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Abstract This paper presents a numerical study of the effect of fine content
on the mechanical behavior of gap-graded granular materials using the discrete
element method. Triaxial compression tests are performed on different samples
with fine contents varied from 0% to 40%. It was found that, starting from 20%,
fine content has a visible effect on the shear strength. The optimal fine content
is about 30%, at which the shear strength is the best. An investigation into
the granular micro-structure showed that the fine particles, on one hand, come
into contact with coarse particles, but on the other hand, separate the latter
ones as fine content increases beyond 20%. Consequently, the shear stress is
transmitted more and more through the coarse-fine contacts but less and less
through the coarse-coarse contacts. For fine content ≤ 30%, the coarse-coarse
contacts primarily carry the shear stress. Above this optimal fine content, the
fine-coarse contacts overtake the coarse-coarse ones. The fine-fine contacts have
little contribution to supporting the shear stress. For the studied range of fine
content, the coarse particles primarily carry the shear stress, leaving the fine
particles under relatively low stresses. Moreover, the fine particles are greatly
softened by the shear loading. A classification of binary mixtures depending
on their micro-structure was also proposed.
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1 Introduction

Granular materials are often used for construction of hydraulic earth structures
such as dikes, levees, dams, etc. Under the action of the fluid flow, a soil with
gap-graded particle-size distribution (PSD) or widely graded and upwardly
concave PSD are susceptible to internal erosion, during which fine particles
can be detached and transported by seepage forces through the pore space
between coarse particles [1]. The migration of fine particles in the soil modifies
its porosity and its micro-structure. As a consequence, internal erosion could
reduce the shear strength of the soil [2,3], hence the stability of hydraulic
earth structures. The mechanical consequence of internal erosion is still an
open research topic. It requires a deep understanding of the contribution of
fine particles to the mechanical behavior of these soils.

The role of fine particles on the drained and undrained stress-strain be-
haviors of silty sands have been experimentally investigated by several au-
thors [4–7]. Salgado et al. [4] observed that the drained shear strength and the
dilatancy of silty sands increase with silt content. Thevanayagam et al. [5] in-
vestigated the effect of fine content on the undrained collapse potential, which
is defined as the ratio of the maximum pore pressure induced by the shear to
the confining pressure. The authors found a threshold value for fine content,
under which the collapse potential increases with fine content but above which
it decreases with fine content. The authors attributed these opposite effects
of fine content to a variation of the granular micro-structure. They made a
conjecture that, with increasing fine content, the micro-structure of granular
mixtures can change from a category where contacts between coarse grains
are dominant to a category where contacts between fine grains are dominant.
This conjecture should be verified by investigating experimentally the granu-
lar micro-structure. Such an investigation might be performed by using X-ray
tomography imaging technology [8], however, this technique is quite delicate
and expensive. To the best of our knowledge, no experimental investigation of
the effect of fine content on the granular micro-structure has been performed
so far.

Discrete Element Method (DEM) has been widely used to simulate nu-
merically granular media. This method was found to be able to reproduce the
main features of the mechanical behavior of granular materials such as the non-
linearity, the softening phase, the dilatancy and the induced anisotropy [9]. One
of its main advantages is that any local information at the particle scale can be
accessed, which make the DEM very suitable for investigating granular media
from a micro-mechanical point of view. This method has been recently used
by some authors to investigate the micro-structure and the micro-mechanical
behavior of granular mixtures. Minh et al. [10,11] studied the contact force dis-
tribution and the force networks in granular mixtures under one-dimensional
compression. Shire et al. [12,13] investigated the micro-structure and micro-
properties of granular mixtures under isotropic compression. It is worth men-
tioning that a granular material subjected to a one-dimensional or an isotropic
compression shows only a contractive behavior and never reaches the failure.
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Tang-Tat et al. [14] studied the effect of particle shape and fine content on the
behavior of binary mixtures using the DEM. The authors simulated triaxial
compression tests on binary mixtures of ellipsoids with few numbers of coarse
particles (25, 56 and 150 for fc = 50%, 30% and 10%, respectively). These
mixtures hardly fulfill, therefore, the conditions required for the representa-
tive volume element. In addition, the effect of fine content on the behavior
of binary mixtures is not clear. It is not well understood yet how the fine
particles affect the behavior of granular mixtures under shear loading, from a
micro-mechanical point of view.

This paper presents a numerical study of the effect of fine content on the
behavior of granular mixtures under shear loading. Triaxial compression tests
are simulated on granular materials with gap-graded particle size distribution
by using the DEM (Section 2). The effect of fine content on the behavior of
granular mixtures is analyzed at the macro-scale (Section 3) as well as at the
micro-scale (Section 4). Our micro-mechanical investigation focuses on (i) the
role of fine particles in the granular micro-structure, (ii) the stress transmission
through the contact network and the force networks in a granular mixture, and
(iii) the contribution of fine particles in carrying the overburden stress.

2 Numerical simulation with the DEM

A dry cohesionless granular soil is an assembly of distinct particles which can
be assumed to be rigid. The interaction between particles can only occur at
frictional interfaces. The DEM models dry granular media as they are. This
method has the two following main ingredients: (i) Newton-Euler dynamic
equation to describe the translational and rotational motions of each rigid
particle, and (ii) a contact law to calculate the interaction force at the contact
between two particles. An explicit or implicit time-stepping scheme is used to
numerically integrate the dynamic equation. At each step, the velocity and
the position of each particle are integrated up to the end of the step. At the
same moment, contacts between particles are detected and contact forces are
calculated from the velocity and the position of particles in contact. There are
two main approaches for the DEM, which differ from each other in the way of
modeling the interaction at contact. The Molecular Dynamic (MD) approach
considers a small compliance effect at the contact point so the contact force can
be uniquely determined from the elastic relative displacement at the contact
point [15]. On the other hand, the Contact Dynamic (CD) approach neglects
the compliance effect at the contact point. As a consequence, the contact force
cannot be uniquely determined from the relative displacement at the contact
point without considering the dynamic equation of the whole system [16]. In
both approaches, Coulomb’s friction law is used in the tangential direction
to limit the tangential force. For the MD approach, an explicit integration
scheme of high order can be used with a time step sufficiently small to describe
accurately the dynamic process at the contact point. For the CD approach,



4 Habib Taha et al.

the numerical integration can only be done implicitly, but with a time step
much bigger than that used in the MD approach.

We use the DEM based on the MD approach, which is implemented in
the open-source software YADE [17]. In this preliminary study, for the sake
of simplicity, spherical particles are considered with a linear contact force-
displacement model at each contact between two particles. According to this
contact law, the normal and tangential interactions at a contact are modeled by
two linear springs with respective stiffnesses Kn and Kt. The contact normal
and tangential stiffnesses are calculated from the respective particle stiffnesses
by assuming that the latter ones are connected in series in each direction:

Kn =
kink

j
n

kin + kjn
and Kt =

kitk
j
t

kit + kjt
, (1)

where superscripts i and j denote two particles at the contact point; and kn and
kt are particle normal and tangential stiffnesses, respectively. The tangential
force ft is limited by Coulomb friction law: | ft |≤ fn tanϕ where fn is the
normal force and ϕ is the friction angle. The microscopic parameters used in
our simulations are identical to those used in the paper of Scholtès et al. [18]:
normal particle stiffness kn/D = 250 MPa with particle diameter D, stiffness
ratio kt/kn = 0.5 and friction angle ϕ = 35o.
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Fig. 1 (a) A simulated granular mixture and (b) the considered gap-graded grain size
distribution.

Granular samples considered in this study are binary mixtures of coarse and
fine particles (Figure 1.a). The particle size distribution (PSD) is a gap-graded
curve as shown in Figure 1.b. This gap-graded PSD is characterized by fine
content fc and the gap ratio Gr = Dmin/dmax (Dmin is the minimum diameter
of coarse particles and dmax is the maximum diameter of fine particles). Fine
content fc is varied from 0% to 40%. A value of 3 is chosen for the gap ratio
Gr to keep the computation time reasonable since a higher value of Gr leads
to a large number of particles and then to a very long computation time. It is
worth mentioning that, according to Chang and Zhang [19], a gap-graded soil
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with gap ratio of 3 might be unstable – in other words, fine particles might
migrate due to seepage flow.

Particles are first generated into a cube composed of six rigid walls. At this
stage, each particle diameter is reduced by a factor of 2.0. Particles are then
progressively expanded to reach the target size distribution. After that, the
box dimensions are slowly reduced until the stresses σi (i = 1, 2, 3) reach the
confining stress of 100 kPa. To obtain dense samples, the friction angle ϕ is
set to 0o during the compaction process and then is reset to its original value
(35o) at the end of the compaction process. Triaxial compression tests are then
performed by prescribing a small strain rate ε̇1 = 0.01 s−1 in direction (1),
while keeping the lateral stresses σ2 and σ3 constant.

Table 1 Respective numbers, Nc and Nf , of coarse and fine particles, ratio L/Dmax and
coefficient of dispersion Cv for different values of fine content fc.

fc Nc Nf L/Dmax Cv fc Nc Nf L/Dmax

0% 1430 0 7.5 1.1% 25% 1 296 93170 7.3
5% 1347 15305 7.3 3.0% 30% 1 246 115186 7.4
10% 1266 30346 7.2 2.3% 35% 1 063 123 386 7.2
15% 1276 48571 7.2 1.6% 40% 982 141198 7.2
20% 1273 68646 7.2 1.7%

Table 1 shows the number of coarse particles (Nc), the number of fine
particles (Nf ) and the ratio L/Dmax of the sample size to the maximum par-
ticle diameter for different values of fine content fc. Since the number of fine
particles increases quickly with fine content, the number of coarse particles is
carefully chosen such that the total number of particles is not too large and
the simulated samples can be considered as Representative Volume Elements

q/
p

ε11

ε v

ε11

Fig. 2 Stress ratio q/p and volumetric strain εv versus axial strain ε11 for five different
samples randomply generated with fc = 20% with L/Dmax = 7.2.
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(RVE). The choice of the sample size for a gap-graded PSD is not an easy
task. One might rely on experimental norms for triaxial compression tests in
laboratory. For example, the ASTM standard [20] recommended that the ratio
of the specimen diameter to the largest particle size is larger than 6, while the
French standard [21] recommended a value larger than 5 for widely graded soils
and 10 for uniformly graded soils. It should be noted that the chosen sample
sizes shown in Table 1 satisfy these criteria. For DEM numerical simulations,
no clear rule has been established. Wiącek and Molenda [22] showed that for
polydisperse granular packings which are not widely graded and are subjected
to an uniaxial compression, the RVE size is about 15 times the average particle
diameter, i.e. the sample must include at least 15×15×15 = 3375 particles. Sa-
lot et al. [23] found out that the RVE size for simulating a triaxial compression
test on samples having a tight and uniform PSD is about 8000 particles. For a
gap-graded PSD, the number of particles should be varied with fine content,
and 8000 particles are, in general, not enough. Shire et al. [24] have stated
that a gap-graded sample with a minimum of 500 coarse particles can be con-
sidered as a RVE when simulating an isotropic compression. A shear loading
might require a larger number of coarse particles to achieve a RVE. It is worth
noting that the RVE size for a granular material is determined in a statistical
sense. This means that different random generations of samples with the same
size must give close results as stated by Chareyre [25]. We have adopted this
statistical approach to check the RVE for the simulated binary mixtures un-
der shear loading. For a given value of fine content fc with the chosen sample
size, five samples are randomly generated, compacted and then subjected to
triaxial compression tests in the same manner. Figure 2 shows the ratio q/p of
the deviatoric stress q = σ11 − σ33 to the mean stress p = (σ11 + 2σ33)/3 and
the volumetric strain εv versus the axial strain ε11 for five different samples
randomly generated for fc = 20% with the chosen sample size L/Dmax = 7.2.
It can be seen that these five random samples with the same size give close
behaviors. The dispersion in terms of shear strength (maximum value of the
stress ratio q/p) is characterized by the coefficient of variation Cv used in the
statistical analysis. The values of Cv for fc = 0%, 5%, 10% and 20% are shown
in Table 1. These low values of Cv indicate that the chosen sample sizes for fc
= 0, 5, 10, 15 and 20% can be considered as RVE sizes. For fc ≥ 25%, we did
not perform this repeatability study because the simulation of samples with a
high fine content is very time-consuming. However, the samples with fc = 25%
and 30% can be considered as RVEs as they contain almost the same number
of coarse particles as the sample with fc = 20%. For the samples with fc =
35% and 40%, the number of coarse particles is reduced to gain the compu-
tational time while maintaining almost the same sample size. With around
1000 coarse particles, compared to the value of 500 indicated in [24], these
samples can be expected to be RVEs. It is worth mentioning that the number
of particles used for fc = 0% is smaller than 8000 particles recommended in
[23]. However, the dense state of the generated samples reduces significantly
the dispersion of their behavior.



Title Suppressed Due to Excessive Length 7

3 Macroscopic investigation

3.1 Void ratios

In a mixed soil that contains a fine content smaller than a threshold value,
coarse particles may constitute a solid skeleton to carry mainly the overbur-
den stress. A significant fraction of fine particles may be confined within pores
between the former ones and then they may not participate in sustaining
the shear stress as assumed by several authors [26,27]. According to The-
vanayagam and Mohan [27], the global void ratio, e, defined as the ratio of the
volume of actual voids to the volume of solids may not adequate to describe
the density of such a mixture. The authors proposed to consider a mixed soil
as a composite medium consisting of two matrices: coarse-grained matrix and
fine-grained matrix. The intergranular void ratio, ec, and interfine void ratio,
ef , were then introduced to describe the density of the coarse-grained and
fine-grained matrices, respectively. The intergranular void ratio ec is defined
by assuming that all fine particles do not sustain any stress and can be con-
sidered as the intercoarse voids. On the other hand, the interfine void ratio ef
is defined by considering that the coarse particles are of zero volume.

ec =
Vv + V F

s

V C
s

=
e+ fc
1− fc

, ef =
Vv

V F
s

=
e

fc
, (2)

where Vv, V
F
s and V C

s are the void volume and the total solid volumes of the
fine particles and of the coarse particles, respectively.

e,
e c

,
e f

e

ec
ef

fc (%)

(i) (ii) (iii)

Fig. 3 Global void ratio e, intergranular void ratio ec and interfine void ratio ef versus fine
content fc.

Figure 3 presents the three void ratios e, ec and ef versus fine content fc
for the simulated samples. Three remarkable ranges of fine content with two
threshold fine contents fc = 20% and fc = 32% can be identified. For the range
(i) with fc < 20%, the intergranular void ratio ec remains more or less constant,
while the interfine void ratio ef decreases quickly with increasing fine content
fc. This means that the fine particles fill voids left by the coarse particles
without separating the latter ones. As a result, the global void ratio e decreases
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as fine content increases. It is worth mentioning that the interfine void ratio ef
for this range of fine content is very high compared to the intergranular void
ratio ec and the curve for ef cannot be fully represented in the chosen scale
in Figure 3. Within the range (ii) with 20% ≤ fc < 32%, the fine particles
separate the coarse ones and occupy the void space between them. The fine-
grained matrix gets denser but the coarse-grained matrix gets looser. It should
be noted that, for this range of fine content, the coarse-grained matrix is still
denser than the fine-grained matrix. One would expect that there exists an
intermediate configuration where all fine particles fill fully voids between coarse
particles without separating them; however, this is not the case. As shown in
Figure 3, at fc = 20%, fine particles begin to intercalate between coarse ones
but the interfine void ratio ef is still very large. This means that intercoarse
voids are not fully filled yet by the fine particles. It is interesting to note that,
at the last threshold fine content fc = 32%, the interfine void ratio ef is equal
to the intergranular one ec, and the global void ratio e reaches it minimum
value. Lade et al. [28] also observed an optimal fine content at which the global
void ratio is minimum when analyzing experimentally the density of mixtures
of coarse and fine spherical balls. In these experiments, coarse balls of the same
diameter D are mixed with fine balls of the same diameter d. The coarse balls
are deposited first in a container and the fine balls are then added from the
top while the container is vibrated. For mixtures with the ratio D/d = 3.5,
the optimal fine content is about 40%. It should be noted that the difference
between the optimal fine content of 32% found in our study and the value of
40% shown in [28] may be related to the fact that the coarse balls, as well
as the fine balls, are of different size and they are generated and compacted
simultaneously in our study. In doing so, the fine balls have more chance to be
intercalated between the coarse particles. For the range (iii) where fine content
goes beyond 32%, the coarse particles are greatly separated by the fine ones
and the coarse-grained matrix gets looser than the fine-grained matrix.

3.2 Stress-strain behavior

Figure 4 shows the stress ratio q/p and the volumetric strain εv versus the axial
strain ε11 for the simulated samples. The maximum and residual stress ratios
q/p for different values of fc are given in Table 2. It is found that the stress-
strain behavior of the granular mixtures with fc < 20% is not significantly
affected by fine content (Figure 4.a). Starting from fc = 20%, fine content has
opposite effects on the shear strength and dilatancy of the binary mixtures.
The shear strength at the peak state increases with fine content fc ≤ 32%
but decreases when fc > 32% (Figure 4.b). It is interesting to note that the
threshold fine content of 32% found here is also the threshold value observed in
Figure 3 at which the intergranular and interfine void ratios are equal and the
global void ratio is minimum. The same tendency is observed for the material
dilatancy except that the threshold fine content for it is about 35%, which is
also quite close to the value of 32% observed for the maximum shear strength.
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As the stress-strain curve for fc = 32% is almost coincident with the one for
fc = 30%, we consider that the second fine content threshold is 30% instead of
32% and we do not show the results obtained with fc = 32% in the following.

The above result means that a reasonable fine content (20% ≤ fc ≤ 30%)
can make granular materials stronger and more dilatant. This is in good agree-
ment with experimental results of Salgado et al. [4] who performed drained
triaxial tests on mixtures of clean Ottawa sand and silt. However, in this
study, the role of fine particles was clearly observed even at a low fine content
(fc ≤ 15%). This might be explained by the fact that the sand-silt mixtures
considered in their study have continuous and broadly graded PSDs, for which
fine particles might fill the space between coarse particles even at low fine con-
tent. Figure 4.b also shows that a too high fine content (fc > 30%) can be a
factor unfavorable to the shear strength and dilatancy of granular mixtures.
The mixture with fc = 40% has indeed a lower shear strength and a lower di-
latancy than the mixture with fc = 30%. Thevanayagam et al. [5] also found
that an important quantity of silica fines in sands reduces significantly their
undrained shear strength.

ε11

q/
p

ε v

ε11

10%

0%
5%

15%
20%

ε v
q/
p

ε11

ε11

30%
32%

35%
40%

25%

(a) (b)

Fig. 4 Stress ratio q/p and volumetric stress εv versus axial strain ε11 for different values
of fine content: (a) fc varies from 0% to 20% and (b) fc varies from 25% to 40%.

Table 2 Maximum and residual stress ratios (q/p)
max

and (q/p)
residual

for different values
of fine contents fc.

fc (%) 0 5 10 15 20 25 30 32 35 40
(q/p)

max
1.1 1.1 1.2 1.2 1.3 1.5 1.6 1.6 1.5 1.4

(q/p)
residual

0.9 0.9 1.0 0.9 0.8 0.7 0.6 0.5 0.5 0.6
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A dense granular sample exhibits a peak on the stress-strain curve, followed
by a marked softening phase. This kind of behavior can be observed for the
mixtures with fc ≥ 20%. The critical state is an important concept in soils
mechanics, at which soils deform without any change in their volumetric strain
and their shear strength. Soils reach, in general, this particular state at large
strain (around 30%). As shown in Figure 4, all the simulated samples do not
reach the critical state yet. However, at the axial strain ε11 = 10%, the stress
ratio q/p remains more or less constant so we assume that the critical state
is almost reached at this value of the axial strain. It is interesting to note in
Figure 4.b that fine particles, on one hand, strengthen granular mixtures at
the peak state, but on the other hand, weaken them at the critical state. The
stress ratio q/p for fc = 30% is 1.6 at the peak state and 0.6 at the critical
state, compared to the respective values 1.1 and 0.9 for fc = 0%.

One could try to explain the effect of fine content on the mechanical behav-
ior of granular mixtures by using the dependency of the void ratios e, ec and ef
upon fine content fc shown in Figure 3. The negligible effect of fine particles on
the stress-strain behavior observed for the mixtures with fc < 20% is related
to the fact that the fine fraction is very loose (range (i) in Figure 3) so the
fine particles do not participate actively in supporting the external loading.
However, it is not easy to explain why the shear strength and the dilatancy in-
crease with fine content when fc > 20% but decrease when fc > 30%, and why
a mixture with a significant fine content shows a marked softening phase. It
should be noted that adding fine particles into a mixture leads to two opposing
effects: on one hand, the coarse fraction gets looser, which weakens the mix-
ture, but on the other hand, the fine fraction gets denser, which strengthens
the mixture. It is not well understood yet which effect is more important than
the other for a given fine content. In the following, we bring some insights into
granular mixtures to have a better understanding of how fine particles modify
the granular micro-structure and participate in sustaining the applied shear
stress.

4 Microscopic investigation

4.1 Coordination numbers

Coordination number, denoted by N , is defined as the average number of
contacts per particle. It is usually used to describe the density of a granu-
lar assembly at the micro-scale. However, this definition of the coordination
number is not appropriate for a mixture of coarse and fine particles because
the number of contacts per coarse particle is very different from that per fine
particle. As mentioned previously, a binary granular mixture can be thought
of being a multi-phase medium which is composed of the coarse-grained ma-
trix, the fine-grained matrix and the interface between them. The interaction
between particles in each phase occurs through C − C contacts (between two
coarse particles), F − F contacts (between two fine particles), respectively;
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and these two phases interact each other through C − F contacts (between a
coarse and a fine particle). Describing the local density of the coarse-grained
and fine-grained matrices and the interface between them needs thus three co-
ordination numbers, denoted by NC−C

C , NF−F
F and NC−F

C , which are defined
as the respective average numbers of C − C contacts per coarse particle, of
F − F contacts per fine particle, and of C − F contacts per coarse particle.
Minh and Cheng [29] and Shire et al. [13,30] also defined similar coordination
numbers to study the micro-structure of granular mixtures.

N
C
−
C

C

fc (%)

(a)

initial
peak
critical

N
C
−
F

C

fc (%)

(b)

N
F
−
F

F

fc (%)

(c)

Fig. 5 Coordination numbers (a) N
C−C
C

, (b) N
C−F
C

and (c) N
F−F
F

versus fine content fc
at the initial, peak and critical states.

Figures 5.a, 5.b and 5.c show the respective coordination numbers NC−C
C ,

NC−F
C and NF−F

F versus fine content fc at the initial, peak and critical states.
It can be seen that, at the initial state, the coordination number NC−C

C remains
more or less constant and the coordination numbers NF−F

F and NC−F
C are very

small for fc < 20%. This confirms the statement made in Section 3.1 that the
fine particles are almost floating within voids between coarse ones and they
do not modify the granular skeleton which is mainly constituted of coarse
particles. Starting from fc = 20%, a further addition of fine particles leads, on
the whole, to a strong increase in NC−F

C and NF−F
F , particularly for NC−F

C ,
but to a remarkable decrease in NC−C

C . This means that the presence of an
important fine content in a granular material induces two opposing effects.
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On one hand, fine particles disrupt contacts between coarse ones and then
weaken the coarse fraction. On the other hand, a significant quantity of fine
particles around each coarse particle reinforce the interface between the coarse-
grained and fine-grained matrices. Furthermore, more contacts between fine
particles are created, allowing the shear stress to be transmitted through the
fine-grained matrix as will be shown in the next section. Shire et al. [30] also
observed a decrease in number of contacts par coarse particle and an increase
in number of contacts per fine particle with increasing fine content on granular
mixtures with bigger values of the gap ratio Gr. The best shear strength at
the peak state for fc = 30% shown in Figure 4.b can be attributed to the fact
that the coarse particles are strongly reinforced by an important number of
fine particles around them (about 50 fine particles, on average), despite the
fact that they are slightly weakened by a loss of contacts between them.

Figure 5 also shows a remarkable decrease in the coordination numbers
NC−C

C , NC−F
C and NF−F

F at the peak and critical states for the samples with
fc > 20%. The most drastic drop in NC−C

C , NC−F
C and NF−F

F is observed
for fc = 30%: NC−C

C and NC−F
C decrease from 3.8 and 44.9 at the initial

state to 1.8 and 9.1 at the critical state, respectively. This drastic drop in
the coordination numbers means that the micro-structure of the samples with
fc > 20% is strongly altered after the peak state.

The next section gives us more insights into how the shear stress is trans-
mitted through the coarse-coarse, coarse-fine and fine-fine contacts in granular
mixtures.

4.2 Stress transmission through the contact network

When a granular sample is subjected to an external loading, contacts between
particles participate in transferring forces [31,32]. The stress tensor defined at
the macro-scale can be related to contact forces at the micro-scale by using
the following static homogenization operator [33]:

σij =
1

V

∑

k

fk
i l

k
j . (3)

The stress tensor σ is defined on a volume V whose boundary is tangent to
the particles that are close to it (Figure 6). Superscript k runs over not only
all contacts between particles (interior contacts) but also all contacts between
particles and the boundary. For a contact between two particles, fk is the
contact force and lk is the branch vector joining two particle centers at this
contact. For a contact between a particle and the boundary, fk is the force
exerted by the exterior to the particle and the vector lk joins the particle
center to the contact point.

It has been well known in the literature that the static homogenization
operator (3) gives a good estimation of the macroscopic stress tensor if the
volume under consideration contains a sufficient number of particles. This
can be confirmed in Figure 7 where the mean stress p estimated with (3) is
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Fig. 6 Illustration of a volume on which the stress tensor σ is defined.

compared to the value of 100 kPa applied on the boundary at the initial state
for different values of fine content fc. Figure 7 also shows that the contribution
of the contacts between particles and the boundary (the rigid walls in our
simulations) to the macroscopic stress tensor σ is not negligible (about 10%
for fc ≤ 20%) and it decreases as fine content fc increases (about 4.5% for
fc = 40%). This is due to the fact that the sample sizes L chosen for the
simulated samples (Table 1) are not too large compared to the maximum
particle size Dmax so the number of contacts on the boundary is not negligible
compared to the number of interior contacts. It is expected that the stress
part relative to the contacts on the boundary is negligible compared to that
relative to the interior contacts when the sample size is big enough compared
to the particle size. The contacts on the boundary result indeed in no more
than 2% of the macro-stress for a sample of fc = 0% with L/Dmax = 38.

fc (%)

p
(P

a)

Fig. 7 The mean stress p estimated with (3) at the initial state is compared to the mean
stress p = 100 kPa applied on the boundary of samples with different values of fine content
fc. Black and gray colors represent the contributions of the interior contacts and of the
contacts on the boundary, respectively

The stress part relative to the contacts between particles can be split into
three parts σC−C , σC−F and σF−F which correspond to the contributions of
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the respective categories of C−C, C−F and F −F contacts. For example, the
contribution of the set of C − C contacts to the stress tensor σ is computed
as:

σC−C
ij =

1

V

∑

k∈C−C

fk
i l

k
j . (4)

The stress tensors σC−C , σC−F and σF−F have the same principal directions
as those of the macro-stress tensor σ. The contributions of each category of
contacts to the macroscopic mean and deviatoric stresses, p and q, can be
calculated, for example pC−C = (σC−C

11
+ 2σC−C

33
)/3 and qC−C = σC−C

11
−

σC−C
33

.

ε11 ε11

p
(P

a)

q
(P

a)C − C
macro

F − F

C − F

(a) fc = 20%

ε11
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(P

a)

ε11

q
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(b) fc = 30%

Fig. 8 Contribution of the three categories of C − C, C − F and F − F contacts to the
macroscopic mean and deviatoric stresses, p and q, versus axial strain ε11 for (a) fc = 20%
and (b) fc = 30%.

The mean and deviatoric stresses calculated for the three categories of
C − C, C − F and F − F contacts are plotted versus the axial strain ε11 in
Figures 8.a and 8.b for fc = 20% and fc = 30%, respectively. Their values
at the peak and critical states are plotted versus fine content fc in Figure
9. It is shown that, for fc < 20%, the C − F and F − F contacts do not
contribute significantly to the macro-stress. For instance, for fc = 15%, all the
C−F contacts contribute to only 4% of the macroscopic mean and deviatoric
stresses at the peak state. A major part of the macro-stress is carried by the
C − C contacts and it remains more or less constant for fc < 20%. This is in
agreement with the result shown in Figure 5 where the coordination numbers
NC−F

C and NF−F
F are negligible compared to NC−C

C which is not affected by
a low fine content. Starting from fc = 20%, the C − F contacts contribute
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to supporting the shear stress. For this threshold value, the C − F contacts
carry about 10% of the macro-stress despite a low value of NC−F

C , while the
stress part carried by the C − C contacts is almost the same as that for the
samples with fc < 20% (Figures 8.a and 9). This explains why the effect of
fine content on the shear strength is visible starting from 20% (Figure 4). It
is worth mentioning that it is not easy to explain this if we look only at the
void ratios in Figure 3 and at the coordination numbers in Figure 5.

fc (%)

p
(P

a)

C − C

C − F

F − F

fc (%)

q
(P

a)

(a) p at the peak state (b) q at the peak state

fc (%)

p
(P

a)

fc (%)

q
(P

a)

(c) p at the critical state (d) q at the critical state

Fig. 9 Contributions of the three categories of C − C, C − F and F − F contacts to the
macroscopic mean and deviatoric stresses, p and q, versus fine content fc: (a) and (b) at the
peak state and (c) and (d) at the critical state.

The C − F and F − F contacts participate more and more in sharing the
macro-stress as fc increases from 20% as shown in Figure 9. At fc = 30%, the
C − F contacts actually contribute to the deviatoric stress q as much as the
C − C contacts. Interestingly, they contribute even more to the mean stress
p than the latter ones (see also Figure 8.b). The role of the C − F contacts
becomes more important than the role of the C − C contacts at fc = 40% at
which the former ones contribute to about 53% of the deviatoric stress q at
the peak state, compared to a value of 35% for the latter ones. The F − F
contacts have a visible contribution to the macro-stress at the peak state when
fc ≥ 30%; however, their contribution is quite small, compared to those of the
C−C and C−F contacts. At fc = 40%, the F −F contacts contribute to 22%
of the mean stress p and to 12% of the deviatoric stress q. The increasing role of
the C−F and F−F contacts and the decreasing role of the C−C contacts with
increasing fine content from 20% are related to the increase in the coordination
numbers NC−F

C and NF−F
F , and to the decrease in the coordination number

NC−C
C (Figure 5), respectively. One can remark that the C − C and C − F
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contacts reverse their roles in sustaining the shear stress at the threshold fine
content of 30%: above this value, the latter ones sustain more the shear stress
than the former ones. The contribution of the C − F contacts to the macro-
stress increases quickly with fc ≤ 30%, which compensates a decrease in the
contribution of the C − C contacts. As a consequence, the shear strength at
the peak state increases with fine content fc ≤ 30%. However, an increase in
fine content fc from 30% does not lead to a significant increase in the stress
part carried by the C−F contacts but leads to a strong decrease in the stress
part carried by the C − C contacts. Consequently, the shear strength at the
peak state decreases with fine content fc > 30%. It can be expected that, at
a very high fine content, the coarse particles are fully dispersed by the fine
particles. In this case, the shear stress is mainly carried by the C − F and
F − F contacts.

Figure 9 also shows a marked decrease in the deviatoric stresses supported
by the three categories of contacts at the critical state for the samples with
fc ≥ 30%. The most drastic drop is observed for the sample with 30% of
fine content where the deviatoric stresses supported by the C −C and C − F
contacts are reduced by a factor > 3 from the peak state to the critical state.
As a consequence, its shear strength is greatly reduced at the critical state,
which is consistent with the great degradation of its micro-structure after the
peak state as shown in Figure 5. The deviatoric stress carried by the C − C
contacts for the sample with fc = 30% becomes much lower than that for the
sample with fc = 0% at the critical state. In addition, the C − F contacts
in the former sample suffer a great softening phase. This explains why the
residual shear strength for fc = 30% is lower than that for fc = 0% (Table 2).
It is interesting to note in Figure 9 that the mean stress at the critical state is
primarily carried by the C−F contacts for fc ≥ 30%, and the F −F contacts
carry almost no stress at this state.

We have shown in this section that the external stress applied to a binary
mixture is mainly transmitted through the C−C and C−F contacts. It does
not mean that all the C − C or C − F contacts carry in the same manner
the external stress since force transmission through a granular medium is well
known to be very heterogeneous. In the same system, there exist strong and
weak force networks with different roles in sustaining the shear stress. In the
next section, we analyze how the contacts in each category constitute the
strong and weak force networks.

4.3 Strong and weak force networks

According to the definition of Radjai et al. [32], the weak and strong force
networks are composed of the contacts where the contact force f c is smaller
and bigger than the average contact force f̄ , respectively. The authors found
that the strong network sustains almost the shear stress and the weak network
behaves like a liquid without bearing any shear stress. The same result is
obtained for the binary mixtures considered in this study as shown in Figure
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10. It can be seen that the weak network sustains a small part of the mean
stress p but a negligible part of the deviatoric stress q.

Weak chain

Strong chain

fc (%)

p
(P

a
)

(a) Mean stress p

Weak chain

Strong chain

q
(P

a
)

fc (%)

(b) Deviatoric stress q

Fig. 10 Contributions of the strong and weak force chains to the mean stress p and the
deviatoric stress q versus fine content fc.

Figure 11 shows the fraction of C − C, C − F and F − F contacts in the
strong network for the considered binary mixtures at the peak state. For each
category, the fraction of contacts in the strong force network is defined as the
ratio of the number of its contacts in the strong force network to the total
number of its contacts. It can be seen that, at low fine content (fc < 20%),
the strong force network is constituted of about 40% of C − C contacts and
a much smaller fraction of C − F contacts. As fine content increases, more
C − C contacts participate in the strong force network. More than 95% of
C − C contacts actually take part in the strong force network for fc ≥ 30%.
This can be explained by the fact that the presence of fine particles around
coarse ones makes contacts between coarse particles stronger so they carry a
much bigger force. It does not mean, however, that the C − C contacts can
carry a bigger stress: they carry, indeed, a lower stress at fc = 30% than
at fc = 10% (Figure 9) because more C − C contacts are disrupted by fine
particles at fc = 30%. Figure 11 also shows that an increasing fraction of
C−F and F −F contacts take part in the strong force network as fine content
increases so they sustain more the shear stress. However, a major fraction of
these contacts are located in the weak force network (more than 56% of C−F
contacts and 80% of F − F contacts).

The above analyzes have shown how the macroscopic stress is transmitted
through the contact network in a granular mixture but they do not show how
much stresses the coarse and fine fractions carry. According to Skempton and
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Fig. 11 Fraction of C − C, C − F and F − F contacts in the strong network at the peak
state.

Brogan [26], the stress carried by the fine fraction is an important factor that
influences the susceptibility of a granular material to internal erosion. In the
next section, we define first the stresses carried by the coarse and fine fractions,
and then we show how they depend on fine content.

4.4 Stresses carried by the fine and coarse fractions

In addition to the coarse-grained matrix (C) and the fine-grained matrix (F) in
a granular mixture, voids (V), which can be filled by water or not, are present
between solid particles. By homogenizing the stress field in this heterogeneous
medium, the macroscopic stress can be defined from its counterpart within
each phase:

σij =
∑

α∈{F,C,V }

φασα
ij =

∑

α∈{F,C,V }

σ̂α
ij . (5)

For each phase α, φα is its volume fraction, i.e. the ratio of its volume V α

to the total volume V . The intrinsic averaged stress σα is defined as the
average of the microscopic stress field σ(x) which prevails in the phase under
consideration:

σα
ij =

1

V α

∫

x∈V α

σij(x)dV. (6)

According to the mixture theory, the tensor σ̂α = φασα is called partial stress,
which can be understood as the contribution of the phase under consideration
to the macroscopic stress σ. It should be noted that it is the intrinsic averaged
stress σα that gives information on how much the phase under consideration
is stressed. For a dry mixture, voids bear zero-stress so we obtain:

σij = φFσF
ij + φCσC

ij = (1− n)[fcσ
F
ij + (1 − fc)σ

C
ij ]. (7)

The volume fraction φF of the fine fraction is related to fine content fc and
the porosity n by φF = (1− n)fc.
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Using the definition (6) with some transformations, one can define the in-
trinsic averaged stresses σF and σC in the fine and coarse fractions as follows:

σF
ij =

1

V F
s

∑

p∈F

Mp
ij , σC

ij =
1

V C
s

∑

p∈C

Mp
ij , (8)

where superscript p runs over all the particles in each fraction; and V F
s and

V C
s are the respective total solid volumes of the fine particles and of the coarse

particles. The tensor Mp, called internal moment tensor by Moreau [34], is
defined for each particle p as follows:

Mp
ij =

∑

k∈p

fk
i r

k
j (9)

where the superscript k denotes each contact on the particle under consider-
ation; the vector rk connects the particle center to the contact point; and f

k

is the contact force. As stated in [34,35], the physical meaning of the internal
moment tensor Mp remains the same when it is applied to a single particle or
when it is applied to a collection of particles. Moreover, when it is applied to
a large scale, i.e. a collection contains a large number of particles, its physical
meaning tends to that of the Cauchy stress tensor. It should be noted that
the estimated macroscopic stress tensor defined by (3) can be recovered by
summing the tensors Mp over all the particles:

σij =
1

V

∑

p

Mp
ij . (10)

The definition (8) can also be transformed to

σF
ij =

1

V F
s

∑

p∈F

σp
ijV

p
s , σC

ij =
1

V C
s

∑

p∈C

σp
ijV

p
s , (11)

where σp is the stress tensor defined for each particle with the solid volume
V p
s : σp = Mp/V p

s .
Inspired from the stress reduction factor α for the fine fraction that was

introduced by Skempton and Brogan [26], we define two stress factors αF
p and

αF
q , which are the ratios of the mean and deviatoric stresses carried by the fine

fraction, pF and qF , to their macroscopic counterparts, p and q, respectively

αF
p = pF /p, and αF

q = qF /q, (12)

where pF and qF are computed from the intrinsic averaged stress tensor σF

defined by (8). The defined stress factors αF
p and αF

q can be thought of as being
the relative mean and deviatoric stresses carried by the fine fraction, compared
to the macroscopic counterparts. It is worth mentioning that if both fractions
carried the same stress, these two stress factors would be αF

p = αF
q = 1/(1−n).

Shire et al. [24] defined a stress reduction factor α = pF /p for the fine fraction.
The authors computed the averaged stress σF in the fine fraction using the
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definition (11). However, instead of considering the solid volume V p
s of each

particle, the authors associated to each particle an amount of void surrounding
it, so the volume considered for each particle when computing the averaged
stress σp is V p = V p

s /(1−n). By doing so, a binary mixture is considered as a
biphasic material: fine and coarse fractions with the respective total volumes
V F = V F

s /(1 − n) and V C = V C
s /(1 − n); and the resulting stress σF is no

longer intrinsic to the solid fraction of the fine particles according to (6).
Figures 12 shows the absolute mean and deviatoric stresses carried by the

fine and coarse fractions for different values of fine content fc at the initial,
peak and critical states. The stress factors for the fine fraction are shown in
Figure 13. It can be seen that at a low fine content (fc < 20%), the fine
fraction carries almost zero-stress. This confirms that the fine particles are
almost floating in voids between coarse particles. Skempton and Brogan [26]
performed erosion tests on sandy gravels (binary mixtures of sands and grav-
els). The authors observed that some sandy gravels at low fine content are
internally unstable, i.e. a significant proportion of sand content is washed out
by water flow at low hydraulic gradient. The authors explained that, for these
materials, a major part of the overburden load is carried by gravel particles,
leaving the sand fraction under small stresses so sand particles can be easily
washed out by water flow. The results shown above reinforce this explanation.
It should be noted that a low stress carried by the fine fraction is just a neces-
sary condition for the internal instability. This just means that fine particles
can be easily detached by water flow. The sufficient condition is whether or
not the primary fabric formed by solid particles allow detached fine particles
to migrate within the interstices of this framework.

macro

fc (%)
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coarses
fines

macro
coarses

fc (%)

q
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(a) (b)

Fig. 12 The mean stress p (a) and the deviatoric stress q (b) carried by the fine and coarse
fractions, compared to the macroscopic ones, versus fine content fc at the peak state

At a higher fine content (fc ≥ 20%), the fine particles participate in car-
rying the applied stress, and its participation increases with fine content. It
is interesting to note that the fine fraction plays a more important role in
carrying the mean stress than in carrying the deviatoric stress (Figure 13): at
fc = 40%, αF

p = 1.0 compared to αF
q = 0.6 at the peak state. Shire et al. [24]

also found that the stress factor α at the isotropic stress state increases with
fine content; moreover it depends significantly on the particle size distribu-
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Fig. 13 Stress factors (a) αF
p and (b) αF

q defined for the fine fraction versus fine content
fc at the initial, peak and critical states.

tion curve. By investigating the stress factors αF
p and αF

q during a deviatoric
loading, we find that the shearing leads to a significant reduction in the stress
carried by the fine fraction (Figure 13). For fc = 30%, the stress factor αF

p

reduces indeed from 0.84 at the initial state to 0.43 at the critical state. It
is worth noting that the sample with fc = 30% exhibits the most marked
softening behavior (Figure 4). This result indicates that the fine particles are
unloaded during the softening phase, which might make them more vulnerable
to internal erosion. Concerning the coarse fraction, since voids do not carry
any stress and the fine fraction carries a stress smaller than the macroscopic
stress, it carries a stress much bigger than the macroscopic stress. As shown in
Figure 12, the stress carried by the coarse fraction is indeed about 1.6 times
the macroscopic stress; moreover, it increases with fine content for fc ≤ 30%
but decreases for fc > 30% (Figure 12). This result confirms the optimal fine
content fc = 30% under which the coarse fraction is reinforced by fine particles
and above which the coarse fraction is weakened since fine particles strongly
separate them.

The partial stresses σ̂F and σ̂
C defined in (5) give the contribution of each

fraction to the macroscopic stress. If the solid fraction was homogeneous, the
contribution of the fine fraction would be proportional to fine content fc, e.g.
40% of fine content would contribute to 40% of the macroscopic stress. Figure
14 shows that the contribution of the fine fraction to the macroscopic stress
is far from being proportional to fine content fc. The fine particles do not
significantly contribute to the macroscopic stress when fc < 20% but they do
when fc ≥ 20%. A fine content of 40% contributes to 30.9% of the deviatoric
stress q, but only 21.5% of the mean stress p at the peak state. It can be
concluded that for the studied range of fine content, the coarse particles play
a primary role in carrying the shear stress, while the fine particles play the
role of a matrix that reinforces the coarse ones.

5 Classification of granular mixtures

According to Thevanayagam et al. [5], the micro-structure of granular mixtures
can be constituted in many different ways, depending on fine content. The
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Fig. 14 Contributions of the fine fraction to the macroscopic mean and deviatoric stresses,
p and q, at the peak state versus fine content fc.

authors proposed three limiting categories of micro-structure: (a) the coarse-
coarse contacts are dominant, (b) the fine-fine contacts are dominant, and (c)
the fine and coarse particles form a layered system. The current study brought
several interesting insights into the variation of the granular micro-structure
and how the coarse-coarse, coarse-fine and fine-fine contacts participate in
sustaining the shear stress, depending on fine content. It turns out that the
fine-coarse contacts play an important role in the micro-structure and there
exists an intermediate category between (a) and (b), where these contacts pri-
marily bear the shear stress. We propose, therefore, the following classification
of granular mixtures into four limiting categories of micro-structure with three
threshold values as illustrated in Figure 15.

f th
c,3f th

c,2f th
c,1

0% 100%

fc

(i) (ii) (iii) (iv)

Fig. 15 Four categories of micro-structure for granular gap-graded soils

• Category (i) for fc < f th
c,1: the fine particles are almost floating within

intercoarse voids, hence they have a little contribution to supporting the
shear stress. The shear strength is then not affected by fine content.

• Category (ii) for f th
c,1 ≤ fc < f th

c,2: the fine particles partially fill intercoarse
voids but they partially separate coarse ones. The fine-coarse contacts are
created and contribute to supporting the shear stress. However, contacts
between coarse particles primarily carry the shear stress. In this case, the
shear strength increases with fine content.

• Category (iii) for f th
c,2 ≤ fc < f th

c,3: the fine particles fully fill intercoarse
voids and greatly destroy coarse-coarse contacts. The fine-fine contacts
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participate in carrying the shear stress. The role of the fine-coarse contacts
becomes dominant. In this case, the shear strength decreases with fine
content.

• Category (iv) for fc ≥ f th
c,3: the coarse particles are fully dispersed by the

fine ones. The behavior of granular mixtures of this category is mainly
governed by the fine particles. It is thus expected that the shear strength
is independent of fine content in this case.

It is should be noted that this classification does not include the category
(c) of layered micro-structure considered by Thevanayagam et al. For the bi-
nary mixtures considered in our study, the first and second threshold values,
f th
c,1 and f th

c,2, are about 20% and 30%, respectively. We could not determine

the third threshold value f th
c,3 since the computation time for simulating binary

mixtures with very high fine content is too long. It is worth mentioning that
these threshold values might depend on many factors like the gap ratio, the
particle shape or the sample density.

6 Conclusions

In this paper, we have presented a study on the effect of fine content on the
mechanical behavior of granular gap-graded materials subjected to shear load-
ing. Numerical samples composed of fine and coarse spherical particles with
different values of fine content from 0% to 40% are simulated using the DEM.
Triaxial compression tests are then performed on these samples and their be-
havior is investigated at the macro- and micro-scales. This study brought a
lot of insights into the granular micro-structure of binary mixtures to explain
why the fine particles can have no effect, positive effect or negative effect on
their stress-strain behavior, depending on fine content. At a low fine content
(fc < 20%), the fine particles are almost floating within the void space be-
tween the coarse particles so they do not participate significantly in carrying
the shear stress. Starting from 20% of fine content, the fine particles cause
two opposite effects to the granular micro-structure: on one hand, they come
into contact with coarse particles and reinforce the micro-structure, but on
the other hand, they separate coarse particles and then weaken the micro-
structure. As a consequence, the shear stress is transmitted more and more
through the coarse-fine contacts but less and less through the coarse-coarse
contacts as fine content increases. The optimal fine content is about 30% un-
der which the coarse-coarse contacts primarily support the shear stress. A
decrease in the stress part carried by them is compensated by a strong in-
crease in the stress part carried by the coarse-fine contacts. As a result, the
shear strength increases with fine content. Above this optimal fine content, the
coarse-fine contacts overtake the coarse-coarse contacts in carrying the shear
stress. The network of the coarse-coarse contacts is greatly weakened and is
not sufficiently reinforced by the coarse-fine and fine-fine contacts, hence the
shear strength decreases. For the studied range of fine content, the fine-fine
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contacts have little contribution to the macro-stress. It was also found that
the strong force network at a high fine content, which is the skeleton to bear
the external stress, includes almost all the coarse-coarse contacts but no more
than 50% of coarse-fine contacts. Furthermore, a major fraction of fine-fine
contacts are located in the weak force network.

For the studied range of fine content, the coarse particles constitute pri-
marily the solid skeleton to resist to shear loading, leaving the fine particles
under lower stresses. Interestingly, the role of the fine particles is more impor-
tant in carrying the mean stress than in carrying the deviatoric stress. At a
high fine content, the fine particles suffer a marked softening phase after the
peak state.

Based on this study, a classification of binary mixtures into four limiting
categories of micro-structure was proposed. The particularity of the proposed
classification is that it considers the importance of the coarse-fine contacts
in the micro-structure. When fine content exceeds a threshold value (about
30% in our simulations), these contacts overtake the coarse-coarse contacts in
carrying the shear stress.

7 Acknowledgements

The authors would like to thank the charitable and cultural association of
Nabatieh-Lebanon and Cedre program of the French and Lebanese scientific
cooperation for the financial support for this research project.

References

1. Y.S. Sail, D. Marot, L. Sibille, and A. Alexis. Suffusion tests on cohesionless granular
matter. Eur. J. Environ. Civ. Eng., 15(5):799–817, 2011.

2. L. Ke and A. Takahashi. Strength reduction of cohesionless soil due to internal erosion
induced by one-dimensional upward seepage flow. Soils and Foundations, 52(4):698–711,
2012.

3. L. Ke and A. Takahashi. Triaxial erosion test for evaluation of mechanical consequences
of internal erosion. Geotech. Test. J., 37(2), 2014.

4. R. Salgado, P. Bandini, and A. Karim. Shear strength and stiffness of silty sand. J.
Geotech. Geoenviron. Eng., 126(5):451–462, 2000.

5. S. Thevanayagam, T. Shenthan, S. Mohan, and J. Liang. Undrained Fragility of Clean
Sands, Silty Sands, and Sandy Silts. J. Geotech. Geoenviron. Eng., 128(10):849–859,
2002.

6. T.G. Murthy, D. Loukidis, J.A.H. Carraro, M. Prezzi, and R. Salgado. Undrained
monotonic response of clean and silty sands. Géotechnique, 57(3):273–288, 2007.

7. T.-K. Nguyen, N. Benahmed, P.-Y. Hicher, and M. Nicolas. The influence of fines
content on the onset of instability and critical state line of silty sand. In K.-T. Chau and
J. Zhao, editors, Bifurcation and Degradation of Geomaterials in the New Millennium,
pages 113–120. 2015.

8. F.H. Kim, D. Penumadu, J. Gregor, N. Kardjilov, and I. Manke. High-resolution neutron
and X-ray imaging of granular materials. J. Geotech. Geoenviron. Eng., 139(5):715–723,
2012.

9. N. Belheine, J.P. Plassiard, F.V. Donzé, F. Darve, and A. Seridi. Numerical simulation
of drained triaxial test using 3D discrete element modeling. Computers and Geotechnics,
36(1):320–331, 2009.



Title Suppressed Due to Excessive Length 25

10. N.H. Minh, Y.P. Cheng, and C. Thornton. Strong force networks in granular mixtures.
Granular Matter, 16(1):69–78, 2014.

11. N.H. Minh and Y.P. Cheng. On the contact force distributions of granular mixtures
under 1D-compression. Granular Matter, 18(2):1–12, 2016.

12. T. Shire and C. O’Sullivan. Micromechanical assessment of an internal stability criterion.
Acta Geotechnica, 8(1):81–90, 2013.

13. T. Shire, C. O’Sullivan, and K.J. Hanley. The influence of fines content and size-ratio
on the micro-scale properties of dense bimodal materials. Granular Matter, 18(3):1–10,
2016.

14. T.-T. Ng, W. Zhou, and X.-L. Chang. Effect of particle shape and fine content on the
behavior of binary mixture. J. Eng. Mech., 143(1):C4016008, 2016.

15. S. Luding. Introduction to discrete element methods: basic of contact force models and
how to perform the micro-macro transition to continuum theory. Eur. J. Environ. Civ.
Eng., 12(7-8):785–826, 2008.

16. F. Radjaï and V. Richefeu. Contact dynamics as a nonsmooth discrete element method.
Mechanics of Materials, 41(6):715–728, 2009.

17. S̃milauer et al. Yade Documentation 2nd ed. The Yade Project. DOI 10.5281/zen-
odo.34073 (http://yade-dem.org/doc/), 2015.

18. L. Scholtès, P.-Y. Hicher, and L. Sibille. Multiscale approaches to describe mechanical
responses induced by particle removal in granular materials. Comptes Rendus Mé-
canique, 338(10-11):627–638, 2010.

19. D.S. Chang and L.M. Zhang. Extended internal stability criteria for soils under seepage.
Soils and Foundations, 53(4):569–583, 2013.

20. D4767-88. Standard test method for consolidated-undrained triaxial compression test
on cohesive soils. Standard ASTM, 04.08, 1988.

21. NF P 94-074. Sols: reconnaissances et essais – Essais à l’appareil triaxial de révolution.
AFNOR, 1994.

22. J. Wiącek and M. Molenda. Representative elementary volume analysis of polydisperse
granular packings using discrete element method. Particuology, 27:88 – 94, 2016.

23. C. Salot, P. Gotteland, and P. Villard. Influence of relative density on granular materials
behavior: DEM simulations of triaxial tests. Granular matter, 11(4):221–236, 2009.

24. T. Shire, C. O’Sullivan, K.J. Hanley, and R.J. Fannin. Fabric and effective stress dis-
tribution in internally unstable soils. J. Geotech. Geoenviron. Eng., 140(12):04014072,
2014.

25. B. Chareyre. Modélisation du comportement d’ouvrages composites sol-géosynthétique
par éléments discrets: application aux ancrages en tranchées en tête de talus. PhD
thesis, Université Grenoble I - Joseph Fourrier, 2003.

26. A.W. Skempton and J.M. Brogan. Experiments on piping in sandy gravels. Géotech-
nique, 44(3):449–460, 1994.

27. S. Thevanayagam and S. Mohan. Intergranular state variables and stress–strain be-
haviour of silty sands. Géotechnique, 50(1):1–23, 2000.

28. P.V. Lade, C.D. Liggio, and J.A. Yamamuro. Effects of non-plastic fines on minimum
and maximum void ratios of sand. Geotech. Test. J., 21(4):336–347, 1998.

29. N.H. Minh and Y.P. Cheng. A DEM investigation of the effect of particle-size distribu-
tion on one-dimensional compression. Géotechnique, 63:44–53, 2013.

30. T. Shire, C. O’Sullivan, and K. Hanley. The influence of finer fraction and size-ratio on
the micro-scale properties of dense bimodal materials. In K. Soga, K. Kumar, G. Bis-
contin, and M. Kuo, editors, Geomechanics from Micro to Macro, pages 231–236. 2014.

31. C. Thornton. Force transmission in granular media. KONA Powder and Particle Jour-
nal, 15:81–90, 1997.

32. F. Radjai and D.E. Wolf. Features of static pressure in dense granular media. Granular
Matter, 1(1):3–8, 1998.

33. J.J. Christoffersen, M.M. Mehrabadi, and S.S. Nemat-Nasser. A micromechanical de-
scription of granular material behavior. J. Appl. Mech., 48(2):339–344, 1981.

34. J.J. Moreau. Numerical investigation of shear zones in granular materials. In Friction,
Arching, Contact Dynamics, pages 233–247. World Scientific, Singapore, 1997.

35. L. Staron, F. Radjai, and J.P. Vilotte. Multi-scale analysis of the stress state in a
granular slope in transition to failure. Eur. Phys. J. E: Soft Matter and Biol. Phys.,
18(3):311–320, 2005.


