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a b s t r a c t
This study aims to examine the effects o
finite element analyses of polycrystallin
mechanical state, at the grain scale, in th
reversed tension, for different defect size
obtained from specimens made of 316L a
aterial microstructure and voids on the high-cycle fati-gue behavior of metals. To deal with this matter, 
egates are carried out, for different configurations of crystalline orientations, in order to estimate the 
ty of a small elliptical hole. Fatigue criteria are then applied to esti-mate the average fatigue limit in fully 
llipse aspect ratios. The constitutive models and the fatigue criteria are calibrated using experimental data 
c steel. The estimations are then compared with the experimental trends.
1. Introduction

The high-cycle fatigue strength of metallic materials is strongly
influenced by the microstructure and may be significantly affected
by the presence of defects, and it is thus important to be able to
quantify their detrimental effect. A large number of approaches
attempting to predict the influence of a defect on the fatigue limit
can be found in the literature. For instance, Kitagawa and Taka-
hashi have proposed a criterion based on a linear elastic fracture
mechanic threshold [1]. Shyam et al. have extended this approach
by considering an elastic plastic fracture mechanic threshold [2].
Empirical fatigue criteria have been proposed by Frost [3] and Mur-
akami and Endo [4]. Endo and McEvily have developed a criterion
relying on the fatigue crack propagation [5]. The gradient of a fati-
gue equivalent stress, inspired by classical multiaxial fatigue crite-
ria such as the Crossland criterion [6], has been used by Nadot and
his coworkers [7–9].

Among these approaches, the one proposed by Murakami and
Endo is based on the defect size

ffiffiffiffiffiffiffiffiffiffi
area

p
, expressed by the square

root of the area of the defect projected in the direction of the max-
imum principal stress, which is a crucial parameter to determine
the fatigue strength [4]. Billaudeau et al. have shown, from push-
pull fatigue tests carried out on specimens made of low carbon
steel (SAE1035) and containing an artificial notch, that the fatigue
limit is affected not only by the size of the defect

ffiffiffiffiffiffiffiffiffiffi
area

p
but also by
its morphology [10]. More precisely, the authors have highlighted
that, for a given defect size area, an increase in the stress concen-
tration factor Kt of the defect:

� induces a significant decrease in the fatigue strength when
Kt 2 1;2½ �,

� leads to a slight increase in the fatigue limit when Kt 2 2;þ1½ ½
(see Fig. 1).

The increase of the fatigue strength with the increase of the
stress concentration factor Kt , observed when Kt 2 2;þ1½ ½, is a
counter-intuitive experimental trend which has still been little dis-
cussed. Moreover, too few predictions of fatigue criteria has been
confronted to these data.

The objective of the present work is to analyze this issue from a
numerical point of view, in the continuation of previous works
[11–13] where fatigue design methodologies based on finite ele-
ment analyses (FEA) of polycrystalline microstructures have been
proposed. More precisely, FEAs of two-dimensional polycrystalline
aggregates, loaded in fully reversed tension, are conducted in order
to estimate the mechanical behavior, at the grain scale, in
microstructures containing a small elliptical hole. Two fatigue cri-
teria are then calibrated by employing the results of the FEA and
experimental data obtained from fatigue tests conducted on spec-
imens, made of 316L austenitic steel, with and without a hemi-
spherical notch [12]. The estimations of these criteria for
different defect sizes and ellipse aspect ratios are compared to
the experimental trends.
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Fig. 1. Fatigue limits of SAE1035 steel as a function of the stress concentration Kt

for different defect sizes
ffiffiffiffiffiffiffiffiffiffi
area

p
[10].
2. Polycrystalline aggregate model

2.1. Finite element model of the polycrystalline aggregates

The geometry of the polycrystal is defined by a partition of a
two-dimensional square-shaped domain into convex polygonal
subdomains obtained through a Voronoi decomposition. Due to
the sizes chosen for the polycrystal (see Fig. 2), 3265 seeds are used
in the Voronoi tessellation so that the mean grain size in the
numerical model corresponds to the mean grain size of the mate-
rial tested [12], i.e. 14 lm. The geometry of the polycrystal is then
regularized by deleting small geometric entities (edges and arcs of
ellipses) to prevent unreasonable mesh refinement. The
microstructure obtained following the regularization process is
illustrated in Figs. 2 and 3.

In addition to the polycrystal, an elastic-plastic homogeneous
matrix is modeled in order to avoid applying the boundary condi-
tions directly on the edges of the microstructure. The model is
loaded in fully reversed uniaxial tension along the y-direction
thanks to a homogeneous stress field applied on the upper and
lower edges of the matrix. The loading sequence, describing the
evolution of the macroscopic axial stress Ryy tð Þ applied on the
matrix, is defined in Eq. (1):
Fig. 2. Shape and sizes of the polycrystalline aggregate and the
Ryy tð Þ ¼ Ryy;at 8t 2 0;1½ ½
Ryy;a cos 2Ptð Þ 8t 2 1;4½ �

�
ð1Þ

The defect assumed in this study is an elliptical hole character-
ized by its length 2a in the x-direction and its length 2b in the y-
direction. Three values of the defect size 2a (95 lm, 365 lm and
510 lm) and three values of ellipse aspect ratio b=a (0.5, 1.0 and
1.5) are examined (see Fig. 3).

The orientation of the crystal coordinate system of each
grain, with respect to the reference frame of the polycrystal, is
characterized by three angles called Euler angles. Ten orienta-
tion sets, made up of 3265 triplets of Euler angles selected to
be representative of the texture of the material tested [12],
are used. Consequently, the response of 10 different realizations
of microstructure is analyzed per defect size. The mesh genera-
tor Gmsh [14] is used to discretize the geometries with three-
node triangular elements. Each grain is discretized in average
with 14 elements, and a generalized plane strain hypothesis is
adopted.

2.2. Constitutive model of the single crystal

Due to the face-centered cubic lattice of the austenitic crystals,
the elastic behavior is described by a linear cubic elasticity model
characterized by three material parameters C1111; C1122 and C1212

defined in the crystal coordinate system. The values of these
parameters, calibrated for a Fe-18Cr-14Ni steel by Teklu et al.
[15], are given in Table 1. The constitutive model used to describe
the single crystal viscoplastic behavior of the crystals comes from
the work of Méric et al. [16]. In this model, the plastic slip, which
occurs along the close-packed lattice planes 111f g in the close-

packed directions 110
h i

, is described for each slip system s with

the following flow rule:

_cs ¼ jss � vsj � r0 � rs
K

� �n

þ
sgn ss � vs

� � ¼ _mssgn ss � vs

� � ð2Þ

where ss is the resolved shear stress acting on the slip system s; r0 is
the initial critical shear stress, vs and rs are respectively the kine-
matic and isotropic hardening variables associated to the slip sys-
tem s;K and n are the parameters controlling the viscosity. The
homogeneous matrix used in the finite element analysis.



Fig. 3. Illustration of the different configurations of the elliptical notch studied.

Table 1
Material parameters of the single crystal constitutive model for a 316L steel.

Cubic elasticity Viscosity Kinematic hardening

C1111 ðGPaÞ C1122 ðGPaÞ C1212 ðGPaÞ K ðMPa � s1=nÞ n c ðMPaÞ d

198 125 122 10 10 2:04 � 105 3:63 � 103

Isotropic hardening

r0 ðMPaÞ Q ðMPaÞ b h0 h1 h2 h3 h4 h5

87.0 1.06 4.88 1 1 0.438 77.2 4.31 2.41
resolved shear stress ss acting on the slip system s, characterized by
a unit vector normal to the slip plane ns and a unit vector collinear
to the slip direction ls, can be computed from the stress tensor r as
follows:

ss ¼ ns � ls þ ls � ns

2

� 	
: r ð3Þ
Non-linear hardening rules are used to describe the isotropic hard-
ening variable rs and the kinematic hardening variable vs:

rs ¼ Q
X
r

hsr 1� e�bvr
� � ð4Þ

_vs ¼ c _cs � d _msvs ð5Þ



Table 2
Material parameters of the macroscopic constitutive model for a 316L steel.

Isotropic elasticity Yield stress Isotropic hardening Kinematic hardening

E ðGPaÞ m r y ðMPaÞ Q1 ðMPaÞ B C ðMPaÞ c

194 0:284 129 142 6:88 7:05 � 105 3:08 � 103

Table 3
Amplitude of the macroscopic axial stress Ryy;a applied to the matrix, for each defect
size 2a studied.

2a ðlmÞ 0 95 365 510

Ryy;a ðMPaÞ 232.5 212.5 180.0 152.5
The material parameters of the single crystal viscoplaticity
model have been calibrated from low-cycle fatigue tests conducted
in several loading conditions: tension, torsion and combined out-
of-phase tension and torsion [13]. These parameters are summa-
rized in Table 1.

2.3. Constitutive model of the homogeneous matrix

The elastic behavior of the homogeneous matrix is described by
a linear isotropic elasticity model characterized by the Young’s
modulus E and the Poisson’s ratio m. The rate-independent plastic-
ity model is defined by a von Mises yield function:

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2

rd � Xd

 �

: rd � Xd

 �r

� r y � R ð6Þ

with r y;r;X and R corresponding respectively to the initial yield
stress, the stress tensor, the backstress tensor and the isotropic
hardening variable. The superscript �d indicates the deviatoric part
of a given tensor. The non-linear functions describing the rates of
the isotropic hardening variable R and of the backstress tensor X
are defined by Eqs. (7) and (8):

_R ¼ B Q1 � Rð Þ _p ð7Þ

_X ¼ 2
3
C _ep � cX _p ð8Þ

In Eqs. (7) and (8), p and ep denote the equivalent plastic strain
and the plastic strain tensor respectively, whereas Q1;B;C and c
are material parameters. The set of such parameters of this
elastic-plastic constitutive model has been calibrated for a 316L
steel [12] and are given in Table 2.

3. Analysis of the mechanical responses in the polycrystals

The mechanical responses are analyzed in high-cycle fatigue
conditions. Therefore, the loading amplitudes applied to the
microstructures are closed to the presumed average fatigue limits.
The amplitudes of the macroscopic axial stress Ryy;a, which have
been selected, are presented in Table 3.

The analysis of the mechanical responses in the polycrystals
focuses first on the local mechanical quantities computed at the
gauss point. The effect of the anisotropy of the local behavior
added to the variability of the crystalline orientations on the distri-
bution of the stress in the vicinity of the elliptical notch is ana-
lyzed. Then, some mesoscopic mechanical quantities, i.e.
mechanical quantities computed from the stress tensor averaged
per grain, obtained during the last loading cycle and related to
the fatigue criteria presented in the following section, are
discussed.

3.1. Local mechanical responses

The von Mises equivalent stress fields obtained during the final
time step of FEA are illustrated in Fig. 4 to give a brief overview of
the main characteristics of the local mechanical fields. The
microstructures shown in this figure contain an elliptical notch
with a defect 2a ¼ 365 lm and different aspect ratios b=a: 0.5 in
the 1st column, 1.0 in the 2nd column, and 1.5 in the 3rd column.
The results obtained for two different sets of crystalline orienta-
tions are displayed in each row.

It can be observed that the anisotropy of the behavior of the sin-
gle crystals induces a heterogeneous stress field in addition to the
stress gradient caused by the elliptical notches. As was expected,
the ranges and the maximum values of the von Mises stress

increase with the decrease of the curvature radius q ¼ b2
=a in

the critical regions of the ellipse and, thus, with the decrease of
the ellipse aspect ratio b=a. Moreover, the configuration of the
crystalline orientations in the microstructure affects the maximum
values reached by the von Mises equivalent stress, but it also influ-
ences the location of the most stressed regions of the
microstructures.

The distributions of the stress ryy tf
� �

, along the line y ¼ 0,
obtained with a defect size 2a ¼ 365 lm, are plotted in Fig. 5, for
the different ellipse aspect ratios b=a: 0.5 (red line), 1.0 (green line)
and 1.5 (blue line). Each diagram ‘‘ryy tf

� �� x” represents the
results obtained with a given set of crystalline orientations. In
these diagrams, the vertical dashed lines represent the positions
of the intersections of the grain boundaries with the line y ¼ 0.

From these example, it can be observed that the profiles of the
axial stress ryy tf

� �
cannot be described by a monotonically

decreasing function, unlike the solutions obtained in an isotropic
elastic medium. For instance, in the upper left diagram, the stress
levels in the second grain from the left are higher than those in
the first grain which is on the elliptical notch. The stress concentra-
tion induced by the elliptical notch is partially responsible for the
heterogeneity of the axial stress ryy tf

� �
but the anisotropy of the

elastic-plastic behavior of the grains also contributes to this dispar-
ity. Indeed, far from the defect (x P 100 lm) the heterogeneity of
the stress along the line y ¼ 0 is almost exclusively due to the
strain incompatibilities induced by the anisotropy of the local
behavior.

In order to study the scatter of the mechanical response,
induced by the variability of the crystalline orientations, the mean
and the standard deviation of the stress ryy tf

� �
, along the line

y ¼ 0, are displayed in Fig. 6. More precisely, the mean over ten ori-
entation sets of the stress ryy tf

� �
, along the line y ¼ 0, is repre-

sented by dashed lines, for a defect size 2a ¼ 365 lm and
different ellipse aspect ratios b=a: 0.5 (red line), 1.0 (green line)
and 1.5 (blue line). The standard deviation around the mean is rep-
resented by a pair of solid lines for each value of ellipse aspect ratio
b=a.

As expected, the axial stress ryy tf
� �

, in average on the ten real-
izations of microstructures, tends to decrease with the distance
from the defect. The effect of the ellipse aspect ratio b=a on the dis-
tribution of the axial stress ryy tf

� �
is substantially perceptible up to



Fig. 4. Von Mises equivalent stress fields at the final time step tf in microstructures containing an elliptical notch characterized by a defect size 2a ¼ 365 lm for different
ellipse aspect ratios b=a and different sets of crystalline orientations.
about 75 lm. Indeed, beyond seven grains, the stress ranges vary
similarly for the different notch shapes. It can also be observed that
the microstructure does not have a negligible effect on the distri-
bution of the axial stress ryy tf

� �
. The ratio between the standard

deviation and the mean of the axial stress ryy tf
� �

ranges from
0.05 to 0.2. Moreover, it’s worth noting that the ranges and the
standard deviations of the axial stress ryy tf

� �
are significantly lar-

ger in the vicinity of the notch root (x 6 100 lm) than far from the
stress concentration. These conclusions, discussed in the case of a
defect sizes 2a ¼ 365 lm, hold true in the case of the other defect
size studied.
3.2. Mesoscopic mechanical responses

Three mesoscopic mechanical quantities, assumed to be signif-
icant to characterize the HCF failure, are used in the fatigue criteria
defined in the following section: the amplitude of the shear stress
sa nð Þ, the amplitude of the normal stress rn;a nð Þ, and the mean nor-
mal stress rn;m nð Þ, each acting on the slip plane defined by its unit
normal vector n (see [12] for the definitions of these mechanical
quantities). Since the mean normal stresses rn;m nð Þ are small in
the case of stress ratio R ¼ Ryy;min=Ryy;max ¼ �1, compared to the
amplitude of the shear stress sa nð Þ and the amplitude of the nor-
mal stress rn;a nð Þ, only these latter are discussed. The distribution
of these mesoscopic mechanical quantities, in addition to their
maximum values observed in each case, are shown respectively
in Figs. 7 and 8.

It can be observed in Fig. 7 that the characteristics of the ellip-
tical notch has a noticeable influence on the shape, in particular on
the skewness, of the distribution of the shear stress amplitude sa.
The skewness of a sample can be measured by the adjusted
Fisher-Pearson standardized moment coefficient G1 defined as
follows:

G1 ¼ N
ðN � 1ÞðN � 2Þ

PN
i¼1 xi � xð Þ3

s3
ð9Þ

where N is the number of values in the sample, x is the sample mean
and s is the corrected sample standard deviation (Eq. (10)).

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN
i¼1

xi � xð Þ2
vuut ð10Þ

The sample skewness G1 increases with the decrease in ellipse
aspect ratio b=a and with the increase in defect size 2a. Moreover,
this parameter is negative for defect-free microstructures and for
microstructures containing a small defect (2a ¼ 95 lm). The sign
of the skewness becomes positive for large elliptical notch
(2a ¼ 510 lm). Contrary to the case of the shear stress amplitude
sa, the overall shape of the distribution of the normal stress ampli-
tude rn;a is not significantly affected by the change of defect size 2a
and ellipse aspect ratio b=a, at least, for the ranges of the defect
sizes and aspect ratios studied.

The maximum values reached by both the shear stress ampli-
tude sa and the normal stress amplitude rn;a are dependent on
the characteristic of the elliptical notch. Clear trends are observed
in the case of the shear stress amplitude sa. First, when the loading
amplitudes Ryy;a are close to the fatigue limits, the maximum value
reached by the shear stress amplitude sa increases with the
increase in the defect size 2a. Moreover, at a certain loading ampli-
tude Ryy;a and defect size 2a, a decrease in the ellipse aspect ratio



Fig. 6. Mean (dashed lines) and standard deviation around this mean (solid lines),
for ten different orientation sets, of the stress ryy tf

� �
, along the line y ¼ 0, for a

defect size 2a ¼ 365 lm and for different ellipse aspect ratios b=a.

Fig. 5. Examples of the distributions, along the line y ¼ 0, of the stress ryy at the final time step tf of the FEA, with a defect size 2a ¼ 365 lm, for different ellipse aspect ratios
b=a and sets of crystalline orientations.
b=a leads to an increase in the maximum value of the shear stress
amplitude sa. These conclusions are not necessarily valid in the
case of the normal stress amplitude rn;a.
4. Fatigue analysis

4.1. Definition of the fatigue criteria

The determination of the macroscopic fatigue strength requires
specific fatigue criteria to accurately estimate the detrimental
effect of a small notch. In order to address this issue, twomultiaxial
fatigue criteria, previously discussed, are used in the present work:

� a probabilistic fatigue criterion based on a distribution of the
crack initiation threshold [12],

� a deterministic criterion relying on a fatigue damage process
zone [13].

Three mechanical quantities, computed from the mesoscopic
stress tensors (i.e. the stress tensor averaged per grain) obtained
during the last loading cycle of the FEA, are used in the definition
of these fatigue criteria: the amplitude of the shear stress sa nð Þ,
the amplitude of the normal stress rn;a nð Þ, and the mean normal
stress rn;m nð Þ, each acting on the slip plane of unit normal vector
n (see Ref. [12] for the definitions of these quantities).



Fig. 7. Distribution of the shear stress amplitude sa in smooth polycrystalline aggregates and in polycrystalline aggregates containing an elliptical hole with different defect
size 2a and ellipse aspect ratios b=a.
4.1.1. Probabilistic fatigue criterion
The probabilistic criterion, presented in [12], is based on the

hypothesis that a fatigue crack initiates on the slip plane of unit
normal vector n if the amplitude of the shear stress sa nð Þ acting
on this plane exceeds a threshold stha nð Þ. Assuming that this thresh-
old is a Weibull distributed random variable, the probability PFn nð Þ
that a fatigue crack initiation occurs on the slip plane is:

PFn nð Þ ¼ P sa nð Þ P stha nð Þ� � ¼ 1� exp � sa nð Þ
s0 nð Þ

� 	m� 

ð11Þ

where s0 nð Þ and m are respectively the scale and the shape param-
eters of the Weibull distribution. In order to account for the effect of
the normal stress on the fatigue strength, the scale parameter s0 nð Þ
depends on the mean and the alternating part of the normal stress
(respectively rn;m nð Þ and rn;a nð Þ) as follows:

s0 nð Þ ¼ s00
1� brn;m nð Þ

1þ a rn;a nð Þ=sa nð Þð Þ ð12Þ
The failure probability of a grain PFg is then assumed to correspond
to the maximum value, among the set of four slip planes D, of the
failure probability PFn nð Þ:

PFg ¼ max
n2D

PFn nð Þ½ � ð13Þ

The weakest-link hypothesis, which means that the polycrystal fails
when the weakest grain fails, is used in order to define the failure
probability of a polycrystal PFa containing Ng grains:

1� PFa ¼
YNg

g¼1

1� PFg
� � ð14Þ
4.1.2. Deterministic fatigue criterion
The deterministic criterion discussed in this section has been

presented in a previous study [13]. Summarily, this criterion relies
on the assumption that the fatigue crack initiation occurs if an



Fig. 8. Distribution of the normal stress amplitude rn;a in smooth microstructures and in polycrystalline aggregates containing an elliptical hole with different defect size 2a
and ellipse aspect ratios b=a.

nd2    neighborhood1   neighborhoodthCritical grain nd2    neighborhood1   neighborhoodthCritical grain

Fig. 9. Example of a critical grain and its two first neighborhoods.
equivalent stress req averaged over a given grain set GPZ exceeds a
threshold c:

req;w ¼
X
g2GPZ

f greq
� �

P c ð15Þ

with f g corresponding to the volume fraction of the grain g. The
equivalent stress req is defined for each grain as the maximum
value, among the set of four slip planes D, of a linear combination
of sa nð Þ;rn;a nð Þ and rn;m nð Þ:
req ¼ max

n2D
sa nð Þ þ arn;a nð Þ þ brn;m nð Þ½ � ð16Þ

The grain set GPZ , which can be seen as a fatigue damage process
zone, is build in two steps. First, the grain with the highest value
of equivalent stress req is determined. This critical grain constitutes
the first element of the set GPZ . Then, the grains included in the first
Nn neighborhoods are added to the set GPZ . A grain g is considered in
the neighborhood n if at least one of its nodes is on the boundary of
one of the grains in the neighborhood n� 1. An illustration of a crit-
ical grain and its first two neighborhoods is shown in Fig. 9.



Fig. 10. Fatigue limits determined experimentally and predicted by the criteria as a function of defect size 2a for different ellipse aspect ratios b=a.

Fig. 11. Fatigue limits evaluated through the two criteria as a function of the stress concentration Kt for different defect sizes 2a.
4.2. Calibration of the fatigue criteria

The calibration of four parameters is required for each criterion:

� a and a which describe the detrimental effect of rn;a nð Þ on the
fatigue strength,

� b and b which characterize the sensitivity of the fatigue limit to
rn;m nð Þ,

� s00 and c which are related to the fatigue limit in terms of sa nð Þ,
Table 4
Parameters of the probabilistic and deterministic fatigue criteria for a 316L steel.

Probabilistic criterion

a b s00 ðMPaÞ m

1:98 � 10�1 2:33 � 10�3 535 6
� m and Nn which allow to weight the effect of a notch on the fati-
gue strength.

The results from the FEA of microstructures loaded at the aver-
age fatigue limit level, in different loading conditions, are required
to calibrate these parameters. The loading conditions, applied on
the unnotched polycrystal and selected to obtain various distribu-
tions of the local stress states, are the fully reversed uniaxial ten-
sion, the fully reversed shear and the uniaxial tension with a
stress ratio Rr ¼ 0:1. In the case of the probabilistic criterion, the
Deterministic criterion

a b c ðMPaÞ Nn

2:14 � 10�1 3:10 � 10�1 130 14



parameter m is imposed and the remaining parameters are cali-
brated such that the failure probability of the polycrystal PFa is,
in average on the 10 different realizations of microstructure, equal
to 0:5 for each of the three loading conditions.

Similarly, the parameter Nn of the deterministic criterion is
imposed and the remaining parameters are calibrated such that
the weighted equivalent stress req;w is, in average on the 10 differ-
ent realizations of microstructure, equal to c for each of the three
loading conditions.

The values of m and Nn are chosen so that the fatigue limits
evaluated in fully reversed uniaxial tension, for b=a ¼ 1:0 and the
three defect sizes 2a, are as much as possible in accordance with
those determined experimentally. The values obtained for the
parameters are shown in Table 4.

4.3. Predictions of the fatigue criteria

The fatigue criteria are then used to estimate the average fati-
gue limits for the other geometries of elliptical hole studied. For
a given ratio b=a and defect size 2a, the average fatigue limit is
evaluated by determining the macroscopic stress amplitudes ryy;a

which have to be applied to the matrix such as, in average on the
10 realizations:

� PFa is equal to 50% in the case of the probabilistic criterion,
� req;w is equal to c in the case of the deterministic criterion.

The predictions obtained for each criterion are displayed, along
with the experimental data, in a diagram representing the average
fatigue limit Ryy;a against the defect size 2a (see Fig. 10). It can be
observed that both criteria satisfactorily predict the detrimental
effect of a circular hole on the fatigue limit in fully reversed ten-
sion. Indeed, the maximum differences observed do not exceed
6% in the case of the probabilistic criterion and 10% in the case of
the deterministic criterion. Moreover, the ellipse aspect ratio b=a
does not affect significantly the estimations of the fatigue criteria,
at least for the considered ranges of defect size 2a and ratio b=a,
especially in the case of the probabilistic criterion where the differ-
ence does not exceed 5%.

The evolution of the evaluated fatigue limit Ryy;a as a function of
the stress concentration factor Kt is illustrated in Fig. 11 for differ-
ent values of defect size 2a. The stress concentration factor Kt is
defined, in the present case, as the ratio between the maximum
axial stress Ryy;max, located at the notch root, and the average stress
across the overall section Ryy;nom, considering a homogeneous iso-
tropic elastic medium. The stress concentration factors Kthave
been computed using the closed-form expression proposed by
Tan [17] in the case of an elliptical notch in a finite-width plate.

It appears that a decrease in the stress concentration factor Kt ,
i.e. an increase in the ellipse aspect ratio b=a and in the curvature

radius q ¼ b2
=a in the critical regions of the ellipse, leads to a

decrease in the average fatigue limit Ryy;a. Moreover, this decrease
is more perceptible for the highest values of defect size 2a. Only a
slight decrease is observed in the case of a defect size 2a ¼ 95 lm.
Indeed, for both criteria, a reduction of approximately 1% is
observed when the ellipse aspect ratio increases from 0.5 to 1.5.
In the case of the greatest defect size, 2a ¼ 510 lm, 8% and 25%
drops are predicted by the probabilistic criterion and the determin-
istic criterion, respectively. Without additional experimental data,
it is difficult to quantitatively assess the relevance of the estima-
tions of both criteria but at least these results are in accordance
with the experimental trends observed by Billaudeau et al. [10]
in the case of notches with stress concentration factors ranging
from 2 to þ1 (see Fig. 1).

5. Conclusions

The mechanical state at the grain scale in polycrystals contain-
ing an elliptical hole and loaded in fully reversed tension has been
obtained thanks to finite element analysis. A significant variability
of stress fields, caused by the different configurations of crystalline
orientations in addition to the anisotropy of the local mechanical
behavior, is observed from these results. Moreover, among the
notable characteristics of the mechanical response, it has been
shown that the scatter of the stress field is larger in the vicinity
of the elliptical notch than in the rest of the microstructure.

The estimations provided by the two multiaxial fatigue criteria
have been compared to the experimental fatigue limits in the case
of a circular hole. A good agreement has been generally observed
for the examined defect sizes. Moreover, both criteria predict that
a decrease in the aspect ratio of the ellipse b=a leads to a slight
increase in the average fatigue limit in fully reversed tension. These
evaluations are consistent with the experimental trends discussed
by Billaudeau et al. in the case of a low-carbon steel, for the range
of stress concentration factor analyzed.
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