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We theoretically and comparatively study the performance of spherical and cylindrical conductive
thermal diodes operating with a phase-change material, whose thermal conductivity significantly
changes in a narrow interval of temperatures. Simple analytical expressions are derived for the
temperature profiles, heat fluxes and optimal rectification factors of both diodes. It is shown that
the diode geometry has a strong impact on the temperatures and heat fluxes, but not so much on
the diode rectification factor. Optimal rectification factors of 20.8% and 20.7% are obtained for the
spherical and cylindrical diodes operating with a temperature difference of 376 − 300 = 76 K and
376.5 − 300 = 76.5 K between the terminals of VO2 and a phase invariant material, respectively.
These similar rectification factors could be enhanced with a material thermal conductivity exhibiting
a faster phase transition and/or higher contrast than that of VO2. The obtained results can thus
be useful to guide the development of phase change materials able to optimize the rectification of
conductive thermal diodes with different geometries.

I. INTRODUCTION

Thermal rectification consists in allowing the heat flux between two terminals in a given direction and blocking
it in the opposite one, when their temperatures are reversed. This tunning of the heat transport can be achieved
through thermal diodes operating with phonons, electrons, and photons. In the last years, an increasing interest has
been given to thermal rectification as a result of its potential application in heat control [1]. Recently, theoretical
studies of this phenomenon has been carried out based on Phononic [2–7], photon radiation [8–11], electronic [12],
and hybrid quantum structures [13]. The effect of this thermal rectification has also been experimentally observed in
graphene nanoribbons [14], bulk materials [15], structures of carbon nanotubes [16], oxide materials [17], phase-change
materials (PCMs) [18, 19] and quantum dots [20].

Vanadium dioxide (VO2) has attracted great interest in both theoretical and experimental studies for the past
several decades, as result of its hysteretic metal-insulator transition (MIT) [9, 21, 22]. VO2 undergoes MIT around
a critical temperature (∼ 340 K) from a low-temperature (T < 340 K) semiconducting phase to a high-temperature
(T > 345 K) metallic one [23, 24]. Interestingly, this MIT is accompanied by drastic changes in its crystal structure
from a symmetric monoclinic crystalline to a tetragonal rutile when the temperature is slightly above the critical one
[23, 25]. As a result of the transition properties and remarkable change of its lattice structures, VO2 can be widely
used for a variety of applications in electrical and optical devices such as thermal rectifier [26], thermal memory [27],
thermal memristor and neuromorphic [28], optical switching [29], hybrid-metamaterial [30], thermal transistor [31]
and electrostatic [32].

The concept of thermal rectifier in a plane geometry based on heat conduction of two materials, each of them having a
temperature-dependent thermal conductivity was first proposed by Peyrard [33]. However, thermal rectification based
on steady-state heat conduction for plane, cylindrical and spherical geometries has been reported by Sadat and Le
Dez [34]. On the other hand, a plane geometry conductive thermal diodes based on the thermal hysteresis of PCM
and non-PCM has been recently studied by Ordonez-Miranda et al. [35]. These two-latter authors derived expressions
for heat flux, temperature profiles and rectification factor, however, none of them emphasized on the effect of different
geometrical conductive thermal diodes based on VO2 and non-PCM which are presented in this work.

In this work, we have theoretically demonstrated the effect of spherical and cylindrical conductive thermal diodes
based on the thermal rectification of PCM and non-PCM. We have considered two different materials, one driven by
temperature-dependent thermal conductivity while the other is constant. Furthermore, we looked at the optimization
of the rectification factor of these diodes between the terminals of VO2 and a phase invariant material. Simple
analytical expressions are derived for the temperature profiles, heat fluxes and optimal rectification factor of both
diodes supporting steady-state thermal conduction.
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II. THEORETICAL MODELING

Let us consider a bilayer spherical thermal shells consisting of the regions (1) and (2) that interchange heat as a
result of steady-state thermal conduction between the terminals of VO2 and non-PCM, respectively. The shells are
set such that the temperature Th in the first region is greater than the temperature Tc of the second one (Th > Tc),
as shown in Fig. 1. The forward configuration is the one where the flow of heat flux qF goes from VO2 to non-PCM,
while in the backward one, the heat flux qB flows in the reverse direction. The two heat fluxes qF and qB are driven
by the thermal conductivities κ1(T ) in the first region and κ2 in the second one, as a result, they are expected not to
be equal (qF 6=qB), due to the temperature dependence of κ1(T ), for temperatures inside the transition region of the
VO2. For simplicity and clarity sake, we assume that the thermal conductivity κ2 is independent of temperature in
the region (2) for both forward and backward configurations. Hence, it allows optimizing the difference between the
two heat fluxes (qF − qB) as a result of the asymmetry of κ1(T ) in the surrounding of its transition temperature T0
whenever Tc < T0 < Th.
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FIG. 1: Schematic diagram of a bilayer conductive thermal diodes consisting of a VO2 and Non-PCM in the forward
and backward configurations, where Th and Tc are temperatures of hot and cold regions, respectively.

According to [35], the thermal conductivity of VO2 and non-PCM can be described by

κ1(T ) = κd +
κm − κd

1 + e−β(T−T0)
, (1)

where κm = 6 Wm−1K−1 and κd = 3.6 Wm−1K−1 are thermal conductivities in their metallic and dielectric states,
respectively; T0 = 342.5 K is the transition temperature and β = 1.7 K−1 is the phase transition slope of κ1(T ) when
the temperature is equal to the transition one.
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A. Spherical diode

1. Forward configuration

According to Fourier’s law of thermal conduction, the heat flux qF in the forward configuration for the spherical
diode under steady-state conditions considered in this work is given by

qF = −A(r)κ1(T1)
dT1
dr

= −A(r)κ2
dT2
dr

, (2)

A(r) = 4πr2, (3)

where T1(r) and T2(r) are the temperatures within the VO2 and non-PCM regions, respectively.

In order to deduce the parameters as discussed in the previous section, we have considered the following three
boundary conditions for forward configuration between the two regions as follows: T1(a) = Th, T2(c) = Tc, and
T1(b) − T2(b) = R12qF /4πb

2, with R12 being the interface thermal resistance between the VO2 and non-PCM. In
the steady-state regime of heat conduction without losses of generality on the external surface of the junction, the
temperature T1(r) is determined by integrating Eq. (1) with the thermal conductivity in Eq. (3), is given by

T1(r)− T0 +
1

βγ
ln[1 + λ(T1(r))] =

C

κm
+

qF
4πrκm

, (4)

where λ(T ) = exp[−β(T − T0)],γ = κm/κm − κd and C is a constant of integration. From Eq. (4), the expressions
for the heat flux and temperature profile in the forward configuration are derived by solving for qF and C using the
boundary conditions as stated above, this yields

qF =
1

βγδm
ln

[
G(Th)

G(Tc + δqF )

]
, (5)

G(T1(r)) = [G(Th)]α[G(Tc + δqF )]1−α, (6)

where δm = ρ/κm, ρ = (b−a)/4πab, G(T ) = 1+λ(T )/[λ(T )]γ , and α = a(b−r)/r(b−a). δ = [R12+b(c−b)/cκ2]/4πb2

is the thermal resistance between the non-PCM together with that of the VO2. It can be seen that the thermal
resistance is not the same when compared to the one reported by Ordonez-Miranda et al. [35], as ρ = R12 + L2/κ2.
This results from the difference of the system geometry. Therefore, it is reasonable to say that change of geometry
plays a crucial role in the thermal resistance of conductive thermal diodes between the terminals of PCM and invariant
one. Furthermore, the temperature profile T2(r) in the region (2) is derived by integrating the second equality sign
of Eq. (1). This yields

T2(r) = Tc +
qF
κ2
σ(1−M), (7)

where σ = (c− b)/4πbc and M = c(r − b)/r(c− b).

2. Backward configuration

By following a similar approach as in the forward case, but with a reversed order boundary conditions, that is, to
say: T1(a) = Tc, T2(c) = Th, and T2(b)− T1(b) = R12qB/4πb

2. The temperature T1(r) in the backward configuration
is given by

T1(r)− T0 +
1

βγ
ln[1 + λ(T1(r))] =

D

κm
+

qB
4πrκm

, (8)

where D is a constant of integration. From Eq. (8), by solving for qB and D using the same procedure as in the
forward configuration, the expressions for the heat flux (qB) and temperature profiles [T1(r) and T2(r)] are found to
be

qB =
1

βγδm
ln

[
G(Th − δqB)

G(Tc)

]
, (9)
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G(T1(r)) = [G(Tc)]
α[G(Th − δqB)]1−α. (10)

T2(r) = Th −
qB
κ2
σ(M − 1). (11)

B. Cylindrical diode

1. Forward configuration

The heat fluxes and temperature profiles for the forward and backward configurations are derived for the cylindrical
diode by using a similar procedure as in the spherical one. In this case, the boundary conditions are slightly different
than that of the spherical diode, is given as follows: T1(a) = Th, T2(c) = Tc, and T1(b)− T2(b) = R12qF /2πbh. From
Fourier’s law of thermal conduction, the heat flux (qF ) in the forward configuration is thus given by

qF = −2πrhκ1(T1)
dT1
dr

= −2πrhκ2
dT2
dr

. (12)

The integration of Eq. (12) together with Eq. (3) yields the temperature T1(r), as follow:

T1(r)− T0 +
1

βγ
ln[1 + λ(T1(r))] =

E

κm
− qF

2πhκm
ln r, (13)

where E is a constant of integration. The expressions of the heat flux (qF ) and temperature profile T1(r) are determined
by solving Eq. (13) for both qF and E at the temperature conditions as state above, which results to

qF =
1

βγµm
ln

[
G(Th)

G(Tc + µqF )

]
, (14)

G(T1(r)) = [G(Th)]J [G(Tc + µqF )]1−J , (15)

where µm = Z/κm, Z = ln(b − a)/2πh, and J = ln(b − r)/ ln(b − a). µ = [R12 + b ln(c − b)/κ2]/2πbh is the
thermal resistance of the non-PCM combined with that of VO2. It can also be seen that the thermal resistance of
the cylindrical diode is not the same when compared to that of the spherical one, as well as that of the plane one
reported by Ordonez-Miranda et al. [35]. As a result, one can say that the change of geometry has a significant
impact on the measure of resistance to thermal flow between the terminals of VO2 and non-PCM. On the other hand,
the temperature profile T2(r) in the second region is determined by integrating the equality sign of the second part
of Eq. (12), which gives

T2(r) = Tc +
qF
κ2
Q(1− V ), (16)

where Q = ln(c− b)/2πh and V = ln(r − b)/ ln(c− b).

2. Backward configuration

The temperature T1(r) in the backward configuration of the cylindrical diode is determined by following similar
process as in the forward case, but with the boundary conditions in a reversed order as follows: T1(a) = Tc, T2(a) = Th,
and T2(b)− T1(b) = R12qB/2πbh. The expression is found to be

T1(r)− T0 +
1

βγ
ln[1 + λ(T1(r))] =

F

κm
− qB

2πhκm
ln r, (17)

where F is an integration constant. The expressions for the heat flux (qB) and the temperature profiles [T1(r) and
T2(r)] can be determined by following a similar procedure as in the forward case. The final results are

qB =
1

βγµm
ln

[
G(Th − µqB)

G(Tc)

]
, (18)

G(T1(r)) = [G(Tc)]
J [G(Th − µqB)]1−J , (19)

T2(r) = Th −
qB
κ2
Q(V − 1). (20)
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C. Rectification factor

Following previous research [36], the rectification factor τ can be defined as the ratio of the difference between the
forward and backward heat fluxes to the maximum of the heat fluxes, which is given by

τ =
|qF − qB |

max(qF , qB)
= 1− qB,min

qF,max
. (21)

The important step in the evaluation of Eq. (21) is to determine the expressions for the maximum value of qF and
minimum of qB for both diodes. This fact can be easily analyzed by rewriting Eqs. (5) and (9), as follows:

qF =
Th − Tc
δ + δm

+ (βγ(δ + δm))
−1

ln

[
1 + λ(Th)

1 + λ(Tc)e−βδqF

]
, (22)

qB =
Th − Tc
δ + δm

− (βγ(δ + δm))
−1

ln

[
1 + λ(Tc)

1 + λ(Th)eβδqB

]
. (23)

Given that in Eqs. (22) and (23) the fraction quantities inside the natural logarithm are greater than or equal
to 1, this show that qF is less than or equal to (Th − Tc)/(δ + δm). However, further simplification of the term
qB(βγ(δ+δm))−1 in Eq. (23) show that the backward heat flux qB is greater than or equal to (Th−Tc)/(δ+δd). This
is similar to what was proposed by Ordonez-Miranda et al. [35], but with different thermal resistances (δm = ρ/κm
and δd = ρ/κd), because of difference of the system geometry. One should note that here a similar result is expected,
since the same model for thermal conductivity of VO2 and non-PCM is employed. Furthermore, if we consider the
fact that Tc < T0 < Th and β = 1.7 K−1 as mentioned in the previous section, this implies that the maximum of qF
in Eq. (22) is obtained whenever Th − Tc � β−1 and Tc − T0 + δqF � β−1, so, therefore, Eq. (22) becomes

qF,max =
Th − Tc
δ + δm

. (24)

Further simplification of the terms Th − Tc � β−1 and Tc − T0 + δqF � β−1, yields, Th − T0 � (T0 − Tc)δm/δ+ (1 +
δm/δ)β

−1, which is valid for all T0 > Tc. On the contrary, the minimum expression for the qB in Eq. (23) is obtained
whenever T0 − Tc � β−1 and Th − T0 − δqB � β−1, the result is given by

qB,min =
Th − Tc − ϕ
δ + δm

, (25)

where ϕ = (T0 − Tc)/γ. The result of the optimal rectification factor τopt can be found by substituting Eqs. (24) and
(25) into Eq. (21). This yields

τopt =

(
T0 − Tc
Th − Tc

)
γ−1. (26)

Equation (26) satisfies the condition for temperature Tc < T0 < Th and for different values of the thermal resistances
δ, δm, and δd of the spherical diode. Since T0 is constant, τopt can be estimated for VO2 and non-PCM by varying
Tc and Th, respectively. The optimal rectification factor for the cylindrical diode can be found by following a similar
procedure as in the latter case. This is done by rewriting Eqs. (14) and (18), as follows:

qF =
Th − Tc
µ+ µm

+ (βγ(µ+ µm))
−1

ln

[
1 + λ(Th)

1 + λ(Tc)e−βµqF

]
, (27)

qB =
Th − Tc
µ+ µm

− (βγ(µ+ µm))
−1

ln

[
1 + λ(Tc)

1 + λ(Th)eβµqB

]
. (28)

It can be seen easily that Eqs. (22) and (23) of the spherical diode is different from Eqs. (27) and (28) of the
cylindrical one by the following thermal resistances δ, δm, µ, and µm, respectively. Therefore, it follows that the
optimal rectification factor τopt given by Eq. (26) is the same for both diodes and as well satisfies the same condition
for temperature Tc < T0 < Th and for different values of the thermal resistances µ, µm, and µd of the cylindrical diode.
This fact is in good agreement with the optimal rectification factor in a plane diode reported by Ordonez-Miranda
et al. [35], but with different thermal resistance as compared to what is proposed in this work. These results fairly
agree with the fact proposed by Ordonez-Miranda et al. [35], that the increase or decrease in thermal resistance
has an insignificant impact on the enhancement of τ . However, because of the difference in the respective thermal
resistances, the conditions that must be satisfied for qF,max and qB,min in the cylindrical diode differ, and are given
as follows: T0 − Tc � β−1 and Th − T0 − µqB � β−1 for qB,min, Th − Tc � β−1 and Tc − T0 + µqF � β−1 for qF,max.
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FIG. 2: Heat fluxes in the conductive thermal diode of VO2 and non-PCM for (a) spherical and (b) cylindrical
diodes in the forward and backward configurations. Calculations have been done for three representative interface

thermal resistances.

III. RESULTS AND DISCUSSION

The heat fluxes qF and qB for the forward and backward configurations within a conductive thermal diode operating
between the terminals of PCM and an invariant one are depicted in Figs 2(a) and 2(b), respectively. It can be seen
that the values of the three respective thermal resistances in both diodes result in such that the heat flux in the
forward configuration is higher than the one of the backward (qF > qB) such that their difference lean towards a
constant value for the temperature of the hotter regime Th much higher than the transition one, where VO2 exhibits
its tetragonal rutile phase. This is expected following the behavior of the thermal diode, which minimized the heat
flux in the reversed direction, and as well as with the prediction of Eqs. (24) and (25). It can also be seen that
the lowest thermal resistances in both diodes generate the highest heat fluxes. This is consistent with the fact that
Eqs. (5), (9), (14) and (18) has a very strong non-linear dependence of Th and Tc with the thermal resistance as
a coefficient of the heat flux, this can be seen in the denominator of expressions inside the logarithm function. It
is expected following the relationship between thermal resistance and heat conductance proposed by Marin [37], as
Rcond. = 1/hcond.. Our results agree well with literature hysteresis [9, 22], that VO2 exhibits a dielectric-to-metal
transition at a critical temperature (∼ 340 K). Our results also agree with what was proposed by [38–40] that thermal
resistance influences the heat transfer mechanism. It can also be seen that in the spherical diode, the values of heat
flux generated are higher than that of the cylindrical one. This is expected following that the thermal resistance δ
in the spherical diode is less than µ in the cylindrical one. Therefore, it is reasonable to conclude that difference of
the system geometry which leads to an influence of the thermal resistances has a significant impact on the heat fluxes
and temperature profiles of a conductive thermal diode in the steady-state regime of heat conduction.

It is worth pointing out the impact of these geometrical diodes on the rectification factor. As a result, we have
shown in Figs. 3(a) and 3(b) the plots of conductive thermal diodes operating within the shell of VO2 and non-PCM
over sapphire for both diodes with respect to temperature Th of the hotter region, respectively. It can be seen that
for all thermal resistance values in both cases, the rectification factor vanishes at the temperatures where the forward
and backward heat fluxes are equal (qF = qB), this is similar to what is shown in Figs. 2(a) and 2(b). Nevertheless,
the spherical and cylindrical diodes of thermal resistance δ = 0.28 KW−1 and µ = 0.24 KW−1 generate the highest
optimal rectification factor of τopt = 20.8% and τopt = 20.7% with temperature Th = 376 K and Th = 376.5 K,
respectively. This is also consistent with the variation in the size of the materials a, b and c in both cases. The highest
value of the size of these materials generates maximum optimal rectification factor, this fairly agrees with the result
in the spherical diode. However, the lowest value generates the uppermost rectification factor, which corresponds to
the result in the cylindrical one. Furthermore, the density plot in Figs. 4(a) and 4(b) show the actualization of these
optimal thermal resistances (δ = [R12 +b(c−b)/cκ2]/4πb2, and µ = [R12 +b ln(c−b)/κ2]/2πbh) and the temperatures
of the hotter shell (Th), this indicates that the increase or decrease in δ and µ does not necessarily denote the enhance-
ment of rectification factor τ . Following the predictions of Eq. (26) these results show that between the terminals of
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FIG. 3: Rectification factor of the conductive thermal diode for (a) spherical and (b) cylindrical diodes.
Calculations are done for different values of the three interface thermal resistances.
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FIG. 4: Rectification factor for the (a) spherical and (b) cylindrical diodes, as functions of the temperature Th.

PCM and a phase invariant one, the spherical and cylindrical diodes generate the same τopt. These results agree well
with what was reported by Ordonez-Miranda et al. [35]. On the contrary, the temperature ranges (376 − 300 = 76
K) and (376.5 − 300 = 76.5 K) of both diodes presented in this work are higher than the value (369.5 − 300 = 69.5
K) for VO2 and less than (388.2 − 273 = 115.2 K) for nitinol as proposed by Ordonez-Miranda et al. [35]. Our
results as well agree with the fact that the temperature required by VO2 to reach the maximum rectification fac-
tor is less than that of nitinol, which is due to the fact that VO2 has a rapid phase transition when compared to nitinol.

IV. CONCLUSIONS

We have theoretically investigated and optimized the rectification factor of a spherical and cylindrical conductive
thermal diodes between the terminals of phase-change material and a phase invariant one. This is done by deriving
simple analytical expressions for the temperature profiles, heat fluxes and optimal rectification factor of both diodes.
It has been shown that the diode geometry has a significant impact on the temperatures and heat fluxes, but not so
much on the diode rectification factor. Optimal rectification factors of up to 20.8% and 20.7% have been determined
for the spherical and cylindrical diodes operating with a temperature lengths of 76 K and 76.5 K, respectively. The
obtained results will serve as a useful guide for the enhancement of phase-change materials able to optimize the
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rectification of conductive thermal diodes with different geometries.
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