space, most DBN learning algorithms tackling problems with a significant number of features try to find a local optimum in the model space, through the use of a heuristic, going from one model in the space to another through iterative local perturbation of a best candidate obtained so far (best-first strategy) or a set of best candidates (beam search). These algorithms often add some extra-mechanics to proceed beyond the first local optima, as for example random restarts or tabu search [START_REF] Lenstra | Local search in combinatorial optimization[END_REF]. The low bias in this models space and the i i "output" -2019/10/24 -15:32 -page 3 -#3

i i i i i i
Generative Learning of Dynamic Structures 3 possibility to set priors for involved distributions allow to find solutions with rich definition. However, the heuristic nature of most best-first or beam search algorithms available make very difficult to find a model which both has good performances and is robust to data whenever the number of features is important relatively to the dataset sample size.

In the context of small datasets, the data fragmentation issue together with the likely noise presence in the dataset can misconduct the learning algorithms in best-first and beam search strategies. A good way to solve this issue is to abstract from a single model and consider many models instead. The so called ensemble learning paradigm has been designed to simulate a "wisdom of crowds" principle in a machine learning context. Historically used in a fully supervised context to average classification predictions and thus remove the impact of deviant models, these principles have been transposed for probability density estimation and network inference contexts. In the probabilistic models family, this has been theorized under the Bayesian Model Averaging (BMA) [Friedman et al., 1999] framework.

In BMA, the objective is to find an expected model, either directly defined as its joint distribution (density estimation objective) or defined by a set of expected structural traits it must satisfy (network inference), such as the dependencies between its variables and the underlying graph edges or paths. In theory, both expectations should be obtained by integrating over the models space. In practice, considering the whole space is intractable and one must rely on a subset to approximate the result, such as using Markov Chain Monte Carlo methods [START_REF] Gilks | Entropy and information theory[END_REF] or bootstrap aggregating methods [START_REF] Breiman | Bagging predictors[END_REF].

An important question in a BMA context is the choice of a model space for components. Typical BMA methods consider the whole DAG space for learning [START_REF] Broom | Model averaging strategies for structure learning in bayesian networks with limited data[END_REF] and, to the best of our knowledge, few efforts have been dedicated to the consideration of simpler spaces, possibly adequate whenever few samples are available.

To the best of our knowledge, the most recent work in this direction [START_REF] Schnitzler | Efficiently Approximating Markov Tree Bagging for High-Dimensional Density Estimation[END_REF] explores part of this concern, in the static BN context, considering the combination of very simple components, namely spanning trees [START_REF] Chow | Approximating discrete probability distributions with dependence trees[END_REF] having the advantage of global optimality in the tree space, which shows good results in the density estimation context. Indeed, a solution is proposed in this work as a convex combination of simple tree BN joint distributions. Formally:

P (F) = T i ∈T α i • P (F : T i),
where T is a set of tree BN, and i α i = 1. However, network inference and density estimation problems are quite different as the latter does not require solutions to be expressed in the model space. To the best of our knowledge, only a single follow up of Schnitzler work for static network inference has been proposed in [START_REF] Ammar | Mixture of Markov Trees for Bayesian Network Structure Learning with Small Datasets in High Dimensional Space[END_REF] in which BMA is used to compute local Markov blankets of each feature, before performing a greedy search over the space of structures, restricting potential feature neighbors to the ones in their Markov blankets.

The objective of this paper is different, proposing an ensemble or BMA method following the principles of [START_REF] Schnitzler | Efficiently Approximating Markov Tree Bagging for High-Dimensional Density Estimation[END_REF] work for direct traits computation of an expected model structure without post-processing.

TopRank ELSA

The simplest version of the Ensemble Learning of Spanning Arborescences (TopRank ELSA) proposed approach for DBN learning is summarized in Algorithm 1. We present in this section the main parts of the ELSA paradigm together with the specific variant only using the top ranked arborescences of each sampled weighted graph. Section 4 describes an ELSA variant taking into consideration the low-ranked arborescences.

Data representation

In this paper, we consider the learning of a 2 slices of time DBN, i.e. with previously defined k set to 2. The input data representation is thus the 2 time slices sliding window over a constant time granularity series.

More formally, let us consider a matrix representation of a dataset D, since the time granularity is constant between consecutive time points and each feature is measured at the same points. We thus have D ∈ M n t ,|F | . Each column 1 ≤ j ≤ |F | is thus a sequence describing an observed feature over nt time steps, D ij i∈ 1,...,n t separated by constant time granularity, and each row 1 ≤ i ≤ nt describes the state of a system at time step i over the |F | considered features. Our goal is to find a model of the system of interest in terms of dependencies between the features at different time steps. In this paper, we assume that this system is a Markov process, i.e. that each time step state only depends on the previous step state, and that the transition from a state to the next one is driven by the same underlying model. Thus, one has to transform the nt × |F | dataset into a (nt -1) × 2|F | dataset (identically and independently distributed under Markov assumption) D t describing 2 consecutive time slices of the system. The transformation consists in concatenating every pair of consecutive time steps from D into a "dynamic" example in D t , i.e.: ∀i ∈ {1, . . . , nt} :

D t i . = [D i,1 . . . D i,|F | D i+1,1 . . . D i+1,|F |].

Learning component models

From a dynamic dataset D t , the first step of the proposed algorithm is to compute a set of components, i.e. simple models which will be combined in the second part of the algorithm. Considering m components to learn, we first compute m local perturbations of D t = {D t[u] } 1≤u≤m by sampling from D t with replacement (a.k.a. bagging strategy [START_REF] Breiman | Bagging predictors[END_REF]). Then, for each D t Finally, each G u is searched for its optimum spanning arborescence A u with respect to φ, using the Edmonds algorithm [START_REF] Edmonds | Optimum branchings[END_REF]. Note that even if the built graphs only have one node per feature, φ(f a , f b) measures the directed influence of f a at time t over f b at time t + 1 and thus involves the D Many possibilities exist for φ. A simple one is the conditional entropy

H(D t[u] .(b+|F |) | D t[u]
.a) [Gray, 2011]. Among Bayesian scores, Bayesian Dirichlet (for discrete spaces) or Bayesian Gaussian (for continuous spaces) variants [START_REF] Heckerman | Learning bayesian networks: The combination of knowledge and statistical data[END_REF] can also be used with the advantage of being able to add per edge prior information.

Pruning components

Learning arborescences only is a strong bias ensuring optimality in the arborescences space. Still, a simple post-processing step can improve the component score further by removing edges from the arborescence with negative score. Considering a score φ, let us call φ + the scores positively contributing to an arborescence edges sum of scores, i.e. the ones for which parents(f b t+1) = {f a t } has a better score than the local empty model parents(f b t+1) = ∅. If the score is to be maximized (resp. minimized), φ + will be the set of highest (resp. lowest) scores so that there is still an improvement of adding a given edge. The pruning phase then consists in removing all edges of an arborescence A u which scores are not in φ + .

Computing the composite model

Once the m component models have been learned, the final step aims at combining them into a composite model. In the Bayesian Model Averaging framework Friedman et al. [1999], this step is achieved by computing an expected model, defined by a set of expected model traits T , each E(τ i ∈ T) being inferred from each component model traits set {τ u i } 1≤u≤m . In this paper, the models trait space consists in the set of all possible edges in F 2 , and an expected edge score is computed by counting how often that edge was present in the arborescence A u , considering it was present in the initial weighted graph G u . Formally, we have for all (f a , f b) ∈ F 2 :

E(τ f a →f b) ≈ | {u | (f a , f b) ∈ edges(A u)} | • α -1 .
Finally, the set of all edges' expected scores in the composite model provides a ranking for those edges which can be either evaluated as is, e.g. with AUROC scores, or used with a threshold to build a final model.

Complexity

Time complexity can be expressed as the sum of two terms: one for the components computation, and another for the combination step. The components computation complexity is m • (s + g + e), where s (resp. g, e) is the complexity of sampling (resp. connected graph construction and Edmonds algorithm). The complexity of the sampling step is negligible here, but the construction of the

G u is in O(α|F |(|F | -1)) ≈ O(|F | 2),
as is the Edmonds algorithm computation with the Tarjan optimization for dense graphs [START_REF] Tarjan | Finding optimum branchings[END_REF] (O(|F | 2 log |F |) for sparse ones). Thus the components computation part is in O(m|F | 2). The combination part is a succession of hash joins between the component edgelists which is possible to achieve in

O(u |edges(A u)|) ≈ O(m|F |).
Overall, the proposed approach is thus of quadratic complexity. In practice, it is also highly parallelizable, since each component learning is independent and the order of joins in the second part is not significant.

FullRank ELSA

Combining top ranked arborescences aims at capturing information about predominant edges as they are repeatedly observed within components. However, as we consider lower parts of the final edges ranking, frequency values become closer to random frequencies, making difficult to interpret them as an edge absence in the final model instead of uncertain state.

To better identify whether low-scored edges are in the middle or in the bottom part of the ranking, we propose to learn the low-ranked arborescences for each data resample in addition to the top ranked ones. The Algorithm 2 shows an updated version of TopRank ELSA (cf. Algorithm 1) with extra low-ranked edges consideration. Differences with TopRank ELSA are: 1) the computation of both top and low-ranked arborescences A u+ and A u-from G u , with adequate pruning for each; 2) the computation of final expected traits, obtained by dividing its occurrence frequency in top ranked components by the one in low-ranked ones.

Computing spanning arborescences for both top and low-ranked edges is a more complex strategy than just selecting edges which scores are just below or above predefined thresholds. The reason for this choice are the following. Firstly, the proposed edge weights when building an arborescence represent the delta scores between adding a single parent A to a node B as compared to B having no parent. Using a different type of score for discarding edges would make the results difficult to interpret. Secondly, spanning arborescences ensure that each component is globally optimal. Such strategy allows considering the network to learn as a whole, where a global set of dependencies involving all nodes are searched for, thus preventing local improvements biased towards very central nodes in the network. Finally, it is a way to enforce strong component sparsity during learning, which limits the expected need for transitive reduction as a postprocessing step, unlike well-known pairwise scores methods, such as ARACNE, exhibiting worse results in practice (cf. Section 5).

Algorithm 1 TopRank ELSA learning algorithm Require: D t : a dynamic 2 slices of time learning dataset, m: a number of component models to learn; φ: an edge directed weighting score; α: a density for graphs setup pre-spanning arborescence; σ: an edge weight threshold for final edges keep decision; Ensure: a structural model from t to t + 1 of the system

for 1 ≤ u ≤ m do D t[u] := sample_with_replacement_f rom(D t) G u := build_strongly_connected_graph(D t[u] , φ, α) A u := edmonds_spanning_arborescence(G u) A u := pruning(A u) E u := edges(A u) end for ∀(f a , f b) ∈ F 2 : E(τ f a →f b) := | {u | (f a , f b) ∈ E u } | / α return G = choose_top_edges({E(τ f a →f b)}, σ)
Algorithm 2 FullRank ELSA learning algorithm Require: cf. Algorithm 1 Ensure: a structural model from t to t + 1 of the system

for 1 ≤ u ≤ m do D t[u] := sample_with_replacement_f rom(D t) G u := build_strongly_connected_graph(D t[u] , φ, α) A u+ := prune_worst(edmonds_top_arborescence(G u)) A u-:= prune_best(edmonds_low_arborescence(G u)) E u+ := edges(A u+); E u-:= edges(A u-) end for E(τ f a →f b) := | {u | (f a , f b) ∈ E u+ } | / | {u | (f a , f b) ∈ E u-} | return G = choose_top_edges({E(τ f a →f b)}, σ)
About complexity, it is important to note that the FullRank ELSA algorithm only differs by a factor of 2 relatively to the simpler algorithm presented in section 3, which does not change the class of complexity.

Both ELSA algorithms are experimented in next section on the recent DREAM 8 dynamic network inference challenge.

Experiments

In this section, we validate our approach by comparing it to many network inference methods submitted to the recently closed DREAM 8 HPN challenges [START_REF] Hill | Inferring causal molecular networks: empirical assessment through a community-based effort[END_REF], through its available leaderboards. Detailed results (learned models, AUC values and so on) as well as preprocessed datasets used for experiments are given as Supplementary Materials.

DREAM 8 SC1B in-silico challenge

Challenge and evaluation method description

The DREAM 8 SC1B subchallenge learning objective is to find the network of a synthetical biological model built using state of the art methods and biological knowledge. Simulation of this model led to the production of several time series involving 20 biological features. The preprocessed dataset (cf. 3) contains 80 t to t + 1 examples over 40 temporal features.

The evaluation of learning results for this task is achieved by an official tool, the DREAMTools python package [START_REF] Cokelaer | Dreamtools: a python package for scoring collaborative challenges[END_REF], through the computation of an AUROC score against the golden standard. In addition to computing scores the same way from one algorithm to another, this package also provides the expected ranking an algorithm would have reached if the challenge were still open, using all final results from the official submissions (over 70 shown in [START_REF] Hill | Inferring causal molecular networks: empirical assessment through a community-based effort[END_REF]), which allows for an easy comparison with many algorithms.

In order to quantify the impact of several parameters on our algorithm learning quality, the TopRank ELSA and FullRank ELSA methods were tested with different parametrization of the number of combined modes m, the ratio of samples n contained in each data perturbation, and the ratio α of edges present in each graph before each component learning. The used score for edge weighting is the BDeu [START_REF] Heckerman | Learning bayesian networks: The combination of knowledge and statistical data[END_REF] gain between the parenting situation described by the edge, and the no parent situation; namely for an edge

f a → f b : BDeu(parents(f b t+1) = {f a t }) -BDeu(parents(f b t+1) = ∅).

Results

Results for a significant subset of parameter values are given in Figure 1. They show some interesting trends. Firstly, we can see that for small edge ratios, the obtained AUC seems to monotonically increase with the number of combined models, until reaching plateaus. For bigger ratios, the trend is mostly observable, except for top 2-3 edge ratios where a decrease is observed after a moment. Additionally, we can observe that the AUC value tends to increase whenever any of the edge or the sample ratio decreases.

Concerning the expected ranking for the different results, the TopRank ELSA algorithm is already very competitive since it reaches the 3 rd position for the best mean AUC obtained over the different parametrizations, outperforming GENIE3 [START_REF] Huynh-Thu | Inferring regulatory networks from expression data using tree-based methods[END_REF], ARACNE [START_REF] Margolin | Aracne: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context[END_REF], all heuristic oriented Bayesian network methods, as well as all linear and most non-linear regression methods, all ODE and all ensemble learning submissions.

Considering the FullRank ELSA algorithm (cf. Fig. 1, right), the results are even better, by reaching an AUC value of 0.735 allowing to reach the 2 nd position in the ranking. Also, even if the edge ratio still exhibits the same trends as TopRank ELSA, with lower edge ratio giving better AUC values, it is less sensitive to it and shows a significantly improved convergence for edge ratios which performed badly in TopRank algorithm.

5.2 DREAM 8 SC1A in-vivo challenge 5.2.1 Challenge and evaluation method description Unlike the previous experimental context, the DREAM 8 SC1A challenge focuses on in-vivo time series. More precisely, the problem is to find a dynamic network for each of the 32 datasets available, representing cellsignaling time series of different breast cancer cell strains experiments over different perturbations. Each dataset has around 45 biological features, phosphoproteins, including one of particular interest: mT OR. Indeed, evaluation is different in this challenge from the in-silico situation, since networks are here evaluated considering mT OR descendants inference only. More precisely, the score considered for a submitted network is an AUC between its biological features vector score of being among mT OR descendants, and the binary true class discriminating between descendants and non-descendants features. Final evaluation is obtained by averaging over the 32 AUC scores, which requires consistent thus robust results over multiple situations for the algorithms to have good challenge score.

Experimental settings for this subchallenge use results from in-silico experiments, thus hyperparameters are set to low edge ratio α and sample ratio n. Note that the number of learning t → t + 1 examples is close to 20 for every dataset, making the problem even scarcer than in-silico situation. Thus, in order to be less sensitive to discretization, and unlike in-silico experiment, we leave data in the continuous space and use the Bayesian Gaussian score [START_REF] Heckerman | Learning bayesian networks: The combination of knowledge and statistical data[END_REF] difference between the one parent and the zero parent structure, instead of Bayesian Dirichlet.

Results

Results are shown in Figure 2 for a descendants probability computed using random walk path size of 4 over the learned networks. Most contexts among the 32 ones show the same increasing trend whenever m grows as the in-silico experiments (26/32 cases). In addition, all standard deviations drop drastically with an increasing m, demonstrating convergence of the ensemble learning.

In terms of ranking, the obtained AUC of 0.681 allows us to reach a 2 nd position among methods which do not make use of prior information, and a 10 th position in the overall leaderboard. Distinguishing between the two is relevant because: 1) the first part of the leaderboard is mainly composed of algorithms which do use prior information, mainly a specific prior network which has alone obtained the 2 nd position of the overall leaderboard; 2) most prior enriched methods have low ranking on the SC1B in-silico task, reinforcing the specificity evidence of these solutions.

It is import to note that results are slightly better for some of the 32 datasets if considering mTOR learned children (random walk path size of 1, cf. Supplementary Materials) which would have a positive impact on the final AUC if particularly considered in the evaluation.

Let us finally observe that TopRank ELSA for the same hyperparameters context shows a reduced AUC value of about 0.65, confirming the significance of considering low-ranked models.

Discussion

The different experiments of Section 5 show clear trends of the ELSA approach. First, we have observed a strong impact of combining more models to both learning and convergence quality, with outstanding AUC and small variances on the highest number of combinations. Then, we have seen that learning quality is improved by focusing on small parts of the available information for each component, by using very scarce edges sampling. This can be explained by the higher amount of diversity observed in the component models, leading to a more robust consensus.

In addition, we have observed that introducing both top and low-ranked arborescences learning led to even better AUC results, while showing better robustness to edge ratio main variance parameter. This behaviour can be explained by the richer description of each component, allowing to transfer more accurate description to the composite model and thus capturing lower granular component similarities. Moreover, results have exhibited that for high enough m values, both ELSA variants produced composite models robust across the different folds, as indicated by the small variances over them. We have seen that all above conclusions can be true for both discrete and continuous domains, by applying the method on both multinomial and Gaussian Bayesian networks learning.

In practice, the proposed approach has led to good ranking results in the recent DREAM 8 challenge, outperforming state of the art methods such as GENIE3 and ARACNE, and also all ensemble learning and Bayesian network methods. Thus, while the proposed approach is inbetween ensemble and dynamic Bayesian network learning, it outperforms each whenever used separately, confirming its relevance.

Moreover, TopRank ELSA variant has recently ([START_REF] Coutant | Closed-loop cycles of experiment design, execution, and learning accelerate systems biology model development in yeast[END_REF]) been proven useful in a complex active learning pipeline for automating systems biology model improvement. Helped by a prior network in this case, the algorithm proposed a useful Saccharomyces Cerevisiae model initialization for further refinements based on closed-loop cycles of experiments. Extending this related work with the FullRank ELSA variant and its different possible extensions would be an interesting follow-up.

The DREAM invivo challenge has finally exhibited how well the method can find descendant relationships with quick convergence w.r.t. the model space size, but it is not true for every of the 32 data contexts. An important question to improve the algorithms in this direction would be whether using extra structural traits could allow richer composite models generation. A promising example is the ancestor trait. However, it is not a trivial extension since it would need a more complex model aggregation function as well, related to the complex transitive reduction problem in network inference [START_REF] Klamt | Transwesd: inferring cellular networks with transitive reduction[END_REF]. More generally, ELSA methods rely on arborescent components, which prevents interesting model traits to be estimated, such as co-dependencies (by detecting the presence of triangles or more complex topologies in components). A good parametrized way to smoothly relax this constraint and to limit the extra computational cost would be to consider bounded treewidth components [START_REF] Nie | Advances in learning bayesian networks of bounded treewidth[END_REF]. We plan to investigate this solution in future work.

Regarding running time, it is important to note that the structure of the ELSA variants make them suitable for large scale parallelism. The current implementation handles single computer multi-cores architecture. However, current trends are towards multi-computers clusters, which can be used efficiently for ELSA computations, in a very powerful way using modern framework such as Apache Spark, since MapReduce paradigm can directly be used in our settings. Developing such cluster-oriented implementation is a short-term objective to allow for larger scale learning.

Conclusion

In this paper, we have proposed two variants of a parallel dynamic network ensemble learning approach based on the combination of multiple spanning arborescences, learned over perturbations of the original dataset, with enforced diversity through both edge and observation sampling. The proposed variants and more particularly the second one showed very good results in practice on the recent DREAM 8 HPN breast cancer challenge. We have exhibited that parameter values leading to higher arborescences diversity also lead to better performance of the combined model. One current limitation of the method is the simplicity of both the arborescence structure of each component model, as well as the considered component model traits to aggregate, limited here to edges. Future work will extend the proposed algorithms towards: 1) more complex component model family, investigating the recently studied parametrized bounded treewidth models (arborescences have a specific treewidth of 1); 2) the combination of more complex traits, e.g. considering paths in additions to edges.

 [u] , and given an edge scoring function φ, a directed graph among features G u = (F, E u) is built by first randomly choosing α•|F |•(|F |-1)/2 undirected edges and then computing the two directed scores φ(f a → f b) and φ(f b → f a) for each (f a , f b) ∈ E u .

 |) columns of D t , considering a (resp. b) is the index of f a (resp. f b) in D.

Fig. 1 .

 1 Fig. 1. (left) DREAMTools AUC means and sds over 50 computations of TopRank ELSA as a function of the number of combined models, as well as the samples and edge ratio used for components learning. (right) DREAMTools AUC means and sds over 50 computations of FullRank ELSA learning for subset of parameters.

Fig. 2 .

 2 Fig. 2. Mean / sd AUC over 50 computations as a function of the components number, for all 32 DREAM 8 SC1A in-vivo contexts, for a random walk path size of 4, using FullRank ELSA.

Acknowledgements

Funding. This research was supported by CHIST-ERA grant (AdaLab, ANR 14-CHR2-0001-01).

https://depot.