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ABSTRACT. The purpose of this paper is to extend the explicit geo-
metric evaluation of semisimple orbital integrals for smooth kernels
for the Casimir operator obtained by the first author to the case
of kernels for arbitrary elements in the center of the enveloping
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1. INTRODUCTION

In [B11, Chapter 6], one of us established a geometric formula for
the semisimple orbital integrals of smooth kernels associated with the
Casimir. The purpose of this paper is to extend this formula to the
smooth kernels where more general elements of the center of the en-
veloping algebra also appear.

Let us briefly describe our main result in more detail. Let G be a
connected real reductive group, and let g be its Lie algebra. Let 6 €
Aut (G) be a Cartan involution, and let K C G be the corresponding
maximal compact subgroup with Lie algebra €. Let g = p @ € be
the associated Cartan splitting. Let B be a symmetric nondegenerate
bilinear form on g which is G and 6 invariant, positive on p and negative
on t. Let X = G/K be the associated symmetric space, a Riemannian
manifold with parallel nonpositive curvature.

Let p? : K — U (E) be a finite dimensional unitary representation of
K, and let F' = G X g E be the corresponding vector bundle on X. Then
G acts on the left on C* (X, F'). Let U (g) be the enveloping algebra of
g, and let Z (g) be the center of U (g). Then Z (g) acts on C* (X, F)
and its action commutes with the left action of G. Among the elements
of Z (g), there is the Casimir C9, whose action on C* (X, F') is denoted
CoX,

Let 8" (R) denote the even real functions on R that lie in the
Schwartz space S (R). Let p € 8" (R) be such that if g € SV (R)
is its Fourier transform, there is C' > 0, and for any k € N, there is
¢ > 0 such that

(1.1) ‘ﬁ(k) (y)| < crexp (—Cy?).

IfAeR, (\/ CoX + A) is a well-defined operator with a smooth

kernel.

If v € G is semisimple, as explained in [B11, Section 6.2], the orbital
integral TrD! [,u (\/ CoX + A)} is well-defined, and it only depends on
the conjugacy class of v in GG. After conjugation, we can write v in
the form v = ek ' a € p,k € K,Ad (k™Y a =a. If Z(y) C G is the
centralizer of v with Lie algebra 3 (), then 6 acts on Z (), and Z (7)

is a possibly nonconnected reductive group. Let 3 (v) = p (v) @ €(v)
be the associated Cartan splitting.
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Let I' (g) be the algebra of invariant polynomials on g*, and let m :
I' (g) ~ Z (g) denote the Duflo isomorphism | , Thorme V.2]. If
h C g is a Cartan subalgebra, let I' (b, g) denote the algebra of polyno-
mials on h* that are invariant under the corresponding algebraic Weyl
group, so that we have the canonical identification I" (g) ~ I" (b, g)".
There is a Harish-Chandra isomorphism ¢uc : Z (g) ~ I'(h,g). By
[ , Lemme V.1], the Duflo and Harish-Chandra isomorphisms are
known to be compatible.

There is a canonical projection g — 3(7)?, that induces a corre-
sponding projection I' (g) — I' (3(v)). If L € Z(g), let L") denote
the differential operator on 3 () canonically associated with the projec-
tion of 75" L on I' (3 (7)). In particular, up to a constant, — (C9)) ex
tends to the standard Laplacian on the Euclidean vector space 3; () =
p(7) ®it(7).

Following [311, Chapter 5], in Definition 2.6, we define a smooth
function J, : i€ (y) — C. Let J, be the Dirac mass at a € p (). Then

T [ (k)] e,
is a distribution on 3; (7). *

Our main result, which is repeated in the text as Theorem 9.1 is as
follows.

Theorem 1.1. The following identity holds:

(1.2) b [Lu (x/cgvX + Aﬂ

= Ly < (Coyp™ 4 A) []7 (Yy) Tx*” [pE (k_ e_YOE)] 5a] (0).

When L = 1, our theorem was already established in [311, Theorem
6.2.2].
The proofs in [311] used a construction of a new object, the hypoel-

liptic Laplacian. Here, we will only need the results of [B11].

Our proof is done in two steps. In a first step, using the results of
[B11], we prove Theorem 1.1 when v € G is regular. In this case, using
the properties of the Harish-Chandra isomorphism | |, the proof
is relatively easy.

IThis isomorphism is usually written in its complex version I" (g9c) ~ I (hc,9c)-
In Subsections 3.3 and 6.3, the corresponding real version is derived. Such consid-
erations will also apply to other complex isomorphisms.

2This projection is defined in Subsection 8.2.

3In the sequel, ® will be omitted.
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When 7 is nonregular, we combine our result for v regular with limit
arguments due to Harish-Chandra on the behavior of orbital integrals
when 7/ regular converges to . In both steps, remarkable and non-
trivial properties of the function 7, are used. One of these properties
is that one essential piece of [J, can be calculated only in terms of
imaginary roots.

This paper is organized as follows. In Section 2, we describe the
geometric setting, and we explain the formula for the semisimple orbital
integrals that was obtained in [B11].

In Section 3, we recall some of the properties of Cartan subalgebras,
Cartan subgroups, and of the corresponding root systems.

In Section 4, we express the restriction of the function 7, to Cartan
subalgebras in terms of a positive root system.

In Section 5, we specialize the results of the previous section to the
case where 7 is regular. We prove a crucial and unexpected smooth
dependence of 7, on 7.

In Section 6, we explain in some detail the Harish-Chandra isomor-
phism.

In Section 7, we establish Theorem 1.1 when 7 is regular.

In Section 8, when ~ is non necessarily regular, we study the limit
of J,, and the limit of our formula for regular orbital integrals as 7/
regular converges to v in a suitable sense.

In Section 9, using the results of the previous section, we establish
Theorem 1.1 in full generality.

Finally, in Section 10, we prove that our formula is compatible to
the index theory for Dirac operators, and also with known results on
Dirac cohomology | -

2. GEOMETRIC FORMULAS FOR ORBITAL INTEGRALS AND THE
CASIMIR

In this Section, we explain the geometric formula given in | ,
Chapter 6] for the semisimple orbital integrals associated with the
proper smooth kernels for the Casimir.

This section is organized as follows. In Subsection 2.1, we introduce
the real reductive group G, its maximal compact subgroup K, the Lie
algebras g, €, and the symmetric space X = G/K.

In Subsection 2.2, we recall the definition of semisimple elements in
G, and of the corresponding displacement function.

In Subsection 2.3, we introduce the enveloping algebra U (g), and
the Casimir element C? € U (g).
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In Subsection 2.4, given a unitary representation of K, we construct
the corresponding vector bundle F on X, and the elliptic operator C%¥
which is just the action of C'® on C* (X, F).

In Subsection 2.5, given . € §¢¥°" (R) such that its Fourier transform
has the proper Gaussian decay, if A € R, we recall the definition of
the semisimple orbital integrals associated with the smooth kernel for

I (\/ CoX + A) . Among these kernels, there is the heat kernel for C% .

In Subsection 2.6, if v € G is semisimple, if Z (y) C G is its cen-
tralizer with Lie algebra 3 (), if €(7) is the compact part of 3 (v), we
recall the definition of the function 7, on i€ () given in [B311, Theorem
5.5.1].

In Subsection 2.7, we study the behavior of 7, when replacing by ~
by 771, and also by complex conjugation.

Finally, in Subsection 2.8, we state the geometric formula obtained
in [B11] for the above orbital integrals, in which the function 7, plays
a key role.

2.1. Reductive groups and symmetric spaces. Let G be a con-
nected reductive real Lie group, and let g be its Lie algebra. Let
6 € Aut (G) be a Cartan involution. Then € acts as an automorphism
of g. Let K C G be the fixed point set of 8. Then K is a compact
connected subgroup of G, which is a maximal compact subgroup. If
t C g is the Lie algebra of K, then £ is the fixed point set of 6 in g.
Let p C g be the eigenspace of 8 corresponding to the eigenvalue —1,
so that we have the Cartan decomposition

(2.1) g=pot

Put

(2.2) m = dimp, n = dim¢,
so that

(2.3) dimg =m+n.

Let B be a G and # invariant bilinear symmetric nondegenerate
form on g. Then (2.1) is a B-orthogonal splitting. We assume that
B is positive on p and negative on €. Let () = —B(-,0-) be the
corresponding scalar product on g. Let B* be the bilinear symmetric
form on g* = p* @ € which is dual to B.

Let w?® be the canonical left-invariant 1-form on G with values in g.
By (2.1), w9 splits as

(2.4) w? = WP + ot
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Let X = G/K be the corresponding symmetric space. Then p : G —
X = G/K is a K-principal bundle, and w* is a connection form. Also
the tangent bundle T'X is given by

Then T'X is equipped with the scalar product () induced by B, so that
X is a Riemannian manifold. The connection V¥ on T'X which is
induced by w® is the Levi-Civita connection of X, and its curvature
is parallel and nonpositive. Also GG acts isometrically on the left on X,
and 6 acts as an isometry of X.

By | , Proposition 1.2], any element v € G factorizes uniquely
in the form
(2.6) v =e"k, a€yp, ke K.

If v, g € G, set
(2.7) Clg)y=979"

Then C'(g) is an automorphism of G. Its derivative at the identity is
the adjoint representation g € G — Ad (g) € Aut (g). The derivative
of this last map is given by a € g — ad (a) € End (g), with ad (a) b =
[a,b]. If v € G, the fixed point set of C' () is the centralizer Z () C G,
whose Lie algebra 3 () is given by

(2.8) 3(7) =ker (1 —Ad(v)).

If f €g,let Z(f) C G be the stabilizer of f. Its Lie algebra 3 (f) C g
is given by

(2.9) 3(f) =kerad(f).

In the sequel, if M is a Lie group, we denote by M° the connected
component of the identity.

2.2. Semisimple elements and their displacement function. Let
d be the Riemannian distance on X. By | , 6.1], d is a convex
function on X x X. If v € G, let d,, be the corresponding displacement
function on X, i.e.,

(2.10) dy(z) =d(z,yx).
If g € G, then

(2.11) degyy (92) = dy ().
Moreover,

(2.12) dg(fy) (Ql‘) = d7 (CL’) .
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Set
(2.13) m, = inf d,.

Let X (7) C X be the closed subset where d, reaches its minimum. By
[ , p. 78 and 1.2], X (7) is a closed convex subset, d, is smooth
on X \ X (v) and has no critical points on X \ X (7). Also by (2.11),
(2.12),

(2.14) X(C(g9)7) =9X (), X (67) =0X(7),
Mc(g)yy = My, Mg(y) = My
By [96, Definition 2.19.21], v is said to be semisimple if X (v) is

nonempty. If v is semisimple, then C (g)y and € () are semisimple.
Also v is said to be elliptic if it is semisimple and m, = 0. Elliptic
elements are exactly the group elements that are conjugate to elements
of K. Finally, v is said to be hyperbolic if it is conjugate to e®, a € p.

By | , Proposition 2.1}, | , Theorems 2.19.23 and 2.19.24],
v € G is semisimple if and only if it factorizes as v = he = eh,
with commuting hyperbolic h and elliptic e. Also e, h are uniquely
determined by v, and

(2.15) Z(y)=Z(h)NZe).
Set
(2.16) xo = pl.

Theorem 2.1. Let v € G be semisimple. If g € G,x = pg € X, then
x € X () if and only if there exist a € p, k € K such that Ad (k) a = a,
and

(2.17) v=C(g) (e"k™).

Also C(g)e* € G,C (9)k € G are uniquely determined by ~v. If g, =
ge'®, then t € [0,1] — y, = pg; is the unique geodesic connecting x and
~vyx. Moreover

(2.18) ms, = |al.

If v € G is semisimple, then zo € X (v) if and only if there exist
a€p, ke K such that

(2.19) v =€kt a€yp, Ad (k) a = a.
Also a, k are uniquely determined by (2.19).

Proof. The first part of our theorem was established in | , Theorem
3.1.2]. By taking g = 1 in the first part, we obtain the second part. [
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Let v € G be a semisimple element written as in (2.19). By [B11,
Proposition 3.2.8 and eqs. (3.3.4), (3.3.6)],
(2.20)
Z(e")=2(a), Z()=Z(NnZk), 30)=5(a)ns(k).

By (2.19), a € 3(v), and by (2.20), 3(v) C 3(a), so that a is an
element of the center of 3 (7).
Clearly,

(2.21) 0(y)=e k1.

Therefore 6 () € Z (7y), so that the above centralizers and Lie algebras
are preserved by . Set

(2.22) KMH)=Z(()NK.
By [B11, Theorem 3.3.1], we have the identity
(2.23) K°(y)=2"(v)NK,

and K (v) is a maximal compact subgroup of Z° (7).
Put

(2.24) p(y)=pn3(v), t(y)=¢tn3(v).

Then € () is the Lie algebra of K (7). We use similar notation for
the Lie algebras 3 (k) ,3 (a). We have the Cartan decompositions of Lie
algebras,

(2.25)
s(=p)et(), s(k)=pk)otk), 3(a)=pa)dt(a).

Then B restricts to a nondegenerate form on 3 (7v),3(k),3 (a), so that
Z (), Z (k),Z (a) are possibly nonconnected reductive subgroups of G.
By [311, Theorem 3.3.1], we have the identification of finite groups,

(2.26) Z°M\NZ(y) =K’ ()\ K (7).

Let 31 (7),3" (a) be the orthogonal spaces to 3 (7v),3(a) in g with
respect to B. We have splittings

(227) s (N=p(et(y), s @=p (Bt (a).

Let 31 (7) denote the orthogonal to 3(v) in 3(a). We still have a
splitting

(2.28) e (N =rpa (N B ().

Now we recall a result established in [311, Theorem 3.3.1].
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Theorem 2.2. The set X () is preserved by 0. Moreover,
(2.29) X((y)=X(Ee)nX(k).

Also X () is a totally geodesic submanifold of X. In the geodesic
coordinate system centered at xo = pl, then

(2.30) X()=p().

The actions of Z° (v),Z (v) on X (v) are transitive. More precisely
the maps g € Z°(v) — pg € X,g € Z(y) — pg € X induce the
identification of Z° ()-manifolds,

(2.31) X(1)=2"()/K"(v)=Z(7) /K (7).

Now we will establish a simple important consequence of Theorem
2.2.
Theorem 2.3. Let v be a semisimple element of G as in (2.19). Let
~" be another semisimple element of G such that
(2.32) v =k, a €p, Ad(K)d =d.
Then there exists g € G such that v' = C(g)~ if and only if there
exists k" € K such that C (k") =+, in which case

(2.33) a =Ad (k") a, K =C(K')k.
Proof. Assume that v/ = C'(g)~. By (2.14), we get
(2.34) X () =9X().

By Theorem 2.1, zp € X (v) N X (7). By (2.34), g0 € X (7). By
Theorem 2.2, there exists h € Z (7') such that

(2.35) hgzy = o,
which is equivalent to
(2.36) K'=hg € K.

Since h € Z (v'), we conclude that C' (k") v = 4. Using the uniqueness
of decomposition in (2.32), equation (2.33) follows. The proof of our
theorem is completed. O

2.3. Enveloping algebra and the Casimir. We identify g with the
Lie algebra of left-invariant vector fields on G. Let U (g) be the en-
veloping algebra of g. Then U (g) can be identified with the algebra of
left-invariant differential operators on G. Let Z (g) C U (g) denote the
center of U (g).

If F/ is a finite dimensional real or complex vector space, and if
p¥ 1 g — End (F) is a morphism of Lie algebras, the map p% extends
to a morphism U (g) — End (E).
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Among the elements of Z (g), there is the Casimir element C9. If
€1,...,Cmin 15 a basis of g, and if ef,... e}, is the dual basis of g
with respect to B, then *

m—+n

(2.37) CO=—) eler
i=1

If we consider instead the Lie algebra (& Bly), C* € Z (£) denotes the
associated Casimir element.

If e1,...,€e, is a basis of p, and if e],..., e’ is the dual basis of p
with respect to By, set

(2.38) CP ==Y cle
i=1

Then C? € U (g). Using (2.37), (2.38), we get

(2.39) C®=CP+C".

Also C* and C* commute.
If pP : g — End (E) is taken as above, put

(2.40) CE = pF (09).

Under the above conditions, we can define C*¥, C%F.
Since g is itself a representation of g, C'99 is the action of C'*® on g.
Since £ acts on p, &, C**, C** are also well-defined.

Proposition 2.4. The following identity holds:

(2.41) Tr [C%9] = 3Tr [C**] + Tx [C*].
Proof. By (2.39), we get
(2.42) Tr [C%] = T [CP9] + Tr [C*9] .
Let eq,..., e, be an orthonormal basis of p, and let e,,.1,...,¢e, be
an orthonormal basis of €. Then
(243)  TCM] == > |lese],
1<i<m
1<j<m+n
T[C¥] == D lewe]lP== Y llenelf.
1<i<m 1<ij<m
m+1<j<m+n
n | , Section 8.3], the Casimir is defined with the opposite sign. We have

adopted the sign conventions of [B11], which are closer to analysis.
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By (2.43), we deduce that

(2.44) Tr [CP9] = 2T [C*F] .
Also
(2.45) Tr [C*9] = Tx [C**] + T [C*'] .
By (2.42), (2.44), and (2.45), we get (2.41). The proof of our proposi-
tion is completed. O

Let h C g be a #-stable Cartan subalgebra. Then we have the split-
ting h = b, ® he. ° Let R C hg be the corresponding root system. Let

R, be a positive root system. If R = —R,, R is the disjoint union
of Ry and R_. Let p9 € bhg be the half sum of the positive roots.
Here p? € b, @ iby. By Kostant’s strange formula [ ], we have the
identity
1
(2.46) B (p% p%) = =5 Tr (O]
By (2.41), (2.46), we get
1 1
(2.47) B (p%, p°) = =5 Tr [C*P] — o T [C*].
Using the notation in [B11, eq. (2.6.11)] °, by (2.47), we obtain
1
(2.48) B (p% p*) = = B" (%, K%).

4

2.4. The elliptic operator C%X. Let E be a finite dimensional Her-
mitian vector space, and let p¥ : K — U (F) denote a unitary repre-
sentation of K. The Casimir C%% is a self-adjoint nonpositive endo-
morphism of E. If p¥ is irreducible, then C%¥ is a scalar.

Let F' be the vector bundle on X,

(2.49) F=GxxkE.

Then F' is a Hermitian vector bundle on X, which is equipped with a
canonical connection V¥. Also O%F descend to a parallel section C*F
of End (F). Moreover, G acts on C* (X, F), so that if g € G,s €
C* (X, F), if g, denotes the lift of the action of g to F,

(2.50) gs (z) = g.s (g7 ')

The Casimir operator C'® descends to a second order elliptic operator
C%X acting on C* (X, F'), which commutes with G. Let AX denote

SMore details will be given in Section 3 on Cartan subalgebras and root systems.
6The definition of 9 is not needed. The formula is given for later reference.
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the classical Bochner Laplacian acting on C* (X, F). By [B11, eq.
(2.13.2)], the splitting (2.39) of C® descends to the splitting of C®¥X,
(2.51) O = —AX 4 CY

2.5. Orbital integrals and the Casimir. Let y € S (R), and let
i€ 8% (R) be its Fourier transform, i.e.,

(2.52) i) = [ () de

We assume that there exists C' > 0 such that for any & € N, there is
¢, > 0 such that

(2.53) A0 ()] < cxexp (—C?)

The above condition is verified if 77 has compact support. For ¢ > 0, it
is also verified by the Gaussian function e~*”.

If A € R, the operator p (\/ CeX + A) is self-adjoint with a smooth
kernel g <\/CgvX + A) (x,2") with respect to the Riemannian volume

dx’ on X. As explained in [B11, Section 6.2], using finite propagation
speed for the wave equation, condition (2.53) implies that there exist
C > 0,c > 0 such that if z,2’ € X, then

(2.54) ] u (\/me + A> (z,2")

If 7 has compact support, then pu (\/ CoX + A) (x,2’) vanishes when
d(x,z') is large enough.

As explained in [B11, Section 6.2], the above condition guarantees
that if v € G is semisimple, the orbital integral Trl [u (\/ CoX + A)]

is well-defined. Let us give more details on our conventions.
Let v € G be taken as in (2.19). Let Nx(,,x be the orthogonal

< Ce—cdz(m,;r’)

bundle to T'X (v) in TX. By [B11, eq. (3.4.1)], we have the identity
(2.55) Nx(yyx = Z° (v) X KO(5) pt () -
Let Nx(y),x be the total space of Nx(y),x. By [311, Theorem 3.4.1],

the normal geodesic coordinate system based at X () gives a smooth
identification of Nx(y),x with X. Let dz,dy,df be the Riemannian
volume forms on X, X (v), Nx(y),x. Then dydf is a volume form on
Nx(y)x- Let 7 (f) denote the corresponding Jacobian, so that we have
the identity of volume forms on X,

(2.56) dx = r (f) dydf.
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By [B11, eq. (3.4.36)], there are constants C' > 0,C” > 0 such that
(2.57) r(f) < CeClf,

By [B11, Theorem 3.4.1], there exists C, > 0 such that for f €
Pt If1 =1

(2.58) d, (e/z9) > |a| + Cy | f].

As explained in [B11, eq. (4.2.6)], by (2.54), (2.58), there exist C,, >
0,c¢, > 0 such that if f € p* (), then

(259)  |u(VEF+A) (7 e, ela) | < Crexp (—e, IfF)

We denote by ~, the action of v on F'. More precisely, if z € X, v,
maps I into Fl,.
In [B11, Definition 4.2.2], the orbital integral

Tyl [,u (\/ CoX 4 A)]

is defined by the formula

(2.60) &b [u (\/CBvX + Aﬂ
= /pL( )Tr ['y*u (\/ CoX +A) (”y’lefxo,efxo)} r(f)df.

Equations (2.57), (2.59) guarantee that the integral in (2.60) converges.
Let dk be the Haar measure on K such that Vol (K) = 1. Then
dg = dzdk is a Haar measure on GG. Let dy be the Riemannian volume
form on X (7). Let dk™ be the Haar measure on K () such that
Vol (K ()) = 1. Then dz° = dydk” is a Haar measure on Z° (7). Let
dv® be the volume on Z° (v) \ G such that dg = dz°dv°.
As explained in [B11, Section 4.2}, the smooth kernel

0 (\/ C9X + A) (z,2")

lifts to a smooth function on G with values in End (E), denoted

uE (VX4 4) (9).

and by [B11, eq. (4.2.11)], we have the identity
(2.61) &P [u (\/CBvX + Aﬂ
= / TrP [,u (\/ X + A) ((UO)_l 71}0)} d®.
Z9(\G
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This definition of orbital integrals coincides with the definition given
by Selberg | , p. 66].

2.6. The function 7,. We use the assumptions in Subsection 2.2 and
the corresponding notation. In particular v € G is a semisimple ele-
ment as in (2.19).

Then Ad () preserves 3 (a), 3 (a). Also Ad (k™!) preserves 3 (7).
If Yy € (), ad (Y§) preserves 3o (7). The splitting (2.28) is preserved
by Ad (k™) and ad (Yf).

If x € R, put

-~ x/2
(2.62) A(z) = Snh (22)"

If Yy € €(v), ad (Y{) acts as an antisymmetric endomorphism of
p (7),€(7), so that its eigenvalues are either 0, or they come by nonzero
conjugate imaginary pairs. If Y € i€ (v), put’

263 Aad (1) o) = [det (A (ad () ) )]

A (43) o) = [t (A ad (45) o))

The square root in (2.63) is the positive square root of a positive real
number.
We follow [311, Theorem 5.5.1], while slightly changing the notation.

Definition 2.5. If Y € it (v), put

det (1 - Ad (k%)) gy

2.64 L, (V) = .
260 B0 = G A ) b
Set

1 1/2
2.65 Yy = L, (Y5)| -
26 M09 = | g ragey S )

The fact that the square root in (2.65) is unambiguously defined is
established in [B11, Section 5.5]. Let us explain the details. First we
make Yy = 0. Then

' det (1 — Ad (k71)) |51(y) det (1 — Ad (k71)) [y (4

1 2

N det (1 — Ad (]{3_1)) |Pé(’y)

"This fits with the classical notation in the theory of characteristic classes.
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The conventions in [B11] say that the square root of (2.66) is the ob-
vious positive square root, i.e.,
1

(2.67) My O = G T A ) ey

Using analyticity in the variable Y € i€ (), the choice of the square
root in (2.65) determines a choice of the square root in (2.68). This
point will be discussed at length in Section 4. No choice of a Cartan
subalgebra or of a positive root system is needed at this stage.

Definition 2.6. Let 7, (Y{) be the smooth function of Y{ € it (v),

(2.68)
1 A (ad (Y
A (Yoe) _ = A( ( Oe) |p(7)) ., (Ybe)
|det (1 — Ad (7)) ;0| 7~ A (ad (Y5) ler))
With the conventions in | , Chapter 5], where instead a function
Jy (Y§) is defined on € (), we have
(2.69) Jy (Y5) = T, (iYy) -
By [B11, eq. (5.5.11)] or by (2.68), if Y € i, then
A (ad (v}
(2.70) T (Y5) = M.
A (ad (Y5) le)

2.7. Some properties of the function 7,. Let p¥ : K — U (E*)
denote the representation of K which is dual to the representation p¥.

Proposition 2.7. If Y§ € it (y), then
(2.71)

Ty (%) = T, (-93) . T [0 (ke )] =T [0 (k1)
700 = 7, (<), T LE (e ] = [ (k)]

Proof. If f € End(g), let f € End(g) denote the adjoint of f with
respect to B. We have the identity

—_——

(2.72) Ad (y7) = Ad(y).
By (2.72), we deduce that
(2.73) det (1 —=Ad (v7")) ;100 = det (1 — Ad (7)) |, (0)-
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A similar argument shows that
(2.74) det (1= Ad (ke ) ) |y ) = det (1= Ad (K7e"8) ) |y,

det (1= Ad (ke ™)) Iy = det (1= Ad (K7€) ) sy

By (2.64), (2.65), (2.68), (2.73), and (2.74), we get the first identity
in (2.71). The second identity in (2.71) is trivial.
I Y € it (),

(2.75) det (1= Ad (k=T 7)) 1) = det (1= Ad (k7' ) s,

det (1= Ad (k=1 7)) Jys ) = det (1= Ad (K7€) ) s ).

By (2.75), we get the third identity in (2.71). Since Y§ € i€(y), the
fourth identity is trivial. The proof of our proposition is completed. [J

2.8. A geometric formula for the orbital integrals associated
with the Casimir. Note that i€ (vy) is naturally an Euclidean vector
space. If Y € it(v), we denote by |Y{| its Euclidean norm. More
precisely, if Yf € i€ (), then

(2.76) Ye" =B (¥, Y5).
By [B11, eq. (6.1.1)], there exist ¢ > 0, C' > 0 such that if Y € i€ (v),
(2.77) | T, (Y5)] < cexp (C|Y5])-

In the sequel, [.. ., denotes integration on the real vector space £ (7).
() &
q =

Let dY§ be the Euclidean volume on i€ (7). Set p = dimp (v),
dim € (). Now we state the result obtained in [B11, Theorem 6.1.1].
Our reformulation takes equation (2.48) into account.

Theorem 2.8. Fort > 0, the following identity holds:
(2.78)
exp (— |a|® /2t)
(2t)P/?
av;

/ﬁ(w) T (Y5) TrF [pE <1{;—16—Y5>} exp (_ ‘YOE‘Q/%) (2“)(1/2‘

Let By, be the restriction of B to 3(v), and let B*|;,y be the
corresponding quadratic form on 3* (7). Let A3®) denote the associated
generalized Laplacian on 3 (7). We can extend A3 to an operator
acting via constant holomorphic vector fields on 3 ().

Tel [exp (—tC%¥/2)] = exp (—tB* (%, p°) /2)
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Put

(2.79) () =p()®it(y).

Then Bl;,(,) is a scalar product on 3, (7). The generalized Laplacian
A3 restricts on 3; (7) to the standard Euclidean Laplacian of 3; ().
We take p € S (R) as in Subsection 2.5. If f € 3, (7), let

(V=204 B )+ 1) (1

be the smooth convolution kernel for u <\/ — A3 + B* (p8, p9) + A)

on 3; () with respect to the volume form associated with the scalar
product of 3; (7). Using (2.53) and finite propagation speed for the
wave equation, there exist C' > 0, ¢ > 0 such that if f € 3; (), then

(2.80) ‘u (\/—AM + B* (02, p?) + A> (f)' < Ceel”,
Let 6, be the Dirac mass at a € p (7). Then
509 T [ (1)

is a distribution on 3; (), to which the smooth convolution kernel

B (\/‘M”) + B (8, p%) + A)

can be applied. By definition,

(2.81) p <\/—A5(7) + B* (ps, p%) + A)
[57 (Y§) Tx*” [,oE (k‘le_YOEﬂ 54 (0)
= /,-g( )M <\/_As(v) + B* (p9, p9) + A) (_yb*’ —a)

Ty (%) T [0 (k1e ) | avg

In the right hand-side of (2.81), (—YOE, —a) can as well be replaced by
(Ys,a).

In [B11, Theorem 6.2.2], the following extension of Theorem 2.8 was
established.
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Theorem 2.9. The following identity holds:

(2.82) el [u (\/Oqu + A)} — 1 <\/—Am> + B (p9, po) + A)

[j7 (Y§) Tx*” [pE (k:_ e_YOE>] 5a] 0).

3. CARTAN SUBALGEBRAS, CARTAN SUBGROUPS, AND ROOT
SYSTEMS

The purpose of this Section is to recall basic facts on Cartan subal-
gebras, on Cartan subgroups, and on root systems.

This section is organized as follows. In Subsection 3.1, we state some
elementary facts of linear algebra.

In Subsection 3.2, we recall the definition of Cartan subalgebras.

In Subsection 3.3, we introduce the corresponding root system, and
the associated algebraic Weyl group.

In Subsection 3.4, we define the real and the imaginary roots.

In Subsection 3.5, we construct a positive root system.

In Subsection 3.6, when the Cartan subalgebra is fundamental, we
compare the root system of £ with the root system of g.

In Subsection 3.7, we introduce the Cartan subgroups, and of the
corresponding regular elements.

In Subsection 3.8, we relate semisimple elements in G to Cartan
subgroups.

In Subsection 3.9, we describe the characters of Cartan subgroups
associated with a root system.

In Subsection 3.10, we give some properties of the real and imaginary
roots with respect to semisimple elements in G.

Finally, in Subsection 3.11, we give a well-known formula that relates
the action of invariant differential operators on the Lie algebra g and
on a Cartan subalgebra b.

We make the same assumptions as in Section 2, and we use the
corresponding notation.

3.1. Linear algebra. Let V be a finite dimensional real vector space.
The symmetric algebras S (V') , S (V*) are the algebras of polynomials
on V* V. If v € V, v acts as a derivation of S"(V*). More generally,
S (V) acts on S* (V*), and this action identifies S* (V') with the algebra
D (V) of real partial differential operators on V' with constant coeffi-
cients. In particular, if B* € S% (V) is a bilinear symmetric form on V*,
the associated element in D (V) is the corresponding Laplacian AV If
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B* is positive, AV is just a classical Laplacian. If B* is negative, then
AV is the negative of a classical Laplacian on V.

Let Vo = V ®r C be the complexification of V', a complex vec-
tor space. Its complex dual is given by V& = V* ®@gr C. The alge-
bras S" (Vi),S" (V) are the algebras of complex polynomials on V*, V.
Note that

(3.1) S (Ve) =5 (V) ®r C, S (V&) =5 (V") ®gr C.
Put
(3.2) D (Ve)=D (V) ®gr C, D (V&) =D (V") g C.

Then D (Vi),D (VE) are the complexifications of D' (V) , D (V*),
and also the spaces of complex holomorphic differential operators with
constant coefficients on V¢, V.

In particular, if B* € S?(V), AV is now viewed as a holomorphic
operator on Vg, that coincides with the corresponding Laplacian AY
on V, and with —AY on iV ~ V. *®

Also S (V*) ¢ C*(V,R), and the action of D (V) extends to
C>*(V,R).

Let S [[V*]] be the algebra of formal power series s = 7% s, s' €
S*(V*). Then S [[V*]] can be identified with the algebra D [[V*]] of
differential operators of infinite order with constant coefficients on V*.
In particular, S [[V*]] acts on S (V).

3.2. The Cartan subalgebras of g. By | , Section 0.2], a Lie
subalgebra f C g is said to be a Cartan subalgebra if h is maximal
among the abelian subalgebras of g whose elements act as semisim-
ple endomorphisms of g. Cartan subalgebras are known to exist and
have the same dimension r, which is called the complex rank of G.
By | , Proposition 6.64], there is a finite family of nonconjugate
Cartan subalgebras in g. By | , Lemma 2.3.3], in every conjugacy
class of Cartan subalgebras, there is a unique 6-stable Cartan algebra,
up to conjugation by K. Therefore there is a finite family of non-
conjugate f-stable Cartan subalgebras, up to conjugation by K. By
[ , Theorem 2.15], the Cartan subalgebras of gc are unique up to
automorphisms induced by the adjoint group Ad (gc).

80n C ~ R2, when acting on holomorphic functions, the differential operators

8@, a@v —iai coincide. In this sense, the differential operator 8@ on R extends to the
z? Oz Yy T

differential operator % on C, and restricts to the operator —ia% on the imaginary

line sR. The operator 6‘9—; on R restricts to the operator —88—;2 on iR.
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Let h C g be a #-stable Cartan subalgebra. To the Cartan splitting
of g in (2.1) corresponds the splitting

In particular the restriction Bl, of B to b is nondegenerate. This is
also the case if b is any Cartan subalgebra.

Up to conjugation by K, there is a unique #-stable Cartan subalgebra
b, which is called fundamental, such that b, is a Cartan subalgebra of
t. Let us give more details on its construction | , pp- 129, 131].
Let t C € be a Cartan subalgebra of €. Let 3(t) C g be the centralizer
of t, i.e.,

(3.4) 3 ={f€eqltfl=0}.
Then h = 3 (t) is a f-stable fundamental Cartan subalgebra of g, and
be = t.

An element f € g is said to be semisimple if ad (f) € End (g) is
semisimple. If b is a Cartan subalgebra, elements of h are semisimple.
Any semisimple element of g lies in a Cartan subalgebra.

If h C g is a Cartan subalgebra, let h* be the orthogonal to b in g.
We have the B-orthogonal splitting,

(3.5) g=hobh,
and B is also nondegenerate on h*. If b is #-stable, then h* is also
f-stable, and so it splits as

(3.6) b = b, @by

Let u = ip @ € be the compact form of g. Then b, = ib, ® b is a
Cartan subalgebra of u. If f is 6-stable, then b, is also #-stable.

An element f € g is said to be regular if 3 (f) is a Cartan subalgebra.
Regular elements in g are semisimple.

If b is a Cartan subalgebra, if f € b, ad (f) acts as an endomorphism
of g/b. Then f € b is regular if and only if det ad (f) |4/ # 0.

3.3. A root system and the Weyl group. Let h be a §-stable Car-
tan subalgebra.

Let R C bh§ be the root system associated with b, g | , Section
I14]. If « € R, then —a« € R,a € R. If a € R, let g, C gc be the
weight space associated with a;, which is of dimension 1. Then we have
the splitting

(37) dc = hC @ DacrPa-
If « € R, then
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If feb,ad(f) € End(g) is antisymmetric with respect to B, so that
the go|aer are B-orthogonal to he. If o, 8 € R, then g,,gs3 are B-
orthogonal except when § = —a, and the pairing between g.,g_, is
nondegenerate, so that if @ € R, the form B induces the identification

(3.9) Ja 0.
Also

(3.10) b = Bacrba-

If o € R, « takes real values on by, and imaginary values on by, i.e.,
a € by @iby. Also 6 preserves the splitting (3.5) of g, and it maps R
into itself. More precisely, if a € R,

(3.11) o = —a, oo = 0ga.

Let W (hc : gc) C Aut (hc) be the algebraic Weyl group | , P
131]. Then R C b}, and W (he : gc) C Aut (hy), ie., W (hc: gc)
preserves the real vector space h,. Also 0 acts as an automorphism of
the Lie algebras g,u, and W (hc, gc) is preserved by conjugation by 6.

In general, W (hc : gc) does not preserve the real vector space b.
Recall that if h € he, we can define its complex conjugate h € Be.
If w € End (hc), its complex conjugate @ € End (hc) is such that if
h € hc, then

(3.12) w(h) =u(h).
Proposition 3.1. If w € W (hc : gc), then
(3.13) w = fwh .

In particular, the group W (he : gc) is preserved by compler conjuga-
tion.

Proof. The group W (hc : gc) is generated by the symmetries s,, « € R
with respect to the vanishing locus of the o € R. By (3.11), we deduce
that if a € R,

(3.14) 3a = 05,071,

from which get (3.13). Since W (h¢ : gc) is stable by conjugation by
0, the group W (hc : g¢) is preserved by complex conjugation.

Another proof is as follows. Observe that there is a canonical iden-
tification of complex vector spaces ¢ : hc ~ b, c, but the complex
conjugations on h¢ and on b, ¢ are not the same. More precisely, if
h € b,

(3.15) oh = pBh = 0ph.



ORBITAL INTEGRALS AND CENTER OF ENVELOPING ALGEBRA 23
IfweW(he:gc), then
-1
(3.16) Wl = ¢ w‘bu,CSO-

Recall that w is a real automorphism of the real vector space bh,. By
(3.15), (3.16), we get

(3'17) w‘hc - ¢_1w|hu,0¢'

By (3.15)—(3.17), we get (3.13). The proof of our proposition is com-
pleted. O
3.4. Real roots and imaginary roots. Let R C R be the roots
a € R such that o = —a, let R™ be the roots @ € R such that
O = a. These are respectively the real roots and the imaginary roots.
Imaginary roots vanish on b, real roots vanish on he. By | , P-
349], the set of complex roots R® C R is defined to be

(3.18) R°=R\ (R*UR™).

Proposition 3.2. If a € R, the map f € gc — f € g¢ induces an
antilinear isomorphism from g nto g_ga, and the map f € gc — 0f €
gc tnduces an antilinear isomorphism from g, into g_. If a« € R™,
0o is the complezification of a real vector subspace of h.

Proof. If b e b, f € g,, then

(3.19) b, f] = (e, b) f.
By taking the conjugate of (3.19), we obtain
(3.20) (b, f] = (—0a,b) f.

By (3.20), we get the first part of our proposition. By composing this
isomorphism with 8, we obtain the second part. If « € R™, then —fa =
a, so that g, is real. The proof of our proposition is completed. U

Definition 3.3. Put

(3.21) i = kerad (h,) N b, t = kerad (he) N h*.
Then 6 acts on i, ¢, so that we have the splittings,
(3.22) i=1, Diy, t=1, D
Proposition 3.4. The vector spaces i,t are orthogonal in b. More-
over,
(3.23) ic = Dacrimba, tc = BaeRrefa-

If a € R™, then either g, C pc, or go C Ec.
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Proof. If f € b+, f € iNt, then f commutes with h. Since b is a Cartan
subalgebra, f =0, so that iNt=0. If « € R\ R™, o does not vanish
identically on b,, and its vanishing locus in b, is a hyperplane. So one

can find b, € b, \ 0 such that for any @ € R\ R™, (a, b,) # 0. Then
(3.24) i = kerad (b,) N h™.

Since iNt = 0, ad (by) acts as an invertible morphism of t. Therefore any
element of v lies in the image of ad (b,). Since ad (b, ) is symmetric in the
classical sense, i and v are orthogonal. Equation (3.23) is elementary.
If « € R™, the action of h on g, factors through he. Also ad (b)
preserves the splitting g = p @ £. Therefore if o € R'™, either g, C pc,
or g, C €c. The proof of our proposition is completed. O

Definition 3.5. Put
(325) R™={a€R™g,Cpc}, R"={aeR™g,Ctc}.
Then

(3.26) R™ = R™U R™.
Let ¢ denote the orthogonal to i @ v in h+. Again ¢ splits as

(3.27) ¢ =cp D ce.

Moreover, we have the orthogonal splitting

(3.28) hr=idrdec

Proposition 3.6. The following identity holds:

(3.29) ¢c = DacRreba-

Proof. This follows from equations (3.10), (3.23), and (3.28). O
Now we give a result taken from | , Lemma 2.3.5].

Proposition 3.7. A 0-stable Cartan subalgebra by is fundamental if
and only if there are no real roots.

Proof. If a € R, then a € R* if and only if when f € g,,

(3.30) [be, /1 = 0.

If b is fundamental, by (3.4), then f € b, so that f = 0, which
proves there are no real roots. Conversely, if there is a € R™, then
ga C 3 (be)g, so that 3 (he) is not equal to b, and b is not fundamental.
The proof of our proposition is completed. O
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Proposition 3.8. The vector spaces iy, i, ¢, ¢¢ have even dimension.
Also HN K preserves these vector spaces, and the corresponding deter-
minants are equal to 1. Also t,, vy (resp. ¢, ¢) have the same dimen-
sion, and the actions of HNK on these two vector spaces are equivalent.
In particular, we have the identity

1 1
(3.31) dimp — dim b, = dimi, + 5 dimv + 5 dim c.

Proof. If a € R\ R™, the vanishing locus of « in b, is a hyperplane.
Therefore we can find f¢ € b \ 0 such for any a € R\ R*™, {(a, f;) # 0,
which just says that ad (f¢) acts as an invertible endomorphism of i, c.
This endomorphism preserves their p and £ components, and it is clas-
sically antisymmetric. This is only possible if these vector spaces are
even dimensional. If k € HNK, Ad (k~') preserves these vector spaces
and commutes with ad (f;). Therefore the eigenspaces associated with
the eigenvalue —1 are preserved by ad (f;), so they are even dimen-
sional. This forces the determinant of Ad(k™') to be equal to 1 on
each of these vector spaces.

We choose b, € b, \ 0 such that for any « € R\ R™, («a,b,) # 0.
Therefore ad (b,) acts as an automorphism of t, ¢ that exchanges the
corresponding p and € parts, and commutes with Ad (k~1).

By (3.28), we get

Using the results we already established and (3.32), we get (3.31). The
proof of our proposition is completed. O

3.5. A positive root system. Let b be a f-stable Cartan subalgebra,
and let R denote the corresponding root system. Let Ry C R be a
positive root system. Set

(333) RY=R,NR° R=R,NR™, RS =R NER,
so that
(3.34) R, =RYURM™URS.

In the whole paper, we choose R, such that —6 preserves R, \ Rifl.
Equivalently, we assume that if & € Ry \ Rij“, then @ € R,.

Let us explain how to do this. If @ € R\ R™, the vanishing locus
of o in b, is a hyperplane, and so there is b, € by, |b,| = 1 such that
for any @ € R\ R™, (a, b,) # 0. The same argument shows that there
is by € hg, |bg] = 1 such that for « € R™, (a,by) # 0. For e > 0,
by = £b, +ieby € b, Bibe, and O interchanges b, and b_. Also for € > 0
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small enough, for a € R, the real numbers («, b+) do not vanish, and
if « € R\ R™, they have opposite signs. Put

(3.35) R,y ={a € R, (a,b;) > 0}.

Then Ry is a positive root system such that —f preserves R, \ Rifl.
Note that —f acts without fixed points on R, so that ‘Ri| is even.

Definition 3.9. Put
(3.36) ¢+,c = Dacre ga; ¢_.c = Dac—rs Ga-

Proposition 3.10. The vector spaces ¢; c,c_ c are the complexifica-
tions of real Lie subalgebras c¢y,c_ of g, which have the same even
dimension, and are such that

(3.37) c=cy D, ¢ =0c,.
Also B vanishes on ¢y, c_ and induces the identification,
(3.38) c_~cl.

The projections on p,€ map ci into ¢y, ce 1somorphically. Finally, the
actions of H N K on ¢y, c_, ¢y, ¢¢ are equivalent.

Proof. By Proposition 3.2, ¢, ¢,¢_ ¢ are stable by conjugation, and
so they are complexifications of real vector spaces c¢,,c_. The fact
that these are Lie subalgebras is obvious. Since |Ri’ is even, these
vector spaces are even dimensional, and also they have the same di-
mension. By Proposition 3.2, 8 induces an isomorphism of ¢, into ¢_.
Using the considerations that follow (3.9), we find that B vanishes on
¢4, ¢, and we obtain (3.38). By Proposition 3.8, ¢y, ¢_, ¢, ¢ have the
same even dimension. The projections on p, £ are given respectively by
% (1F6). Since 0 exchanges ¢, and c¢_, they restrict to isomorphisms
on ¢, c_. By Proposition 3.8, we know that the actions H N K on ¢y, c;
are equivalent. Since the adjoint action of H N K commutes with 6,
the corresponding representations of H N K on these vector spaces are

equivalent. The proof of our proposition is completed. 0
If f €b, then
(3.39) detad (f)y. = [] (e /).
acR

Definition 3.11. Let 779 € S (h%) be such that if h € b, then

(3.40) w0 (h) = [ (e n).

aER,
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By (3.39), if f € b,
(3.41) det ad (f), =700 ()78 (—f).

"JJ‘
Also f € b is regular if and only if 778 (f) # 0.

Proposition 3.12. The function ™% vanishes identically on b if and
only if b is not fundamental.

Proof. Assume that b is not fundamental. By Proposition 3.7, there
are real roots, and so there are real positive roots. If o € R, then o
vanishes on b, and so 7%¢ vanishes on he. Conversely, if 79 vanishes
on he, one of the a € R, has to vanish identically on b, so that
a € RY, and b is not fundamental. The proof of our proposition is
completed. O

3.6. The case when b is fundamental and the root system of
(be, €). In this Subsection, we assume that b is a f-stable fundamental
Cartan subalgebra of g. By (3.18), we get

(3.42) R¢= R\ R™.
By Proposition 3.4, t = 0. By (3.28), we have the orthogonal splitting,
(3.43) by =i @y, by =i @ ce.

Also i,,1¢ have even dimension, ¢, ¢, have the same even dimension,
and the action of H N K on these last two vector spaces are conjugate.

The roots in R do not vanish identically on h,. We will now reinforce
the choice of positive roots made in Subsection 3.5. We may and we
will assume that by € b, |be] = 1 has been chosen so that if « € R,
<O{, b{3> 7é 0.

As we saw in Subsection 3.5, —f acts without fixed points on RS.
Also if o € RS, —faly, = —aly,, so that the nonzero real numbers
(cv,ibe) and (—0a, iby) have opposite signs.

Set

(3.44) Ry = R™NR,, R, ={a € RS, (o, ib) > 0}.

Definition 3.13. Let R (b, £) be the root system associated with the
pair (he, 8). If R, (be, £) is a positive root system for (he, £), if he € by c,
put

(3.45) OE | IRCANE

ﬁGR‘F(hEvE)



28 JEAN-MICHEL BISMUT AND SHU SHEN

Then [ﬁbé’e]z (he) does not depend on the choice of Ry (b, €). The
arguments above (3.44) show that if A € b, then

(3.46) IT (@.ne) >0
a€RS

Proposition 3.14. The map o € R™ U RS — aly, is injective, and
gives the identification

(3.47) R (b, &) = R{" U RS

A positive root system R, (e, €) for (be, ®) is given by
(3.48) R, (he,t) = R, URS,.

If he € b&(b then

2 1

— (-1}

R

(3.49) (7% ()]

IT (he| T (ehe.

aeRgi a€RS
Proof. By (3.28), we get
(3.50) e =i @,

and the above splitting is preserved by he. The weights for this action
on iy are given by Ri™. By Proposition 3.10, ¢ and ¢, are equivalent
under the action of he. By the first equation in (3.36), the weights for
the action of by on ¢ are given by the restriction of RS to he. Since
the weights for the action of he on ¢, are nonzero and of multiplicity
1, the map o € R{™ U RS — alp, gives the identification in (3.47). By
(3.47), we get (3.48). Using (3.45) and the above results, we get (3.49).
The proof of our proposition is completed. O

Remark 3.15. The results contained in Proposition 3.14 will play an
important role in the proof of the limit results of Subsection 8.1.

3.7. Cartan subgroups and regular elements. If § is a Cartan
subalgebra, the associated Cartan subgroup H C G is the stabilizer of
h. Then H is a Lie subgroup of G, with Lie algebra b.

Assume that b is f-stable. Then 6 restricts to an involution of H,
and (3.3) is the corresponding Cartan splitting of . Also B restricts
to a H and 6 invariant symmetric nondegenerate bilinear form B[, on
b, so that H is a reductive subgroup of G.

We still assume b to be f-stable. Let Zg (H) C G be the centralizer
of H, and let Ng (H) C G be its normalizer. Then Zg (H) is included
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in H, it is just the center Z (H) of H. Asin | , p. 131], the analytic
Weyl group W (H : G) is defined as the quotient
(3.51) W(H:G)=N¢g(H)/Zc(H).

Put
(3.52) Zx(H)=Zc(H)NK, Nk (H)=Ng(H)N K.
Then N (H) /Zk (H) embeds in W (H : K). By | , p. 131], this
embedding is an isomorphism, i.e.,
(3.53) W(H:G)=Ng(H)/Zx (H).
By | ,eq. (5.6)], W(H:G)C W (bc: g9c).

By | , - 130], an element v € G is said to be regular if 3 () is
a Cartan subalgebra. If H is the corresponding Cartan subgroup, then
v € H. By | , Theorem 5.22|, the set G* C G of regular elements
is open and conjugation invariant. More precisely, if Hy, ..., H, denotes
the finite family of nonconjugate Cartan subgroups, by | , Theorem
5.22], G™# splits as the disjoint union of open sets
(3.54) G™¢ = U_,G®,

where Grlf,f denote the open set of elements of G**® that are conjugate
to an element of H;.

If v € H, Ad(v) acts on g and fixes . Since Ad (7) preserves B, it
also acts on b*, so that 1 — Ad () acts on h. Then v is regular if and
only this endomorphism is invertible, i.e., det (1 — Ad (7)) [+ # 0.

3.8. Cartan subgroups and semisimple elements. The following
result is established in | , Part 1, Section 2.3, Theorem 4].

Proposition 3.16. A group element v € G is semisimple if and only
if it lies in a Cartan subgroup.

Let us give a direct proof of part of our proposition. Le § be a #-stable
Cartan subalgebra, and let H be the corresponding Cartan subgroup.
If v € H, then h C 3(). Moreover, v can be written uniquely in the
form

(3.55) v=e"k", a € by, ke HNK.

Since a € by, k € H, then Ad(k)a = a, which guarantees that ~ is
semisimple in G.

Let h C g be a Cartan subalgebra, and let H C G be the associated
Cartan subgroup. If v € H, then h C 3(v), so that b is a Cartan
subalgebra of 3 (7). In particular G and Z° (y) have the same complex
rank.
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Proposition 3.17. Any 6-stable Cartan subalgebra by of 3 () is also
a Cartan subalgebra of g.

Proof. As we saw in Subsection 2.2, Z°(v) is a connected reductive
group and € induces on Z° () a corresponding Cartan involution. Since
bho is commutative and #-stable, and since its action on g preserves B,
it acts on g by semisimple endomorphisms of g. Since G and Z°(v)
have the same complex rank, b, is a Cartan subalgebra of g. The proof
of our proposition is completed. 0

3.9. Root systems and their characters. Let h C g be a #-stable
Cartan subalgebra. We use the notation of the previous subsections.

Take v € H. As we saw after Proposition 3.16, if v € H, we can
write v uniquely in the form

(3.56) v=e%"", a € by, ke HNK,
so that
(3.57) Ad (k) a = a.

Let R (), R (a) be the root systems associated with (b,3 (7)), (h,3 (a)).
We will denote with extra subscripts the corresponding real, imaginary,
and complex roots.

Theorem 3.18. If v € H, for any o € R, Ad(y) preserves the 1-
dimensional complex line g,. For every a € R, there is a character
€o : H — C* such that Ad () acts on g, by multiplication by &, (7).
If a € R,

(3.58) €ab o =1.

IfaeR,if feb ke HNK, then

(3.59) & (ef) = elD), &0 (k)] = 1.

In particular, if v € H is taken as in (3.50), then

(3.60) Ea (7) = 96, (K71, E-va () =& (7).

If a € R™, then &, (v) € RY, if a € R™, then &, (7)| = 1. If a € R™,
the restriction of £, to H N K takes its values in {—1,+1}.
Also

(3.61) det (1 —Ad () lye = [] (1 =& (7)),

a€ER

and v 1is reqular if and only if for any o € R, &, () # 1.
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The following identities hold:
R(y)={a€R&(v) =1},  R(a) ={a€R {(oa) =0},
(3.62)

R*(y)=R(y)NR*, R™(y) =R(y) NR™, R (y) = R(y) N LR,
R*(a) = R(a) N R*®, R™(a) = R(a)N R™, R°(a) = R(a)N R".
Also Ry (7) = R(y)NR4, Ry (a) = R (a)N R, are positive root systems

for (0,5(7)) + (b, (a)).

Proof. If v € H, then Ad(y) fixes b, and so if h € b, we have the
commutation relation in End (g),

(3.63) [Ad (7), ad (k)] = 0.

By (3.7), (3.63), we deduce that for any o € R, Ad () preserves g,.
Since g, is a complex line, H acts on g, via a character &,.
Since Ad () preserves B, if f, f' € gc, we get

(3.64) B(Ad(y) f,f)=B(f,Ad(y)"" f).
Take o € R. By (3.64), if f € ga, f' € g_q, then
(3.65) Ea(V)B(f, ) =L B(f. f).

As we saw in Subsection 3.3, if & € R, the pairing between g, and g_,
via B is nondegenerate. By (3.65), we get (3.58).

The first equation in (3.59) is trivial. Since &, restricts to a character
of the compact group H N K, we get the second equation in (3.59).
The first equation in (3.60) follows from the previous considerations.
Since 6 () = e ?k~!, and since § maps g, into gy, we obtain the
second equation in (3.60). From this second equation, we deduce that
if « € R, then &, (7) is real, and if « € R™, then |&, (v)] = 1. If
v € HNK,a € R, we know that &, () € R*,|& (7)| = 1, so that
§a () = £1.

Equations (3.61), (3.62) are trivial. By (3.61), 7 is regular if and
only if for « € R, &, () # 1.

Now we proceed as in | , Theorem 1.38]. If k C b is a positive
Weyl chamber for (h,g), the forms in R do not vanish on &, so that
K is included in a 3 (y) Weyl chamber. It follows that R(v) N Ry is
a positive root system on (h,3(7)). The same argument is valid for
R (a). The proof of our theorem is completed. O

3.10. Real roots, imaginary roots, and semisimple elements.
We still take v as in Subsection 3.9. When taking the intersection
of i,v,c with 3(v),3(a),3(k), this will be indicated with a paren-
thesis containing the corresponding argument. The intersection with
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35 (7),3% (a),3t (k) will be denoted with an extra L. These vector
spaces also have a p and a £ component.
By construction,

(3.66) R™(y) = R™ (k).

As in (3.25), (3.26), we get

(3.67) R™(1)=R"(MUR"(v), R™(k)=R"(k)UR" (k).
To make the notation simpler, in (3.67), we did not use instead the

notation p (7)€ (7) ,p (k) . (k).
Proposition 3.19. The following identities holds:

(3.68) iCj3(a), i(y)=i(k), (k) Cs ().
Also
(369) i(k)c - @aeRim(k)ga, iL (k)c - @aeRit“\Ri"‘(k)ga-
Moreover,

3(a)c =bc @ PacR(a)Ba;
(3.70) 37 (a) Crdr,

3 (a)c = PacR\R(a)fa-

If v is reqular, then
(3.71) i(k)=0.

Proof. By the first identity in (3.21), since a € b,, we get the first
identity in (3.68). Combining the third identity in (2.20) with this first
identity, we get the second identity in (3.68). The third identity in
(3.68) is a consequence of the first two. By (3.7), we get (3.69) and
the first and the third equations in (3.70), the second equation being
a consequence of the first equation in (3.68). Also v is regular if and
only if 3(y) = h. Since h Ni = 0, by the second identity in (3.68), we
get (3.71). The proof of our proposition is completed. O

3.11. Cartan subalgebras and differential operators. Let h be a
f-stable Cartan subalgebra. There is a natural projection g* — h*.

By (3.5), there is a well-defined projection g — h. To the splitting
(3.5) corresponds the dual splitting

(3.72) g =h"op

The projections S (g*) — S™ (h*), .S (g) — S (h) associated with (3.5),
(3.72) are just the restriction r of polynomials on g to b, or of polyno-
mials on g* to h*.

The Lie algebra g acts as an algebra of derivations on S" (g*).
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Definition 3.20. Let I (g*) C S (g*) be the algebra of invariant el-
ements in S (g*), i.e., the algebra of the elements of S" (g*) on which
the derivations associated with g vanish. Let I' (h§, g&) be the algebra
of W (h¢ : go)-invariant elements in S™ (h§).

Recall that
(3.73) 5 (he) =5 (h")¢-
In particular S* (h¢) is equipped with a natural conjugation.

Proposition 3.21. The algebra I (b, 9&) is preserved under complex
conjugation. There is a real algebra I (h*,g*) C S (h*) such that

The map r : S (g*) — S (h*) induces the canonical isomorphism
(3.75) r:oI'(g") ~1(b",g").

Proof. By Proposition 3.1, W (hc : gc) is preserved by conjugation.
Therefore I' (h§, g&) is preserved by conjugation, which gives (3.74).
From the obvious isomorphism

(3.76) r:I'(gc) = I (be,8c),
we get (3.75). The proof of our proposition is completed. l

What we did for g* can also be done for g. The same argument as
in (3.75) leads to the identification

(3.77) r:I(g)~1(hg).

As we saw in Subsection 3.1, S" (g) can be identified with the algebra
D (g) of real differential operators on g with constant coefficients, so
that I (g) is identified with the algebra Dj (g) of real differential oper-
ators with constant coefficients on g which commute with the above
g-derivations. Similarly 1" (h,g) can be identified with the algebra
D; (b, g) of real differential operators on b with constant coefficients
that are W (h¢ : gc)-invariant.

Let R, C R be a positive root system as in Subsection 3.5. Recall
that the associated polynomial 779 € S (hg) was defined in (3.40).
If A e I'(g) = Ds(g), if f € I'(g%), then Af € I (g*), so that
r(Af) € I'(b",97). Alsor(A) € I'(h,g) = D;(h,g). By | :
Lemmas 6 and 8], if f € I'(g*),

(3.78) r(Af) = %r (A) 78 f.
Let C*9 (g, R) be the vector space of smooth real functions on g that

vanish under the above g-derivations. Then (3.78) extends to f €
C>*9%(g,R).
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4. ROOT SYSTEMS AND THE FUNCTION 7,

The purpose of this Section is to give a drastically simplified version
of the function 7, (Yy) introduced in Definition 2.6. This will be done
by expressing this function in terms of a positive root system. Imagi-
nary roots will play an essential role in this expression. In particular,
the function £, introduced in Definition 2.5 will turn out not to depend
on a.

This section is organized as follows. In Subsection 4.1, if b is a 6-
stable Cartan subalgebra and H is the corresponding Cartan subgroup,
if v € H, we give explicit formulas for the determinant of 1 — Ad ()
on various subspaces in terms of a positive root system.

In Subsection 4.2, we establish our formula for 7, (V) using the
root system.

We use the assumptions and the notation of Section 3.

4.1. The determinant of 1 — Ad (). Let h C g be a #-stable Cartan
subalgebra, and let H C G be the corresponding Cartan subgroup.
Put

(4.1) hi = P s, bt =P oo

acRy acRy
By (3.10), we get
(4.2) he = by @ b2,
Let v € H be written as in (3.56). By Theorem 3.18, we obtain
(4.3) det Ad(7) [yr = [] & v
acR

We write (4.3) in the form

(44)  detAd(D e = [[ & [] & [] &G

aERS aERY® aele

By the considerations we made in Subsection 3.5, —f acts without fixed
points on RS. By Theorem 3.18, in the right-hand side of (4.4), the
first term is positive, the second is a product of nonzero real numbers,
and the third term is a product of complex numbers of module 1.

If o € R, we choose a square root &2 (k71) of & (k7). In view of
the second identity in (3.60), if o € RS, we may and we will assume
that

(4.5) & (K71 = &7 (k).
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For aw € R, , we choose the square root {;/ 2 (7) so that

(4.6) &2 (7) = el (671

By (4.5), (4.6), if « € R%, then

(4.7) e () = &% (7).

A square root of det Ad (v) "’i in (4.3) is given by

(4.8) det Ad (v :f = I[ &2~

aER4

By proceeding as in (4.4), we can rewrite (4.8) in the form

(49)  detAd()],* = T &7 [T &2 IT &7 ().

a€RS Q€ERY a€RM

Using (4.6), (4.7), we find that the first product in the right hand-side
of (4.9) is positive, the second product is either a nonzero real number,
or the product of v/—1 by a nonzero real number, and the third product
is of module 1.

Definition 4.1. Put

(4.10) eo(y)=sem [ (1-&'().

a€RIE\RYE(7)
Recall that if o € R™, then &, (k7!) = +1.

Proposition 4.2. The following identity holds:

(4.11) ep(y)=sgn  J[ (1-&"0).

a€RIE\RY (a)

Proof. If a € R(a), by (3.60), & () = & (K7Y). If a ¢ R(v), by
(3.62), &, () # 1. By Theorem 3.18, if « € R™ (a) \ R* (), we have
& (7) = —1, s0 that 1 — &' () = 2. This completes the proof of our
proposition. [
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Theorem 4.3. The following identities hold:
det (1 — Ad (’}/)) |5l(a)

= (et T @ -6 )’

a€RL\Ry(a)
(4.12)
[det (1 = Ad (W) |y * = o () TI (@20 &2 ()
a€R4\Ry(a)
H 6;1/2 (k_l) ’

a€RI\R (a)
det (1 — Ad (k7)) |j1(y) = (1) @O
I €o-&m).

a€Ry(a)\R4(7)

Proof. Using Theorem 3.18 and the third identity in (3.70), we get

(413) det(1—Ad()) e = J[ (Q-&@))(I-&"M).

a€R\Ry(a)

from which the first equation in (4.12) follows.
By proceeding as in Subsection 3.5, we find that —@ acts on R, \
(R4 (a) UR') without fixed points, so that |Ry \ (Rs (a) URY)| is

even, and so

(4.14) (—1)F\E @ — (1) RE\RE (a)]
The same arguments also show that
(4.15) I € o-"m)

aeR\(Ry(a)URY)
is a positive number, and also that

(4.16) II 1-&M) (1-&" ")

a€Ry\ (R4 (a)URY)

= I1 (€2 (1) — €772 (7).

a€R\(Ry(a)URY)
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Moreover, we have the identity of nonzero real numbers,

(4.17) I[I a-coi-&'m)

a€RIE\R' (a)

RI\RTS (a)] I1 (1= (M) ea(r).

a€RIE\RIE (a)

—(-1)

By Theorem 3.18, if o € RY, then
(4.18) €a (7) = e (K71), Eo (K1) = 1.
Using Proposition 4.2 and (4.17), we get

1/2

(4.19) [I a-cGon-&'m)

a€RIE\RY (a)
=ep(y) [ (Q-&" ()
a€ R\ R (a)

Equation (4.19) can be rewritten in the form

1/2
(4.20) I[I a-com@-&'m)
aERﬂf\Rf(a)
—ep(v) ] €P-&"0) JI &Y.
a€RIE\RY(a) a€RIE\R' (a)

By (4.13)—(4.20), we get the second identity in (4.12).

Since on 31 (), Ad(y) acts like Ad (k7'), the proof of the third
identity in (4.12) is the same as the proof of the first identity, which
completes the proof of our theorem. O

Remark 4.4. By the first two equations in (4.12), we deduce that
(4.21)

sgndet (1 — Ad (7)) |2 = (=) O0 T &t (k7).
a€RIE\RY (a)

Also
(4.22) |Ry \ Ry (a)] = dimp™ (a).
Using (4.22), we can rewrite (4.21) in the form
impt(a
(4.23)  sgndet (1= Ad (7)) ;1) = (=1 @ det Ad () |t (o)



38 JEAN-MICHEL BISMUT AND SHU SHEN

Using Proposition 3.8, we get

(4.24) det Ad (k) |1 (o) = det Ad (k) [p1(a)-

By (4.23), (4.24), we get

(4.25)  sgndet (1 — Ad (7)) ;@) = (=1)™" @ det Ad (k) [y (o),
a result already established in [B11, Proposition 5.4.1].

Let it be the orthogonal space to i in h~. By (2.20), 3(v) C 3 (a),
and by (3.68), i C 3(a). Therefore,

(4.26) 37 (a) €t (y) Nt
Similarly, we have the inclusion
(4.27) Ri(vy)UR™ C Ry (a).

Theorem 4.5. The following identities hold:
det (1= Ad (7)) [+ i = (1)1 (7 0012)]

I1 (€2 (y) = €52 ()7,

a€R\(Ry ()URI)
(4.28)
1/2
|det (1= Ad (7)) |- (i |2 = e (7)
11 @2 -0 I &Y.
a€Ry\(R4(y)UR) Q€ RE\ REe ()

Proof. The proof of the first identity in (4.28) is the same as the proof
of the first identity in (4.12) that was given in Theorem 4.3. Instead
of (4.14), we get

(4.29) (—1) BN EOURR)[ _ (_y[ReREG)]
If in (4.15), we replace Ry \ (R4 (a) U RY) by Ri\(R+ (v) U R U R'™),

the conclusions remain valid. Similarly, (4.17), (4.19) remain valid
when replacing R \ RY (a) by Ry \ RY (7). This completes the proof
of our theorem. O

4.2. Evaluation of the function J, on ih. Let h C g be a -stable
Cartan subalgebra. Take v € H. Then ~ is semisimple, and h C 3 (7).
In particular, he C €(), so that functions defined on i (y) restrict to
functions on h.

Recall that the function £, (Yg), M, (Y§) on it (v) were defined in
Definition 2.5.
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Definition 4.6. If hy € b, put

det (1— Ad (k~te~™)) [0,
4. 1 (le) = o
(4.30) Zi-1 (he) det (1 — Ad (k=le)) |1 )

Like the function 7, (Y{) in (2.68), the function %1 (he) is a smooth
function of he, which verifies estimates similar to (2.77). Exactly the

same arguments as in [B11, Section 5.5] and after (2.65) show that
there is an unambiguously defined square root
1 1/2

(4.31) My (he) = L (hy)

det (1 — Ad (k71)) |ix k)
This square root is positive for hy = 0.

Theorem 4.7. If hy € ibyg, then

(4.32) A (ad (he) [p)) _
A (ad (hg) |B('y)) A (ad (h
E»y (hg) - gk—l (he) .
In particular L., (he) does not depend on a.
If he € the, we have the identity,
(4.33)

jv (hf)

(ad (he) [iy(x))
O ety

1
‘det (1—Ad(v)) |3L(7)ﬂiL|

This identity can be written in the form,
(434) 7, (hy
(DRG] ) [ocre men) €V (1) Mocrp o Ao he))
[locrir, ( () — & (7)) HaeRm(k) A((a, b))
[acrmmin o (8677 (k71e7) = &2 (k1e ) )
R CH B ) )
Proof. By (3.28), we get

(ad (ha iva(k))
(ad (Re) lie(x))

A
TR M ().

(4.35) it=tPec.
Also it splits as
(4.36) it =i @iy

By Proposition 3.8, as representations of H N K, iy and i are equiva-
lent, so that (4.32) holds.
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Observe that det (1 — Ad (k7")) |;£(;)nir > 0, and so this number has
a positive square root. Moreover,

(4.37) det (1 —Ad (7)) [;£(pnic = det (1 = Ad (7)) |;10)
det (1= Ad (k7)) iy

By (2.64), (2.65), (2.68), (4.32), and (4.37), we get (4.33).
Clearly,

sy sy

(4.38) (ad (he) ) H%Rm(ké ((a, b))
)

Q, I
((Oé, 4

(ad (he) fiz(x)) HaeR?}r(k he))
By proceeding as in the proof of the third identity in (4.12), we get
(4.39) det (1 —Ad (k™)) liep)
= (el T (@ ) et ()

aGRijrn\Rif‘(k)

The same argument shows that

R\RE® (k)|

(140) Zios () = (~1)
2
/2 (7.-1, — —1/2 /7 1 —
[acrimnie o (807 (67T 7) = &2/ (kte ) )
-
Maern v o (87 (ke — &2 (k1eh))

By (4.39), (4.40), and keeping in mind the fact that we take the
properly positive square root in (4.31), we get

(_1)|RLI?+/R§?+("’)’
1/2 /7 _ —1/2 /7. _
HOCERT’\RT‘(M (60/ (kj 1) — ga / (k‘ 1))
1/2 (7.1 — —1/2 /7.1 —
HQEREZ,\REZ,(IC) ( o (k le he) _ ga (k le he))

1/2 /71 _ —1/2 /4 1 _ ’
e rim \rim ) ( o7 (klewhe) — 6312 (kte ’“))

In the first product in the right-hand side of (4.41), we may as well
replace k! by 7.

By combining the second identity in (4.28), (4.33), (4.38), and (4.41),
we get (4.34). The proof of our theorem is completed. U

(441) M (he) =
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5. THE FUNCTION J, WHEN 7 IS REGULAR

The purpose of this Section is to study extra properties of the func-
tion J, when - is regular.

This section is organized as follows. In Subsection 5.1, if h is a
f-stable Cartan subalgebra and if H is the corresponding Cartan sub-
group, if v € H, we describe a neighborhood of v in H.

In Subsection 5.2, if v € H, we define the ~-regular elements in b,
which are such that a small perturbation of v by a y-regular element
is regular.

In Subsection 5.3, following Harish-Chandra | |, we introduce
the function Dy on H. This function is an analogue of the denominator
in the Lefschetz formulas.

Finally, in Subsection 5.4, we specialize the formula obtained in The-
orem 4.7 for 7, (he) to the case where v € H™®. As a consequence, we
prove the unexpected result that the function (v, hy) € H™® X ihy —
Jy (he) € C is smooth.

We make the same assumptions and we use the same notation as in
Section 4.

5.1. A neighborhood of v in H. If b € b, b splits as
(51) b= bp + be, bp € []p, be € hg.
Put

(5.2) v = el

Then v € HN Z (7).
Set

(5.3) a' = a+ by, K = ke .
Then
(54) f}// = ea/k'/717 a/ c bp, k/ c H N K(’Y), Ad (k/> a/ — a/.

Also Ad (v') preserves the splitting g = 3 (v) ®3* (7). Since 1 — Ad (v)
is invertible on 3% (), we conclude that for € > 0 small enough, if
bl <,

(5.5) bCs3(v)C3(v).

Let H™® be the set of regular elements in H. Assume temporarily
that v € H™® i.e., 3(y) =b. By (5.5), for € > 0 small enough if |b| < e,
then

(5.6) 3(7) =,
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ie., v € H™ which is a trivial conclusion. Since b € b, we conclude
that v € Z (y),v € Z (7). A priori, Z (7) and Z (7') may be distinct.
Still we have the obvious identity

(5.7) Z2°()=2°(y) = H".

5.2. The ~-regular elements in . We no longer assume v to be
regular. By (3.70), we get

(5.8) 32 (Ve = Bacr(a)\R(7)ba-

Let b denote the orthogonal space to b in 3(a). Then we have the
splitting

(5.9) by = by @ Do
By (3.70), we get
(510) hi_,C - EBaGR(a)ga-

Definition 5.1. An element h € b is said to be y-regular if for a €
R(7), {a,h) #0.

The ~-regular elements in h are exactly the regular elements in b
viewed as a Cartan subalgebra of 3 (). The v-regular elements lie in
the complement of a finite family of hyperplanes in b.

Since b is a Cartan subalgebra of 3 (), we define the function 7%3(?)
on hc as in (3.40), i.e.,

(5.11) 0 ()= T (enh).

a€R4 ()

Then h € b is y-regular if and only if 793" (R) # 0.
Now we use the notation of Subsection 5.1.

Proposition 5.2. There exists € > 0 such that if b € b is y-regular,
and |b| <€, if v/ = e, then v' € H™.

Proof. For € > 0 small enough, (5.5) holds, so that

(5.12) 3()=3()N35(e").
By (3.7), we get
(5.13) 3(Y)e =be @ DaeRr(y)9a-

For a € R(7), €’ acts on g, by multiplication by e/*?. For ¢ > 0 small
enough, if b is y-regular and [b| < ¢, for a € R (), e®? # 1. By (5.12),
(5.13), we conclude that under the given conditions on b, 3(7) = b,
i.e., 7 is regular. The proof of our proposition is completed. O
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5.3. The function Dy (7). Here, we follow Harish-Chandra | :
Section 19].

Definition 5.3. If v € H™#, put’

(5.14) Du(y) =[] @2 -&"0).

aERL

Using (3.61) and proceeding as in the proof of Theorem 4.3, we get
(5.15) det (1 - Ad (7)) |y = (~1)®1 D% (7).
By (5.15), we deduce that if v € H™#, then
(5.16) [det (1 — Ad (7)) || = [Dr (9)I7,

so that Dy () # 0.

5.4. The function J, when 7 is regular. In this subsection, we
assume that v € H™8 ie., Dy (7v) # 0.
By (4.30), (4.31), we get

det (1 — Ad (k~te™™)) |;,

(5.17) e () = Gt (= Ad (e ) iy
1 1/2
My (he) = |:det (1 — Ad (/{*1)) |i$k71 (hE)

By (4.10), ep () is given by

(5.18) en(v)=sen |[ (1-¢&" ().

The function ep () is locally constant on H*g.

Theorem 5.4. If hy € ibg, we have the identity,

1
' det (1 — Ad (7)) i+ |"?
n [ , Section 18], Harish-Chandra assumes G to be acceptable, i.e., p? is

assumed to be a weight, so that Dy () can be globally defined. Here, we only need
a local definition of Dy (), and we do not need this assumption.
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This identity can be written in the form,

im

Rim, | 1/2 /7.1
»+lep () HaeRf o (K7
Dy ()
HaeRigj; ( o2 (kte™™) - &’ (k’fleihk)>
[aern, (&7 (teh) — &% (k1e71e))

The function (7, he) € H™® x iy = T, (he) € C is smooth.

(=1)

(5:20) T, (he) =

Proof. The first part of our theorem is a trivial consequence of Theorem
4.7. For be € by, for |be| small enough, we take

(5.21) €12 (/1) = elon/Dgl/2 (1)

By (4.5), (5.21), we deduce that if o € RS, then

(5.22) e (K1) = & ().

The stated smoothness is an obvious consequence of the above formulas.
The proof of our theorem is completed. O

6. THE HARISH-CHANDRA ISOMORPHISM

In this section, if h C g is a Cartan subalgebra, we describe the
Harish-Chandra isomorphism of algebras ¢nc : Z (g) ~ I' (h,g). Also
we explain the action of Z (g) on C*° (X, F'), and we introduce certain
semisimple orbital integrals in which Z (g) appears.

This section is organized as follows. In Subsection 6.1, we introduce
the center of the enveloping algebra Z (g).

In Subsection 6.2, we recall some properties of the complex Harish-
Chandra isomorphism ¢pc : Z (gc) =~ I' (b, gc), including some as-
pects of its construction.

In Subsection 6.3, we show that there is a real form of the Harish-
Chandra isomorphism ¢yuc : Z (h) ~ I (b, g).

In Subsection 6.4, we recall the relation of the Harish-Chandra iso-
morphism to the Duflo isomorphism that was established in | ]

In Subsection 6.5, we consider the case of the Casimir.

In Subsection 6.6, we describe the action of Z (g) on C* (X, F).

Finally, in Subsection 6.7, we consider the orbital integrals in which

Z (g) appears.
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6.1. The center of the enveloping algebra. Recall that the en-
veloping algebra U (g) was introduced in Subsection 2.3. Then U (g)
is a filtered algebra, and the corresponding Gr is just the algebra of
polynomials S" (g) on g*.

Note that g acts by derivations on U (g). Recall that Z (g) is the
center of U (g), i.e., it is the kernel of the above derivations.

Observe that G acts both on the left and on the right on C* (G, R)
by the formula

(6.1) s (9) =s(v'9), vrs (9) = s (97)

and these two actions commute. They are intertwined by the involution
induced by the involution ¢ — og = g~'. Let Dy (G) be the Lie
algebras of left-invariant real differential operators on G. As we saw
in Subsection 2.3, U (g) can be identified with Dy (G). The algebra
Dy (G) commutes with the left action of G.

If g_ is the Lie algebra g with the negative of the original Lie bracket,
the isomorphism of g f — —f identifies g and g_. This isomorphism
is induced by the involution o.

Let U (g_) be the enveloping algebra associated with g_. Then
U (g_) can be identified with the algebra of right-invariant real differ-
ential operators Dy (G). This algebra commutes with the right action
of G. Also the isomorphism f — —f induces an identification of U (g)
and U (g-). This identification is still induced by o.

We equip U (g),U (g_) with the antiautomorphism * which is just
the adjoint in the classical L, sense when identifying U (g) , U (g_) with
Dy, (G),Dg(G). This involution extends to a C-linear involution of
Ulgc),U (9-c)-

By definition, Z (g) C U (g) is the subalgebra of Dy (G) which com-
mutes with right multiplication. Equivalently

(6.2) Z(g) = DL (G)N Dg(G).

Note that * induces an automorphism of Z (g), which is an involution,
and which we still denote .

The isomorphism of U (g) with U (g_) which was described before is
the one induced by o. It induces the obvious isomorphism of Dy (G)
with Dg (G). This way, we obtain an automorphism o of Z (g), which
is also an involution.

Clearly,

(6.3) Z(9c) = Z(9)c-
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Equivalently, Z (g¢) is equipped with a complex conjugation, and Z (g)
is the algebra of complex conjugation invariants in Z (gc). Also * and
o extend to complex automorphisms of Z (gc).

6.2. The complex form of the Harish-Chandra isomorphism.

Let h C g be a f-stable Cartan subalgebra. By | , Theorem 8.18],
there is a canonical Harish-Chandra isomorphism of filtered algebras,
(6.4) ¢nc : Z (9c) = I (he, 9c) -

We need to describe the Harish-Chandra isomorphism in more detail.
We fix a positive root R, as in Subsection 3.5. Put

(6.5) P =" U(gc) g

aER
Observe that S* (he) = U (he), and also that U (he) C U (gc), so that
S (hc) C U (gc)- By | , Lemma 8.17], we get
(6.6) 5 (be)N & =0, Z(gc) € 5 (ho) @ Z.

Let ¢1,r, be the projection from Z (gc) on S (he).

Recall that S" (h¢) is the algebra of polynomials on b, and that
p® € bg is the half sum of the roots in R,. Let ¢ g, be the filtered
automorphism of S (hg) that is such that if f € S (he), if h* € b,
then

(6.7) Go.r, [ (h") = f(h" —p°).

The fundamental result of Harish-Chandra | , Lemmas 18-20],
[ , Theorem 8.18] is that ¢s g, ¢1,r, maps Z (gc) onto I (he, g¢),
that it induces an isomorphism of filtered algebras that does not depend
on the choice of R,. This is exactly the Harish-Chandra isomorphism
¢nc : Z(8c) =~ I' (he, gc)-

Now we proceed as in Subsection 3.11, i.e., we identify I' (hc, gc)
with the algebra D; (hc, gc) of holomorphic differential operators on
hc with constant complex coefficients which are W (h¢ : gc)-invariant.
The same arguments as in Subsection 3.11 show that there is an algebra
D; (h,g) of real differential operators with constant coefficients on b
such that

(6.8) Di(bc,9c) = D;(h,9)c

and that I" (b, g) can be identified with Dj (b, g).

We will now use the assumptions and notation of Subsection 3.7. Let
C>=% (G™8& C) denote the Ad-invariant smooth complex functions on
the open set G**.
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Let CoWWH:G) (free C) be the smooth W (H : G)-invariant func-
tions on H*®. There is a restriction map

re Coo,G (Greg7 C) N Coo,W(H:G) (FIreg7 C) )

Observe that Z (g¢) acts on C°¢ (G™&, C), and I" (hc, gc) acts on
Coo,W(H:G) (Hreg’ C)

Let L € Z(gc). By | , Lemma 13], | , Theorem 10.33], if
f e CC (G*e,C), on H™8, we have the identity
1
H

6.3. The real form of the Harish-Chandra isomorphism. The
involution A — —h induces an involution of I" (hc, gc) ~ D;j (be, g¢).
If N counts the degree in I' (h¢, gc), this involution is just (—1)". We
still denote this involution by .

In Proposition 3.21, we proved that I' (hc, gc) is preserved by com-
plex conjugation. At the end of Subsection 6.1, we proved that Z (gc)
is also preserved by complex conjugation. Observe that 6 acts on

Z (gc), I (bc,g9c) and preserves Z (g), I (b, g).
Theorem 6.1. If L € Z (gc), then
(6.10)
onc (L*) = (¢oucl)”,  ouc (L) = ¢nc (L), ¢uctL = OducL.

On Z (gc), the involutions o and x coincide. Finally, ¢puc induces an
1somorphism of real filtered algebras:

(6.11) Z(g)~1(h,g).

Proof. The first equation in (6.10) was established by Harish-Chandra
[ , Lemma 20]. For the proof of the next two equations, we will
follow Harish-Chandra, and use the notation in Subsection 6.2.

Observe that R, is also a positive root system. More precisely, by
(3.34), we get

(6.12) R.=RURIUR;.
From the properties of R, (6.12) can be rewritten in the form
(6.13) Ry = (-R?")URYURS.

Let & denote the conjugate of & in U (gc)- By (3.8), P is just
the object defined in (6.5) associated with R,. We deduce that if
L € Z (gc), we have the identity in S™ (hc),

(6.14) ¢z, L=b1r, L.
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Also p® € b is the half sum of the roots in Ry. By (6.13), if f €
S (hC)7 then

(6.15) G, [ = bor, [
By (6.14), (6.15), we get the identity in S" (h¢),
(6.16) G0, P17, L = P2.r, 01k, L.

Let us now use Harish-Chandra’s result described after (6.7). For
L € Z (gc), we can rewrite (6.16) as an identity in S" (hc),

(6.17) ¢ucL = pucL.

But Harish-Chandra gives more, namely that the image of ¢yc is ex-
actly I' (hc, 9c). By (6.17), I' (hc, gc) is preserved by complex conju-
gation, which we already knew by Proposition 3.21, and we also obtain
the second equation in (6.10), and (6.11).

Also R, = —R, is a positive root system, and the corresponding
half-sum of roots is given by 0p%. Asin (6.14), if L € Z (g¢), then
(6.18) b1.07.0L = 06, ., L.

If feS (he), then

(6.19) P20r. 0f = O02r, [.

By (6.18), (6.19), we conclude that

(6.20) 2,0r, P16, 0L = 002 R, O1 R, L.

Using again the result of Harish-Chandra, from (6.20), we obtain the
third equation in (6.10).

If f,h € C>°(G,R), the convolution f *h € C*°(G,R) is defined
by the formula,

(6-21) fxhig) = / fla'd) n(g)dy'.
e

If Ae Dr(G),B € D (G), we get easily

(6.22)

fxAh=A(fxh), fxBh=(B*f)*xh, B(fxh)=((cB)f)x*h.
By (6.2), (6.22), we conclude that if L € Z (g¢), then

(6.23) (L*f)*«h=((cL) f) * h.
from which we get
(6.24) L*f=0oLf.

This completes the proof of our theorem. O
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6.4. The Duflo and the Harish-Chandra isomorphisms. Here,
S [[g*]] denotes the algebra of formal power series o = 7% v, c; €
S%[g*]. Then g still acts on S [[g*]] as an algebra of derivations. Let
I' [[g*]] be the subalgebra of invariant elements in S" [[g*]].

As in Subsection 3.1, S [[g*]] can be identified with the algebra
D [[g*]] of formal real partial differential operators with constant co-
efficients on g*, and I [[g*]] with the algebra of formal real invariant
differential operators with constant coefficients D; [[g*]], which acts on
S (g) "

Then A~' (ad(-)) € I'[[g*]]. In the sequel, we view A~!(ad (-)) as
an element of D; [[g*]].

Let 7pgw be the Poincar-Birkhoff-Witt isomorphism of filtered vector
spaces S"(g) ~ U (g). Then mppw induces an identification of filtered
vector spaces I (g) ~ Z (g).

Definition 6.2. Put
(6.25) 7 = pewA ! (ad (-)) : S'(g) — Ulg).

Then 7 is an isomorphism of filtered vector spaces, which commutes

with 6.

A result by Duflo | , Thorme V.2] asserts that when restricted
to I (g), 7o induces an isomorphism of filtered algebras,
(6.26) I'(g) ~ Z(g).
By | , Lemme V.1], we have the commutative diagram
(6.27) I'(gc) = Z(gc) -
\ PHC
I(bCa gC)

By Theorem 6.1 and by (6.27), we get the commutative diagram

I(g) = Z(g)
I(h,g)

and the morphisms in (6.28) commute with 6.

(6.28)

)

6.5. The case of the Casimir. Note that B*|, € I? (b, g) corresponds
to the Laplacian A" on b associated with Bl,. The following result
of Harish-Chandra is established in [ , Example 5.64] as a conse-
quence of the constructions in Subsection 6.2.
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Proposition 6.3. We have the identity:

(6.29) ducC® = —A" + B* (p%, p%) .
Proposition 6.4. The following identity holds:
(6.30) 7 C® = —B* + B* (p%, p°) .
Proof. Clearly,
~ 1
31 At (@) =1+ =2 +...
(6.31) (x) +toe

Also B* € I*(g). Let e1...,€em4n be a basis of g, and let ef,... e},
be the basis of g which is dual with respect to B. By (6.31), we get

(6.32) A '(ad())B* = B*+ 2—14Trg [ad (e;) ad (e;)] B* (e, €3) .

Equation (6.32) can be written in the form

- 1
(6.33) A (ad () B* = B* — ﬁTrg [C99].
By (2.46), we can rewrite (6.33) in the form
(6.34) A" (ad () B* = B* 4+ B* (p°, p°) .
By (6.25), (6.34), we get
(6.35) mB* = —-C%+ B* (p%, p%),

which is equivalent to (6.30). The proof of our proposition is completed.
O

Remark 6.5. Using (6.28), Propositions 6.3 and 6.4 can be derived from
each other.

6.6. The action of Z(g) on C* (X, F). Note that G acts on the
left on C*° (G, E) as in (6.1), and there is a corresponding action of
Dg (G). Also K acts on C* (G, E) by the formula

(6.36) krs (9) = p" (k) s (gk) ,

and this action of K commutes with the left action of G. Moreover,
we have the identity

(6.37) C®(X,F)=[C> (G, E)".

Then Dpg (G) commutes with the action of K on C*(G,E). As
a subalgebra of Dy (G), Z (g) also acts on C* (G, E), and its action
commutes with the left action of G' and with the right action of K.

The action of Dpg(G) descends to C* (X, F'), so that the action of
Z (g) descends to C*° (X, F') and commutes with the left action of G.
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6.7. The semisimple orbital integrals involving 7 (g). Let . be
the algebra of differential operators acting on C* (X, F') with uniformly
bounded coefficients together with their derivatives of any order.’

Definition 6.6. Let C°>* (X, F') be the vector space of smooth sections
of F on X which are bounded together with their covariant derivatives
of any order.

Let Q@ be the space of smooth kernels @ (z,2') |, ex acting on
C>? (X, F) and commuting with the left action of G such that there
exists C' > 0, and for any S, 5" € .7, there exists Css» > 0 for which

(6.38) 1SQS’ (z,2")| < Csg exp (—Cd* (z,2")) .

The same arguments as in | , Proposition 4.1.2] shows that the
vector space Q is an algebra with respect to the composition of opera-
tors.

In particular Dy (G) commutes with @, and so Z (g) commutes with

Q.
Proposition 6.7. If L € Z(g),Q € Q, then LQ € Q.

Proof. Since L € Z(g), L commutes with the left action of G, and so
L() commutes with this action of G. We fix g = pl € G. Since LQ)
commutes with G, and G acts isometrically on X, to establish (6.38)
for LQ, we may as well take x = xy. If U € g, and if UX is the
corresponding vector field on X, since UX is a Jacobi field along the
geodesics in X, there exist C' > 0, ¢ > 0 such that

(6.39) |UX (2)| < Cexp (cd (x0,2)).

The above estimate is also valid for the corresponding covariant deriva-
tives. From (6.38), we get the estimate (6.38) for L) when z = .
The proof of our proposition is completed. O

Let v € G be semisimple. By (2.58), (6.38), we have the analogue of
(2.59), i.e., if f € pt(7), then

(6.40) Q (v el mo, el )| < Cexp (=, |f]7) -
In [B11, Definition 4.2.2], if v € G is semisimple, if @ € Q, the
orbital integral Trl"! [Q] is defined by a formula similar to (2.60), i.e.,

(6.41) T Q] = /L( | Tr [1.Q (y~'exo, el o)) r (f) df .
p—(r

10T hese are linear combinations of operators Vgl . Vf,k, where Uy, ..., Uy are
smooth bounded vector fields with uniformly bounded covariant derivatives of any
order.
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The estimates (2.57), (6.40) guarantees that the integral in (6.41) is
well-defined.

By Proposition 6.7, if L € Z(g), LQ € Q, and so Tt [LQ)] is also
well-defined.

7. THE CENTER OF U (g) AND THE REGULAR ORBITAL INTEGRALS

The purpose of this Section is to evaluate the orbital integrals for
kernels of the form Lu <\/ CoX 4 A) associated with regular elements

in G, when L € Z(g). To establish our formula, we will use the main
result of [B11] described in Theorem 2.9, the smoothness properties of
the function 7, (he) that were obtained in Section 5, and the Harish-
Chandra isomorphism in the form given in equation (6.9).

This section is organized as follows. In Subsection 7.1, we recall the
classical result of Harish-Chandra | , Theorem 3], | , Section
18] that expresses certain orbital integrals on H'™® via the action of
Z (g) on the orbital integral as a function of ~.

In Subsection 7.2, using Theorem 2.9, we obtain our formula.

7.1. The algebra Z (g) and the regular orbital integrals. Let
L e Z(g),Q € Q, by Proposition 6.7, LQ € Q. If f € C*(G™#,C),
Lf is a smooth function on G™&. For greater clarity, this function will
be denoted instead L. f.

Now we give another proof of a result of Harish-Chandra | ,
Theorem 3], | , Section 18], | , Proposition 11.9].

Proposition 7.1. If Q € Q, the map v € G** — Tt [Q] is smooth.
If L € Z(g), we have the identily of smooth functions on G*8:

(7.1) TP [LQ] = (oL), T [Q].

Proof. Themap (v, 9) € H*¢xG/H — g 'vg € G*8 is locally a diffeo-
morphism. Since Trl! (@] is invariant by conjugation, to obtain the re-
quired smoothness, it is enough to prove that v € H™ — Tr [Q] € C

is smooth.
Put

(7.2) K'(H)=H"NK.
As we saw in Subsection 2.2, K (H) is a maximal compact subgroup
of HO.

Using the notation in Subsection 5.1, if v € H™8 and if v/ € H is

close to v, then 7 € H™® and (5.7) holds. Using equation (2.31) in
Theorem 2.2, we deduce that

(7.3) X (y)=H/K"(H).
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In particular X (7') does not depend on 4/, and pt(y/) = f]pL. By
(6.41), we get

(7.4) T [Q] = /hl Tr [.Q (v "'’ o, e’ o) | 7 (f) df.

For +' € H close enough to v € H, it is elementary to make the esti-
mate in [B11, Theorem 3.4.1 |, which was explained in (2.58), uniform,
so that there exists C' > 0 such that if 4/ € H"™8 is close enough to -,

if feb,,[fl>1,
(7.5) dy (elmg) > C'|f].

By combining (6.38) with S = 1,5 = 1 and (7.5), for v/ € H close
enough to ~, there exist C' > 0,¢ > 0 such that if f € hﬁ, |f| > 1, we
get

(7.6) Y. Q (7_lefx0, efxo)} < Cexp (—c |f|2) )

Using dominated convergence, by (2.57), (7.6), we deduce that Tyl Q]
is a continuous function of v € H"*.

Let us now prove the above function is smooth on H™. The ar-
gument is essentially the same as before, by combining the estimates
in (6.38) with S arbitrary, together with uniform estimates given in

(6.39).
Equation (7.1) just reflects the fact that oL is the image of L by the
map g — g L. U

7.2. A geometric formula for the regular orbital integrals. In
the sequel we take the function p € S (R) as in Subsection 2.5. Let
AeR,LeZ(g).

Put

(7~7) hz - hp D ih%-

Recall that ¢ppcL € D, (). This differential operator acts on smooth
functions on b, but as explained in Subsection 3.1, it also acts on
smooth functions on b;.

In the next statement, the smooth kernel (¢pycL) p (\/ngcC'g + A)

on b, acts on the distribution
Ty (he) Te" [pP (k7'e™™)] 8.
Theorem 7.2. The following identity holds on H™®:

(7.8) TxP! [Lu (M)}
= (ducl) p (\/ PucC® + A> [T, (he) TYZ [P (K e™)] 6,] (0).
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Proof. If v € H™®, then 3 (y) = b, and €(y) = he. When L = 1, our
theorem is just Theorem 2.9 combined with Proposition 6.3. When
L € Z (g) is arbitrary, we use equation (6.9) and Proposition 7.1. Here
oucolL is a differential operator on . We find that on H™8,

(7.9) Tel! [Lu (\/CM + Aﬂ

= f@) (pucol) [DH () rTxl] [u <\/ CeX + A)H .
By Theorem 6.1, we get
(7.10) ¢ncol = (¢ucl)”.

We combine Theorem 2.9 and equations (6.29), (7.9), and (7.10). We
get

1
0l 9, X = -
(7.11) Tr [L,u (\/O + Aﬂ B (Gl
[DH (y) ru (\/ PucC? + A) [Ty (he) Te® [pP (k7 1e™™)] 64 (0)] :
For greater clarity, we fix v € H™® and for b € h with |b| small
enough, we take 7' = e’ as in (5.2), so that the differential operator
(éucL)" acts on the variable b € f. This action will be now be denoted

(¢ucL),. Also we use the notation of Subsection 5.1.
By equation (5.3) and equation (5.20) in Theorem 5.4, and we get

Wilen () TT € (k7€)
acRY?

l_lae}!%iém+ (53/2 (k_lebf_hé) _ 6;1/2 (k_lebf_hf)>
IlaeRgi,(fé/Q(k_lem_h*)_‘5;4/2(k_1em‘4w)>‘

By the same argument as in (5.21), (5.22), if & € R'?, we can choose
&1/2 (k‘fleb*—) so that for |b| small enough,

(7.13) & (Ke) =2 (k7Y

o e

(7.12) D (1) Ty (he) = (=1)

i.e., (7.13) does not depend on b. Similarly, ep (7) is locally constant
on H™®. Therefore, the product of these terms in the right hand-side
of (7.12) is unaffected by the action of (¢ucL), in the right-hand side
of (7.11).

Also we have the identity,

(7.14) " [p" (Kt ™)] = Te? [pP (K~ 'e™ )] .
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The right-hand sides of (7.12) and (7.14) depend on by — he. When
only considering the action of (¢ucL), in the variable b, this action
can instead be transferred to the variable hy with a correcting sign.
This argument still does not take into account the fact that (¢ucL),
also acts in the variable b,. However, differentiating a smooth kernel
at the terminal point is equivalent to compose the smooth kernel with
the same change of signs as before. By combining (7.11)—(7.14), this
ultimately explains the disappearance of *, and to equation (7.8). The
proof of our theorem is completed. U

8. THE FUNCTION j’Y AND THE LIMIT OF REGULAR ORBITAL
INTEGRALS

In this section, we verify the compatibility of our formula for reg-
ular orbital integrals of Theorem 7.2 to the limit theorems obtained
by Harish-Chandra for such orbital integrals. Key properties of the
function J, play a key role in the proofs.

This section is organized as follows. In Subsection 8.1, given v € H
not necessarily regular, we study the function J, (he) for o/ € H"™®
close to 7.

In Subsection 8.2, if L € Z (g), we define the proper image [3() €
Di(3(7))-

In Subsection 8.3, using a formula by Rossmann, we express a smooth
kernel involving A" as the restriction of another kernel for 3 (7).

Finally, in Subsection 8.4, we compute the limit of orbit integrals as
~" € H™® converges to v € H.

8.1. The function J, when ~ is not regular. Let v € G be a
semisimple element as in (2.19). Then Z° (y) C G is a reductive Lie
group. Let h C 3(v) be a f-stable Cartan subalgebra of 3 (7). As we
saw in Proposition 3.17, b is also a Cartan subalgebra of g. Let H C G
be the corresponding Cartan subgroup. Recall that the function 793"
on he was introduced in (5.11).

Definition 8.1. An element hy € ib; is said to be 7im-regular if for
a € R™ (k), (a, he) # 0.

The vanishing locus of an imaginary root being a hyperplane in iy,
the set of vim-regular elements has full Lebesgue measure.

We use the conventions of Section 4, where we explained in particular
how to choose the &/ (7) lacr, - We extend the definition of Dy ()
for v € H™® in Definition 5.3 to general elements v € H by the formula
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(8.1) pr(m =[] (&7 -&"0).

a€R\R+(7)

By Theorem 3.18, if a € R (y) U R (k), then &, (k™') = 1, and
&/2 (k1) = 5071/2 (k=1 = =+1, so that HaeRf(v)URT‘(k) gé/2 (k71 is
equal to £1.

If b is a O-stable fundamental Cartan subalgebra of 3 (), we will
use the notation introduced in Subsection 3.6, except that g is now
replaced by 3 (), and the pair (b, £) is replaced by the pair (be, € (7)).
Let R (bhe, € (7)) denote the associated root system. Let Ry (he, (7))
denote a positive root system. As in (3.45), if h € b, set

(8.2) () = [T B

BeR+(he,t())

By (3.49), we get

1

(8.3) [Whe,f(’)’) (hg)f — (_1)5

BOU T @he| T (k).

a€R™ (k) a€R (v)

We no longer assume b to be fundamental in 3 (7).

In the sequel, we use the notation of Subsection 5.1. In particular
v € H is fixed, and for b € b, 4/ = ~eb. In particular, equations (5.3),
(5.4) hold.

We establish the following important result.

Theorem 8.2. For € > 0 small enough, there exist ¢ > 0,C > 0 such
that for b € b y-reqular with |b] < €, hy € ibg, then

(8.4) |70 (b, + he) Dyy (') s (he)| < Cexp (c|he]) .

If he € ibg is not v im-regular, the left-hand side of (8./) vanishes.
If b is not the fundamental Cartan subalgebra of 3 (7y), for he € ibe,
as b € b y-regular tends to 0,

(85) Wh’ﬁ(’\/) (bp + hg) Dy (’7,) j,yl (hg) — 0.
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If b is the fundamental Cartan subalgebra of 3 (), if he € ibe is
vim-regular, as b € § y-reqular tends to 0,

(8.6) 7 (b, + he) Dy (v) Ty (he)

o (—1)2 RO+ o) [980) ()]

I[I &2 ") Du()T, (he).

aeRif‘(k)

Proof. By (5.11), we get

(8.7) w0 by +he) = [ (o by +he) .

a€R4 ()

We can rewrite (8.7), in the form
(8.8)

a0 by + he) = ] (eby) ] () T (e +he).

QERIE(Y) a€RI (k) a€RS (v)

By (8.8), we deduce that if he € ibe is not 7 im-regular, (8.8) vanishes.

If o € R™ (k), then & (k1) = 1, so that £/% (k=) = +1. Since a €
R (%), if b € b is y-regular, then (a, bg) # 0. If € > 0 is small enough, if
b € b is y-regular, and |b¢| < €, if h € ibg, then 1 — e~{@0=he) £ 0 50
that the following expression is well-defined,

89 I (o he)

et o &7 (k1) — €17 (ke
P+

R _ 4 op
[T e gty

acR™ (k)

Equation (8.9) can be rewritten in the form

8100 I (s he)

172 7 1 po_ “1/2 /1 b
aciim a/ (k—lebe—he) — &, / (k—1ebe—he)

(v, he) /2 —1/2 (1.—1
= 1l sinh((a,bg—ho/Z)ga/ (7).

acR™ (k)
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When h; is v im-regular, we have an identity similar to (8.10),

éé/? <k716b37h3> _ 5;1/2 (k,*lebgfhg)

(8.11) aeg(k) @
_ H sinh ((o, be — he) /2)5;}/2 (k—l) ‘
a€ R, () (a, he) /2
IfzeR,yeR,
(8.12) |1—e™ ] > |1 —e"].
By (8.12), we deduce that
(8.13) |sinh ((z +dy) /2)| > |sinh (x/2)].

By (8.13), there exists C' > 0 such that if e*™¥ #£ 1,

soh (1) /2| = ¢

By (8.10), (8.14), if he € ibg is v im-regular, we get

(8.14)

(8.15) I1 (o ) <C.

et o &8 (=) — & 17 (ke
P+

The ~-regularity of b does not play any role in the above estimate.

If a € R\ R (k), then & (k7') # 1, so that for € > 0 small
enough, if |be| < €, the complex numbers £, (k‘lebf) which have module
1, stay away from 1. Given n € ]0, 7], there is C;, > 0 such that if
x € Ry,y € [n,2m — )], then

(8.16) |ze™ — x_le_iy} > C,.

By (8.16), we deduce that for e > 0 small enough, if || < ¢, and
he € ibg, then

1
(8.17) H — _—
a€RI™ \R™, (k) 0/ (k—Lebe=he) — &, / (k—1lebe—he)

g (K teh )
N H 1-— e—<0¢7be—he>§;1 (/{;—1)

QR \RY, ()
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is well-defined, and moreover,

1
(8.18) 11 7 <C.

_ _ —1/2 _ _
werg 0 & 0100 €T e )

By combining (5.20), (8.8), (8.15), and (8.18), we get (8.4), and also
the fact that if hy € b is not v im-regular, the left-hand side of (8.4)
vanishes.

By Proposition 3.7, b is the fundamental Cartan subalgebra of 3 (7)
if and only if R™ () is empty.

If b is not the fundamental Cartan subalgebra of 3(v), RY () is
nonempty. Using (5.20), (8.8) and the previous bounds, we get (8.5).

From now on, we assume that b is the fundamental Cartan subalge-
bra of 3 (7). By (4.10), since RY () is empty, we get

(8.19) en(y)=sgn [[ A-&" ().
aERLE
For a € R, then &, () # 1 so that for € > 0 small enough, if |b,| <€,

(8.20) ep (V) =en (7).
Also if a € RY, &, (k') = &, (k). By the above, it follows that for b € h

~-regular close enough to 0,
(8:21) ep (7') H &P =en(v) H & (k7).
aERY® aERY®

By (8.10), (8.11), and (8.14), if he € ibg is v im-regular, if b € b
~v-regular tends to 0,

O./,hg
11 o, fe)

1/2 —1/2
ity € (k1) — €577 (1=t

BEOL ] Al h) &2 (71

aeRI™, (k)

gg/Q (k,—lebg—hg) _ 6;1/2 (k—lebg—he)
H <O" hl’)

a€Ry™, (k)

(8.22) — (=1)

A 12, _
rl T S )

~ 2 (o))

aERiE’f:L (k)
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By (5.20), by the considerations after (8.1), by (8.3), (8.8), (8.21),
and (8.22), we deduce that if he € ibe is v im-regular, then

(8.23) 7 (by + he) Dy (1) T (he)

—ep () (—1 )|R R 0]+ 5 | R ()]
1M h
H 51/2 (/{5 ) [ Be,(y (he)]2 HaER ™, (k) A(< ?))
a€RIFURT (k) HaeRim A ({a, he))

1/2 _ 1/2 _
HaeRﬁ\R (k)( (k ! he) - k temhe >

1/2 _ 1 2 —
Ha€R11n+\R1111 (k) ( / (k 16 ]’Le) - / k 16 hk )

By comparing (4.34) and the right-hand side of (8.23), we get (8.6).
The proof of our theorem is completed. O

8.2. The Lie algebra ;(y) and the isomorphisms of Harish-
Chandra and Duflo. Here, we will use results contained in Subsec-
tions 3.11, 6.1, and 6.4.

Let h be a #-stable Cartan subalgebra of 3 (7). We have the Harish-
Chandra and Duflo isomorphisms of filtered algebras:

(8.24) ¢uc: Z(g) =1 (h,g), ™I (g) = Z(g).

As explained in Subsection 6.4, the above isomorphisms are compatible.
By (3.77), we have the isomorphisms,

(8.25) r:I(g)~1(bhg), ra L (3(7) =T (0,5(7)).
Recall that we have the splitting
(8.26) g=3(1®5" (7).

Let r;,) denote the projection g — 3 (7). This map induces a corre-
sponding morphism of Z-graded algebras 75,y : I' (g) = I (3(7)). Let
i be the obvious morphism I" (h,g) — I' (h,3(7))-

We have the commutative diagram

(8.27) I‘ig) — T (]J, g)
I'(3(7) ——=1(b,5(7))

Definition 8.3. If L € Z (g), let L3 € I" (3(v)) be given by
(8.28) DY =yt (D).
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The map L € Z(g) — L3 € I'(3(v)) is a morphism of filtered
algebras.

Proposition 8.4. If L € Z (g), the following identity holds:
(8.29) L3O =y~ igyc L.
Proof. This follows from (6.28), (8.27), and (8.28). O

As we saw in Subsections 3.1 and 3.11, we have the identification

(8.30) I'(3() =Dr(3(7)

In the sequel, when there is no ambiguity, if L € Z (g), L3 will be
considered as an element of Dj (3 (7)).

Proposition 8.5. The following identity holds:
(8.31) (CO)) = —A) 4 B (%, p°).
Proof. By Proposition 6.3 and by (8.29), we get (8.31). O

8.3. An application of Rossmann’s formula. We know that a €
hy. Since a is in the center of 3(7), if @ € R(7y), then (o,a) = 0. By
(5.11), we deduce that if h € b,

(8.32) 70 (h + @) = 790 (h) .
We identify h and h* via the form B, so that
(8.33) S (b)) =5 (h).

As we saw in Subsection 3.1, S"(h) can be identified with the algebra
D () of differential operators with constant coefficients on bh. Let
730 e D (hc) denote the differential operator on he associated with
7930) € S (he).

Recall that h; was defined in (7.7). Let pu € S (R) be taken as

in Subsection 2.5. If A € R, let u (\/—A‘] + A) (h) be the smooth

convolution kernel on bh; associated with the operator p <\/ —Ab 4 A).

If feC™°(h, ®ihe, R), then
(8.34)

”<M—AW+A>fmy:/ (VAT A) (b ) () an'
by Dibe

We use the corresponding notation on 3; () =p (y) & € (7).

Here, we use the notation of Subsection 8.2. In the sequel, ¢ucL, L3
are viewed as differential operators in D; (h), D; (3 (7)). These differ-
ential operators can be composed with the above convolution kernels.
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Proposition 8.6. We have the identity of smooth functions on b, Dby,
(8.35) 70 (¢uel) i (\/ —AY+ A) (h)
= w1900 (=2mh) L0 i (V/=250) 1 A) (B)

Proof. In the proof, we will identify 3; (v) = p(v) @ it () as a real
vector space to u(y) = ip (y) @ €(v), which is the compact form of
3(7)-

We identify the real Euclidean vector space b; to its dual by its
scalar product. Let F% denote the classical Fourier transform on b;.
If feS(h;),if h* €b;, then

(8.36) Fhif () = /h exp (=2i7 B (h, h*)) f (k) dh.
Put
(8.37) FOif(h*) = Fo% (—h").

Then

(8.38) 0 [0 (gnoL) p (V=29 + A) | (1)

— 7090 (2imh*) (nol) (2imh*) o (/A B (W 17) + A)
By (8.38), we get
(8:39) 7 (¢ucL) p (\/m> (h)

= 75 [7990) (2inh*) (¢mo L) (2imh*) p (VA7 (7, h7) + A) | (h).

We can define the Fourier transform F%() on the Euclidean vector
space 3; (7), which is canonically identified to the Lie algebra u (7).
The function B (h*, h*) extends to a Ad (u(y))-invariant function on
u(y). By Proposition 8.4, the Ad (u(y))-invariant function L3 on
3i () restricts to the function ¢ycL on h;. By Rossmann’s formula
[R78, Theorem p. 209], [V79, Theorem p. 13|, we get

(8.40)
hal [wbw‘ﬂ(v) (2imh*) (ducl) (2imh*) i <\/47T2B (™) + A)] (h)

— 00 (—27h) Fa(v) [Lz,('y) (2imh*) (\/47TQB (h*, h*) 4+ A)} (h).

By (8.39), (8.40), we get (8.35). The proof of our proposition is com-
pleted. O
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8.4. The limit of certain orbital integrals. We use the notation of
Subsection 8.1. As we saw in Subsection 7.1, Trl’] [u (\/ CoX + A)]

is a smooth function of 4/ € H™8. Recall that 72(") is a differential

operator on he. To make our formulas clearer, we will denote its action

in the variables b or h as 7" or 703,

Proposition 8.7. The following identity holds on H™S:
(8.41) 70 [DH (v) Te] [Lu (\/ CoX 1 A)H
— (_1)|R+(’Y)|f273(7) (ngCL)M ( /¢HCCQ + A>

[Dit (+) Ty () TeE [ (k1)) 6] (0)

_ (_%)m(w/ 0y ( (Co) ) 4 A) (—a — b, — he)
ibe
1300 (b, + he) Dir (') T (he) Te® [pF (k71" "0) ] dhe.

Proof. As we saw in Theorem 5.4, the function (v, he) € H™8 X ihy —
Jy (he) € C is smooth. If v/ € H™& then 3(7') = b, so that by
equation (7.8) in Theorem 7.2, we get

(8.42) 7 [DH (7) Te [LM (m)ﬂ
= (¢ncl) p (m)

%2,3(7) [Di (v) Ty (he) ToE [pE (k,—leb{r—hé)] dar] (0).

In the right hand-side of (8.42), the differential operator ﬁg,z(v) acts on
the distribution on the right in the variables b = (by, b¢) € b, and not
on the variable hg. The situation is actually strictly similar to what
we already met in the proofs of Proposition 7.1 and Theorem 7.2. We
obtain this way the first identity in (8.41).

By Proposition 8.6, using the conventions in (8.34), we get

(8.43) (_1)IR+(7)\ 7h:3() (pucL) (4 / pucC9 + A)
[Dir (+) Ty (he) TY [ (ke ")] 6] (0)
— (o) B+ 3(7) g)\3(7) —a — b, — h
(2™ [ u(Vieor + a) (-a- by~ no

750 (0 + b, + he) Dy () Ty (he) Te? [p7 (k") dhe.
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By (8.32), we get
(8.44) 730 (@ + by 4 he) = 73 (b, + hy) .

By the first identity in (8.41) and by (8.43), (8.44), we get the second
identity in (8.41). The proof of our proposition is completed. O

Let T () be a maximal torus in K° (), let t () C €(v) be the cor-
responding Lie algebra, and let W (t(7) : €(v))" be the corresponding
Weyl group.

Theorem 8.8. If b is not the fundamental Cartan subalgebra of 3 (7y),
as b € b y-regular tends to 0, then

— 0.

(8.45) 7O [DH (v/) Tel?! [Lu (x/ CoX ¢ A)]

If b is the fundamental Cartan subalgebra of 3 (7y), as b € b vy-reqular
tends to 0, then

(8.46) 7050 [DH (v/) Tl [Lu ( CoX ¢ Aﬂ

_\h@imp(y)—dimpy,) (W () 1 €(9))] 2 (-1
- Vol (k0 ()7, L &6

aGRi_f_“(k)
2 (Y(Cop + ) (=)

T, (Y}) Tr” [pE <k‘ e—Yo‘ﬂ 4y,

Dy (7) (27)/ ) /

it(y)

Proof. First, we consider the case where b is not the fundamental Car-
tan subalgebra of 3 (7). Using equations (2.80), (8.4), (8.5), (8.41), and
dominated convergence, we get (8.45).

Assume now that b is the fundamental Cartan subalgebra of 3 (7).
Using equations (2.80), (8.4), (8.6), (8.41), since the convergence in
(8.6) takes place except on a Lebesgue negligible set of ihe, we can use

HWe use this notation instead of W (£ () : € (7)) because this Weyl group is
real.
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dominated convergence, so that as b € h y-regular tends to 0,

(8.47) w0 [DH CONVEE [LN (\/m)ﬂ

ROFRLOL T 22 () Dir ()
(k)

im
a€RY

N (_1)|R+(7)\+%

(27T>R+(7)|/ Lmﬂ( (Coy0) +A) (—a— hy)
ibe
T, (he) TE [pE (kfle—he)] [ﬂ—be,f?(’Y) (he)}z dhe.

The operators L™ and (C*)*™ on 3(7) are both K (v)-invariant,
and so the smooth function

Lz(v)u( (C’g)ﬁ('Y) +A) (—a _ YOE)
on it () is also K (7)-invariant. This is also the case for the function
7, (YOE) TvF [pE </€*1€*Yo€>} '

Since b is the fundamental Cartan subalgebra of 3 (), be is a Cartan
subalgebra of €(v). By Weyl’s integration formula, and taking into

account the fact that on by, [Whe’ém (hgﬂ2 is nonnegative, we obtain

(8.48) / La(v)u( (Cg)ﬁ('?) +A) (—a _ Y()é)
it(7)
j’y (}/b{’,) TI'E [pE (kflefYOE):| d}/z)f

_ Vol (K° () /T (7)) 3(7) 9)3(7) -
W (t(): ()] /imL M( (C9) +A)< he)

T, (he) TrE [pE (k,—le—he)] [Wbe,f(v) (hg)f dhe.

Using in particular Proposition 3.10 applied to 3 (), we have the
identities,

, Lo
By (7)| = dimes () + §d1m1(k’)7

(8.49) R (k)] = %dim ie (k).
|RS (7)] = dimey (7).
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By (8.49), we deduce that
(8:50) Ry ()] + B ()] + 5 RS ()]
=dimcy () + % dim i (k) + %dimi (k) + % dimey (7).

By Proposition 3.10, ¢, () has even dimension. This is also the case
for i; (k). By (8.50), we get the equality mod 2,

(8.51) |Rs (7| + |R& (k)| + % |RS ()] = %dimip (k) + %1 dimc (7).

By equation (3.31) in Proposition 3.8 applied to 3 (), since b is fun-
damental in 3 (), we get

(8.52) dimp () — dim b, = dimi, (k) + %dim c(7y).

By (8.51), (8.52), we get

R™ (k)|+3

(8.53) (—1)IE+ O B[ = (Zq)adimp()—dimby).
When v = 1, the above identity had been established by | , Lemma
18].

By (8.47), (8.48), and (8.53), we get (8.46). The proof of our theorem
is completed. O

9. THE FINAL FORMULA

In this section, we establish our final formula in the case of a non
necessarily regular semisimple element v € G. Our formula extends
both the formula in Theorem 2.9 valid for + semisimple and L = 1,
and the formula in Theorem 7.2 valid for  regular. To establish our
main result, we combine a fundamental result of Harish-Chandra with
the results we obtained in Section 8. Also, along the lines of [B11,
Chapter 6], we give a wave kernel formulation of our main result.

This section is organized as follows. In Subsection 9.1, we establish
our main result.

In Subsection 9.2, as in [B11], we reformulate our main result in
terms of wave kernels.

Finally, in Subsection 9.3, we verify our main formula is compatible
to natural operations on orbital integrals.
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9.1. The general case. Let L € Z (g). Here, we take v € G semisim-
ple as in (2.19). We will extend Theorem 7.2 to non regular ~.

Theorem 9.1. The following identity holds:

(9.1) Tl [Lu <\/ CoX + Aﬂ
= L3y ( (Cop™) A) [‘77 (Yy) Tx*” [pE (k’le’yﬂe)] 5a] (0).

Proof. By a result of Harish-Chandra | , Lemma 28], | , Part
I1, Section 12.5, Theorem 13], we know that if § is the fundamental
Cartan subalgebra in 3 (), there is a universal constant ¢, depending
only on v such that with the notation in Theorem 8.8, as b € § y-regular
tends to 0,

(9.2) 7 [DH (7)) el [L,u (\/ CoX + A)H
— ¢, e [L,u (\/ X + A)] .

In Theorem 8.8, we gave another proof of the existence of the limit in
(9.2). Also by the fundamental result of [311] stated as Theorem 2.9,
when L = 1, the integral in the right-hand side of (8.46) coincides with

the orbital integral Trl! [,u (\/ CoX 4 A)] To identify the constant

¢, we only need to prove that one of these last orbital integrals does
not vanish. It is enough to take E to be the trivial representation, and
p(z) = exp (—x?). Since the scalar heat kernel on X is positive, the
corresponding orbital integrals do not vanish. So we find that

L(dimp(y)—dimy) _|W ((7) : €(7))]
Vol (K (v) /T (7))

(2m) =0 I &2 () Du ().

R (k)

93) ¢ = (1)

When v = 1, this computation has already been done by Harish-
Chandra in | , Section 37, Theorem 1]. ** For the case of a general
7, this formula can also be derived from | , p- 34] and from the
reference given before.

2More precisely, if G = K AN is the Iwasawa decomposition, when v = 1, the
constant obtained in [HC75] is Qme’Nc,y. In [HC75, Section 7], Harish-Chandra uses
another normalization for the Haar measure on G, which is adapted to the Iwasawa
decomposition. By [HC75, p.202], the ratio of these two normalizations is given by

dim N

272, which explains the discrepancy.
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By combining (8.46), (9.2), and (9.3), we get (9.1). The proof of our
theorem is completed. 0

9.2. A microlocal version. We still take v € G semisimple as in
(2.19).

We will proceed as in [B11, Section 6.3], to which we refer for more
details. In the sequel we identify T'X and T*X by the metric.

Let Trl [L cos (3\/ Co9X + A)} be the even distribution on R such
that for any p € S (R) with i having compact support,

(9.4)
Trl! [L,u <\/ CoX + A)] = / fi (s) TrD! [L cos (27rsv C9X + Aﬂ ds.
The operator L cos <sm> defines a distribution on R X

R
X x X. By finite propagation speed | , section 7.8], [T81, sec-
tion 4.4], its support is included in (s,x,2’),[s| > d(x,2’). Let X
be the total space of TX. Let s € R — ¢ be the geodesic flow on
X. Let 7 be the variable dual to s. By | , Theorem 23.1.4 and

remark], the wave front set WF (L cos (sx/ CoX + A)) of the distribu-

tion L cos <3\/ CoX + A) is the conic set in R? x T* X x T* X generated

by (z/,=Y") = pis(x,Y),|Y] = 1,7 = 1. Conic means that the di-

lations by A > 0 are applied simultaneously to the variables YY", 7.
As explained in | , Section 3.4], in the geodesic coordinate system

centered at 7o = pl, p* () can be identified with a smooth submanifold

P+ (v) of X. Let Npui(,),x be the orthogonal bundle to TP+ () in TX.
Set

(9.5) A = {(x,yx) ,x e Pt (7)} .
Then A% is a smooth submanifold of X x X. The conormal bundle to
R x A} CRx X x X is the set ((s,7),(z,Y),(2/,Y")) e R x X x X
such that 7 = 0,2 € P+ (y),2' = vo,v*Y'+Y € Npiiyy/x-

By | , Theorem 8.2.10],

L cos (sv CoX + A> A%

is a well-defined distribution on R x X x X, and its wave front set is the
formal sum of the wave front sets of the two above distributions. In par-

ticular the pushforward of the distribution Tr” [vL cos (3\/ CoX + A)]
by the projection R x X x X — R is well-defined. It will be denoted

(9.6) /A Tt [WL Cos <3\/ CeX + A)] :

5
X
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This is an even distribution on R.
Tautologically, we have the identity of even distributions on R,

(9.7)
Tel) [L Ccos (sx/ CoX + A)} = / Tr" [7L Ccos (sx/ CoX 4 A)] .
A%
We have the result stablished in [311, Proposition 6.3.1].

Proposition 9.2. The singular support of Trl] [L cos (S\/ X + A)]

is included in s = =+ |a|, and the ordinary support is included in
{s e R,|s| > |a]}.
Ifa=0, if p(y) =0, the singular support of
Trl] [L cos <3\/m>]
15 empty.

We define the even distribution on R,
(9.8)

L3 cos <s (Coy™ 4 A) [jv (Yy) Tx*” [pE (k‘l e_YOé)} 6(1} (0)

by the formula

(9.9) L¥p (\/<09>3<” + A) 7, (V) T [ (ke )| 6] 0)
- / i (s) IO cos (m (09)3(”+A>

7, () T [ (k) | 8] (0.

Let z = (y,YOE) be the generic element of 3;(v) = p(y) @ it (7).
Using finite propagation speed for the wave equation,

L3 cos (3 (Cop™) 4 A)

is a distribution on R x 3; () X 3; () whose support is included in
(s,2,2"),|s| > |2/ — z|. Moreover, by | , Theorem 23.1.4 and re-
mark], its wave front set is the conic set associated with (y/, —Y") =
(y£sY,Y),|Y|=1,7 = £1. Conic set means again that the dilations
by A > 0 are applied to the variables Y, Y’ 7.

Set

(9.10) HY = {0} x (a,i€ (7)) C 3 (7) x3: (7).
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The wave front set associated with R x HY C R x 3; () X 3; (7y) is such
that Y"*) = 0,7 = 0, so that the product

L3 cos (3« /(Cg)a(v) +A) HY
is well-defined.

The function 7, (Y(f) TrF [pE k~1e=Y0 ) | can be viewed as a smooth

function on the second copy of 3; (7) in 3; () X 3; (7). It lifts to a smooth
function on 3; () x 3; (7).
Therefore,

(9.11) L cos (s (Cg)"’”)+A) H' 7, () T [ o7 (k71e7%))

is a well-defined distribution on R x 3; () X 3; (7). The pushforward of
this distribution by the projection R x 3; () x 3; (7) — R is denoted

(9.12) /H B cos (s (Co)p) 4 A) T, (V) TxF [pE (k*le*Yo*)] .

This is an even distribution supported in |s| > |a|, with singular sup-
port included in s = =+ |a|. Note that if a = 0 and if p(vy) = 0, the
singular support of this distribution is empty.

Theorem 9.3. We have the identity of even distributions on R sup-
ported on |s| > |a| with singular support included in + |al,

(9.13) /M ! [”yL cos (sv C9X + A)]

_ /m 1O cos (s (Cg)a(v) 4 A) 7 (YOE) e [pE (k;_ e—Y(f)] .

Proof. We use Theorem 9.1, and we proceed as in the proof of | ,
Theorem 6.3.2]. O

9.3. Compatibility properties of the formula. Let us give a direct
proof that the right-hand side of (9.1) is invariant by conjugation of
in G. Indeed let 7,7’ be two conjugate elements in G as in Theorem
2.3. By this theorem, they are also conjugate by an element k" of K,
and equation (2.33) holds. Since the character of the representation p¥
is invariant by conjugation by elements of K, the right hand-sides of
(9.1) associated with ~y,~" coincide.

We will denote the dependence of our orbital integrals on E with an
extra superscript E. If L € Z (g), by Theorem 6.1, the Ly transpose of
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L is just o (L). Observe that C%X is symmetric, i.e., it is equal to its
transpose. Then one has the easy formula

(9.14)

el E [a (L) (\/CQT—f—Aﬂ = TyDhE [Lu (\/CQT—FA)} )
TehE [L,u (M)] = TyDLE [L,u (\/CQT—I—AH .

Using the identities in (2.71), we can recover (9.14) from (9.1).
Finally, it is easy to verify that, as it should be, our formula is
unchanged when replacing v, L by 6~,0L.

10. ORBITAL INTEGRALS AND THE INDEX THEOREM

The purpose of this section is to verify the compatibility of our
formula for orbital integrals to the index theorem of Atiyah-Singer
[ ) |, to the Lefschetz formulas of | : | for Dirac
operators, to the index formula of Kawasaki [[<79]. More precisely we
extend to the case of an arbitrary L what was done in [B11, Chapter 7|
in the case L = 1. Also we verify the compatibility of our results to re-
sults of Huang-Pandzi¢ | | who established the Vogan conjecture
on Dirac cohomology.

This section is organized as follows. In Subsection 10.1, we construct
the Dirac operator DX on the symmetric space X.

In Subsection 10.2, we introduce the relevant notation when G and
K have the same complex rank.

In Subsection 10.3, we evaluate the orbital integrals associated with
the index theorem for Dirac operators when v semisimple is nonelliptic,
and also when v = 1.

In Subsection 10.4, when + is elliptic, we consider again the case
where the difference of complex ranks is still equal to 0.

In Subsection 10.5, we evaluate the orbital integrals associated with
the index theorem for the Dirac operator.

Finally, in Subsection 10.6, we verify the compatibility of our results
with the results of Huang-Pandzié | .

10.1. The Dirac operator on X. Here, we use the notation of Sec-
tion 2. We assume that K is simply connected, and also that p is even
dimensional and oriented. Let ¢ (p) be the Clifford algebra associated
with (p, B|,).

As explained in [B11, Section 7.2|, the representation p? : K —
SO (p) lifts to a representation K — Aut®*" (S¥), where SP = S% & S?
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is the Zs-graded Hermitian vector space of p-spinors. We have the
identification of Zsy-graded algebras,

(10.1) ¢(p) ®r C = End (S*).
Set
(10.2) STX = G x g SP.

The Z,-graded vector bundle S7¥ inherits a unitary connection VST
Let V5" ®F he the connection on STX®F associated with VSTX, vE.
Recall that C*¥ descends to a parallel section C** of End (F). Here,

C%X denotes the action of C® on C* (X, STX & F)

Here, DX denotes the Dirac operator acting on C*(X, ST¥ & F). If
€1,...,€en is an orthonormal basis of T'X then

n

(10.3) DX = "c(e) VIO

€i
1

Let h C g be a #-stable fundamental Cartan subalgebra of g. We
will use the notation

(10.4) b=, t = be.

Then t C t is the Lie algebra of a maximal torus 7" C K. Also
dimt,dim b are the complex ranks of K,G, and dimb is the differ-
ence of these complex ranks. Since m is even, dim b is also even. Let
¢uc = Z(g) ~ I (h,g) be the corresponding isomorphism of Harish-
Chandra.

We fix a system of positive roots in it* associated with the pair (t, £).
In particular p* € it* is calculated with respect to this system.

By [B11, egs. (7.2.8) and (7.2.9)] and by (2.48), we get

(10.5) D¥*? = %% — B* (p%, p°) + B* (p*, p) — C%".

We may and we will assume that p” is an irreducible representation
of K with dominant weight \ € it*. Then

(10.6) CY = —B* (" + X\ o'+ A) + B* (o', ') .
By (10.5), (10.6), we get
(10.7) DY? =C%" — B*(p%,p%) + B* (0" + X\, p" + ) .

By (6.29), we can rewrite (10.7) in the form
(10.8) DX? = % — ¢ucC? (p' + ).
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10.2. The case where dim b = 0. In this Subsection, we assume that
dim b = 0. Then h = t is a fundamental Cartan subalgebra of g, and

(10.9) R = R™.

Also RI™ is just the root system associated with the pair (t,€). We
fix a positive root system Ry C Ry™, and a positive weight system
R,ifjr C R;m which is compatible with the orientation of p, so that
R = Ri}f}r U Réﬂ is a positive root system for the pair (t, g).

The functions 749, 7% on t are given by

(10.10) w9 (h) =[] (a.h), mt(h) =[] (ah).
a€RI® a€RP™,
Here, p', A € it* are calculated with this choice of Ry . We iden-
tify t and t* by the quadratic form Bl,. In particular, 7% (%) and

€
e [ PP e p;A) i

T (%) are well-defined, and W only depends on the orien-

L

tation of p. Also ¢ucL is a polynomial on t*, and so ¢pcL (—pE — )\)
is well-defined.

10.3. Orbital integrals and the index theorem: the case of
the identity. Take L € Z(g). For t > 0, Lexp (—tD*?) acts on
C= (X, 8™ @ F).

In the sequel, Tr, is our notation for the supertrace.”

We will extend [B11, Theorem 7.4.1]. As in [B1l, Section 7.1],
A (TX,VTX) ,ch (F, V") denote the obvious characteristic forms on
X. Let n € A (T*X) be the canonical volume form on X that de-
fines its orientation. If a € A" (T*X), let a® denote its component in
AP (T*X). Let o™ € R be such that

3

(10.11) a™ = qm*y,

Let v € GG be semisimple.
Theorem 10.1. If v is nonelliptic, for any t > 0,
(10.12) Tr," [Lexp (—tD*?)] = 0.

By = Vi@ V_ is a Zs-graded vector space, if 7 = £1 is the involution defining
the grading, if A € End (V'), the supertrace of A is defined to be Trg [A] = Tr [T A].
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If dimb > 0, for any t > 0,
(10.13) Tr,! [Lexp(—tD*?)] =0,
[A(rx, V™) eh (F,95)]" =0,
If dimb = 0, then
(10.14)

ho (M)
Tr,M [Lexp (—tD*?)] = ¢ucL (—p' = \) (—)m? T L

o (20
A (X, V™) en (F,95)] 7 = (-1 %
2

Proof. First we prove (10.12). We proceed as in [311]. By Proposition
8.5, by Theorem 9.1 and by (10.7), we get

(10.15) Tr™ [Lexp (—tDY?)] = exp (—tB* (p' + A\, p* + A))

DO exp (149 |7, (V§) T8 |98 (k1e8) | 8, (0).
Also
(10.16) Ty, S'eF [pS"@E (k—1e—yof>} =TS [psp (k_1e_yg>]

e e ()]

Tr,5" [PSP (k‘_ e_YOE>]
is a square root of det (1 — Ad (k‘*le*YOE> |p>

If 7 is nonelliptic, a # 0 lies in the kernel of 1 — Ad (k;_le_yoe) lo,

and so (10.16) vanishes. By (10.15), we get (10.12).
By [B11, Theorem 7.4.1], we get

It is well-known that

Tr, ! [Lexp (—tD¥?)] = exp (—tB* (0" + A\, p" + )
L? exp (tAT) [Jl (Yy) Tr,57®F [/)SP®E (efy‘f)] 50] (0).
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We will use (10.16) with £ = 1. We have the well-known identity in
[B11, eq. (7.5.11)],

(10.19) T [p¥ (e7%)] = (=)™ Pr [ad (§) |p] 47" (ad (¥5]p))

In (10.19), we may and we will assume that Yy € it. Since b C
kerad (Y{) |y, if dimb > 0, then

(10.20) Pf [ad (Yy) |p] =0,

and so (10.19) vanishes, which implies the vanishing of (10.18), i.e., we
have established the first identity in (10.13). Combining this equation
for L =1 and (10.17), we obtain the second equation in (10.13).

In the sequel, we assume that dimb = 0. We will use the notation
and results of Subsection 10.2.

For v = 1, we use the notation g, = 3; (), so that g; = p @ it.
Let L9exp (tA9) (f), f € g; be the convolution kernel for L% exp (tA9).
Then

(10.21) Lfexp (tA?) [jl (Yy) Tr,5'®E [psp@E (e_YOB)] 50} (0)

= [ e (19) (<13) 5 () T [0 () vy
it

Let W (t: €) ' denote the Weyl group associated with the pair (t, €).
Since the integrated function on ¢ is K-invariant, by Weyl’s integration
formula, as in (8.48), from (10.21), we get

(10.22) L% exp (tA%/2) [jl (V) T, " F [ps"@E (e—Yo*)] 50] (0)
~ Vol (K/T) 0 oy
\.71 (hg) TrSSP(X)E [pSp®E (efhe)] [ﬂ_t,{? (hff):|2 dhg
By (2.70), (10.19), we get
(10.23) i (he) Try™ [e™] = (=)™ Pt [ad (he) )] A" (ad (he) |e) -
Moreover, given our choice of RL‘fﬁr, we have

(10.24) Pf[ad (he) [,] = ™% T (che).

im
aERyL

M Ag before, we use this notation instead of W (tc : tc) because this Weyl group
is real.
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If we Wi(t:¢), let ¢, = £1 be the determinant of w on t. Using
the Weyl character formula, we have the identity

(10.25)  [m** (he)]” A" (ad (he) |¢) TeF [ (e7"0)]
= (It () 3T e (el R,

weW (t:¢)
By (10.10), and (10.23)—(10.25), we conclude that

(10.26) i (he) Tr, 5@ [p59F (e7h)] [2* (hy)]”
= (-1) B e (he) Z eye (o TN )

weW (t:¢)

By (10.26), we obtain
(10.27)

A LI exp (tAY) (—he) Ty (he) TeeSEF [p%"9F (e7)] [7%¢ (he)]” dhe

SNy e

w0 (he) Y epe PN g,

weW (t:¢)

As in (8.40), we will use Rossmann formula in (10.27) with respect
to the par (t,u). If e € t§&, we get

(10:28) [ 19exp (6% (~he) 7 () =
it

= (—1)IFF ] pte (£> L® (—e)exp (tB* (e,€)) .
2m
Also W (t: &) C W (tc : gc). Moreover, if w € W (tc : gc), if €, still
denotes the determinant of w on t, by | , Corollary V.4.6 and
Lemma V.4.10],
(10.29) 9 (we) = €, ().

Finally, L8| is W (t¢ : gc)-invariant.
By (10.15), (10.22), (10.27), and (10.28), we obtain

(10.30) Trl" [Lexp (—tD*?)]

im

— Vol (K/T) (—1)/%%

™

¢
,n_t,g (P 2+ )\> e (_pE . )\) .
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By construction

(10.31) L (=p* = X) = ducL (—p' = A).
By | , Corollary 7.27], we get
(10.32) Vol (K/T) =

1
=~
Also

(10.33) Ry | =m/2.

By (10.30)—(10.33), we get the first equation in (10.14). When L = 1,
we can compare (10.17) and this first equation, and we obtain the
second equation in (10.14). The proof of our theorem is completed. [

Remark 10.2. Equation (10.14) was obtained by Atiyah-Schmid | ,
eq. (3.10)], using Hirzebruch proportionality principle | |, together
with formulas like (10.32).

10.4. The case where v = k!, dimb = 0. In this Subsection, we as-
sume that + is elliptic, i.e., v = k=1, k € K. Recall that the orientation
of p is fixed.

Let T' C K be a maximal torus, and let t C € be the corresponding
Lie algebra. We may and we will assume that k € T', so that t C € (k).
Then T is a maximal torus in K (k), and t C € (k). Let x € t be such
that

(10.34) k= e".

Then x is well-defined up to the lattice of integral elements in t asso-
ciated with K. Since k is in the center of K% (k) , if w € W (t: €(k)),
wkK — K 1s integral in t.

Let h = b @ t be the associated fundamental #-stable Cartan sub-
algebra of g. Then b is a #-stable fundamental Cartan subalgebra of
3 (k).

In this Subsection, we assume that dim b = 0. Then t is a f-stable
fundamental Cartan subalgebra of g and of 3 (k). Asin (10.9), we have

(10.35) R = R™, R (k) = R™ (k).
We make the same choice of R", Ry, as in Subsection 10.2. Set
(10.36) R™ (k) = R™ N R™ (k).

Then R™ (k) is a positive root system associated with the pair (t, 3 (k)),
and we still have

(10.37) R (k) = Ry (k) U Ry (k).
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The choice of R (k) defines an orientation on p (k).
The functions 74*) 74*) on ¢ are given by

(10.38) o ® = ] (ah), = T (a.h).

aEeRI™ (k) acRy™, (k)

Again p*, \ € it* are calculated with respect to Ri™ ", and Pt € gt
is obtained via R;ﬁ (k). We identify t and t* by the quadratic form

Bl,. In particular 74t*) <%) , s (k) <p;—jr’\> are well-defined as well
as ¢ucL (—p' — A).

Note that W (t: €(k)) C W (t:€). Ifw € W (t:¢), e (@ +2)n)
depends only on the image of w in W (t: &(k)) \ W (t: ) The same

is true for e, 7" <M)

2w

10.5. Orbital integrals and index theory: the case of elliptic
elements. We use the same notation as in Subsection 10.4. In partic-
ular, y =kl ke K.

Let X () be the fixed point set of v in X. Let

A (TX[xy, V7¥50) b (F,9F)

denote the corresponding Atiyah-Bott characteristic forms on X (),
that are defined as in [B11, eqs. (7.7.2) and (7.7.4)].

Theorem 10.3. If dimb > 0, then
(10.39) Tr," [Lexp (—tD*?)] =0,
A (TX ), V) b (F,95)] 7 =0,
If dimb = 0, then

(10.40) Tr, [Lexp (—tD*?)] = ¢ucL (—p' — A)
1 1
k) (%’f) HaeRgn\Rifl(k) 2sinh (— (o, k) /2)

t3 w<pk+)\) —(w(p*+A),k
> e <k><T>e<< ),

weW (t:¢(k))\W (t:¢

(_l)dimp(k’)/Q
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and

(1041> |:A\’Y (TX|X(,Y),VTX|X(’Y)) ch” (F’ VF)]max

(o 1ydme)2 1 1
Tht(k) (%) [aerim gim ) 2sinh (= (a, k) /2)
¢
Z e, i3k <w—(p + /\)> 67<w(’)€+)‘)’“>.
v 27
weW (t:e(k))\W (t:)
Proof. By [B11, Theorem 7.7.1], for t > 0, we get

(10.42) TrM [exp (—tD¥?)]
= [ (X[, V7500 e (7, 97) |

Equation (10.15) still holds. We claim that if dimb > 0,
(10.43) v, [ps" (k—le—YJ)] —0.

If Y§ € it(k), after conjugation by an element of K°(k), we may
assume that Y§ € it. If dimb > 0, then 1 — Ad (k_le_yoé> vanishes

on b. The argument we gave after (10.16) shows that (10.43) vanishes.
This proves the first equation in (10.39). Combining this equation for
L =1 and (10.42), we get the second equation in (10.39).

In the sequel, we assume that dimb = 0. We will use the notation
and results of Subsection 10.4, and also equation (10.15). Asin (10.21),
and with a similar notation, we get

(10.44)
1® exp (1AKF) |:n7k—1 (VE) o, 5o [pspeaE <k,1€,y(;>] 50] (0)

_ / L exp (1230 (—17)
(k)

Tor (YOE) Ty, S'®F [pspe@E <kf1€fyoﬁ>} dY[f.
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Using Weyl integration as in (10.22), we deduce from (10.44) that
(10.45)
L0 exp (1800 | oy (V) TS [ 579 (k71 ) | 3y (0)

_ VOB (R)/T) [ 15 oy (450 (
= PG L e ) (-

Tt (he) Ty ®F [psp@)E (kflefhg)] [ﬂ_t,é(k) (he)f dh.

By [B11, eq. (7.7.7)] and using the corresponding notation, if h; € it,
we have the identity

(1046) T, [p™ (k~te™)] = (=)™ P2 PE [ad (he) [y
A7 (ad () ) (A% 040 (0))
By (2.68), (10.46), and by proceeding as in [B11, eq. (7.7.8)], we get
(10.47) T (he) Tr™ [p* (K 'e™)] = (—a) P2
P [ad (he) o] A" (ad (e) [egy) A% o0 (0)

[det (1— Ad (kle ")) M)] 2

-1

det (1 — Ad (k,’il)) |fl(k)
Also we have the identity,

det (1 _ Ad (k‘le—hé)) o2 1/2 A et oy (0)
(10.48) T Ad (1 T Rk le ] '
det (1 — Ad (E71)) |erx) AT e (0)

Using (10.48), we can rewrite (10.47) in the form,
(10.49)  Fp1 (he) Trs™ [p% (ke ™™)]

) —~ 1 ~_1\ 1
= (=)™ P [ad (he) o] A (0) (A7) (~ad (o) [1).
As in (10.24), we get

(10.50) Pf [ad (he) [py] = i ®2 T (ol
aERij‘f‘Jr(k)

By Weyl’s character formula, we obtain
(10.51)  [7%®) (he)]* A" (—ad (he) o) Y2 [p7 (ke )]

— (-l 000 () 7 e el e,
weW (t:k)
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By (10.49)—(10.51), we find that
(10.52) T (he) TrS" S [pS8F (j—1ehe)] [rte®) (he)]2

= (-1) R, (k)| AR! (0) ba(k) (he) Z Gwe—(w(p*+,\),n+he)_
weW (t:¢)

By (10.52), we obtain

(10.53) /Lz’(k) exp (tA) (—he) Ty (he) Tr,S"®F [p°"CF (k~te )]
it

[ ()] dhe = (— 1)1 RO 37 (0)

[ exp (1A99) (<) 75 (h) S e (O
it

weW (t:¢)

Using Rossmann’s formula as in (10.28), if e € t&, we find that

(10.54) / L exp (1890) (=he) 790 (hy) e dhy
it

— (—)IFE®] ptaw (i) L9 (—e) exp (1B* (e,¢)).

2m
By (10.54), we get
(10.55)
/ L® exp (tA0) (—he) 75®) (h) 37 e e (WA ) g
it

weW (t:t)

- (-1)

REMLLs (—pt — \) exp (tB* (0t + A, g + A))

T e (M ) o~ () )

2m
weW (t:¢)

By the considerations that follow (10.34) and by (10.55), we obtain

(10.56)
/ L® exp (tA0) (—he) 7B (h) 37 e e (WA ) g,
it weW (t:€)
= (=Bl (£ e (k) L9 (—pt = A) exp (EB” (0 + A, ot + \))

¢
Z €3 F) <M> e~ (w(p'+2).m)
\IV(£:8) 2m

weW (t:¢(k))
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By (10.15), (10.45), (10.53), and (10.56), we get

(10.57)
e, [L exp (—tD¥2)] = Vol (K° (k) /T) (—1)IB=®1 2+ (g
£
¢nclL (_PE - )\) Z €3 <w (p i >‘)> e_<w(p*+/\)ﬁ>.
wEW (£6(k))\W () 2

As in (10.32), we obtain
1

(10.58) Vol (K° (k) /T) = W

As in (10.33), we get

(10.59) |RY" (k)| = dimp (k) /2.
Moreover,
(10.60) AR (0) = !

HaeRif\Rg;n(k) 2sinh (= (a, x) /2)

By (10.57)—(10.60), we get (10.40), which combined with (10.42)
gives (10.41). The proof of our theorem is completed. O

Remark 10.4. Equation (10.41) can also be obtained by a suitable ap-
plication of Hirzebruch proportionality principle | | similar to what
was done by Atiyah-Schmid | ]

10.6. Orbital integrals and a conjecture by Vogan. Let m be an
irreducible unitary representation of G acting on a Hilbert space V.
By | , P 205], a vector v € V, is called K-finite if the vector
subspace generated by the vectors kv|gex has finite dimension. Let
Ve x C Vi be the vector subspace of the K-finite vectors in V;. By
[ , Proposition 8.5], U(gc) acts on V; g, so that V; i is a (gc, K)-
module.

Let ey, ..., e, be an orthonormal basis of p. Let D € U(g) ® ¢(p) be
the Dirac operator,
(10.61) D= c(e)e;.

i=1

We denote by Dly, ,@se the restriction of D to Vi x ® S*. By | ,
p. 189], the Dirac cohomology of V,  is the K-module defined by

(10.62) Hp (Vi) = ker Dly, ,qsv.



ORBITAL INTEGRALS AND CENTER OF ENVELOPING ALGEBRA 83

By | , Theorem 8.1], each K-type in Hp(V; k) has finite multiplic-
ity.
The Vogan conjecture, solved by Huang-Pandzié¢ | , Corollary

2.4] states the following.

Theorem 10.5. If the Dirac cohomology Hp(Vy i) contains a K -type
of highest weight \ € it*, the infinitesimal character of Vi i is p* + .

An equivalent formulation of Theorem 10.5 says that if £ is an irre-
ducible K representation of highest weight A € it*, if D5*®F denotes the
restriction of D to (V. x ® SP ® E)X, if ker DS"®E £ 0, then L € Z(g)
acts on V; i as the scalar ¢pcL (—pE - )\).

We will show that (10.14) and (10.40) are compatible with Theorem
10.5. Let T be a discrete cocompact subgroup of G. By | ,
Theorem, p.23], we have

(10.63) L*(T\G) = EB nr(7) Va,

Weau

with np(7) € N.

We use the notation of Subsection 10.1. In particular, we assume that
p¥ is an irreducible representation of K with highest weight \ € it*.
Let Z be the compact orbifold Z =I"\ X. The vector bundle F' on X
descends to an orbifold vector bundle on Z, which we still denote F'.
Also D¥ descends to the orbifold Dirac operator DZ. By (10.63), we

have

(10.64) ker D = @P nr(m)(Hp(Vzx) ® E)X.

Weé\u,

Since ker DZ is finite dimensional, the sum in the right-hand side only
contains finitely many nonzero terms. By Theorem 10.5, L € Z(g) acts
on ker DZ as ¢ncL (—p* — A).

Using the McKean-Singer formula | | and the above, for ¢ > 0,
we get

(10.65) Trg [L exp (—tDZ’Z)] = ¢uclL (—pE — )\) Tr, [exp (—tDZ’z)} .

Also Try [L exp (—tDZ’Q)] can be evaluated in terms of corresponding
orbital integrals using Selberg’s trace formula.

Assume first that I' is torsion free. By equation (10.12) in The-
orem 10.1, only the identity element contributes to the above super-
trace. Then equation (10.14) can be viewed as a consequence of (10.17),
(10.65).
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When I' is not torsion free, only the finite number of conjugacy
classes of elliptic elements in I' contribute to (10.65). Then equations
(10.40), (10.42) are compatible to (10.65).
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b, 70
Bly, 27

¢, 22

C=b (X, F), 49
C%E 10

ceX 11
(Cg>3(’7)’ 59
c_, 24

Cq,y 24

D (g), 31

D [[g*]], 47

A}(, 66
w(9), 41 54
D; [lg *H

D; (9), 3

D; (b, g), 32 44
(hc,gc)
D (G), 4

Drg (G)743

D (V), 18

AX 11

¢HC7 2) 42

g, 4

g, 43
o, 20
di, 73
Gree, 27
Vi, 12

h, 19
h+, 19
i, 32
hl 40
, 67
hi7 51, 59
£, 19
by, 19
Hree, 40
Bu, 19
i, 22
it 36
i, 58

85

K(v),7
t(y), 7

)
L, (Yy), 14
Z-1 (he), 37
L3 92 58

) )

MO, 6
M., (Yf), 14
%kfl (h’f)a 37

Npi(y)/x, 66

p, 4

p(). 7

798 25
bt 54
nhet 26
793" 40, 53
b9 71

bt 71

R, 20

t, 22

r, 31

Re, 21

RS, 23
RS, 25
p%, 10, 44
R (be,¥), 26
Ry (be,®), 26
R™ 2]
R, 23,71
R™ (7), 29
Rim, 22
R™ (k), 30

ngr;, 25, 71
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R, 22
Ry™ (k), 30
pt, 70
E(k) 76
R;,H;, 71
R™, 21
Rfﬁ, 23
R (7), 29
T3(y)s 98

S, 49

o, 43

S [[g7]], 47
S(R), 2
Seven (R), 2
*, 43

S (V), 18
SV, 18

¢ 19
0, 4

o, 2, 47
T (), 62
t(v), 62
TPBW, 47
Tr., 71

u, 19

U (g), 9, 43
Ul(g-), 43
u(vy), 60

t(vy): ( )), 62
H: Q) 2

be : ) 20

t

W (
W (
(
(f)

Sk

NN
3823
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