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Parameterized Algorithms for Finding Square Roots *

We show that the following two problems are fixed-parameter tractable with parameter k: testing whether a connected n-vertex graph with m edges has a square root with at most n -1 + k edges and testing whether such a graph has a square root with at least m -k edges. Our first result implies that squares of graphs obtained from trees by adding at most k edges can be recognized in polynomial time for every fixed k ≥ 0; previously this result was known only for k = 0. Our second result is equivalent to stating that deciding whether a graph can be modified into a square root of itself by at most k edge deletions is fixed-parameter tractable with parameter k.

Introduction

Squares and square roots are classical concepts in graph theory that are defined as follows. The square G 2 of a graph G = (V G , E G ) is the graph with vertex set V G such that any two distinct vertices u, v ∈ V G are adjacent in G 2 if and only if u and v are of distance at most 2 in G. A graph H is a square root of G if G = H 2 . There exist graphs with no square root, graphs with a unique square root as well as graphs with many square roots.

Mukhopadhyay [START_REF] Mukhopadhyay | The square root of a graph[END_REF] showed in 1967 that a connected graph G with n vertices v 1 , . . . , v n has a square root if and only if there exists a set of n complete subgraphs K 1 , . . . , K n of G with i V K i = V G such that K i contains v i for all 1 ≤ i ≤ n, and K i contains v j if and only if K j contains v i for all 1 ≤ i < j ≤ n. This characterization did not yield a polynomial time algorithm for recognizing squares. In fact, in 1994, Motwani and Sudan [START_REF] Motwani | Computing roots of graphs is hard[END_REF] showed that the Square Root problem, which is that of testing whether a graph has a square root, is NP-complete. This fundamental result triggered a lot of research on the computational complexity of recognizing squares of graphs and computing square roots under the presence of additional structural assumptions. In particular, the following two recognition questions have attracted attention; here G denotes some fixed graph class.

(1) How hard is it to recognize squares of graphs of G?

(2) How hard is is to recognize graphs of G that have a square root? Ross and Harary [START_REF] Ross | The square of a tree[END_REF] characterized squares of a tree and proved that if a connected graph has a unique tree square root, then this root is unique up to isomorphism. Lin and Skiena [START_REF] Lin | Algorithms for square roots of graphs[END_REF] gave linear time algorithms for recognizing squares of trees and planar graphs with a square root. The results for trees [START_REF] Lin | Algorithms for square roots of graphs[END_REF][START_REF] Ross | The square of a tree[END_REF] were generalized to block graphs by Le and Tuy [START_REF] Le | The square of a block graph[END_REF]. Lau [START_REF] Lau | Bipartite roots of graphs[END_REF] gave a polynomial time algorithm for recognizing squares of bipartite graphs. Lau and Corneil [START_REF] Lau | Recognizing powers of proper interval, split, and chordal graph[END_REF] gave a polynomial time algorithm for recognizing squares of proper interval graphs and showed that the problems of recognizing squares of chordal graphs, squares of split graphs, and chordal graphs with a square root are all three NP-complete. Le and Tuy [START_REF]A good characterization of squares of strongly chordal split graphs[END_REF] gave a quadratic time algorithm for recognizing squares of strongly chordal split graphs. Milanic and Schaudt [START_REF] Milanic | Computing square roots of trivially perfect and threshold graphs[END_REF] gave linear time algorithms for recognizing trivially perfect graphs and threshold graphs with a square root. Adamaszek and Adamaszek [1] proved that if a graph has a square root of girth at least 6, then this square root is unique up to isomorphism. Farzad, Lau, Le and Tuy [START_REF] Farzad | Complexity of finding graph roots with girth conditions[END_REF] showed that recognizing graphs with a square root of girth at least g is polynomial-time solvable if g ≥ 6 and NP-complete if g = 4. The missing case g = 5 was shown to be NP-complete by Farzad and Karimi [START_REF] Farzad | Square-root finding problem in graphs, a complete dichotomy theorem[END_REF].

Our Results

The classical Square Root problem is a decision problem. We introduce two optimization variants of it in order to be able to take a parameterized road to square roots. A problem with input size n and a parameter k is said to be fixed parameter tractable (or FPT) if it can be solved in time f (k) • n O (1) for some function f that only depends on k. We consider two natural choices for the parameter k for our optimization variants of the Square Root problem and in this way obtain the first FPT algorithms for square root problems.

First, in Section 2, we parameterize the Minimum Square Root problem, which is that of testing whether a graph has a square root with at most s edges for some given integer s. Because any square root of a connected n-vertex graph G is a connected spanning subgraph of G, every square root of G has at least n -1 edges. Consequently, any instance (G, s) of Minimum Square Root with s ≤ n -2 is a no-instance if G is connected, which means that we may assume that s ≥ n -1. Hence, k = s -(n -1) is the natural choice of parameter. Our main result is that Minimum Square Root is FPT with parameter k 1 . We prove this result by showing that an instance of Minimum Square Root can be reduced to an instance of a more general problem, in which we impose additional requirements on some of the edges, namely to be included or excluded from the square root. We prove that the new instance has size quadratic in k. In other words, we show that Minimum Square Root has a generalized kernel of quadratic size (see Section 1.2 for the definition of this notion). This result is further motivated by the observation that Minimum Square Root generalizes the problem of recognizing squares of trees (take s = n-1). A weaker statement of our FPT result is that of saying that the problem of recognizing squares of graphs of the class G k = {G | G is a graph obtainable from a tree by adding at most k edges} is polynomial-time solvable for all fixed k ≥ 0. As such, our result can also be seen as an extension of the aforementioned result of recognizing squares of trees [START_REF] Lin | Algorithms for square roots of graphs[END_REF].

Second, in Section 3, we parameterize the Maximum Square Root problem, which is that of testing whether a given graph G with m edges has a square root with at least s edges for some given integer s. We show that this problem is FPT with parameter k = m -s. This choice of parameter is also natural, as G has a square root with at least s edges if and only if G can be modified into a square root (of itself) by at most k edge deletions. Hence, our second FPT result can be added to the growing body of parameterized results for graph editing problems, which form a well studied problem area within algorithmic graph theory. In Section 3 we also present an exact exponential time algorithm for Maximum Square Root, which could be seen as an improvement of the algorithm implied by the characterization of Mukhopadhyay [START_REF] Mukhopadhyay | The square root of a graph[END_REF].

In Section 4 we mention a number of relevant open problems. 1 We restrict ourselves to connected graphs for simplicity. We may do this for the following reason. For disconnected n-vertex graphs with ≥ 2 connected components the natural parameter is k = s -(n -) instead of k = s -(n -1). Because a square root of a graph is the disjoint union of square roots of its connected components, our FPT result for connected graphs immediately carries over to disconnected graphs if we choose as parameter k = s -(n -) instead.

Preliminaries

We only consider finite undirected graphs without loops and multiple edges. We refer to the textbook by Diestel [START_REF] Diestel | Graph theory[END_REF] for any undefined graph terminology and to the textbooks of Downey and Fellows [START_REF] Downey | Parameterized complexity[END_REF], Flum and Grohe [START_REF] Flum | Parameterized Complexity Theory[END_REF], and Niedermeier [START_REF] Niedermeier | Invitation to fixed-parameter algorithms[END_REF] for detailed introductions to parameterized complexity theory.

Let G be a graph. We denote the vertex set and edge set of G by V G and E G , respectively. The subgraph of G induced by a subset

U ⊆ V G is denoted by G[U ]. The graph G -U is the graph obtained from G by removing all vertices in U . If U = {u}, we also write G -u. The distance dist G (u, v)
between a pair of vertices u and v of G is the number of edges of a shortest path between them. The open neighborhood of a vertex u ∈ V G is defined as

N G (u) = {v | uv ∈ E G }, and its closed neighborhood is defined as N G [u] = N G (u) ∪ {u}. Two vertices u, v are said to be true twins if N G [u] = N G [v], and u, v are false twins if N G (u) = N G (v). A vertex u is simplicial, if N G (u) is a clique. The degree of a vertex u ∈ V G is denoted d G (u) = |N G (u)|. The maximum degree of G is denoted ∆(G) = max{d G (v)|v ∈ V G }. A vertex of degree 1 is said to be a pendant vertex.
Let G be a connected graph. Let S ⊂ V G , and let X and Y be two disjoint nonempty vertex subsets of

G -S. Then S is a separator of G if G -S is disconnected, S is an (X,Y)-separator if G -S has
no path that connects a vertex of X to a vertex of Y , and S is a minimal (X, Y )separator if S is an (X, Y )-separator of G and no proper subset of S is an (X, Y )-separator. Moreover, G is 2-connected if and only if |V G | ≥ 3 and G has no separators of size one.

The union of two graphs G 1 and G 2 is the graph

(V G 1 ∪ V G 2 , E G 1 ∪ E G 2
). The graph K n denotes the complete graph on n vertices. The graph K 1,r denotes the star on r + 1 vertices.

A well-known technique to show that a parameterized problem Π is fixedparameter tractable is to find a reduction to a problem kernel. This technique replaces an instance (I, k) of Π with a reduced instance (I , k ) of Π called a (problem) kernel such that the following three conditions hold:

i) k ≤ k and |I | ≤ g(k) for some computable function g; ii) the reduction from (I, k) to (I , k ) is computable in polynomial time; iii) (I, k) is a yes-instance of Π if and only if (I , k ) is a yes-instance of Π.
If we slightly modify this definition by letting the instance (I , k ) belong to a different problem than Π, then (I , k ) is called a generalized kernel for Π in the literature. This concept has been introduced and named bikernel by Alon, Gutin, Kim, Szeider and Yeo [3]; a related notion is compression. 

Structural Results

We start with the following observation that we will frequently use.

Observation 1. Let H be a square root of a connected graph G.

i) If u is a pendant vertex of H, then u is a simplicial vertex of G.

ii) If u, v are pendant vertices of H adjacent to the same vertex, then u, v are true twins in G.

iii) If u, v are pendant vertices of H adjacent to different vertices, then u and v are not adjacent in G unless H = K 2 .

We now state five useful lemmas, the first two of which, Lemmas 1 and 2, can be found implicitly in the paper of Ross and Harary [START_REF] Ross | The square of a tree[END_REF]. Ross and Harary [START_REF] Ross | The square of a tree[END_REF] consider tree square roots, whereas we are concerned with finding general square roots. As such we give explicit statements of Lemmas 1 and 2. We also give a proof of Lemma 2 (the proof of Lemma 1 is straightforward). Lemma 1. Let H be a square root of a graph G. Let {u 1 , . . . , u r } ⊆ V H for some r ≥ 3 induce a star in H with central vertex u 1 . Let u 3 , . . . , u r be pendant and {u 2 } be a ({u

1 , u 3 , . . . , u r }, V H \ {u 1 , . . . , u r })-separator of H. Then {u 1 , . . . , u r } is a clique of G, and {u 1 , u 2 } is a minimal ({u 3 , . . . , u r }, V G \ {u 1 . . . , u r })-separator of G.
Lemma 2. Let G be a connected graph with a square root H. Let {u 1 , . . . , u r }, r ≥ 3 be a clique in G, such that {u 1 , u 2 } is a minimal ({u 3 , . . . , u r }, V G \{u 1 , . . . , u r })-separator of G. Let {x 1 , . . . , x p } = N G (u 1 )\ {u 1 , . . . , u r } for some p ≥ 1 and {y 1 , . . . , y q } = N G (u 2 ) \ {u 1 , . . . , u r } for some q ≥ 1, as shown in Figure 1. Then the following three statements hold: 2 ii)).

i) u 1 u 2 ∈ E H and, either u 3 u 1 , .., u r u 1 ∈ E H , u 3 u 2 , . . . , u r u 2 / ∈ E H , u 1 x 1 , . . . , u 1 x p / ∈ E H ,
iii

) If N G [u 2 ] \ N G [u 1 ] = ∅, then u 2 u 1 , . . . , u r u 1 ∈ E H , u 3 u 2 , . . . , u r u 2 / ∈ E H , u 1 x 1 , . . . , u 1 x p /
∈ E H . Moreover, the graph H obtained from H by deleting all u i u j with 3 ≤ i < j ≤ r is a square root of G (in which {u 1 , . . . , u r } induces a star with central vertex u 1 and with leaves u 2 , u 3 , . . . , u r that are pendant vertices except for u 2 (see Figure 2 iii)).

y q u 3 u r u 1 u 2 x 1 x p y 1 Figure 1:
The graph G of Lemma 2. Note that p ≥ 1 and q ≥ 1, because {u 1 , u 2 } is a minimal ({u 3 , . . . , u r }, V G \ {u 1 , . . . , u r })-separator of G. Also note that x i = y j for some 1 ≤ i ≤ p and 1 ≤ j ≤ q is possible.

ii)

u 3 u r u 1 u 2 x 1 x p u 3 u r u 1 u 2 x 1 x p u 3 u r u 1 u 2 x 1 x p y 1 y q u 3 u r u 1 u 2 x 1 x p y 1 y q i)
iii)

u 3 u r u 1 u 2 x 1 x p y 1 y q Figure 2: Square roots of G corresponding to statements i)-iii) of Lemma 2,
respectively. Edges of G that belong to the square roots are shown by thick lines, whereas edges of G that do not belong to the square roots are shown by dashed lines. In i), edges of G that may be put in a square root of G are shown by thin lines. The square roots in ii) and iii) are the specific square roots defined in statements ii) and iii) of Lemma 2, respectively.

Proof. We first prove i). As {u 1 , u 2 } is a ({u 3 , . . . , u r }, V G \ {u 1 , . . . , u r })separator of G, at least one vertex u i with r ≥ 3 is adjacent to one of u 1 , u 2 in H, say to u 1 . Then u 1 x 1 , . . . , u 1 x p / ∈ E H ; otherwise, that is, if u 1 is adjacent to some x j in H, then u i x j ∈ E G contradicting the fact that {u 1 , u 2 } is a ({u 3 , . . . , u r }, V G \ {u 1 , . . . , u r })-separator of G. Because u 1 x 1 , . . . , u 1 x p / ∈ E H , at least one vertex y h must be adjacent to u 2 in H (as otherwise H is not connected and hence cannot be the square root of G, which is a connected graph). Because {u 1 , u 2 } is a ({u 3 , . . . , u r }, V G \{u 1 , . . . , u r })-separator of G, this means that

u 3 u 2 , . . . , u r u 2 / ∈ E H . Consequently, u 1 u 2 ∈ E H and {u 2 } is a minimal ({u 1 , u 3 , . . . , u r }, V H \ {u 1 , . . . , u r })-separator in H. Suppose that there is a vertex u i , 3 ≤ i ≤ r, such that u i u 1 /
∈ E H . Since u 3 , . . . , u r are not adjacent to u 2 , it follows that any (u 2 , u i )-path in H has length at least 3, which is not possible as u 2 u i ∈ E G . We conclude that u 3 u 1 , . . . , u r u 1 ∈ E H . Hence we have shown i).

We now prove ii). Note that {x 1 , . . . , x p } = {y 1 , . . . , y q } with p = q. Due to i) either u 1 or u 2 is not adjacent to any x i . In the first case u 2 must be adjacent to all x i in H, as otherwise there is no required path of length at most 2 in H between some x i and u 1 . Similarly, in the second case, u 1 must be adjacent to all x i in H. Hence, {u 1 , u 2 , x 1 , . . . , x p } is a clique in G. If H has an edge x i z with z / ∈ {u 1 , . . . , u r , x 1 , . . . , x p }, then zu 2 ∈ E G , which is not possible. This means that G is the union of two complete graphs with vertex sets {u 1 , . . . , u r } and {u 1 , u 2 , x 1 , . . . , x p }, respectively. It is readily seen that G has two (isomorphic) square roots with edge sets {u 1 u 2 , . . . , u 1 u r } ∪{u 2 x 1 , . . . , u 2 x p } and {u 2 u 1 , u 2 u 3 , . . . , u 2 u r } ∪{u 1 x 1 , . . . , u 1 x p }, respectively. Hence we have shown ii).

It remains to prove iii). Let

y i ∈ N G [u 2 ] \ N G [u 1 ] = ∅.
Due to i) we have that u 1 u 2 ∈ E H , and that either u 3 u 1 , .., u r u 1 ∈ E H , u 3 u 2 , . . . , u r u 2 / ∈ E H , u 1 x 1 , . . . , u 1 x p / ∈ E H , or u 3 u 1 , . . . , u r u 1 / ∈ E H , u 3 u 2 , . . . , u r u 2 ∈ E H , u 2 y 1 , . . . , u 2 y q / ∈ E H . If the latter case holds, then any (u 2 , y i )-path in H has length at least 3, which is not possible as u 2 y i ∈ E G . Hence the former case must hold. Let H be a graph obtained from H by deleting all u i u j for i, j ∈ {3, . . . , r}. It is readily seen that H 2 = H 2 = G. Hence we have shown iii).

Let G be a graph that contains (besides possibly some other vertices) p + q + r distinct vertices u 1 , . . . , u r , x 1 , . . . , x p , y 1 , . . . y q for some r ≥ 3, p ≥ 1 and q ≥ 1, such that the following conditions hold:

i) {u 1 , . . . , u r } is a clique in G; ii) {u 1 , u 2 , u 3 } is a minimal ({u 4 , . . . , u r }, V G \ {u 1 , . . . , u r })-separator in G if r ≥ 4; iii) {u 1 , u 3 , . . . , u r } ∪ {x 1 , . . . , x p } ∪ {y 1 , . . . , y q } = N G (u 2 ); iv) {u 2 , u 4 , u 5 , . . . , u r } = N G (u 1 ) ∩ N G (u 3 ); v) {x 1 , . . . , x p } ⊆ N G (u 1 )
and {y 1 , . . . , y q } ⊆ N G (u 3 ); vi) x i y j / ∈ E G for i = 1, . . . , p and y = 1, . . . , q.

We call G an F -graph and {u 1 , u 2 , u 3 } an F -triple with outer vertices u 1 and u 3 , see Figure 3 for an example. Here, F refers to the graph in Figure 4. These notions are further explained by Lemmas 3 and 4.

u 2 u 4 u r x 1 x p y 1 y q u 1 u 3 Figure 3:
An example of an F -graph with r ≥ 4. Note that there are no edges between any two vertices x i and y j . Also note that the two outer vertices u 1 and u 3 of the F -triple {u 1 , u 2 , u 3 } may be adjacent to vertices not adjacent to u 2 (but they may not have any common neighbor in {x 1 , . . . , x p } ∪ {y 1 , . . . , y q }).

u 3 u 4 u r x 1 x p y 1 y q u 2 u 1 Figure 4:
The graph F = F (p, q, r) with p ≥ 1, q ≥ 1 and r ≥ 3; if r = 3 then F does not contain any pendant vertices u 4 , . . . , u r . Here, we depicted F as a subgraph of the graph H in Lemma 3. To be more precise, the graph F is exactly the graph with the black edges. In H the vertices u 1 , . . . , u r have only neighbors that are in F , whereas a vertex x i or y j may have one or more neighbors in H that are outside F ; however, no x i and y j have a common neighbor in H. Moreover, in H, the only edges incident to vertices in F are the black edges depicted (edges of F ) and possibly some edges between two vertices x i , x j or between two vertices y i ,y j ; such edges have not been depicted in the figure. 

(if r ≥ 4), d H (u 2 ) = r -1, u 1 u 2 u 3 is an induced path in H that is not contained in any cycle of length at most 6, {x 1 , . . . , x p } = N H (u 1 ) \ {u 2 } and {y 1 , . . . , y q } = N H (u 3 ) \ {u 2 }. Then G is an F -graph.
Proof. Conditions (i)-(iii) and (v) are readily seen to hold. Conditions iv) and vi) follow from the condition that the path u 1 u 2 u 3 is not contained in any cycle of length at most 6 in H.

Lemma 4. Let G be a connected F -graph. If H is a square root of G, then the graph F of Figure 4 is a subgraph of H such that d H (u 2 ) = r -1, {x 1 , . . . , x p } = N H (u 1 ) \ {u 2 } and {y 1 , . . . , y q } = N H (u 3 ) \ {u 2 }.
Moreover, the graph obtained from H by deleting all edges u i u j with 4 ≤ i < j ≤ r is a square root of G that contains u 4 , . . . , u r as pendant vertices (if r ≥ 4).

Proof. Let H be a square root of G. We consider the following three cases.

Case 1. u 1 u 2 , u 2 u 3 ∈ E H . Because x 1 u 3 , . . . , x p u 3 / ∈ E G , this means that x 1 u 2 , . . . , x p u 2 / ∈ E H . Symmetrically, y 1 u 2 , . . . , y q u 2 / ∈ E H . Since each x i u 2 ∈ E G but x i u 2 / ∈ E H , H has an (x i , u 2 )-path of length 2. Because d G (u 2 ) = p + q + r -1, the middle vertex of this path is in {u 1 , u 3 , . . . , u r }.
Because x i is not adjacent to u 3 , . . . , u r in H (as it not so in G), this path goes through u 1 . In other words, x 1 u 1 , . . . , x p u 1 ∈ E H and, by symmetry,

y 1 u 3 , . . . , y q u 3 ∈ E H . If a vertex z / ∈ {u 2 , x 1 , . . . , x p } is adjacent to u 1 in H, then z is adjacent to both u 2 and x 1 in G. Because d G (u 2 ) = p+q +r -1,
we find that z ∈ {u 3 , . . . , u r } or z ∈ {y 1 , . . . , y q }. However, none of {u 3 , . . . , u r } is adjacent to x 1 , whereas none of {y 1 , . . . , y q } is adjacent to u 2 . We conclude that {x 1 , . . . , x p } = N H (u 1 ) \ {u 2 } and by using the same arguments that {y 1 , . . . , y q } = N H (u 3 ) \ {u 2 }. Now we show that u 4 u 2 , . . . , u r u 2 ∈ E H . To prove it, assume that some u i , 4 ≤ i ≤ r, is not adjacent to u 2 in H. Then u 1 and u i are at distance at least 3 in H contradicting u 1 u i ∈ E G . We already deduced that x 1 u 2 , . . . , x p u 2 / ∈ E H and that y 1 u 2 , . . . , y q u 2 / ∈ E H . By assumption, u 2 is adjacent to both u 1 and u

3 . As d G (u 2 ) = p + q + r -1, we then find that d H (u 2 ) = r -1.
To conclude the proof for this case, it remains to observe that if some u i , u j are adjacent in H for i, j ∈ {4, . . . , r}, then the graph H obtained from H by the removal of these edges is a square root of G.

Case 2. u 1 u 2 , u 2 u 3 / ∈ E H . Since u 1 u 2 / ∈ E H , u 1 u 2 ∈ E G and d G (u 2 ) = p + q + r -1, there exists a vertex z ∈ {x 1 , . . . , x p } ∪ {u 4 , . . . , u r } such that u 1 z, zu 2 ∈ E H . Because z is not adjacent to y 1 , . . . , y q in G, we find that y 1 u 2 , . . . , y q u 2 /
∈ E H . By the same arguments, we obtain

x 1 u 2 , . . . , x p u 2 / ∈ E H . Hence, z ∈ {u 4 , . . . , u r }. By symmetry, some vertex from {u 4 , . . . , u r } is adjacent to u 3 in H. Consequently, each vertex of {u 1 , u 2 , u 3 } is adjacent to some vertex in {u 4 , . . . , u r } in H. As {u 1 , u 2 , u 3 } separates {u 4 , . . . , u r } from V G \ {u 1 , . . . , u r },
this means that H has no edges that join u 1 , u 2 , u 3 with the vertices of V G \ {u 1 , . . . , u r }; a contradiction. Hence, this case is not possible.

By symmetry, it remains to consider the following case.

Case 3. u 1 u 2 ∈ E H and u 2 u 3 / ∈ E H . Because u 1 u 2 ∈ E H and y 1 u 1 , . . . , y q u 1 / ∈ E G , we find that y 1 u 2 , . . . , y q u 2 / ∈ E H . Because y 1 u 2 ∈ E G , this means that H contains a (y 1 , u 2 )-path of length 2. Because u 2 u 3 / ∈ E H and d G (u 2 ) = p + q + r -1,
such a path should go through one of the vertices of {u 1 , u 4 , . . . , u r }∪{x 1 , . . . , x p }. However, none of these vertices is adjacent to y 1 in G, and consequently not in H either; a contradiction. Therefore, this case is not possible either.

Lemma 5. Let u, v be true twins in a connected graph G with at least three vertices. Let G be the graph obtained from G by deleting v. The following two statements hold:

i) If H is a square root of G , then the graph H obtained from H by adding v with N H (v) = N H (u) (that is, by adding a false twin of u) is a square root of G.
ii) If H is a square root of G such that u, v are false twins in H, then the graph H obtained by deleting v is a square root of G .

Proof. We first prove i). Let H be a square root of G , and let H be the graph obtained from H by adding a false twin v of u. As G is a connected graph with at least three vertices, u is adjacent in H to some vertex z.

Then u and v are adjacent to z in H and thus d H (u, v) ≤ 2. Hence, uv is an edge of H 2 . Then it is straightforward to see that G = H 2 . Statement ii) follows from the fact that identifying false twins does not change the distance between any two vertices.

Construction of the Generalized Kernel

As discussed, in this section, we reduce Tree + k Edges Square Root to Tree + k Edges Square Root with Labels in such a way that the size of the graph in the obtained instance is O(k 2 ). First, we informally sketch the main steps of the reduction. Let G be a connected graph with n vertices, and let k be a positive integer. Suppose that H is a square root of G with at most n + k -1 edges. If H has a vertex u of degree at least 2 that has exactly one non-pendant neighbor v, then we recognize the corresponding structure in G and delete those vertices of G that are pendant vertices of H adjacent to u as shown in Figure 5, that is, similar to the algorithm of Lin and Skiena [START_REF] Lin | Algorithms for square roots of graphs[END_REF], we "trim" pendant edges in potential roots. Since the root we are looking for is not a tree, our trimming is more sophisticated and based on Lemmas 1 and 2. We will show that in this way we obtain a graph G with n vertices that has the following property: every pendant vertex of any square root H of G with at most n -1 + k edges is adjacent to a vertex that has at least two non-pendant neighbors in H .

Suppose that H has a sufficiently long induced path P , such that every internal vertex of P has exactly two non-pendant neighbors in H . Let u be an internal vertex of P , and let x, y ∈ V P be the two non-pendant neighbors of u. Using Lemmas 3 and 4, we recognize the corresponding structure in G and modify G as shown in Figure 6, that is, we delete u in H and join x any y by an edge. By performing this operation recursively, we obtain a graph G with n vertices. Suppose that H is a square root of G with at most n +k-1 edges. Let H * be the graph obtained from H by deleting all pendant vertices of H . Then H * has no vertices of degree 1, and the length of every path P with internal vertices of degree 2 in H * is bounded by a constant. This means that the size of H * is O(k). The vertices of V G \ V H * are pendant vertices of H . Consider the set Z of pendant vertices of H adjacent to a vertex u ∈ V H * . Then the vertices of Z are simplicial vertices of G . Moreover, they are true twins. We use Observation 1 and Lemma 5 to show that we may reduce the number of true twins in G if G has too many. This results in a graph G with n vertices such that n is O(k 2 ).

During the reduction from G to G we label some edges, that is, we include some edges in sets R or B and, therefore, obtain an instance (G , k, R, B) of Tree + k Edges Square Root with Labels.

Before we give a formal description of our reduction, we introduce the following terminology. A square root H of a graph G that has at most

|V G | -1 + k edges for some k ≥ 0 is called a solution of the instance (G, k) of Tree + k Edges Square Root. If R ⊆ E H and B ∩ E H = ∅ for two disjoint subsets R and B of E G , then H is also called a solution of the instance (G, k, R, B) of Tree + k Edges Square Root with Labels.
We are now ready to give the exact details of our reduction. Let G be a connected graph with n vertices and m edges, and let k be a positive integer. First we check whether G has a square root that is a tree by using the linear-time algorithm of Lin and Skiena [START_REF] Lin | Algorithms for square roots of graphs[END_REF]. If we find such a square root, then we stop and return a yes-answer. From now we assume that every square root of G (if there exists one) has at least one cycle.

Because connected graphs that have square roots are 2-connected, we also check whether G is 2-connected. If so, then we stop and return a noanswer. Otherwise we continue as follows. We introduce two sets of edges R and B. Initially, we set R = B = ∅. Next, we "trim" pendant edges in potential roots, that is, we exhaustively apply the following rule that consists of five steps that must be performed in increasing order.

Trimming Rule

1. Find a pair S = {u 1 , u 2 } of two adjacent vertices such that one connected component of G -S consists of r ≥ 3 vertices u 3 , . . . , u r that together with u 1 , u 2 form a clique in G.

If

N G [u 1 ] = N G [u 2 ]
then stop and return a no-answer.

If

N G [u 1 ] \ N G [u 2 ] = ∅ and N G [u 2 ] \ N G [u 1 ] = ∅, then stop and return a no-answer. 4. If N G [u 1 ] \ N G [u 2 ]
= ∅, then rename u 1 by u 2 and u 2 by u 1 (this step is for notational convenience only and has no further meaning). Exhaustively applying the trimming rule yields a sequence of instances (G 0 , k, R 0 , B 0 ), . . . , (G , k, R , B ) of Tree + k Edges Square Root with Labels for some integer ≥ 0, where (G 0 , k, R 0 , B 0 ) = (G, k, ∅, ∅) and where (G , k, R , B ) is an instance for which we have either returned a no-answer (in steps 2, 3 or 6) or for which there does not exist a set S as specified in step 1. For 0 ≤ i ≤ -1 we denote the sets R and B constructed in the (i + 1)th call of the trimming rule by R i and B i , respectively. We need the following lemma. Lemma 6. The instance (G , k, B , R ) has no solution that is a tree, and G is 2-connected. Moreover, (G , k, R , B ) has a solution if and only if (G 0 , k, R 0 , B 0 ) has a solution. If the trimming rule returned a no-answer for (G , k, R , B ), then (G 0 , k, R 0 , B 0 ) has no solution.

Define sets

R = {u 1 u 2 , . . . , u 1 u r } and B = {u i u j | 2 ≤ i < j ≤ r} ∪ {u 1 x | x ∈ N G (u 1 ) \ {u 2 , . . . , u r }}. 6. If R ∩ B = ∅ or R ∩ B = ∅,
Proof. For 0 ≤ i ≤ , we use induction to show that the graph G i is 2connected and that (G i , k, B i , R i ) has no solution that is a tree. Moreover, for all 1 ≤ i ≤ , we show that (G i , k, R i , B i ) has a solution if and only if

(G i-1 , k, R i-1 , B i-1
) has a solution. Finally, we prove that if the trimming rule returned a no-answer for (G , k, R , B ), then (G 0 , k, R 0 , B 0 ) has no solution.

If i = 0, then G i is 2-connected and (G 0 , k, B 0 , R 0 ) has no solution that is a tree by our initial assumption (as we had preprocessed G with respect to these two properties). Now suppose that 1 ≤ i ≤ . By our induction hypothesis, we may assume that G i-1 is 2-connected and that (G i-1 , k, B i-1 , R i-1 ) has no solution that is a tree.

Because the trimming rule applied on

(G i-1 , k, R i-1 , B i-1 ) yielded a new instance (G i , k, R i , B i ), the graph G i-1 has a pair S = {u 1 , u 2 } of adjacent vertices such that one connected component of G -S consists of vertices u 3 , . . . , u r that together with u 1 , u 2 form a clique in G i-1 . Step 6 implies that G i = G i-1 -{u 3 , . . . , u r }. Because we did not return a no-answer for (G i-1 , k, R i-1 , B i-1 ), we find that N G i-1 [u 1 ] ⊂ N G i-1 [u 2 ]. Hence, G i-1 is not a complete graph. Because G i-1 is 2-connected, this means that G i is 2-connected. We now show that any solution for (G i-1 , k, B i-1 , R i-1 )
corresponds to a solution for (G i , k, B i , R i ), and vice versa.

First suppose that H i-1 is an arbitrary solution for

(G i-1 , k, B i-1 , R i-1 ). Let N G i-1 (u 1 )\{u 2 , . . . , u r } = {x 1 , . . . , x p }. Because N G i-1 [u 2 ]\N G i-1 [u 1 ] = ∅, we find that G i-1 -{u 1 , u 2 } contains at least two connected compo- nents. As G i-1 is 2-connected, this means that {u 1 , u 2 } is a minimal {u 3 , . . . , u r }, V G i-1 \ {u 1 , . . . , u r }-separator of G i-1 .
Hence we may apply Lemma 2 iii), which tells us that u 2 u 1 , . . . , u r u

1 ∈ E H i-1 , u 3 u 2 , . . . , u r u 2 / ∈ E H i-1 , and u 1 x 1 , . . . , u 1 x p / ∈ E H i-1 . As R i ⊆ R i-1 ∪ {u 1 u 2 } and B i ⊆ B ∪ {u 1 x 1 , . . . , u 1 x p },
this means that the graph obtained from H i-1 by deleting u 3 , . . . , u r is a solution for (G i , k, R i , B i ); in particular note that

|E H i | ≤ |E H i-1 | -(r -3) ≤ |V G i-1 | -1 + k -(r -3) = |V G i | -1 + k, as required.
Now suppose that H i is an arbitrary solution for (G i , k, R i , B i ). Then adding the edges u 1 u 3 , . . . , u 1 u r to H i yields a graph H that is a square root of G i-1 . The edges u 1 u 3 , . . . , u 1 u r are not in B i-1 , as they are in the set R i-1 constructed in step 5 and R i-1 ∩ B i-1 = ∅ (otherwise the trimming rule would have stopped when processing (G i-1 , k, R i-1 , B i-1 ) in step 6). Now suppose that R i-1 contains an edge not in H. By definition of R i , this edge must be between some u s and u t with 3 ≤ s < t ≤ r. Then u s u t belongs to R i , because it was placed in the set R h for some h ≤ i -1. In step 4 of the corresponding call of the trimming rule, also one of the edges u s u 1 or u t u 1 was placed in B h . Hence either u s u 1 or u t u 1 belongs to B i-1 . This yields a contraction as both u s u 1 and u t u 1 belong to R i-1 and R i-1 ∩ B i-1 = ∅ (otherwise the trimming rule would have stopped when processing (G i-1 , k, R i-1 , B i-1 ) in step 6). Hence, after observing

that |E H | = |E H i | + (r -3) ≤ |V G i | -1 + k + (r -3) = |V G i-1 | -1 + k, we conclude that H is a solution for (G i-1 , k, R i-1 , B i-1
). We observe that H i cannot be a tree, as this would imply that H is a tree, which is not possible as (G i-1 , k, R i-1 , B i-1 ) does not have such a solution.

We are left to show that if the trimming rule returned a no-answer for (G , k, R , B ), then (G 0 , k, R 0 , B 0 ) has no solution. Due to the above, this comes down to showing that (G , k, R , B ) has no solution.

Suppose that the trimming rule returned a no-answer for (G , k, R , B ). Then this must have happened in step 2, 3 or 6, thus after step 1. Hence, there exists a pair of adjacent vertices S = {u 1 , u 2 } in G , such that one connected component of G -S has vertex set {u 3 , . . . , u r } and {u 1 , . . . , u r } is a clique.

First assume that S is not a separator of G , that is, G is a complete graph with vertex set {u 1 , . . . , u r }.

Then N G [u 1 ] = N G [u 2 ]
(and the noanswer given by the trimming rule happens in step 2). In order to obtain a contradiction, assume that (G , k, R , B ) has a solution H. Any star on |V G | vertices is a square root of G with at most |V G |-1+k edges. However, H cannot be such a star, as (G , k, R , B ) has no solution that is a tree. Hence, R = ∅ or B = ∅. Recall that B 0 = R 0 = ∅. Hence, ≥ 1, and non-emptiness of R or B must have been obtained in a previous call of the trimming rule, say in the (h + 1)th call of the trimming rule for some 0 ≤ h ≤ -1. By definition of steps 5 and 6, we find that B h = ∅ implies that R h = ∅. Hence, R h = ∅. Let u i u j ∈ R h . By steps 5 and 6, this edge has an end-vertex, say u i , such that u i u s ∈ B for all s ∈ {1, . . . , r} \ {i, j}. Consequently, u j u s ∈ E H for all s ∈ {1, . . . , r} \ {j}. Because the star with central vertex u j and leaves V G \ {u j } is not a solution for (G , k, R , B ), there must be an edge u s u t ∈ R with s, t ∈ {1, . . . , r} \ {j}. However then, due to steps 5 and 6, u j u s ∈ B or u j u t ∈ B , that is, at least one of these edges cannot be in H; a contradiction. Now assume that S is a separator of G . Because G is 2-connected, both u 1 and u 2 have at least one neighbor in V G \ {u 1 , . . . , u r }. Hence {u 1 , u 2 } is a minimal separator (and we may apply Lemma 2 in the remainder). Recall that the trimming rule only returns a no-answer in steps 2, 3, or 6. We consider each of these three cases separately.

Case 1.

The no-answer is given in step 2. Then N

G [u 1 ] = N G [u 2 ].
By Lemma 2 i) and ii), G is the union of two cliques {u 1 , . . . , u r } and {u 1 , u 2 , x 1 , . . . x p } where {x 1 , . . . , x p } = N G (u 1 ) \ {u 2 , . . . , u r }. In order to obtain a contradiction, suppose that (G , k, R , B ) has a solution H. By Lemma 2 i) and ii), we may assume without loss of generality that u 1 u 2 , . . . , u 1 u r ∈ E H , u 2 u 3 , . . . , u 2 u r / ∈ E H , u 1 x 1 , . . . , u 1 x p / ∈ E H and u 2 x 1 , . . . , u 2 x p ∈ E H . Recall that (G , k, R , B ) has no solution that is a tree. Hence, there exists an edge u i u j ∈ R for some i, j ∈ {2, . . . , r} or an edge x i x j ∈ R for some i, j ∈ {x 1 , . . . , x p }. By symmetry, we only need to consider the case u i u j ∈ R . This edge was placed in R in some previous call of the trimming rule. However, due to steps 5 and 6 performed in that call, we find that u i u 1 ∈ B or u j u 1 ∈ B , that is, at least one of these two edges cannot be in H; a contradiction.

Case 2.

The no-answer is given in step 3. Then we have N

G [u 1 ]\N G [u 2 ] = ∅ and N G [u 2 ] \ N G [u 1 ] = ∅.
Due to Lemma 2 i) and iii), (G , k, R , B ) has no solution.

Case 3. The no-answer is given in step 6. Then R ∩ B = ∅ or R ∩ B = ∅. By step 4, we may assume that

N G [u 1 ] \ N G [u 2 ] = ∅ and that N G [u 2 ] \ N G [u 1 ] = ∅. In order to obtain a contradiction, suppose that (G , k, R , B ) has a solution H. By Lemma 2 iii), R = {u 2 u 1 , . . . , u r u 1 } ⊆ E H . Hence R ∩ B = ∅, which means that R ∩ B = ∅.
Let {x 1 , . . . , x p } = N G (u 1 ) \ {u 1 , . . . , u r }. Then we have that B = {u i u j | 2 ≤ i < j ≤ r} ∪ {u 1 x 1 , . . . , u 1 x p }. By the same arguments as used in Case 1, we find that u i u j / ∈ R for all 2 ≤ i < j ≤ r. By Lemma 2 iii), we find that E H , and hence R , does not contain the edges u 1 x 1 , . . . , u 1 x p . We conclude that R ∩ B = ∅; a contradiction. Lemma 6 shows that the trimming rule is safe, that is, we either found that (G, k, ∅, ∅) has no solution, or that we may continue with the instance (G , k, R , B ) instead. Suppose the latter case holds. Recall that (G , k, R , B ) has no set S as specified in step 1, as otherwise we would have applied the trimming rule once more.

To simplify notation, we write (G, k, R, B) = (G , k, R , B ). We need the following properties that hold for every solution of (G, k, R, B) (should (G, k, R, B) have a solution).

Lemma 7. Any solution H of (G, k, R, B) satisfies the following properties: i) the neighbor of every pendant vertex of H has at least two non-pendant neighbors in H;

ii) only edges of G incident to pendant vertices of H can be in R or B;

iii) if a pendant vertex v of H is incident to an edge of R in G, then all other edges of G that are incident to v are in B.

Proof. In order to show i), suppose that H is a solution of an instance (G, k, R, B), such that H contains a pendant vertex u adjacent to a vertex v. If d H (v) = 1, then H is isomorphic to K 2 , which is not possible as (G, k, R, B) has no solution that is a tree. Hence d H (v) ≥ 2 and v has at least one neighbor other than u. If all neighbors of v are pendant, then H is a tree; a contradiction. Hence, v has at least one non-pendant neighbor. If v has a unique non-pendant neighbor w, then by Lemma 1, G-{v, w} contains a connected component induced by the pendant neighbors of v whose vertices together with v and w form a clique in G. Hence, we can apply the trimming rule on S = {v, w}, which is a contradiction. Properties ii) and iii) follow from the construction of R and B in steps 4 and 5 of the trimming rule.

We now exhaustively apply the following rule on (G, k, R, B). This rule consists of four steps that must be performed in increasing order.

We also need the following lemma about true twins in G 0 , . . . , G that we will use later as well.

Lemma 9. Let 1 ≤ i ≤ and {u 1 , u 2 , u 3 } be the F -triple that yielded instance (G i , k, R i , B i ). Then any true twins v, w ∈ V G i \ {u 1 , u 3 } in G i are true twins in G i-1 .
Proof. Suppose that G i has true twins v, w ∈ V G i \{u 1 , u 3 } that are not true twins in G i-1 . Consider the corresponding F -graph that yielded the instance (G i , k, R i , B i ). Because v, w are not true twins in G i-1 , the neighborhood of v or w is modified by the path reduction rule. We may assume without loss of generality that the neighborhood of v is changed. Note that neither v = u 2 nor v ∈ {u 4 , . . . , u r } if r ≥ 3, because these vertices have been removed in step 4 of the path reduction rule when G i was constructed. As v / ∈ {u 1 , u 3 } either, we find that v ∈ {x 1 , . . . , x p } ∪ {y 1 , . . . , y q }. By symmetry we may assume that v ∈ {x 1 , . . . , x p }. We observe that v is adjacent to both u 1 and u 3 in G i . Because the neighborhood of each x i is modified in the same way (namely by the removal of u 2 and the addition of u 3 ), we find that w / ∈ {x 1 , . . . , x p }. Because u and v are true twins, they are adjacent. Because no two vertices x i and y j are adjacent in G i , we then obtain that w / ∈ {y 1 , . . . , y q }. We conclude that the neighborhood of w is not modified by the application of the path reduction rule. Because v is adjacent to u 1 and u 3 in G i and v, w are true twins in G i , this means that w is adjacent to u 1 and u 3 in G i-1 already. However, by definition of an Fgraph, N G i-1 (u 1 ) ∪ N G i-1 (u 3 ) = {u 2 , u 4 , . . . , u r }, and u 2 , u 4 , . . . , u r are not in G i as they were removed by the path reduction rule; a contradiction. The next lemma is the analog of Lemma 6 for the path reduction rule.

Lemma 10. The instance (G , k, B , R ) has no solution that is a tree, and G is 2-connected. Moreover, (G , k, R , B ) has a solution if and only if (G 0 , k, R 0 , B 0 ) has a solution. If the path reduction rule returned a noanswer for (G , k, R , B ), then (G 0 , k, R 0 , B 0 ) has no solution.

Proof. For 0 ≤ i ≤ , we use induction to show that the graph G i is 2connected and that (G i , k, B i , R i ) has no solution that is a tree. Moreover, for all 1

≤ i ≤ , we show that (G i , k, R i , B i ) has a solution if and only if (G i-1 , k, R i-1 , B i-1
) has a solution. Finally, we prove that if the path reduction rule returned a no-answer for (G , k, R , B ), then (G 0 , k, R 0 , B 0 ) has no solution.

If i = 0, then G i is 2-connected and (G 0 , k, B 0 , R 0 ) has no solution that is a tree by Lemma 6. Now suppose that 1 ≤ i ≤ . By our induction hypothesis, we may assume that G i-1 is 2-connected and that (G i-1 , k, B i-1 , R i-1 ) has no solution that is a tree.

Because the path reduction rule applied on

(G i-1 , k, R i-1 , B i-1 ) yielded a new instance (G i , k, R i , B i ), the graph G i-1 has an F -triple S = {u 1 , u 2 , u 3 }. Because G i-1 is 2-connected, G i is 2-connected; in
particular note that p ≥ 1 and q ≥ 1 by definition of an F -triple.

First suppose that H i-1 is a solution for (G i-1 , k, R i-1 , B i-1 ). We claim that H i-1 contains no edge u s u t ∈ R i-1 with 4 ≤ s < t ≤ r. We prove this claim by contradiction: let

u s u t ∈ E H i-1 ∩ R i-1 for some 4 ≤ s < t ≤ r.
Suppose that u s u t ∈ R 0 . We may apply Lemma 7 as (G 0 , k, R 0 , B 0 ) has a solution H 0 ; if i ≥ 1 this fact follows from the induction hypothesis. By Lemma 7 we find that either u s is a pendant vertex in H 0 with u t as its (unique) neighbor, or the other way around. We may assume without loss of generality that the first case holds, that is, u s is pendant in H 0 and has u t as its neighbor. Note that

N G 0 [u s ] ⊆ N G 0 [u t ]. We claim that N G h [u s ] ⊆ N G h [u t ] for all 0 ≤ h ≤ i -1.
To obtain a contradiction, suppose not. Then at some point u s will be made adjacent to a vertex v not adjacent to u t for the first time in step 4 of some call of the path reduction rule. Let S = {u 1 , u 2 , u 3 } be the corresponding F -triple. Then we may assume without loss of generality that either u s / ∈ {u 1 , u 2 , u 3 } is adjacent to u 1 and u 2 but not to u 3 = v, or that v / ∈ {u 1 , u 2 , u 3 } is adjacent to u 1 , u 2 but not to u 3 = u s . In the first case, u t is not in {u 1 , u 2 }, but must be adjacent to u 1 and u 2 by our assumption, and hence, the edge u t u 3 = u t v will be added in the same step; a contradiction. In the second case, as u s is adjacent to u 1 and u 2 , also u t is adjacent to u 1 and u 2 (again by our assumption). Because u t does not get removed in this step (as u t belongs to G i-1 ), this violates the definition of an F -triple. We conclude that

N G h [u s ] ⊆ N G h [u t ] for all 0 ≤ h ≤ i -1.
We first assume that u s u 2 is an edge in G 0 .

Step 4 of the path reduction rule only moves an edge u 1 u 3 from a B-set to an R-set if u 1 and u 3 are outer vertices of an F -triple. In that case all their common neighbors will be removed from the graph by the definition of an

F -triple. Because N G h [u s ] ⊆ N G h [u t ]
for all 0 ≤ h ≤ i -1, we find that u t is a common neighbor of u 2 and u s in G h for all 0 ≤ h ≤ i -1; in particular u t belongs to G i-1 . Hence, the edge u s u 2 will never be moved from B h to R h in step 4 of the (h + 1)th call of the path reduction rule for some 0 ≤ h ≤ i -1. If u s u 2 is not an edge in G 0 , then at some point it will be an edge due to step 4 of some call of the path reduction rule, say the (h * + 1)th call for some 0 ≤ h * ≤ i -1. In the same step, u s u 2 will be placed in the set B h * . Then, again because

N G h [u s ] ⊆ N G h [u t ]
for all 0 ≤ h ≤ i -1, the edge u s u 2 will never be moved from B h * to a set R h for some h * < h ≤ i -1. Hence, in both cases, we find that u s u 2 ∈ B i-1 even if i ≥ 1. As u s u 2 ∈ R i-1 (due to step 2 in the ith call), we find that R i-1 ∩ B i-1 = ∅. Hence, the path reduction rule would return a no-answer for (G i-1 , k, R i-1 , B i-1 ) in step 3, and consequently the instance (G i , k, R i , B i ) would not exist; a contradiction. Now suppose that u s u t was placed in some set R h for some 1 ≤ h ≤ i -1. Properties ii) and iii) of an F -graph together with step 4 of the path reduction rule imply the following: if u s and u t form a triangle with some vertex z, then u s z ∈ B h or u t z ∈ B h . Moreover, in the case in which z ∈ V G i-1 , this property is not violated by any subsequent intermediate calls of the path reduction rule. Hence, if u s u t ∈ R i-1 , then u s u 2 ∈ B i-1 or u t u 2 ∈ B i-1 , and as {u s u 2 , u t u 2 } ⊆ R i-1 as well, we derive the same contradiction as before. We conclude that H i-1 contains no edge u s u t ∈ R i-1 with 4 ≤ s < t ≤ r. Also, by Lemma 4, we may assume without loss of generality that H i-1 contains no edge u s u t / ∈ R i-1 with 4 ≤ s < t ≤ r; otherwise we could remove such an edge from H i-1 , and the resulting graph would still be a solution for (G i-1 , k, R i-1 , B i-1 ). Consequently, u 4 , . . . , u r are pendant vertices of H i-1 . This means that the graph H obtained from H i-1 by deleting vertices u 2 , u 4 , . . . , u r and adding the edge u 1 u 3 is not only a square root of G i with at most

|V G i | -1 + k edges but even a solution for (G i , k, R i , B i ).
Now suppose that H i is a solution for (G i , k, R i , B i ). By Lemma 8, the graph H obtained from H i by removing the edge u 1 u 3 and by adding u 2 and vertices u 4 , . . . , u r (if r ≥ 4) together with edges u 2 u 1 , u 2 u 3 , . . . , u 2 u r is a solution for (G i-1 , k, R i-1 , B i-1 ). We observe that H i cannot be a tree, as this would imply that H is a tree, which is not possible as

(G i-1 , k, R i-1 , B i-1 )
does not have such a solution by the induction hypothesis.

Finally, suppose that the path reduction rule returned a no-answer for (G , k, R , B ). We must show that (G 0 , k, R 0 , B 0 ) has no solution. Due to the above this comes down to showing that (G , k, R , B ) has no solution. The only step in which the path reduction rule can return a no-answer is in step 3, meaning that G has an

F -triple S = {u 1 , u 2 , u 3 } such that R ∩ B = ∅ or R ∩ B = ∅.
In order to obtain a contradiction, suppose that (G , k, R , B ) has a solution H. By Lemma 4, the graph F shown in Figure 4 

is a subgraph of H such that d H (u 2 ) = r -1, {x 1 , . . . , x p } = N H (u 1 ) \ {u 2 } and {y 1 , . . . , y q } = N H (u 3 ) \ {u 2 }. Consequently, R = {u 2 u 1 , u 2 u 3 , . . . , u 2 u r } ⊆ E H , and hence R ∩ B = ∅, and moreover, E H ∩ B = E H ∩ ({x 1 u 2 , . . . , x p u 2 } ∪ {y 1 u 2 , .., y q u 2 } ∪ {u 1 u 3 , . . . , u 1 u r } ∪ {u 3 u 4 , . . . , u 3 u r }) = ∅, and hence R ∩ B = ∅; a contradiction.
Lemma 10 shows that the path reduction rule is safe, that is, we either found that (G 0 , k, R 0 , B 0 ) has no solution, or that we may continue with the instance (G , k, R , B ) instead. Suppose the latter case holds. Recall that (G , k, R , B ) has no F -triple, as otherwise we would have applied the path reduction rule once more. Also recall that R 0 is the set of vertices in the set R immediately after the trimming rule. We write R 1 = R 0 ∩ R and R 2 = R \R 0 . To simplify notation, from now on, we also write (G, k, R, B) = (G , k, R , B ); note that R = R 1 ∪R 2 . We need the following properties that hold for every solution of (G, k, R, B) (should (G, k, R, B) have a solution).

We call an induced cycle C in a graph H semi-pendant if all but at most one of the vertices of C are only adjacent to pendant vertices of H and their neighbors on C. Similarly, we call an induced path P in a graph H semipendant if all internal vertices of P are only adjacent to pendant vertices of H and their neighbors on P . Lemma 11. Any solution H of (G, k, R, B) has the following properties: i) the neighbor of every pendant vertex of H has at least two non-pendant neighbors in H;

ii) only edges of G incident to pendant vertices of H can be in R 1 , and if a pendant vertex v of H is incident to an edge of R, then all other edges of G that are incident to v are in B;

iii) no edge of R 2 is incident to a pendant vertex of H; iv) the length of every semi-pendant path in H is at most 5;

v) the length of every semi-pendant cycle in H is at most 6.

Proof. We prove that property i) holds by contradiction. Suppose that H contains a vertex v that is the (unique) neighbor of a pendant vertex u, such that v has at most one non-pendant neighbor in H. If all neighbors of v in H are pendant, then H is a tree. However, this would contradict Lemma 10. Hence, v has a unique non-pendant neighbor in H. Recall that H is a solution for (G , k, R , B ). Note that if v is an outer vertex of the corresponding F -triple, then Lemma 8 tells us that (G -1 , k, R -1 , B -1 ) has a solution H -1 in which v is a non-pendant vertex that has at least one pendant neighbor and that has a unique non-pendant neighbor. Hence, by applying Lemma 8 inductively, we obtain that (G 0 , k, R 0 , B 0 ) has a solution H 0 containing a vertex with exactly the same property. This contradicts Lemma 7 i). We conclude that property i) holds. We now show property ii). By Lemma 7, every edge of G 0 that is in R 0 is incident to a pendant vertex u of any solution for (G 0 , k, R 0 , B 0 ) such that all the other edges of u belong to B 0 . We observe that, when applying the path reduction rule, u will neither be in an F -triple nor removed from the graph, but u could be a vertex of x-type or y-type. Hence, the path reduction rule may change the neighbors of u but if so any new edges incident to it will be placed in B (and stay in B afterward). Consequently, u must be a pendant vertex in any solution for (G, k, R, B)(= (G , k, R , B )) as well. We conclude that ii) holds.

We now prove prove property iii). Recall that we applied the path reduction rule only after first applying the trimming rule exhaustively. When we apply the path reduction rule on an F -triple {u 1 , u 2 , u 3 }, then afterward u 1 and u 3 have degree at least 2 in any solution for the resulting instance, which can be seen as follows. The edge u 1 u 3 is added to R 2 ⊆ R, and hence belongs to any solution. We also have that u 1 is adjacent to x 1 in G, whereas the edge u 3 x 1 belongs to B. This means that u 1 cannot be made adjacent to x 1 via the path u 1 u 3 x 1 in H, and as such must have at least one other neighbor in H. For the same reason u 3 , which is adjacent to y 1 in G whereas u 1 y 1 ∈ B, must have another neighbor in H besides u 1 . As a consequence, any edge in R 2 cannot be incident to a pendant vertex of H, that is, we have shown property iii).

We now prove property iv). Let P be a semi-pendant path of length at least 6 in H. By definition, P is an induced path. Hence, we can take any three consecutive vertices of P as the three vertices u 1 , u 2 , u 3 in Lemma 3. By applying this lemma, we find that G is an F -graph implying that we could have applied the path reduction rule once more; a contradiction. Property v) can be proven by using the same arguments.

We need the following lemma that holds in case a solution exists for (G, k, R, B).

Lemma 12. The number of non-pendant vertices of any solution for (G, k, R, B) is at most 15k -14.

Proof. Suppose (G, k, R, B) has a solution H. Let Z be the set of pendant vertices of H, and let H * = H -Z. We need to show that V H * has at most 15k -14 vertices. Let V be the set of vertices that have degree at least 3 in H * , and let V be the set of vertices of degree 2 in H * . By Lemma 11 i) every vertex of H that is adjacent to a pendant vertex of H has degree at least 2 in H * . Hence, H * has no vertices of degree at most 1, that is,

V H * = V ∪ V . Because H is a solution for (G, k, R, B), we have that |E H | ≤ |V G | -1 + k = |V H | -1 + k. This means that |V | + |V | -1 + k = |V H | -|Z| -1 + k ≥ |E H | -|Z| = |E H * | = 1 2 v d H * (v) ≥ 1 2 (3|V | + 2|V |).
Hence, |V | ≤ 2k -2. Let α be the number of paths in H * that only have internal vertices of degree 2; note that by Lemma 11 iv) the length of such paths is at most 5. Let β be the number of cycles in H * that have exactly one vertex of degree at least 3; note that by Lemma 11 v) the length of such cycles is at most 6. Because

|E H * | ≤ |V | + |V | -1 + k, we find that α + β ≤ 2k -2 -1 + k = 3k -3 and that β ≤ k. Hence, |V | ≤ 5k + 4((3k -3) -k) = 13k -12.
Consequently, H * has at most 2k -2 + 13k -12 = 15k -14 vertices.

We are now ready to state our final reduction rule. The goal of this rule is to apply it once in order to deduce either that (G, k, R, B) has no solution or to derive a new instance of bounded size. A true twin partition of a set of vertices S of a graph G is a partition S 1 , . . . , S t of S such that for all u, v ∈ S and all 1 ≤ i ≤ t we have that u and v are in S i if and only if u and v are true twins in G. If S consists of simplicial vertices only we observe that there is no edge between any two vertices that belong to different sets S i and S j .

Simplicial Vertex Reduction Rule 1. Find the set S of all simplicial vertices of G that are not incident to the edges of R 2 , and moreover, that have all but one of their incident edges in B should they be incident to an edge of R 1 .

2. If |V G \ S| > 15k -14, then stop and return a no-answer.

3. Construct the true twin partition S 1 , . . . , S t of S. Let X 1 , . . . , X t be the sets of vertices incident to an edge of R 1 in S 1 , . . . , S t , respectively.

4. If t > 15k -14, then stop and return a no-answer.

5. If there exist a set X i such that the edges of R 1 incident to a vertex of X i have no common end-vertex, then stop and return a no-answer.

6. If there exist a set S i such that |S i \ X i | ≥ 15k -13 and such that there are three vertices u ∈ X i , v ∈ N G (u) and x ∈ S i \ X i with uv ∈ R 1 and xv ∈ B, then stop and return a no-answer.

7. For i = 1, . . . , t, if |X i | > 1, then take |X i | -1 arbitrary vertices of X i and delete them both from G and from S i , also delete the edges of R and B that are incident to these vertices.

8. For i = 1, . . . , t, if |S i | > 15k -13, then delete |S i | -15k + 13 arbitrary vertices of S i \ X i from G, also delete the edges of R and B that are incident to these vertices.

Applying the simplicial vertex reduction rule on (G, k, R, B) either yields a no-answer (in step 2, 4, 5 or 6) or a new instance ( Ĝ, k, R, B) of Tree + k Edges Square Root with Labels. We will show that if Ĝ exists, then its size is bounded by a quadratic function of k. For doing so we first need the following two lemmas. Lemma 13. For i = 1, . . . , t, no vertex of S i \X i is incident to an edge in R.

Proof. By definition of S i , no vertex of S i , and hence no vertex of S i \ X i , is incident to an edge in R 2 . By definition of X i , no vertex in S i \X i is incident to an edge in R 1 . Because R = R 1 ∪ R 2 , we have proven Lemma 13.

For x ∈ V G , we let B(x) denote the set of edges of B incident to x. Proof. We start by showing that (G, k, R, B) has no solution if the simplicial vertex reduction rule returned a no-answer for (G, k, R, B). This can happen in step 2, 4, 5 or 6, each of which we discuss in a separate case.

Case 1.

The no-answer is given in step 2. Suppose (G, k, R, B) has a solution H. We will prove that |V G \ S| ≤ 15k -14, which means that returning a no-answer is correct if |V G \ S| > 15k -14.

Let Z be the set of pendant vertices of H, and let H * = H -Z. By Observation 1 i), vertices in Z are simplicial vertices of G. Then, by Lemma 11 ii) and iii), we find that Z ⊆ S. Hence,

|V G \ S| = |V G | -|S| = |V H | -|S| ≤ |V H | -|Z| = |V H * | ≤ 15k -14
, where the last inequality follows from Lemma 12.

Case 2.

The no-answer is given in step 4. Suppose (G, k, R, B) has a solution H. We will prove that t ≤ 15k -14, which means that returning a no-answer is correct if t > 15k -14.

Let H * be the graph obtained from H after removing all pendant vertices of H. Then |V H * | ≤ 15k -14 by Lemma 12. If a set S i contains a pendant vertex u of H, then u is adjacent to a vertex v of H * . Then, by Observation 1 ii), v is not adjacent to pendant vertices of H in any S j with j = i. Otherwise S i consists of non-pendant vertices of H, that is, vertices of H * ; being nonempty S i contains at least one vertex of H * . We conclude that every set in the true twin partition of S corresponds to at least one unique vertex of H * . If their total number t > 15k -14, this means that |V H * | > 15k -14; a contradiction. Hence, t ≤ 15k -14, as we had to show.

Case 3.

The no-answer is given in step 5. Suppose that (G, k, R, B) has a solution H. We will prove that the edges of R 1 incident to a set X i have a common end-vertex for i = 1, . . . , t, which means that returning a no-answer is correct should this not be the case.

In order to obtain a contradiction, suppose that some set X i contains two vertices u and v that are incident to edges uu , vv ∈ R 1 with u = v . By Lemma 11 ii), we find that uu and vv are incident to pendant vertices of H. By Observation 1 iii), these pendant vertices are not adjacent in G. However, from the definition of S i we deduce that u, v, u , v are mutually adjacent; a contradiction. This completes Case 3.

Case 4.

The no-answer is given in step 6. Then there exists a set S i such that |S i \ X i | ≥ 15k -13 and such that there are three vertices u ∈ X i , v ∈ N G (u) and x ∈ S i \ X i with uv ∈ R 1 and xv ∈ B. In order to obtain a contradiction, assume that (G, k, R, B) has a solution H. By Lemma 12, H has at most 15k -14 non-pendant vertices. Because |S i \ X i | ≥ 15k -13, this means that at least one vertex y ∈ S i \ X i is a pendant vertex of H. Also, u ∈ X i is a pendant vertex of H that has v as its unique neighbor, because uv ∈ R 1 and all other edges incident to u belong to B by definition of S. If y = x, then v is not adjacent to y in H, because xv ∈ B. If y = x, then v is not adjacent to y in H either, because xv ∈ B and B(x) = B(y) (due to Lemma 14) imply yv ∈ B. We conclude that u and y are pendant vertices of H adjacent to different vertices. However, from Observation 1 iii) we derive that u and y are not adjacent in G. This is a contradiction, because u and y are true twins in G by definition of S i . This completes Case 4.

From now on assume that the simplicial vertex reduction rule did not return a no-answer after performing step 6. Let (G , k, R , B ) be the instance created after applying step 7 to some set X i = {x 1 , . . . , x } with ≥ 2, that is, G is the graph obtained from G after deleting x 2 , . . . , x , whereas R and B are the sets obtained from R and B, respectively, after deleting edges incident to x 2 , . . . , x from them. We claim that (G , k, R , B ) has a solution if and only if (G, k, R, B) has a solution. Before we prove this claim, we first observe that in any solution H for (G, k, R, B) the vertices x 1 , . . . , x are pendant vertices in H. This is because x 1 , . . . , x are incident to exactly one edge in R 1 , whereas all the other edges incident to them belong to B. Moreover, x 1 , . . . , x have a (unique) common neighbor in H, as otherwise a no-answer would have been returned in step 5. We let v denote this common neighbor. Similarly, x 1 is a pendant vertex that has v as its (unique) neighbor in any solution H for (G , k, R , B ).

First suppose that (G , k, R , B ) has a solution H . Then the graph obtained from H by adding the vertices x 2 , . . . , x and the edges x 2 v, . . . , x v is a square root of G by Lemma 5 i). By definition of R , B and the set X i (all of whose vertices are incident to one edge of R 1 ⊆ R and to edges in B) it is a solution for (G, k, R, B) as well. Now suppose that (G, k, R, B) has a solution H. Then the graph obtained from H after deleting x 2 , . . . , x is a square root of G by Lemma 5 ii). By definition of R and B , it is a solution for (G , k, R , B ) as well.

We denote the instance resulting from step 7 by (G, k, R, B) again and observe that every X i now contains at most one vertex. It remains to consider what happens at step 8. We let (G , k, R , B ) be the instance created after applying step 8 to some set S i with |S i | > 15k -13, that is, G is the graph obtained from G after deleting a set T of |S i |-15k+13 ≥ 1 arbitrary vertices from S i \ X i (note that this is possible as |X i | ≤ 1), whereas R and B are the sets obtained from R and B, respectively, after deleting the edges that are incident to vertices of T . We claim that (G , k, R , B ) has a solution if and only if (G, k, R, B) has a solution.

First suppose that (G , k, R , B ) has a solution H . Because we could not apply the trimming and path reduction rules for (G, k, R, B), we cannot apply these rules for (G , k, R , B ) either. Then, by using the same arguments that we applied for (G, k, R, B) in the proof of Lemma ∈ B for all y ∈ S i \ X i as otherwise the algorithm would have produced a no-answer at step 6. Now suppose that (G, k, R, B) has a solution H. By Lemma 12, the graph H contains at most 15k -14 non-pendant vertices. Hence, H has at least |S i | -15k + 14 ≥ 15k -12 -15k + 14 = 2 pendant vertices. Because vertices in S i \ X i are true twins not incident to edges of R and B(x) = B(y) for any x, y ∈ S i \ X i , we may assume without loss of generality that the vertices of T are amongst these pendant vertices of H. If X i = {x} = ∅, then x is a pendant vertex in H incident to a unique edge xv ∈ R 1 . By Observation 1, all pendant vertices of H that are in S i are adjacent to v in H. Then the graph obtained from H after deleting the vertices of T is a square root of G by Lemma 5 ii). By definition of R and B , it is a solution for (G , k, R , B ) as well. If X i = ∅, then all pendant vertices of H that are in S i are adjacent to some v in H by Observation 1. Then, by Lemma 5 (ii), the graph obtained from H by deleting the vertices of T is a square root of G . By definition of R and B , it is a solution for (G , k, R , B ) as well.

From the above it follows that the instance ( Ĝ, k, R, B) obtained after step 8 has a solution if and only if (G, k, R, B) has a solution. In order to complete the proof, we must show that Ĝ has at most (15k -14)(15k -12) vertices. Each S i has at most 15k -13 vertices due to step 8, and we also have t ≤ 15k -14 due to step 4. Hence |S| ≤ (15k -14)(15k -13). As the number of vertices in V G \ S is at most 15k -14 due to step 2, we obtain that |V Ĝ| ≤ (15k -14)(15k -13) + 15k -14 = (15k -14)(15k -12), as required.

Solving the Labeled Variant and Running Time Analysis

Let n and m denote the number of vertices and edges of the graph G of the original instance (G, k) of Tree + k Edges Square Root. In order to complete the proof of Theorem 1, we first note that the trimming and Lemma 16. Let H be a spanning subgraph of a graph G. Then H is a square root of G if and only if E H is an independent set of P(G) and every two adjacent vertices in G are at distance at most 2 in H.

Proof. First suppose that H is a square root of G. By definition, every two adjacent vertices in G are of distance at most 2 in H. In order to show that E H is an independent set in P(G), assume that two edges e 1 , e 2 ∈ E H are adjacent vertices in P(G). Then e 1 = xy and e 2 = yz for three distinct vertices x, y, z ∈ V G with xz / ∈ E G . This means that x and z are of distance 2 in H implying that xz ∈ E G , which is a contradiction. Now suppose that E H is an independent set of P(G) and that every two adjacent vertices in G are at distance at most 2 in H. In order to show that H is a square root of G, it suffices to show that every two non-adjacent vertices in G have distance at least 3 in H. Let u and v be two non-adjacent vertices in G that have distance at most 2 in H. Then there exists a vertex z / ∈ {u, v} such that uz, vz ∈ E H . Then e 1 = uz and e 2 = vz are adjacent in P(G) contradicting the independence of E H in P(G).

We use Lemma 16 to prove Propositions 1 and 2. Here, we use the O * -notation to suppress any polynomial factors. A vertex cover is a subset U ⊆ V such that every edge is incident with at least one vertex of U . The Vertex Cover problem is that of testing whether a given graph has a vertex cover of size at most p for a given integer p.

In Proposition 1 we prove that there is a O * (2 k ) time algorithm to decide whether a given graph G has square root H such that |E G \ E H | ≤ k. Proof. Let G be a graph with n vertices and m edges, and let k ≥ 0 be an integer. By Lemma 16 it suffices to check whether P(G) has a vertex cover U of size at most k such that H U = (V G , E G \ U ) is a square root of G. All vertex covers of size at most k of a graph can be enumerated by adapting the standard O * (2 k ) branching algorithm for the Vertex Cover problem (see for example [START_REF] Downey | Parameterized complexity[END_REF]). It requires O(m 2 ) time to compute P(G) and O(nm) time to check whether a graph H U is a square root of G. Hence the overall running time of our algorithm is O * (2 k ).

We observe that Maximum Square Root has a linear kernel for connected graphs. This immediately follows from a result of Aingworth, Motwani and Harary [2], who proved that if H is a square root of a connected n-vertex graph G = K n , then |E G \ E H | ≥ n -2. Hence, n ≤ k + 2 for every yes-instance (G, k) of Maximum Square Root with G = K n (trivially, K n is its own square root). Note that this kernel does not lead to a faster running time than O * (2 k ).
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In Proposition 2 we present our exact algorithm, which does not only solve the decision problem but in fact determines a square root of a given graph that has maximum number of edges. Proof. Let G be a graph with n vertices and m edges, and let k ≥ 0 be an integer. We compute the graph P(G), enumerate all maximal independent sets I of P(G), and verify for each I ⊆ E G whether G is the square of the graph H I = (V G , I). Out of those graphs H I that are square roots of G, return the one with maximum number edges; if no such graph H I has been found, then G has no square roots. Correctness follows from Lemma 16. Recall that P(G) can be computed in time O(m 2 ). All the maximal independent sets of the m-vertex graph P(G) can be enumerated in time O * (3 m/3 ) using the polynomial delay algorithm of Tsukiyama et al. [START_REF] Tsukiyama | A new algorithm for generating all the maximal independent sets[END_REF], since P(G) has at most 3 m/3 maximal independent sets [START_REF] Moon | On cliques in graphs[END_REF]. Finally, recall that for each maximal independent set I, we can check in time O(nm) whether (H I ) 2 = G. Hence the overall running time of our algorithm is O * (3 m/3 ).

Open Problems

We conclude our paper with two open problems. First, is it also possible to construct an exact algorithm for Minimum Square Root that is better than the trivial exact algorithm?

Second, recall that if H is a square root of a connected n-vertex graph G = K n , then |E G \E H | ≥ n-2 [2]. Is it FPT to decide whether a connected n-vertex graph G = K n has a square root that can be obtained by removing at most n -2 + k edges, or equivalently, whether a connected n-vertex graph G = K n has a square root with at least |E G | -n + 2 -k edges, when parameterized by k? In particular, can it be decided in polynomial time whether a connected graph G has a square root with exactly |E G | -|V G | + 2 edges?

Lemma 3 .

 3 Let H be a square root of a graph G. Let H contain the graph F of Figure4as a subgraph, such that u 4 , . . . , u r are pendant vertices of H

Figure 5 :

 5 Figure 5: Trimming; the edges of H are shown by the solid lines.

Figure 6 :

 6 Figure 6: Reduction of paths; the edges of H are shown by the solid lines.

  then stop and return a no-answer. Otherwise, set R = R ∪ R , B = B ∪ B , delete u 3 , . . . , u r from G and also delete all edges incident to u 3 , . . . , u r from R and B.

Lemma 15 .

 15 If the simplicial vertex reduction rule returned a no-answer for (G, k, R, B), then (G, k, R, B) has no solution. Otherwise, the new instance ( Ĝ, k, R, B) has a solution if and only if (G, k, R, B) has a solution. Moreover, Ĝ has at most (15k -14)(15k -12) vertices.

Proposition 1 .

 1 Maximum Square Root can be solved in time O * (2 k ).

Proposition 2 .

 2 Maximum Square Root can be solved in time O * (3 m/3 ) on graphs with m vertices.

  Question: has G a square root with at most n -1 + k edges?We show the following result. Theorem 1. The Tree + k Edges Square Root problem can be solved in time 2 O(k 4 ) + O(n 4 m) on graphs with n vertices and m edges.The remainder of this section is organized as follows. In Section 2.1 we show a number of structural results needed to prove Theorem 1. In Section 2.2 we consider the more general problem Edge Square Root, we can solve the obtained instance of Tree + k Edges Square Root with Labels by a brute force algorithm. In Section 2.3 we analyze the corresponding running time and complete the proof of Theorem 1.

	2 The Minimum Square Root Problem
	As discussed in Section 1.1, we consider connected graphs only and parame-
	terize Minimum Square Root by k = s -(n -1). From now on we denote
	this problem as
	Trees + k Edges Square Root
	Input:	a connected graph G and an integer k ≥ 0
	Parameter: k

Tree + k Edges Square Root with Labels Input: a connected graph G, an integer k ≥ 0 and two disjoint subsets R, B ⊆ E G Parameter: k. Question: has G a square root H with at most n -k + 1 edges, such that R ⊆ E H and B ∩ E H = ∅? Note that the sets R and B in this problem are given sets of required edges (that have to be in the square root) and blocked edges (that are not allowed to be in the square root), respectively. Also note that Tree + k Edges Square Root with Labels generalizes Trees + k Edge Square Root; choose R = B = ∅. We reduce Tree + k Edges Square Root to Tree + k Edges Square Root with Labels where the size of the graph in the obtained instance is O(k 2 ). In other words, we construct a quadratic generalized kernel for Tree + k Edges Square Root. This means that to solve an instance of Trees + k

  and {u 2 } is a minimal ({u 1 , u 3 , . . . , u r },V H \ {u 1 , . . . , u r })-separator in H, or u 3 u 1 , . . . , u r u 1 / ∈ E H , u 3 u 2 , . . . , u r u 2 ∈ E H , u 2 y 1 , . . . , u 2 y q / ∈ E H and {u 1 } is a minimal ({u 2 , .., u r }, V H \ {u 1 , .., u r })-separator in H (see Figure 2 i)). ii) If u 1 , u 2 are true twins in G, then either u 1 x 1 , . . . , u 1 x p ∈ E H or u 2 x 1 , . . . ,u 2 x p ∈ E H . Moreover, in this case, G is the union of two complete graphs with vertex sets {u 1 , . . . , u r } and {u 1 , u 2 , x 1 , . . . , x p }, respectively, and G has two (isomorphic) square roots with edge sets {u 1 u 2 , . . . , u 1 u r } ∪{u 2 x 1 , . . . , u 2 x p } and {u 2 u 1 , u 2 u 3 , . . . , u 2 u r } ∪{u 1 x 1 , . . . , u 1 x p }, respectively (see Figure

  [START_REF] Le | The square of a block graph[END_REF], we find that H contains at most 15k -14 non-pendant vertices. Note that H contains at least 15k -13 vertices, which are all in S i . Hence, H has at least one pendant vertex x that belongs to S i . Let v be the (unique) vertex adjacent to x in H . Then the graph H obtained from H by adding the vertices of T and their edges incident to v is a square root of G by Lemma 5 i). We argue that H is a solution for (G, k, R, B) as well. Because the vertices of T ⊆ S i \ X i are not incident to the edges of R due toLemma 13, we have to show that none of the |T | edges that we added in order to obtain H belong to B. If x ∈ S i \ X i , then xv / ∈ B and because B(x) = B(y) for all y ∈ S i \ X i , we have that yv / ∈ B for all y ∈ T . Assume that x ∈ X i . Recall that |X i | ≤ 1 after step 7. Because |S i | > 15k -13 after step 7, |S i \ X i | ≥ 15k -13. Then yv /
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Lemma 14. B(x) = B(y) for all x, y ∈ S i \ X i .

Proof. Let x, y ∈ S i \ X i and let xz ∈ B for some z ∈ V G . We first show that y = z and we then prove that yz ∈ B.

In order to obtain a contradiction, assume that y = z. Then xy was included in B either by an application of the trimming rule or by an application of the path reduction rule. In both cases, xy was also made adjacent to an edge of R. This edge may be deleted later on. Deleting an edge e from R happens either in step 6 of the trimming rule or in step 4 of the path reduction rule. However, both rules add a new edge e to R that is adjacent to all the edges that were previously adjacent to e and that were not deleted by the two rules. Hence, xy is still adjacent to an edge of R in G. In other words, x or y is incident to an edge of R in G. Because x and y belong to S i \ X i , this is not possible due to Lemma 13. Hence, y = z.

In order to show that yz ∈ B, we again use the observation that whenever the trimming or path reduction rule deletes an edge e ∈ R, the rule adds a new edge e in R such that e is adjacent to all the edges uv that were previously adjacent to e and that were not deleted by the rules. In this case we make the extra observation that if a vertex u is an end-vertex of e that is not deleted by the rule, then u is an end-vertex of e . Because the vertices in S i \ X i are not incident to any edges in R by Lemma 13, we find that z was incident to an edge of R after applying the trimming rule or path reduction rule that added the edge xz to B. We also observe that an edge in B is only deleted from B if one of its end-vertices is deleted unless it is added to R by the path reduction rule. This means that we can argue as follows.

First suppose that xz was added to B due to an application of the trimming rule. If y was adjacent to z when the rule was applied, then yz was included in B as well by the definition of this rule. If y was made adjacent to z by the path reduction rule afterwards, then yz ∈ B by the definition of the path reduction rule. Now suppose that xz was added to B due to an application of the path reduction rule. By definition of this rule, x and z were not adjacent to each other before. Suppose that yz / ∈ B. Then xy, yz are edges of the original input graph of the Tree + k Edges Square Root problem. Because xz was not such an edge, x and y only became true twins due to an application of the path reduction rule. Then, by Lemma 9, x or y must be an outer vertex of some F -triple, that is, at least one of these two vertices must be incident to an edge of R. Then there is an edge of R incident to at least one of these two vertices after the exhaustive application of the path reduction rule. Because x and y are in S i \ X i , this is a contradiction to Lemma 13. Hence, yz ∈ B. This completes the proof of Lemma 14.

We prove the following lemma, which is our final lemma; in particular note that if Ĝ exists then its size is bounded by a quadratic function of k. path reduction rules are applied at most n times to construct the instance ( Ĝ, k, R, B). Each application of the trimming rule can be done in time O(n 2 m) and each application of the path reduction rule takes time O(n 3 m). Finally, the simplicial vertex reduction rule can be done in time O(nm). Hence, our kernelization algorithm runs in time O(n 4 m), and it remains to solve the obtained reduced instance ( Ĝ, k, R, B). Because Ĝ has at most (15k -14)(15k -12) vertices, Ĝ has at most 1 2 (15k -14)(15k -12)((15k -14)(15k -12) -1) = O(k 4 ) edges. Therefore, we can solve Tree + k Edges Square Root with Labels for instance ( Ĝ, k, R, B) in time 2 O(k 4 ) ; we consider all edge subsets of Ĝ that have size at most |V Ĝ| -1 + k and use brute force. We conclude that the total running time of our algorithm is 2 O(k 4 ) + O(n 4 m), as required.

We finish this section with the following remarks. First, recall that our quadratic kernel is a generalized kernel for the Tree + k Edges Square Root problem. We believe that a quadratic kernel exists for this problem as well by using a similar reduction. However, proving this seemed to be more technical and also to yield a graph with more than (15k -14)(15k -12) vertices. We therefore chose to prove our FPT result by using a reduction leading to a generalized kernel. Second, it should also be noted that our generalized kernel for Tree + k Edges Square Root does not imply a kernel for Tree + k Edges Square Root with Labels, because our reduction rules require that the original instance is unlabeled. We do not know whether the (more general) problem Tree + k Edges Square Root with Labels is FPT as well.

The Maximum Square Root Problem

Recall that the Maximum Square Root problem is that of testing whether a given graph G with m edges has a square root with at least s edges for some given integer s. In this section we give an FPT algorithm for this problem with parameter k = m -s. In other words, we show that the problem of deciding whether a graph G has a square root that can be obtained by removing at most k edges of G is fixed-parameter tractable when parameterized by k. We also present an exact algorithm for the Maximum Square Root problem. Both algorithms are based on the observation that in order to construct a square root H from a given graph G, we must delete at least one of every pair of adjacent edges that do not belong to a triangle in G. We therefore construct an auxiliary graph P(G) that has vertex set E G and an edge between two vertices e 1 and e 2 if and only if e 1 = xy and e 2 = yz for three distinct vertices x, y, z ∈ V G with xz / ∈ E G . Observe that P(G) is a spanning subgraph of the line graph of G. We need the following lemma.