
HAL Id: hal-02332139
https://hal.science/hal-02332139v1

Submitted on 24 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Flow insensitive relational static analysis
Solène Mirliaz, David Pichardie

To cite this version:
Solène Mirliaz, David Pichardie. Flow insensitive relational static analysis. [Internship report] ENS
Rennes; Université Rennes 1. 2019. �hal-02332139�

https://hal.science/hal-02332139v1
https://hal.archives-ouvertes.fr

Technical report

Flow insensitive relational static analysis

Domain: Static Analysis

Solène Mirliaz
David Pichardie
Celtique team – IRISA

Abstract: Static analysis of a program allows to predict the properties of its executions without
actually executing the program. Abstract interpretation provides the mathematical theory to design
such analysis. In particular, it helps design relational analyses, which keep track of the relations
between variables. These analyses are costly because they usually require computations at every
program points (they are flow-sensitive). To reduce these computations, we design a flow insensitive
static analysis that can provide a relational invariant on the variables. This invariant is global, there
is only one for the program analysed, but it must have the same precision as if we used a flow-sensitive
one. A specific representation of the program, namely the Static Single Information (SSI) form,
allows us to preserve precision thanks to the indexing of the variables. This report presents the
concepts of abstract interpretation and the SSI form then details the designed analysis, ensuring its
soundness at each step.

Contents

1 Introduction 1

2 State of the art 3
2.1 Static Inference of Numeric Invariants by Abstract Interpretation 3

2.1.1 Abstract Interpretation main principles . 3
2.1.2 Concrete and abstract semantics of programs 6
2.1.3 Abstract domains for numeric invariants . 10

2.2 Intermediate Representations for numerical static analysis 12
2.2.1 Static Single Assignment form . 13
2.2.2 Static Single Information form . 14

2.3 Relational analyses . 18
2.3.1 Global Value Numbering . 18
2.3.2 Elimination of array bounds checks . 20
2.3.3 Path sensitive static analysis . 21

3 A sparse flow-insensitive relational static analysis 21
3.1 SSI form and concrete semantics . 22
3.2 Abstract domain . 25
3.3 Abstract semantics . 34
3.4 Implementation . 38

4 Conclusion 42

1 Introduction

It is mandatory to properly check the behaviour of a critical software before running it, when
an error can have disastrous results, such as putting lives at risk. This is what we call program
verification. Its purpose is to prevent any “bad” behaviour of a program. The guarantees provided
should be stronger than tests, that can only explore part of all the possible executions. As Dijkstra
said, if a test can prove the existence of a bug, it cannot prove its absence [9].

Automatic verification can take several forms, such as static analysis or model checking. The
latter needs to have a model of the program and a specification that we want to satisfy. Model
checking [3] refers to the tools and techniques to ensure that the model complies with the specifica-
tion. Static analysis, on the other hand, performs the analysis directly on the code, not on a model.
But this analysis is necessarily limited: it has been proved by Rice in 1951 that the properties of
a program cannot be inferred in general from its code alone (unless the property is trivial, that is
always true or false). Properties can be for example “the program terminates” or “the final value of
X is twice the initial value of Y”.

To ascertain whether such a property holds on a program requires explaining what the program
actually does. This is what we call the semantics of the program. It is not possible to design an
algorithm that automatically computes the complete semantics of any program. In other words, it
is not possible to compute all possible executions of any program. Analyzers thus rely on an approx-
imate abstract semantics of the program that is computable. We call the complete, uncomputable
semantics the concrete semantics. The link between the two semantics must be properly expressed.

The abstract semantics can claim a wide variety of properties. Most common ones include
asserting the safety of a program, asserting the absence of undefined behaviour or bugs. Because of
the approximation, there can be false alarms (Figure 1): the analysis reports a property violation,
while it cannot happen in the concrete semantics. A precise analysis will report few false alarms.
However, for safety properties, we want a sound analysis, where no alarm is silent: if the analysis
asserts that all properties are satisfied, then in the concrete semantics it must also be the case. This
corresponds to an overapproximation of all possible execution paths.

Abstract interpretation is a framework used to design static analyses. It defines a generic
formalization of such analyses, and provides proofs on the guarantees they claim. More precisely,
it helps defining the abstract domain (what properties one can express) of the abstract semantics,
and how the analysis is performed on the program (the algorithm to compute the properties).

The domains of abstract interpretation will usually approximate the state of the variables, that
is for each variable or expression depending on them, approximates its value. The goal is to have
numerical invariants of these variables. The domains chosen for the variables are often classified
into two categories: relational and non-relational domains. A relational domain allows inferring
comparisons between the variables of the program, for instance X − Y < 2, while a non-relational
one only allows comparison to constants (X < 2 ∧ Y = 3).

Choosing the best abstraction for a given problem is not trivial. Typically, increasing the
precision of an abstraction will lead in a higher memory and time consumption.

Besides the domain, the algorithm computing it calls for reflection too. Textbook abstract
interpretation algorithms compute the abstract state at each program points. It can be done by
induction on the syntax (denotational semantics) or by a system of equations to solve. Such dense
computation is heavy in memory or computation time. We would like to perform sparser analyses,
that would not have one abstract state per program point. The less abstract states are kept, the

1

x

y

Concrete executions

Approximation
of executions

Forbidden
executions

(a) No intersection, the program is
safe

x

y

False alarm

(b) Intersection detected, but
there is no concrete execution in
the intersection.
It is a false alarm.

x

y

Valid alarm

(c) Intersection detected, and
there is concrete executions in the
intersection.
The program is unsafe

Figure 1: The approximation of the executions must at least cover the concrete executions. In case
of intersection between the forbidden executions and the approximation, an alarm is raised

sparser the analysis is. This sparsity should not however deteriorate the precision of the analysis.
Less dense analyses that are sill precise were made using a specific representation of the program:
the Single Static Assignment (SSA). This representation allows to have distinct versions of each
variable. Thanks to that, one abstract state can represent the variable at several program point.

With this internship we want to reach the sparsest analysis with only one invariant for the
whole program. Our idea is to use the Single Static Information (SSI) form that introduces even
more distinct versions for each variable. It can be used to make non-relational sparse analysis, but
there is no guarantee that it can help design a relational sparse analysis with a decent precision
and efficiency (adding new versions for each variable has a cost). Designing the sparse relational
analysis and ensuring its correctness is the main goal of this internship. Evaluating its precision
and efficiency is an ongoing work.

Outline The main principles of abstract interpretation are introduced in Section 2.1. Section 2.2
presents the SSA and SSI forms and their interesting properties to build sparse analyses. Finally,
Section 2.3 gives some examples of relational analyses taking advantage of intermediate representa-
tions and abstract interpretation. In Section 3 we develop the core of the internship: the building
of a sparse, flow insensitive analysis. We first give the concrete semantics of the SSI form in Sec-
tion 3.1. Then, in Section 3.2, we detail the abstract domain we used. Indeed, our will to build a
global invariant imposes that we craft a specific abstract domain to maintain precision. The ab-
stract semantics, which is the core of the analysis, is given in Section 3.3. The proof of correctness
of this analysis is detailed in this section. A quick look at an OCaml prototype is provided at the
end, in Section 3.4. Section 4 summarizes our approach to design a sparse, flow-insensitive analysis
and the pros and cons of it.

2

Remark The Section 2 is a recap from the bibliographic study. We added the Definition 2.4 of a
semilattice and the Theorem 2.2 of transfer fixpoint. In Section 2.1.2 we formalized the semantics of
a program using the equational approach rather than the denotational semantics we used to present,
as it is the approach we choose for our analysis. This Section also introduces partial functions for
environments and handy operations on them, such as projection on a set of variables. Finally, the
presentation of the intermediate representations has been developed, in particular the SSI form.

2 State of the art

2.1 Static Inference of Numeric Invariants by Abstract Interpretation

Abstract Interpretation is a domain introduced by Cousot and Cousot in 1977 [6]. This term gathers
the concepts necessary to build an approximate static analysis. The correctness of this analysis is
expressed with respect to the concrete semantics, which is not computable.

In this section, we introduce the notions required by abstract interpretation, such as partial order,
lattices but also the notion of fixpoint. Then, we define more precisely the concept of semantics
of a program. Finally, we present several abstract domains for numeric invariants among the most
common ones.

2.1.1 Abstract Interpretation main principles

2.1.1.1 Order theory

Whether it is for the concrete or the abstract semantics, partial orders are useful to describe,
compare and compute numerical invariants. We introduce it here as it was defined in [14].

Definition 2.1. [Partial Order, Poset] A partial order v on a set X is a relation v∈ X ×X, that
is reflexive (∀x ∈ X,x v x), anti-symmetric (∀x, y ∈ X,x v y ∧ y v x =⇒ x = y) and transitive
(∀x, y, z ∈ X,x v y ∧ y v z =⇒ x v z)

A partial order set, or poset, (X,v) is a set X paired with a partial order v.

For instance, for any set of elements S, the set of its parts, P(S) with the inclusion partial order
⊆ is a poset.

In a poset (X,v), an upper bound of two elements a, b ∈ X is defined as any element c ∈ X such
that a v c and b v c. A lower bound is defined similarly by c v a and c v b. If c is the smallest
upper bound, it is called the least upper bound, or join, and is noted c = a t b. Similarly, we define
the greatest lower bound, or meet, noted c = a u b.

In (P(S),⊆), the join is the union ∪ and the meet is the intersection ∩.
A convenient way of representing a poset is by using a Hasse diagram. In such a diagram,

elements of X are nodes organized such that the greater elements are higher. Order relation are
represented by edges between elements. The one obtained by reflexivity and transitivity are omitted.
Figure 2 pictures several examples of Hasse diagrams.

In abstract interpretation, elements of a poset will often represent the properties about values
of variables. For instance, consider the sign poset of Figure 2c. Let us suppose we want to know
the sign of some variable x after a branching. Our variable is equal to zero in the first branch and
strictly inferior to zero in the other one. At the join point, the variable will be associated to the
element (= 0) t (< 0) = (≤ 0) of the poset. Now suppose we have a condition x < 0 to enter a

3

3

2

1

0

(a) Hasse diagram of (N,≤).

{a, b, c}

{a, c}{a, b} {b, c}

{a} {b} {c}

∅
(b) Hasse diagram of (P(X),⊆) where
X = {a, b, c}.

>

≤ 0 ≥ 0

= 0< 0 > 0

⊥
(c) Hasse diagram of the sign
poset.

Figure 2: Hasse diagrams of different posets.

branch. Then in the branch we will associate the value of x to the element (≤ 0) u (< 0) = (< 0)
in the poset.

Poset may not be enough in this case, as we want to be able to compute the join or meet of any
two elements. A lattice is then preferred.

Definition 2.2. [Lattice] A lattice (X,v,t,u) is a poset such that for every two elements of X,
the least upper bound and the greatest lower bound are defined.

The definition of join and meet can be extended to a set of elements A ⊆ X, and are then noted⊔
A and

d
A. Notice that this set A can be infinite.

If it exists, the least element
d
X is denoted ⊥, called bottom. The greatest element

⊔
X is

denoted >, called top, if it exists.

Definition 2.3. [Complete lattice] A complete lattice (X,v,t,u,⊥,>) is a poset such that for any
subset of X (even infinite ones), the least upper bound and the greatest lower bound are defined.

Notice that ⊥ =
⊔
∅. In a complete lattice both > and ⊥ always exist.

Figures 2b and 2c both represent complete lattices, while Figure 2a is not as it does not have
an upper element >.

Complete lattices offer convenient properties for soundness but it is not always possible to define
a join or a meet for any subset of our poset. Posets which can define them only on non-empty finite
subset are called semilattices.

Definition 2.4. [Semilattice] A join-semilattice is a poset were the join is defined for any non-empty
finite subset. Dually, a meet-semilattice is a poset were the meet is defined for any non-empty finite
subset.

2.1.1.2 Fixpoints

As soon as a language includes loops, the analysis needs to build a loop invariant, holding before
entering the loop and after each iteration, upon reentering the body. This invariant corresponds to
a fixpoint.

For a function f : X 7→ X, called an operator, a fixpoint is any point x ∈ X such that f(x) = x.
What the function f is exactly in the case of static analysis will be precised in the next subsection.

In poset, we can identify more elements related to fixpoints:

4

Definition 2.5. [Fixpoints] Given a poset (X,v) and an operator f : X → X

• x is a postfixpoint of f if f(x) v x

• lfp(f) = min{x ∈ X|f(x) = x}, if it exists, is the least fixpoint of f .

In the semantics, the least fixpoint will represent the tightest invariant. Tarski’s theorem ensures
its existence in complete lattices and expresses it as the least postfixpoint.

Theorem 2.1. [Tarski’s Theorem] If f : X → X is a monotonic operator in a complete lattice
(X,v,t,u,⊥,>), then the set of fixpoints of f is a non-empty complete lattice. In particular,
lfpf =

d
{x ∈ X, f(x) v x} exists.

2.1.1.3 Approximations

In abstract interpretation we use the posets to rank information. For static analysis, the common
information collected includes the values of variables or the possibles states of the system at some
program points. Partial order are helpful to compare, to join and to restrict this information. Higher
elements represent less precise information, as they represent the union of information. In the
concrete world, the properties of variables are elements of some poset (C,≤). It is quite common to
use (P(Z),⊆) as a poset for concrete values: an element represents the exact set of values a variable
can hold. Another poset (A,v) is used for the abstract representation. For instance, elements of A
can be intervals.

These two posets must be linked at least through the concretization function, noted γ.

Definition 2.6. [Concretization] Let (A,v) and (C,≤) be two posets. A concretization function
γ : (A,v)→ (C,≤) is a monotonic (i.e. ∀x, y ∈ A, x v y =⇒ γ(x) ≤ γ(y)) function associating
to each abstract element of A a concrete element in C.

For instance, let us consider a concrete poset for sets of integers: (C,≤) = (P(Z),⊆). We decide
to use the intervals to represent the sets: A = {[a, b]|a ∈ Z ∪ {−∞}, b ∈ Z ∪ {+∞}, a ≤ b}. For the
order, we choose the inclusion of intervals: [a, b] v [c, d] if and only if a ≥ c and b ≤ d. (A,v,t,u)
is the lattice of intervals. Then the concretization simply corresponds to all integers between the
bounds γ([a, b]) = {x ∈ Z|a ≤ x ≤ b}. It is important to understand that [a, b] is merely a notation,
not the actual set of integers between the bounds.

The abstract domain must overapproximates the concrete world, so that no possible execution
can be ignored. This overapproximation property, which we referred as soundness, can be formalized.

Definition 2.7. [Soundness] a ∈ A is a sound approximation of c ∈ C if and only if c ≤ γ(a). It
is exact in case of equality.

As we will see in the next subsection, fixpoints are essential for the analysis. But the approxi-
mation chosen may not satisfy the condition of Tarski’s theorem of being a complete lattice. In our
case, the abstract domain is only a meet-semilattice. Luckily, the Tarskian fixpoint approximation
theorem, also referred as the fixpoint transfer theorem, asserts that the postfixpoints in the abstract
world are sound approximations of the least fixpoints.

Theorem 2.2. [Fixpoint transfer] Let C be a complete lattice and A a poset, with the concretization
function γ : A → C being monotonic. Let F : C → C be a monotonic function in the concrete
realm, and F] : A→ A be a function in the abstract one. If X ∈ A is a post-fixpoint of F] , that is
F](X) v X, then having F ◦ γ ⊆ γ ◦ F] is enough to guarantee that lfp(F) ⊆ γ(X).

5

stmt : := V ← expr (assignment, V ∈ V)
| assert (cond) (assertion)
| stmt ; stmt (sequence)
| i f cond then stmt else stmt endif (conditional)
| while cond do stmt done (loop)
| skip (no op)

Figure 3: Syntax of the While language

Proof. Let us consider a post-fixpoint X ∈ A. γ is monotonic, that is A v B implies γ(A) ⊆ γ(B).
So by applying γ on the post-fixpoint relation F](X) v X, we get that γ ◦ F](X) ⊆ γ(X). Also,
let us suppose that F ◦ γ ⊆ γ ◦ F]. Then F ◦ γ(X) ⊆ γ ◦ F](X) ⊆ γ(X).

So γ(X) is a post-fixpoint of F .
By Tarski’s theorem, the least fixpoint of F is equal to the meet of all post-fixpoints, which is

equivalent to saying that lfp(F) is lower (in the lattice) than any post-fixpoint. Thus lfp(F) ⊆ γ(X).

Finally, we do not have guarantees that this (post-)fixpoint is computable in a finite time, and
even though, we would like to reach it fast. To accelerate convergence toward a fixpoint, Cousot
and Cousot introduced the widening operator ∇ [6]. In this original definition, this binary operator
must ensure that a sequence s0 = X0, s1 = s0∇X1, . . . sn = sn−1∇Xn . . . , where Xi are arbitrary
values, is not strictly increasing. The operator must also be an overapproximation of its arguments.
In practice and in more recent works, the definition of the widening operator has been simplified
and the first condition is that any sequence Xn+1 = X0∇Xn will converge in finite time [14].

2.1.2 Concrete and abstract semantics of programs

The semantics of a program is the mathematical meaning associated to it. It can be the final value
returned by the program, the values of its variables or even whether it terminates or not. Here
we will illustrate two approaches to present semantics using a simple imperative language called
the While language. Its syntax is presented in Figure 3. The atomic statements are the variable
assignment, the assertion and the skip instructions. Statements are composed with the sequence,
the conditional or the while loop. The syntax of expressions and conditionals is not detailed here.
Arithmetic expressions include constants, variables and binary operations. Conditionals include
boolean constants, arithmetic comparisons and logical conjunction and disjunction. This is a quite
common language and we will not detail it more here.

Let us first start with the concrete semantics. It is the most precise representation of the
program behavior. If we could compute it, it would correspond exactly to the actual executions
of the program. Alas, this is not possible due to Rice’s theorem. Nonetheless, it is possible to
express it mathematically. Here, we are interested into numerical invariants, we want to know the
possible values of each variable or expression of the program. What we call the concrete semantic
of the program will thus be a map from each program point ` ∈ L to a set of memory states. In
Miné’s tutorial [14], the memory states are total functions from the variables V to the domain of
value I (= R,Z,N, . . .). But for our work, to be able to express that a variable is not defined, we
manipulate partial functions instead.

6

Definition 2.8. [Partial function] A partial function from A to B if a function from A′ to B where
A′ is a subset of A. It is noted f : A9 B. Its domain of definition A′ is noted dom(f) ⊆ A.

From this point we will use the term domain for the domain of definition.
A partial function can be represented as its set of associations. For instance let f be a partial

function such that dom(f) = {a1, a2, . . . , ak} ⊆ A, and for all i ∈ [1, k], f(ai) = bi ∈ B, then f can
be noted f = {a1 7→ b1, . . . ak 7→ bk}. Given a function f , the function g = f [a 7→ b] is the updated
version of f . It evaluates to b for a and for any x 6= a in the domain of f , it evaluates to f(x). We
have that dom(g) = dom(f) ∪ {a}, g(a) = b and for any c ∈ dom(f), c 6= a =⇒ g(c) = f(c). In
some cases, we will need to have a restricted version of a partial function where some variables have
been forgotten.

Definition 2.9. [Restriction] Let f ∈ A9 B be a partial function and A′ ⊆ dom(f), the restricted
partial function f |A′

is defined such that dom(f |A′
) = A′ and for all a ∈ A′, f |A′(a) = f(a).

Environment Let V be the set of variables in the program, I the set of values these variables
can be assigned to. An environment is a partial function s : V 9 I. The domain of s is the set of
defined variables in s. E def

= V 9 I is the set of environments.
The framework for abstract interpretation presented by Miné [14] and the one of Cousot [7] both

use total functions to represent environment. In this mindset, a variable that has not been assigned
a value yet can have any value.

Projection Concrete and abstract domains for numerical invariants can be provided with an
existential projection operator, noted proj and proj]. The existential projection of some value S
onto a set of variables V consists in forgetting all the variables of V that do not belong to V . In
the concrete domains, this means that any concrete environment s of the projection of S is equal
to a concrete environment of S restricted to V :

projV (S) =
{
s
∣∣∣s′ ∈ S, s|V = s′|V

}
The abstract projection should overapproximate the concrete one:

projV ◦γ(S) ⊆ γ ◦ proj
]
V (S)

It is exact in case of equality. We require that for any abstract value S and set of variables V :

S v proj]V (S)

Invariant The concrete semantics computes an invariant I : L → P (E) of the program, it
associates to each program point the set of environments possible at this point during the ex-
ecution of the program. Notice that the domain P (E) can be organized as a complete lattice:
(P (E) ,⊆,∪,∩, ∅, E). There are two approaches to define this invariant: the denotational-style se-
mantics and the equational-based semantics. While in the denotational-style we compute invariants
inductively on the syntax of statements, an equational-based semantics will rely on a system of
equations to determine the environments possible at each program points. We will only detail the
latter. It is computed for the control-flow graph of the program.

7

2.1.2.1 Control-flow graph

We define the set of program points L where we will compute the invariant. The control-flow
graph (CFG) of the program is a graph where each node is a program point ` ∈ L, and each edge
corresponds to an atomic instruction.

Atomic instruction An atomic instruction is either an assignment [x ← e] or an arithmetic
condition [e11e2] (1 ∈ {=, <,≤}). The set of variables used in an expression e is noted vars(e).
Sometimes, we do not specify any instruction on an edge, and instead put the identity function id.
It is semantically equivalent to put an arithmetic condition always true such as [0 = 0].

CFG The CFG can be build inductively on the syntax of a program.

cfg[`1 skip `2]
def
= {(`1, id, `2)} (1)

cfg[`1x← e `2]
def
= {(`1, [x← e], `2)} (2)

cfg[`1 assert (c) `2]
def
= {(`1, id, `2)} (3)

cfg[`1s1;
`2s2

`3]
def
= cfg[`1s1

`2] ∪ cfg[`2s2
`3] (4)

cfg[`1 if c then `2s1
`3 else `4s2

`5 endif `6]
def
= {(`1, [c], `2), (`1, [¬c], `4), (`3, id, `6), (`5, id, `6)}
∪ cfg[`2s1

`3] ∪ cfg[`4s2
`5] (5)

cfg[`1 while `2c do `3body `4 done `5]
def
= {(`1, id, `2), (`2, [c], `3), (`3, id, `2), (`2, [¬c], `5)}
∪ cfg[`3body `4] (6)

Figure 4 pictures the CFG of a program in the While language.

2.1.2.2 Equational semantics

The invariant of each program point is built by applying the effect of the incoming edges onto the
environments of predecessor program points 1. The effect of the incoming is actually the semantics
of the atomic instruction attached to the edge in the CFG. Let us define the semantics of expressions
first, then the one of atomic expressions.

Semantics of expressions The semantics of an expression e is a function EJeK : E → P (I) that
outputs all possible evaluations of the expression given an environment. Such semantics allows
undeterminism, for instance the expression [0, 20] has the semantics {v ∈ I|0 ≤ v ≤ 20} and
[−∞,+∞] has the semantics I. The semantics is defined inductively on the syntax of the expression,
with rules such as EJnKs = {n} if n is a constant, EJxKs = {s(x)} if x ∈ dom(s), else EJxKs = ∅.

Let vars(e) be the variables appearing in the expression e. Then if s is not defined over vars(e),
then the set outputted by the semantics is empty.

1Whether we take the predecessors or successors actually depends on the analysis performed. In this report we
consider a forward analysis, where the predecessors are taken.

8

i := 1 ;
j := 0 ;
while (j < 10) do

i := i + 1 ;
j := j + 1 ;
assert (i = j + 1)

done ;
assert (i = 11)

(a) An example of program in the while language,
with assertions

`0

`1

i← 1

`2

j ← 0

`3

j < 10

`4

i← i+ 1

`5

j ← j + 1

`6

(i = j + 1)

`7

`8

j ≥ 10

(i = 11)

(b) The CFG of the program

Figure 4: The CFG of some program in the While language

Semantics of atomic instructions The semantics of assignment, SJ·K, and arithmetic condition,
CJ · K are both functions from a set of environments to another one. In the case of assignment, the
semantics outputs the environments of the input updated with the new value for x. As for condition,
it filters the environments in the input that satisfy the test.

SJx← eK : P (E)→ P (E)
S → {s[x 7→ v]|s ∈ S, v ∈ EJeKs}

CJe11e2K : P (E)→ P (E)
S → {s|s ∈ S, v1 ∈ EJe1Ks, v2 ∈ EJe2Ks, v11v2}

Given some atomic instruction a, we note JaK its corresponding semantics, that is either SJaK if
a is an assignment or CJaK if it is an arithmetic condition.

For example, let us start with the environment ρ = {x 7→ 3} ∈ E , that is the environment
associating x with 3. Then the semantics of the expression x + 2 is defined inductively on the
syntax:

EJx+ 2Kρ = {v1 + v2|v1 ∈ EJxKρ, v2 ∈ EJ2Kρ} = {v1 + 2|v1 ∈ ρ(x)} = {3 + 2} = {5}

For a condition, such as x+ 2 > 0, with R as the input set of environments.

CJx+ 2 > 0KR = {ρ|ρ ∈ R, v1 ∈ EJx+ 2Kρ, v2 ∈ EJ0Kρ, v1 > v2} = {ρ|ρ ∈ R, v ∈ ρ(x), v + 2 > 0}

These semantics are monotonic functions.

9

Remark Notice that for all s ∈ CJe11e2K then s is defined over the variables of e1 and the
ones of e2.

Equational system For each program point, the set of environments possible is the union of the
environments of the predecessors, where the semantics of the edge has been applied. The entry
point is a special case: having no predecessors, its set of environments is composed of all partial
functions where the arguments of the program are associated to any value. Let S0 be the set of
such states, a1, . . . , an be the argument of the program.

S0
def
=

⋃
i1,...,in∈In

{a1 7→ i1, . . . , an 7→ in}

The equational system defines for each program point ` its set of memory state X` . The equa-
tional system of the program is thus:

∀` ∈ L,X` =
{
S0 if ` is an entry point⋃

(`′,a,`)∈CFG JaK(X`′)

Definition 2.10. We say that a pair (s, `) is a reachable state if s is in X` .

Solution This system of equations always has a smallest solution with respect to the order
⊆. If we consider the vector of invariants ~X def

= (X`1 , . . . ,X`|L|) ∈ P (E)|L|, then the system of
equations can be seen as the fixpoint of some function F such that ~X = F (~X). P (E)|L| is organized
on a complete lattice, and one can show that the semantic functions for atomic instructions are
monotonic in P (E), which induces that F is monotonic in P (E)|L|. Therefore, Tarski’s fixpoint
theorem ensures the existence of the least fixpoint for F .

The equational semantics needs to keep in memory the environments at each program points,
which can have a dreadful impact on memory consumption. On the other hand, the denotational
semantics is defined inductively on the syntax. It does not memorize previous results, the environ-
ments at each program points. But in consequence it may spend time into re-exploring statements,
for instance in the case of nested loops

Abstract semantics Abstract semantics also can be defined with one of these two styles. The
difference is the domain: instead of a set of environments in P (E), semantics are defined for an
abstract domain D, usually organized on a complete lattice. When D is not organized on a complete
lattice, we can still use the transfer theorem 2.2 to ensure the soundness of our analysis. It is possible
to have a relaxed framework for such cases. All domains and semantics referring to the abstraction
are traditionally noted with a]: S]J · K,C]J · K, . . . We do not have guarantee on the monotonicity
of the abstract semantics.

The system of equation for the abstract semantics can be solved with different algorithms, one
of them being the chaotic iteration introduced by Cousot and Cousot in 1977.

2.1.3 Abstract domains for numeric invariants

Concrete numeric invariants are usually comprehensive representations of the program states. These
invariants are possibly infinite sets of values or relations. They are not computable in the general

10

x

y

(a) Interval domain

x

y

(b) Congruence domain

x

y

(c) Octagon domain

x

y

(d) Polyhedra domain

Figure 5: Some examples of abstract domains. The dots represent concrete configurations. The
gray zone is the abstract representation of the configurations, depending on the domain.

case nor representable in a machine. An abstract domain approximates sets of invariants, so that
they are representable and computable. This section presents several classical abstract domains.
Some of these domains are illustrated in Figure 5. We consider an analysis that keeps track of two
variables x and y. Each dot on the figures corresponds to a concrete state of the program. The gray
areas correspond to the sets of states approximated by the different domains.

Non-relational abstract domains refer to domains where relations (comparison) between variables
are forgotten. This includes the sign domain, the constant and constant set domains, the interval
domain and finally the congruence domain. In this last numeric domains, each variable is associated
to an invariant.

Interval domain This is a very common domain, which associates to each variable an interval,
with possibly infinite bounds, in {[a, b]|a ∈ I ∪ −∞, b ∈ I ∪ +∞, a ≤ b}. Figure 5a illustrates the
shape of the representation. In this domain, x is associated to the interval [1, 7] and y to [−2, 5]. It
is sometimes also referred as the box domain, given its shape in a 3-variables space.

Congruence domain This representation can be useful for loop analysis where the step increment
is different from one. It associates to each variable the abstraction aZ+ b, meaning the variable is
equal to a multiple of a plus b (a and b being constants). The shape is given on Figure 5b, with the
same concrete states as before. Only the domain of x is pictured. It is 2Z+ 1.

Non-relational domains might not be precise enough. Relations between variables can be useful
to deduce if a test x < y holds or not. Which relations are kept is up to choice, but the most

11

common domains are the octagon and polyhedra ones.

Octagon domain This domain keeps relations of the form ±x ± y ≤ c where c is a constant or
+∞. It besides adds an artificial variable v0, always equal to zero, so that the octagon domain
include intervals: x ∈ [a, b] is equivalent to x − v0 ≤ b and v0 − x ≤ −a. Figure 5c pictures the
shape of the domain. For instance, the relation −x− y ≤ −1 holds in this example. It defines the
lower-left side of the octagon. In a two-variables space, the domain is a polygon with at most eight
sides, hence the name octagon.

Polyhedra domain To extend the type of relations tracked, the polyhedra domain represents
any affine inequalities between variables. Such inequalities are of the form a1x+a2y+ · · · ≥ b where
a1, a2, . . . and b are constants in I. Figure 5d pictures the shape of this new representation. It is
the most precise seen here. This precision however comes with a cost in memory and computation
time when update is needed.

Choosing the most adapted domain clearly depends on the analysis performed. For instance,
the Astrée analyzer [8], which aimed at synchronous programs in the realm of aviation, uses specific
domains such as the non-relational Arithmetic-Geometric Progression abstract domain and the
Clock domain. This analyzer actually combines several domains to achieve the precision wanted.
For relations, it does not use the polyhedra domain but the octagon one. Although it is less precise, it
is sufficient combined with other domains while being lighter in term of analysis runtime efficiency.

2.2 Intermediate Representations for numerical static analysis

An intermediate representation of a program is a representation of a program that respects useful
properties for analysis or compilation purposes. This representation should keep the semantics of the
original program. Besides the useful properties, the intermediate representation is also convenient
to design one analysis that can perform on several languages, as long as there exists a front-end from
the language to the intermediate form. For instance, the LLVM compiler uses the SSA form as an
intermediate representation for its analyses, but has front-end for languages such as C, C++ or Java.
In our case, we will design our analysis on the Static Single Information (SSI) form, as its properties
allow flow-insensitivity in the case of non-relational analyses. We hope to be flow-insensitive for
relational analyses thanks to this representation. Any language that can be transformed into this
SSI form can thus be analysed.

But the SSI form is the results of an incremental construction of intermediate representation
with the Static Single Assignment (SSA) form being a milestone. Thus we will first see the SSA
form, then complete it with a new operator to get the SSI form.

These two representations targets a similar goal: make explicit in the code the def-use or the
use-def chains. A def-use chain associates to each definition of a variable, the instruction that may
use it. In other word, if a variable is defined at instruction ` and is used at instruction `′ then
` → `′ is in the def-use chain if there exists a path from ` to `′ such that no instruction on this path
re-defines the variable. Conversely, ` → `′ is in the use-def chain if the variable used at ` may have
been defined at `′. (That is there is a path from `′ to ` such that the variable is not re-defined.) To
do so, the analyses split the live-range of the variables. The live-range is the set of program points
where the variable is alive (it is defined and may be used in a successor).

12

`0

`1 `2

`3

`4

x > 0 x ≤ 0

x← 2 x← 3

y ← x+ 1

(a) Original program

`0

`1 `2

x3
φ← (x1, x2)
`3

`4

x0 > 0 x0 ≤ 0

x1 ← 2 x2 ← 3

y ← x3 + 1

(b) Program in SSA form

`0

`1 `2

`1
′ `2

′

`3

`4

x0 > 0 x0 ≤ 0

x1 ← 2

x3 ← x1

x2 ← 3

x3 ← x2

y ← x3 + 1

(c) Executable program

Figure 6: Example of representation in SSA form and then back to an executable one

2.2.1 Static Single Assignment form

The Static Single Assignment (SSA) form is a property for intermediate representations of programs
proposed back in 1988 by Rosen et al. [17]. It has since become a standard for intermediate
representation used by compilers, for instance LLVM [13] used it by default, and a middle-end using
it was verified for CompCert [4]. The reason for this popularity is that a representation satisfying
this property makes def-use chains explicit. In this form, one can know which instructions use a
given declaration. Optimizations and analysis are usually simpler with this form. Besides, it is a
relatively light property: the size of the SSA form is linear in the size of the original, non-SSA,
program representation.

SSA form guarantees that a variable is assigned at only one program point. This is done by
indexing the variable at each assignment of the original program. It does not mean the variable can
be assigned only once during the execution of the program: the assignment can be in a loop. That
is why it is called static single assignment form.

This property faces an issue when two branches of a program meet, for instance after a con-
ditional statement. Consider the example illustrated in Figure 6. We represented the structured
program below as its CFG. The φ-function is added to a node, that is to a program point.

The structured program on the right can be represented as a
CFG. In that case, the condition will result in a diamond shaped
graph. The edges on the left correspond to the if branch and the
right-ones to the else branch. The two branches meet at the end
of the if.

i f (x > 0) then
x← 2

else
x← 3

endif
y ← x+ 1

The variable x is assigned a value in both branch and we indexed each definition: x1 ← 2 and
x2 ← 3. After the conditional, the original program computes y ← x + 1. Which x should we use
here, x1 or x2 ? SSA form addresses this issue by introducing the φ-function, which selects the
appropriate variable, depending on the branch the execution is coming from. After the conditional
statement, when the two branches meet, the assignment x3

φ← (x1, x2) is introduced. Then in the
assignment for y, we use x3 : y ← x3 + 1. Notice that this φ-function is attached to the program
point `3, it is not an instruction on an edge.

13

The φ-function solely exists in the intermediate representation. In the executable representation
of the program, the φ-function will be replaced by the statements x3 ← x1 and x3 ← x2 respectively
in each branch as seen in Figure 6c.

Inserting φ-function is the main challenge of the SSA-form, re-indexing the variables being
trivial. Although φ-function could be put after each join point of the program (after conditionals
and at each loop iteration in our While language), and for each variable, this is unnecessary and
wasteful.

Given the graph of the program, the path-convergence criterion [2] states that a φ is needed for
variable v at node n if two nodes have a definition of v and if there is a path from them to n. The
paths should not meet anywhere before n, the final node of the path.

Determining these points requires to compute the dominance frontier. The best algorithm
currently is the Lengauer-Tarjan’s one, which time complexity is almost linear (N · α(N) with N
the size of the program and α the slowly growing inverse of the Ackermann function).

Each variable can insert φ-functions at the beginning of a node. The semantics of these different
φ-functions must be applied in parallel.

Formally, the semantics of a parallel assignment of variables a1, . . . an to expressions e1, . . . , en
consists in taking the values v1, . . . , vn of e1, . . . , en and assign these values to a1, . . . an.

SJa1 ← e1| . . . |an ← enKS
def
= {s[a1 7→ v1] . . . [an 7→ vn]|s ∈ S, v1 ∈ EJe1Ks, . . . , vn ∈ EJenK}

In this program, the set of environments at the end of the if
branch should be the singleton {s}, with s = {x1 7→ 2, y1 7→ 4}.
The semantics of the φ-function should assign in parallel the value
for y3 and x3.

SJx3 ← x1|y3 ← y1K{s} = {s[x3 7→ v][y3 7→ w]

|v ∈ EJx1Ks, w ∈ EJy1Ks}
= {s[x3 7→ 2][y3 7→ 4]}

i f (x > 0) then
x1 ← 2
y1 ← 4

else
x2 ← 3
y2 ← 6

endif

y3
φ← (y1, y2)

x3
φ← (x1, x2)

After the renaming, a copy propagation is often applied to reduce the number of variables. The
consequence is that a block of φ-function can take this form:

y1
φ← (x1, y2)

x1
φ← (y1, x2)

In that case, the assignments must be made in parallel to preserve the semantics of the original
program.

2.2.2 Static Single Information form

2.2.2.1 Introducing the σ-function

In the SSA form, the live-range is split at each definition and it is enough to infer the def-use
chains. This is useful for forward analysis that infers information from the definition site (for
instance constant propagation). But other analyses may infer information from the use sites, and

14

perform a backward analysis. When an intermediate representation needs to distinguish the usage
of its variables, it needs an operator dual of the φ-function, called the σ-function. Placed before
branches, it combines the information on usage from both branches.

The σ-function takes one variable as argument, and its semantics is to copy the value of this
variable in several new variables. Each one of this new variables will be used in only one branch.
The example below shows where the σ-function is added. Here, x0 is copied into x1, used in the
then branch, and x2, used in the else branch.

i f (x > 0) then
y1 ← x+ 1

else
y2 ← 2× x

endif

y3
φ← (y1, y2)

→

(x1 , x2)
σ← x0

i f (x > 0) then
y1 ← x1 + 1 // x1 > 0

else
y2 ← 2× x2 // x2 ≤ 0

endif

y3
φ← (y1, y2)

What is interesting is that we have two properties for the new variables: x1 > 0 and x2 ≤ 0.
Unlike the original code, we no longer need the flow-sensitivity to ensure that y1 > 1 in the first
branch, and that y2 ≤ 0 in the other.

With these two functions, φ and σ, various analyses do not need to track information at each
program points, they can jump directly from and to program points where information is provided
or necessary. From dense analyses, we get sparse ones. But the class of analyses that can benefit
from it is limited.

2.2.2.2 Limitations

Given an analysis, it is possible to define whether an intermediate representation allows a sparse
analysis or not. Both the analysis and the program representation need to satisfy the Static Single
Information [16] property. Informally, the property is respected if the information on a variable is
valid from its definition to its usage and only during this time, that is, during its live-range. Thus,
transforming a program into a representation satisfying the property requires to split the live-range
whenever the information changes (before condition, at a join, at assignment, or any other program
point that modifies the information). Notice that what we call information depends on the analysis,
and thus the SSI form of a program is defined with respect to an analysis. In our case, we deal
with numerical analysis and will thus present the definition of the SSI form that satisfies the SSI
property for this class of problems.

In this context, the SSI form is an extension of the SSA form that includes the σ-functions.
Figure 7 pictures the SSI form of the example Figure 4. The SSI form satisfies the SSI property
for analyses in the class of Partitioned Variable Problems (PVP) [16]. In this class of problems,
the information at each program point can be partitioned between each variable: the information is
collected per variable. If we consider non-relational numerical analyses, we are in the case of PVP.
For instance a range analysis associates to each variable its range of value, independently of the
other variables. In PVP, it is possible to define an equational system on the information of each
variable rather than on each program point. This result in one invariant for the whole program,
making the analysis sparse. While a dense analysis needs one invariant per program point, which
has a significant memory cost, a sparse analysis can have one invariant, and potentially even update
it in-place, which is both time and memory saving. Let N be the size of the program, V the number

15

`0 `1
i0 ← 1

i1
φ← (i0, i4)

j1
φ← (j0, j4)
`2

(i2, i3)
σ← i1

(j2, j3)
σ← j1

j0 ← 0
`3

j2 < 10
`4

i4 ← i2 + 1
`5

j4 ← j2 + 1
`6

(i4 = j4 + 1)

`7 `8

j3 ≥ 10

(i3 = 11)

Figure 7: SSI form of the example

of variables. A dense analysis would need a memory space in O(N × V). The number of variables
introduced by the SSA or SSI form is linear in the size of the program [2], so the invariant of a
sparse analysis using this form will be in O(N).

In the rest of this paper, we define a sparse relational analysis as an analysis able to compute
one (relational) invariant for the whole program. This invariant can associate to any combination
of variables (depending on the domain used to represent this invariant), the relation between them.
The invariant can be seen as the set of constraints on the variables. For instance, in Figure 7, the
variables i2 and j2 satisfy the constraint i2 = j2+1. Unfortunately, relational analyses are not PVP
as the information deals with pairs (actually any tuple) of variables. This is a limitation stated
in [16]. In the case of relational analyses, the information is collected for tuples of variables, thus
if the information on one variable changes, then the information on all other changes too. The SSI
form only reasons on the live-range of one variable to ensure the property of single information.
In our case, we need to consider the live-range of combinations of variables, thus the live-range of
variables would be split every time one of them acquire new information. This would mean that the
SSI form would introduce about V × N variables, ruining the benefit of the sparse analysis. This
limit of O(V ×N) variables is our definition of the cost of a dense analysis, while O(N) would be
the ideal sparse analysis.

In practice, the analysis of a program does not need to infer all the relations between the
variables. Most traditionally, an analyzer will look for assertions to prove in the code [11]. With
this objective, not all relations are necessary and we can potentially decrease the amount of variables
needed.

2.2.2.3 Construction and destruction

The construction of the SSI form of a program relies on the dominance tree, where nodes are the
labels, and a label ` dominates another one `′ if every path from the entry points to `′ must pass
by `. Then ` is a parent of `′ in the dominance tree. The dominance frontier gives for each label `,
the sets of labels `′ that is not dominated by ` but that has a parent dominated by `. If a variable
is defined at `, `′ will probably need a φ-function to join this definition from the one coming from
another parent of `′.

16

Construction The construction of the SSI form of a program is a three-steps algorithm [16], done
for each variable.

The first step consists in computing the split live-range of the variable. It is split when the
information on the variable may change and we need a new version of it. This step depends on the
splitting strategy, which specifies which instructions change the information. In our case, it changes
after each assignment, but also after a test where the variable appears, as we now know more precise
information on it. Notice that for other PVP, the splitting strategy may be different. For instance
let us consider a null pointer analysis in an object-oriented language. Then calling a method on
an object brings information (if the program did not fail after this instruction, the object was not
null).

The splitting strategy will induce other splitting points: at join and at branching, if two different
information on a variable flow into each branch, then the live-range of the variable must be split at
this join or branch. This steps needs the dominance frontier to determine these new splitting points.
Once all splitting points for a variable have been computed, the φ- and σ-functions are added at
branch and join. (In case of a splitting point that is not at a branch or join, then a simple copy is
added.)

The second step consists in the renaming of the variable with indexes. It is a traversal of the
dominance tree that stacks each new definition. The top of the stack is the name used for each use
encountered during the traversal, as long as this definition dominates the use.

Finally, the third step removes dead code (copies not needed, σ copy that is not use in one
branch, etc).

Destruction As traditional instruction sets do not provided the φ- and σ-functions, it is necessary
to destruct the SSI form. This consists in replacing the φ and σ by copies and then proceed to a
copy propagation to clean the code.

Cost Computing the dominance tree and the dominance frontier of a program from its CFG can
be done efficiently with the Lengauer-Tarjan algorithm, as we saw for the SSA form [2]. Its time
complexity is almost linear in the size N of the program (N · α(N)).

Now let us detail the cost of the transformation for one variable. First, the splitting strategy
gives the set of program points where information changes. Computing this strategy is linear in
N , as it simply consists in examining each instruction (an edge of the CFG) and determine if its
program points (the node defining this edge) are splitting points. Then this set of splitting points is
extended with the dominance frontier of the predecessors or successors (depending on the SSI form
built) of the splitting points. We extend this set to detect where φ- and σ-functions may be needed.
This extension is done in one iteration on the set of splitting points, and given that the dominance
frontier has already been computed, it has a complexity in O(N). Once the set is complete, the
φ- and σ-functions are inserted, which is also in O(N) as it is a mere iteration on the extended set
of splitting points.

Then the algorithm proceeds to the renaming. It is done through a traversal of the dominance
tree, exactly like the SSA transformation, with a stack of definition to remember the last definition
used in this path. All nodes of the dominance graph are transformed, and for each of them the
successors are examined. Like for SSA, this step is almost linear in N [2]. Finally the dead code
elimination is greatly simplified by the SSA-aspect of the SSI form: the uses of a definition can be
extracted easily thanks to the re-indexing. This elimination can be performed in linear time with

17

respect to the size of the program.
Overall the construction of the SSI form for a variable is almost linear in the size of the program.

2.3 Relational analyses

While non-relational analysis are now easier to perform sparsely thanks to convenient intermediate
representations, there is no satisfying fits-all representation of the program in the literature for
general relational analyses. Yet, there exists several relational analyses with good performance.
These analyses are highly valuable to detect bad behaviour of a program such as out of bound
array accesses, or violation of assertions. With different objectives, different contexts or usages of
the results, they are designed more efficiently and with better precision. However, they are also
heterogeneous in their method and proofs, making it hard to reproduce the result on a different
analysis. Abstract interpretation is a step to homogenize the results, giving a template that is
easier to reproduce and adapt. Despite not using abstract interpretation, some of these analyses
are relevant thanks to the representation of the program or of the information they use, as well
as the optimized treatment they applied. This section pictures three examples of such relational
analyzers, performing on the SSA form or a variation of it. They are sorted chronologically, and
one can observe on one hand the development of intermediate representations of programs and on
the other the representation of the information.

2.3.1 Global Value Numbering

Global Value Numbering (GVN) is a technique to detect when two computations in a program
have equivalent results. The equivalence is then used for optimizations. For instance, if the result
of the first computation is stored in a variable v, the second computation can be replaced by v,
avoiding repeating it. This optimization is the Common Sub-expression Elimination (CSE). An
other optimization consists in moving a computation made in two branches outside of it, shortening
the code. For these reasons GVN is often found in optimizations of compilers. In a local value
numbering, the scope of the computations is restricted to basic blocks, while it is extended to the
whole control graph in a global one.

In 1988, Alpern et al. [1] proposed an algorithm for GVN. Their main contribution was to detect
equivalence of expressions despite control structures such as conditionals. To work properly, the
GVN needs a program respecting the SSA form, so that it can associate a unique value (or more
exactly a symbolic expression) to each variable. For this expression to be unique, the variable must
have only one static definition. Alpern et al.’s algorithm builds a value graph based on the SSA form
of the program. It is a directed graph representing the symbolic computations of the program made
at each assignment. There are two types of nodes, and in both cases, the order of the arguments is
important, so the edges are ordered too.

Executable function It can be an operator such as +, or a constant (function of arity 0). The
node representing the operator is linked to the arguments.

φ-function The transformation to SSA form creates φ-function at join points. In the case of
x = φ(e1, e2), then the value graph of x will start with a φ-node. Each φ is labeled, to
distinguish from the others. The φ-node is linked to each of its arguments, in our case, the
value graph of e1 and e2.

18

Two variables are equivalent at some program point p if the last assignments of the variables
before p correspond to congruent nodes in the value graph. Congruence of nodes is defined recur-
sively: the nodes must have the same function symbol, applied to congruent arguments. In other
words, for each leaving edge, taken in order, the destinations must be congruent. Congruence is a
symmetric, reflexive and transitive relation, and the GVN algorithm must build its classes of equiv-
alence. However, cycles can appear in the value graph. The current definition of the congruence is
not enough. There are different sets of classes that can be solutions. Under the (strong) assumption
that all variables are initially equivalent, the solution is the maximal fix point satisfying the relation.
It is built starting with all expressions in the same set, which is separated when two expressions are
proven to be non-equivalent. Finding such a fixpoint due to cycle in a graph is actually the same
issue as the one faced when defining the semantics of loops in Section 2.1.2. Hopcroft’s partitioning
algorithm allows the construction of the classes in O(E logE) where E is the number of edges in
the value graph.

As it is, this analysis does not take into account control structures. To do so, Alpern et al.
observe that the results of assignments in two conditionals are equivalent if i) they are given the
same values in each corresponding branches and ii) the predicates of the conditionals are congruent.
To integrate this pattern in the value graph, they introduce a new function φif.

At each conditional, for each variable assigned in the conditional, a φif node is added to the
value graph with three arguments: the value given in the then branch, the value given in the else
branch and finally the predicate. If the partitioning algorithm found two expressions with root φif
to be congruent, it means the two expressions have congruent predicates and thus branch on the
same direction. It also means that the values given are congruent.

Similarly, they introduce new functions for loops: φenter and φexit. Here the conditions for two
variables to be equivalent while assigned in a loop body are that i) they have the same initial value,
ii) they are modified the same way and iii) loops are executed the same number of time.

φenter is inserted at the beginning of the loop, before evaluating the exit predicate. Its arguments
are the variable coming in the loop and the one modified at the end of the loop body. This function
is similar to the φ in the SSA form: it joins the value before entering the loop the first time with
the one at the end of the loop body. If the partition algorithm find two congruent expressions with
root φenter, this means the variables have started with congruent values and are modified the same
way: they remain congruent in the loop body.

φexit is inserted after the loop, when the predicate has stated its end. Its arguments are the
predicate and the variable assigned before (the one assigned by a φenter). If the partition algorithm
finds two congruent expressions with root φexit, this means the variables are congruent at each step
of the loop (the first argument should be an expression with φenter) and the loop should end at
the same number of steps, as the exit predicates are congruent too. The end values should then be
congruent too.

The proof of correctness provided by [1] proceed by contradiction to assert that congruent
variables have the same value 2. This proof does not follow the abstract interpretation principles.
This analysis is efficient, but specialized to one class of problem. Our goal is to make a more general
analysis, which would also have a proof more in the spirit of abstract interpretation theory.

2Actually, the variables have the same value if they are alive at the program point considered.

19

2.3.2 Elimination of array bounds checks

Access to an array is made by index, which can in times be out of the bounds of said array. While
memory unsafe languages, such as C, do not check if an access to an array is valid, others, like
Java, do. To do so, array accesses A[i] are guarded by a bound check (0 ≤ i < A.length ?). In case
the condition is violated, an exception is raised during execution precisely at the access instruction.
But this systematic instrumentation of code is cumbersome for the execution (a lot of conditions to
evaluate) and for optimizations (they cannot freely reorder the instructions as the exception must
be raised at the moment precised by the semantics of the original program). Thus, removing as
much as possible of the guards, while staying safe, is a major issue.

ABCD [5] is an example of such analysis. It relies on the e-SSA form, a variant of SSA, to
perform a sparse analysis. The variant adds extra copies for variables after conditionals (and also
after array accesses as, if it is passed, the index must be within bound). The π-function is in charge
of the copies.

i f (y > 0) then
(. . .)

else
(. . .)

i f (y0 > 0) then
y1 ← π(y0)
(. . .)

else
y2 ← π(y0)
(. . .)

The behaviour of the π-function is really similar to the σ-function, despite its different placement:
it copies a variable for each branch of a condition. Now, in the analysis it is possible to states that
y1 > 0 and y2 ≤ 0. In the branches, this information is propagated by the use of y1 and y2 instead
of y0. In this form, a property between two variables (for instance i < A.length) holds for all their
common live-range (the set of program points where they are both alive). The analysis can be
sparse, with only one invariant for the whole program. This form respects the SSI property for the
elimination of array bounds checks. Yet, the analysis is relational: both the index of the access and
the size of the array are variables.

ABCD proceeds in two steps to determine whether the indexes are within bounds. First, it
checks the upper-bound (i ≤ A.length ?) then the lower-bound (0 ≤ i ?). The two analyses are
similar. Relations tracked in the first case are of the form vi − vj ≤ c where c is a constant. This
domain is more restricted than the octagon seen previously, it actually corresponds to the zone
domain [14]. It is a convenient domain, where constraints can be represented on a graph. Vertices
are variables, sizes of arrays and constants appearing in the program. An edge vi →c vj denotes
the constraint vj − vi ≤ c. With a graph, it is not necessary to represent the constraints for all pair
(vi, vj): it is assumed that c = +∞ if there is no direct edge. The careful choice of this abstract
domain for this application is a key-aspect of its efficiency. In our case, the abstract domain will be
free to choose by a user of the analyzer, and thus we cannot assume its efficiency.

An important aspect of ABCD is that it is demand-driven. It will not compute the constraints
for all array accesses, only the “hot” ones, the most executed ones. Thus, it will only ask to determine
if i < A.length for some A and i. With the graph representation, determining if i < A.length is
equivalent to find if i − A.length ≤ −1, that is, no path from i to A.length must weight less than
−1. The algorithm answering must find the shortest path from i to A.length and ensure that its
weight is at least −1. In our case we will not consider all relations possible and the analysis will
be demand driven too. Instead of an array bound check, we target assertions in the code that need

20

to be proven. The variables used at these assertions should respect the information property: any
information on these variables should be valid during all their common live-range.

2.3.3 Path sensitive static analysis

PAGAI [11] is a path sensitive static analyzer that uses abstract interpretation principles. The
analysis checks whether assert statements in the program always hold or not and computes invari-
ants for loop-headers. The abstract domain is left to the choice of the user, with the polyhedra
domain by default. The convergence accelerators are also free to choose. The tool is built upon the
LLVM compiler infrastructure, and it takes as input the program in the LLVM bytecode, which is
already in SSA form [13]. It then outputs invariants for a subset of program points that includes
loop-headers. This tool is close to what we want to achieve: a configurable tool to perform static
relational analysis. The analysis is only performed forward, although they claim that the techniques
are not specific to it.

PAGAI benefits from the SSA form to perform a sparse analysis instead of a dense one. However,
it is not as sparse as GVN or ABCD as it keeps track of invariants at several points in the program.
We want to reach higher sparsity, as the cost in memory of several invariants can be prohibitive in
some abstract domains. This means we need a better representation of the program: having several
program points spares them the need of the SSI property.

Unfortunately, the formalism of PAGAI is not detailed in the article. Yet they present a notewor-
thy feature: quite surprisingly, the tool does not simply apply the least upper bound t at join points
of the program. Unlike classical abstract interpretation, it relies on a SMT solver to determine the
paths possible and it only joins the outcome of these paths. Joining only what could be joined is
an efficient way to keep precision. PAGAI benefits from the efficiency of modern SMT-solver to
have a more precise result on the possible paths. This also means the expressiveness of SMT-solvers
bounds the efficiency: for instance, congruence relationships are not dealt with properly. In that
case, an impossible path may have to be taken into account. Whether the path will be considered
or not depends on the SMT-solvers, not the abstract domain.

Other optimization brought by PAGAI includes removing variables from the abstract domain if
it can be defined as a linear combination of other variables. This alleviates the polyhedra operations,
that perform badly on high dimensions. This optimization actually concerns the abstract domain
and we will not reproduce it here.

The goal of PAGAI is to ease comparison of different abstract domains, in terms of precision and
computation times. Surprisingly, although the polyhedra domain should be more precise statically, it
loses in precision because of its widening operators. The octagon and interval domains do not suffer
such detrimental operators. Without surprise, the octagon domain gives more precise invariants
than the interval one.

3 A sparse flow-insensitive relational static analysis

As we saw, the existing relational analyses are either very specific and achieve sparsity (GVN and
ABCD) or they stay general but still need several invariants (PAGAI). We want to show that it
is possible to have one invariant, that remains precise, for the whole program, using the SSI form.
For the precision, we rely on the partition of the variables’ lifetime, guaranteed by SSI. Thanks to
that we were able to design a static analysis that is

21

Sparse and flow-insensitive There is only one invariant for the whole program.

Domain independent The abstract domain used to represent the invariant is left free to chose
by the end-user. A few proofs of soundness requires additional conditions on the domain,
in particular the projection should be exact. These conditions are satisfied by the interval,
octagon and polyhedra domains presented before.

Relational It can keep track of the relations between variables.

Abstract interpretation-oriented It is described and proven using the abstract interpretation
theory.

Our analysis must be able to give an abstract invariant for the program, such that it is a sound
abstraction of the concrete semantic of the program. This correctness is evaluated with respect to
the concrete semantics of the SSI form of the program.

Outline This section starts with the formal definition of the SSI form of a program as well as the
concrete semantics we consider. As you will see, the invariant for such semantics needs an abstract
domain able to express partial environments. We thus detail in the following subsection the overlay of
our abstract domain that will allow this expressiveness. Then, the abstract semantics of the program
can be defined, using the principles of abstract interpretation stated in the previous section. This
abstract semantics consists in a single invariant that can be concretized as an overapproximation of
the set of environments of the concrete semantics. Although the single invariant constraint imposes
the join of information and a potential loss of precision, the properties of the SSI form actually
ensures a satisfying level of precision. This is discussed in a dedicated subsection. Finally, this
section ends with an overlook of the implementation in OCaml of a prototype of the analysis.

3.1 SSI form and concrete semantics

Our analysis is performed on the SSI form of the original program. Unlike the work presented
in [16], where the algorithms are performed on a graph where the atomic instructions are the nodes
of a graph, we build our SSI form from its CFG. This allows a definition of the semantics in the
framework of abstract interpretation. This section does not detail the algorithms to build the form,
as they are similar to the one in [16], but it presents the notations, as well as the concrete collecting
semantics of the SSI form.

The SSI form of the program is built from its CFG. Besides the renaming of variables, this
process attached φ- and σ-functions to labels. The SSI program is a graph with nodes representing
the labels. These nodes can be annotated with the φ- and σ-function. The edges of the graph are
annotated with the atomic instructions.

Notation The SSI intermediate representation of the program is a tuple (E,A, J,B) such that:

• E is the set of edges (`1 → `2) in the CFG.

• A ∈ E → Atom associates to each edge `1 → `2 its atomic instruction given by the CFG.

• J (join) is a map from a label to the set of φ-functions defined at this label.

• B (branch) is the equivalent map for σ-functions.

22

i3
φ← (`1 : i1, `2 : i2)

j3
φ← (`1 : j1, `2 : j2)

`3
(`4 : i4, `5 : i5)

σ← i3
(`4 : j4, `5 : j5)

σ← j3

`1 `2

`4 `5

In this example, the program point `3
has two predecessors (`1 and `2) and two
successors (`4 and `5).
In the φ-functions we precise for each ar-
guments the label associated. That is to
say, i3 is assigned i1 when coming from
`1. Similarly, we annotate the assigned
variables of a σ-function with the label
where the variable is defined. Here, i4
is the version used for label `4.

Figure 8: The representation for a program in SSI form is the same as the CFG of the program,
but we add the φ- and σ-functions to the nodes.

A φ-function x φ← (`1 : x1, . . . , `k : xk) at ` is represented as a partial function from labels to the
variable copied. J(`) is thus the φ bloc at program point `. It is a partial function that associates
to each variable its φ-function.

J(`)(x) = {`1 7→ x1, . . . , `k 7→ xk} : L9 V

J(`) : V 9 (L9 V)

The labels `1, . . . , `k are exactly the source labels of the incoming edges of `, noted In(`). The term
J(`)(x)(`1) = x1 can be read as “At `, when coming from `1, the program assign x1 to x”.

A σ-function (`1 : x1, . . . , `k : xk)
σ← x is represented the same way with `1, . . . , `k ∈ Out(`).

B(`)(x) = {l1 7→ x1, . . . , lk 7→ xk} : L9 V

The term B(`)(x)(`1) = x1 can be read as “At `, when going to `1, the program assign x to x1”.
From now on, it is the SSI form of the program that we call “the program” and we note

P = (E,A, J,B). The set of programs is noted P.
In the rest of the section, we define the concrete semantic of a program in SSI form using this

notation. It closely ressembles the concrete semantics given in Section 2.1, but adds the effect of
φ- and σ-functions.

Single entry point We consider that the CFG has only one entry point `0 and that this entry
point has no predecessors. Any CFG can be transformed to respect this condition, without loosing
its semantics. All it needs is to add this program point, and add edges from it to the previous entry
points, with the atomic instruction on these edges being the test (0 = 0), for instance.

Concrete semantics of programs The concrete semantics of the program is given by the func-
tion J·K : P→ P (L × E). It is defined as the least fixed point of a global transfer function F which
applies the transfer function of each edge of the CFG, then joins the results.

JP K def
= lfp(F)

We will first detail the transfer function of an edge then detail F .

23

Edge transfer function At a given program point `, the possible set of environments depends
on the predecessors. Let `′ be a predecessor of ` in the CFG. A state (`, s) is reachable only if there
exists an environment s′ at `′ such that s is s′ on which was applied (i) the potential σ-copies from
`′ to `, (ii) the atomic instruction from `′ to `, and finally (iii) the φ-copies at `, coming from `′.

For every edge (`′ → `) ∈ E, we define a transfer function T`′→` : P (E)→ P (E). This transfer
function is the composition of the transfer functions for step (i), (ii) and (iii), respectively Tσ, Tf
and Tφ:

T`′→`
def
= Tφ ◦ Tf ◦ Tσ

The functions Tσ and Tφ are based on the same principle: collect all copies for the edge `′ to ` and
get the semantics functions of the corresponding parallel assignments.

Let dom(B(`′)) = {x1, . . . , xn} be the variables for which there is a σ-copy at `′. These are the
variables that will be copied. For every xi, let x′i = B(`′)(xi)(`). They are the new copies for `.
Then

Tσ
def
= SJx′1 ← x1| . . . |x′n ← xnK

As for φ-functions, let dom(J(`)) = {y1, . . . , ym} be the variables resulting from a φ-copy and
y′i = J(`)(yi)(`

′) be the ones copied when coming from `′. Then

Tφ
def
= SJy1 ← y′1| . . . |ym ← y′mK

In case where there is no φ of σ then these parallel assignments becomes identity functions in the
semantics. Finally, if A(`′ → `), the atomic instruction associated to the edge, is an assign x← v,
then Tf

def
= SJx← vK, else, it is an arithmetic condition e11e2, then Tf

def
= CJe11e2K.

Example Figure 9 gives an example of tranfer function for an edge. As for the example of
Figure 7, let us consider the edge `1 → `2. There is no σ at `1, so Tσ = id.

T`1→`2 = Tφ ◦ Tf ◦ Tσ = SJi1 ← i0|j1 ← j0K ◦ SJj0 ← 0K

Let us consider the edge `2 → `3. There is no φ at `3 so Tφ = id.

T`2→`3 = Tφ ◦ Tf ◦ Tσ = CJj2 < 10K ◦ SJi2 ← i1|j2 ← j1K

Global transfer function Let S ∈ P (L × E) represents the current invariant of the program.
Each of its elements is a pair of a label ` with an environment s, such that (`, s) is a reachable
state. Several environments can be associated to the same program point. P (L × E) is actually
isomorphic to L → P (E) and we will use either definition at our convenience. More precisely, for
a given label ` ∈ L we note S` = {s ∈ E|(`, s) ∈ S} the set of environments attached to ` in the
invariant S.

The transfer function F : (L → P (E)) → (L → P (E)) transforms an invariant S by applying
the transfer function of each edge of the CFG and joining the resulting sets of states. We note
S′

def
= F (S) the result (and we note F (S)(`) = S′`). S

′
` is the set of environments attached to ` in

the invariant S′.
Let us define what should be S′` for each `. Recall that the set of environments at the entry

point `0 was defined as S0. Then, S′`0
def
= S0. Let T`′→` be the transfer function of an edge from `′

24

. . .
`1

(. . . , i2 : `2, . . .)
σ← (i1)

(. . . , j2 : `2, . . .)
σ← (j1)

i4
φ← (. . . , i3 : `1, . . .)

j4
φ← (. . . , j2 : `1, . . .)

`2
. . .

i3 ← e(i2, j2)

Tσ = SJi2 ← i1|j2 ← j1K

Tf = SJi3 ← e(i2, j2)K

Tφ = SJi4 ← i3|j4 ← j2K

T`1→`2 = Tφ ◦ Tf ◦ Tσ

Figure 9: Transfer function for some edge `1 → `2

to `. The new environments at ` are the union of all environments S`′ at the predecessors composed
with the transfer functions of the edge `′ → `.

S′`
def
=

⋃
(`′→`)∈E

T`′→`(S`′)

From the invariant S we can build the invariant at a next step S′. Let Sk be the S at iteration
k. Then in the end, the semantics of the SSI program is the union of all these Sk` once the fixpoint
has been reached.

JP K = lfp

⋃
`∈L

Sk`

Domain coherence As a result from this union, we have a set of partial functions that may

not have the same domain (some variables have been defined on an edge and not on the others).
In our example, the joining point `2 is associated with the union of the environments from `1 and
the ones from `6. The environments from `1, after applying the transfer function from `1 to `2,
have as a domain {i0, j0, i1, j1}. On the other hand, the environments of `6 have as a domain
{i0, j0, i1, j1, i2, j2, i4, j4}. So the environments at `2 can have different domains.

3.2 Abstract domain

In the state of the art [12], abstract domains represent environments where the numerical informa-
tion of each variable is tracked. These abstract environments concretize into total functions from
variables to values. However, we want to be able to represent partial functions. That is why we
build an overlay around some abstract domain D, which can be any numerical abstract domains
introduced previously. This section describes this overlay. We want to use the framework of abstract
interpretation described by Miné [14]. To be able to use its tool, we provide useful properties for
our overlay, such as the monotony of its concretization function. We first define the requirements
of the original abstract domain D.

25

Domain for environments The overlay is an abstract domain parametrized by another abstract
domain that abstracts the environments. The domain for environments can be any relational or
non-relational domain that allow expressing properties on the value of the variables. Still, it must
satisfies a couple of properties. The set of abstract environments is noted D, and it must be provided
with a complete lattice (D,v,t,u,⊥,>). Also, there must exist a monotone concretization function
from elements of the abstract domain to a set of environments γD : D → P (E). Finally, the abstract
domain must be provided with sound abstractions of assignments and arithmetic conditions. The
library Apron, which can manipulate abstract domains for environments provides these properties
on its domains [12].

S]Jx← eK : D → D

S]Jx1 ← e1| . . . |xn ← enK : D → D

C]Je11e2K : D → D

such that
∀X ∈ D : SJx← eK ◦ γD(X) ⊆ γD ◦ S]Jx← eK(X)

∀X ∈ D : SJx1 ← e1| . . . |xn ← enK ◦ γD(X) ⊆ γD ◦ S]Jx1 ← e1| . . . |xn ← enK(X)

∀X ∈ D : CJe11e2K ◦ γD(X) ⊆ γD ◦ C]Je11e2K(X)

Domain for partial functions In the concrete environments, we were able to state that some
variables are not defined, using partial functions. This is not possible in an abstract environment
of D. A variable is either unconstrained (it can have any value) or bound by some constraints, but
it always exists. Still, to increase precision, it is important to know which variables can be defined,
and which cannot. We define an overlay of the abstract domain. The elements of this overlay are
denoted by a superscript +. The new set of abstract environments for our abstract domain pairs an
element of D with a set of variables: D+ def

= ((D \ {⊥})×P (V)) ∪ {⊥+}. The bottom element ⊥+

represents the empty set of environments. Informally, an abstract environment (X,V) represents
the set of concrete environments included in γD(X) and defined over a set of variables included in
V . Abstract states such as (⊥, V) are not allowed, as they would all concretized in an empty set of
environments (under the assumption that γ(⊥) = ∅). To avoid the redundancy, we only use ⊥+.

Example Let X ∈ D be an abstract environment. In the following examples, we will note
X

def
= {i = 0, j = i + 1} to state that X def

= {s|s ∈ γD(X), i = 0, j = i + 1} Let V = {i, j}, then
(X,V) ∈ D+. We did not precise it formally, but the variables constrained in X must be in V for
(X,V) to be an element of D+. In other word, the projection of X on any subset V ′ ⊆ V should
be equal to X. This rule is preserved by the operators we will introduce and the analysis.

Projection In our framework of abstract interpretation ([14]), we need to have a partial order of
the elements of D+. Given the interpretation of abstract environments, we decided to define the
order using projections. In Mine’s tutorial [14], the abstract projection we presented in Section 2.1
is rather called a non-deterministic assignment and is defined by:

V \ V = {x1, . . . , xn},proj]V (X) = S]Jx1 ← [−∞,+∞]| . . . |xn ← [−∞,+∞]KX

26

We will use this definition from now on.
Polyhedra and octagon abstract domain both have an exact non-deterministic assignment [14][15].

Remark that with this definition, for any X ∈ D, X v proj]V (X).

Example The projection of X from the previous example onto U = {j} is defined by the set
of constraints {j = 1}. For any c ∈ I, the environment f = {j 7→ 1, i 7→ c} is in the concretization
of proj]U (X) (we forgot the value of i). There exists f ′ ∈ γD(X), such that f ′|U

= f |U
, for instance

f ′ = {j 7→ 1, i 7→ 0}.

Partial order Informally, all environments represented by (A, V) are also represented by (B,W)
if (i) W at least contains V and if (ii) when we restrict B to the variables V , it contains at least A.
For (ii), we say that A is included in the existential projection of B on V .

(A, V) v+ (B,W)
def⇔ V ⊆W ∧A v proj]V (B)

Example Let us take (X,V) ∈ D+ from the previous example. Let (Y,W) ∈ D+ such that
Y

def
= {i = k, j = i+1, 0 ≤ k} andW = V ∪{k}. Compared to X, we added a positive variable k and

specified it is equal to i. Then (X,V) v+ (Y,W) as V ⊆W and proj]V (Y) = {0 ≤ i, j = i+ 1} w X.
We consider that (Y,W) is less precise even if it has a new variable k, as it makes us loose the
constraint i = 0.

Now consider Z def
= {i = 1, j = i + 1} then there is no telling that (X,V) v+ (Z, V) or

(Z, V) v+ (X,V) because neither X v Z nor Z v X.

Concretization function The concretization function gives all possible partial functions rep-
resented by an abstract value X+ ∈ D+. If X+ = (X,V), then the concretization is all partial
functions defined over a subset of V that coincide with a (total) function of the concretization of
X.

γD+ : D+ → P (E)

γD+(X,V)
def
=
{
s|W

∣∣∣s ∈ γD(X),W ⊆ V
}

γD+(⊥+)
def
= ∅

Example Let us take (X,V) from the previous example. Let us assume that V = {i, j} and
that the concretization of X in D is

γD(X) =
{
{i 7→ v, j 7→ v + 1}

∣∣v ∈ I, v ≥ 0
}

Then the concretization of (X,V) in D+ is

γD+(X,V) =
{
{i 7→ v, j 7→ v + 1}

∣∣v ∈ I, v ≥ 0
}

W = V

∪
{
{i 7→ v}

∣∣v ∈ I, v ≥ 0
}

W = {i} ⊆ V
∪
{
{j 7→ v + 1}

∣∣v ∈ I, v ≥ 0
}

W = {j} ⊆ V
∪
{
{}
}

W = ∅ ⊆ V

27

Monotony We want our partial order to be organized such that higher elements in D+ repre-
sent larger elements in the concrete world P (E). These abstract elements represents more program
behaviours. This condition is respected if the concretization function is monotonic with respect to
our partial order.

Theorem 3.1. [Monotony] If the projection is exact, that is γD ◦ proj]V (X) = projV ◦γD(X) for
any X and V , then the concretization function is monotonic:

X+ v+ Y + =⇒ γD+(X+) ⊆ γD+(Y +)

Proof. If X+ or Y + is ⊥+ then the implication trivially holds. Else, let us define X+ = (X,V)
and Y + = (Y, U). Let s|W

∈ γD+(X,V) with W ⊆ V and s ∈ γD(X). Then s|W
∈ γD+(Y, U), as

W ⊆ V ⊆ U and by monotony of γD, s ∈ γD(X) ⊆ γD ◦ proj]V (Y) = projV ◦γD(Y). So there exists
s′ ∈ γD(Y) such that s|V

= s′|V
. As W ⊆ V , necessarily, s|W

= s′|W
and so we find a s′ ∈ γD(Y)

that guarantees s|W
∈ γD+(Y,U).

The exactness of the projection is a restrictive condition for our abstract domain D. In the case
of the polyhedron domain, the condition holds as the Fourier-Motzkin elimination provides an exact
abstraction of the projection. It is also exact in the octagon domain.

Following the methodology of abstract interpretation (as proposed by Miné [14]), to give an
abstract semantics mostly consists in finding the good abstraction of the concrete world and its
operations. We need to find a sound abstraction for the concrete lattice (P (E) ,⊆,∪,∩, ∅, E). We
already have the abstraction for P (E), ⊆, and ∅.

Semilattice (D+,v+) is a poset, but we cannot define a join t+ necessary to make it a lat-
tice. We will instead simply define an abstract union ∪]. However, we have a meet-semilattice
(D+,v+,u+,⊥+,>+). The top is defined as >+ = (>,V).

Meet The meet, which abstracts the intersection of concrete states, can be defined as

(A, V) u+ (B,W)
def
=

{
⊥+ If C = ⊥
(C, V ∩W) Otherwise with C = proj]V ∩W (A) u proj]V ∩W (B)

X+ u+ ⊥+ = ⊥+ u+ X+ def
= ⊥+

Proof. Let us check that it is indeed the greatest lower bound by using the definition of our order
v+. First, let us check that it is a lower bound. We do have the inclusion of the set of variables
V ∩W into V and W . Then we need to check the inclusion of C in the projection of A and B
onto the set of variables V ∩W . This is guaranteed by the definition of C which is exactly the
intersection of the projection, thus included in proj]V ∩W (A) and proj]V ∩W (B). Hence, it is a lower
bound.

It is also the greatest. First, the set of variables cannot be augmented or there would be variables
that are not elements of V and W . Second, let us suppose that there exists C ′ w C such that C ′

is in the projection of A and B onto V ∩W : C ′ v proj]V ∩W (A) and C ′ v proj]V ∩W (B). Then
necessarily, by definition of the meet u, C ′ v proj]V ∩W (A)u proj]V ∩W (B) = C. So C is the greatest
lower bound.

28

Abstract union We need to define an abstraction of the concrete union of sets of environ-
ments. However, it is not possible to define a join. A counter example can be found using a
geometric approach.

Geometric approach Environments can be represented as points in a geometric space where
the dimensions are the variables. An abstract environment overapproximates a set of environments,
that is a set of points in the geometric view. All the elements of D can be represented as a set of
points in the space defined by the variables V. However, elements of D+ are defined over different
sets of variables. We represent them in their respective subspace. For instance, let us consider that
the variables are V = {a, b, c} and that we have A+ = (A, {a, c}) such that the environments in the
concretization of A satisfies a = c. A+ is a line in the plane defined by {a, c}. But A is an element
of D defined over the variables V. A has no constraint on b. A is thus a plane in the 3D-space
defined by V. This is illustrated on Figure 10.

For the partial order A+ v B+, the two objects A+ and B+ may not be defined in the same
geometric space: VA can be different of VB, but we still want to compare the abstract values. To
do so we compare A with the projection of B onto the variables of VA (remember that VA ⊆ VB
by the definition of the partial order). It is an existential projection: all variables not in VA are
unconstrained by the projection. Let us consider A+ as in the previous example and C+

2 = (C2,V)
from the Figure 10, defined with the environments in its concretization satisfying a = c = b. Let us
check that A+ v+ C+

2 . First, VA ⊆ V. Second, the projection of C2 onto VA consists in forgetting
the constraint on b. The projection of C2 should thus be the plane in V defined by a = c, which is
exactly A and thus confirm the order A v C2, and then A+ v+ C+

2 .
To demonstrate that a join cannot be defined, we need the following lemma that guarantees

that the least element that is greater than two other elements is necessarily defined over the union
of their variables.

Lemma 3.1. [Minimal variable size] Let (A, VA), (B, VB) and (C, VC) be three elements of our
abstract domain D+. Then if the latter is greater than the first two, (A, VA) v+ (C, VC) and
(B, VB) v+ (C, VC), then we can define an intermediate element in the poset that is greater than
the first two but is less than (C, VC): (A, VA) v+ (C, VA ∪ VB), (B, VB) v+ (C, VA ∪ VB) and
(C, VA ∪ VB) v+ (C, VC).

Proof. By definition of the order, VC must include VA and VB. Also, by definition of the projection,
for any set of variables V , C v proj]V (C). In particular, it holds when V = VA ∪ VB. Thus,
(C, VA ∪ VB) v+ (C, VC).

As for the first order, A v proj]VA(C) by definition of the partial order and VA ⊆ VA ∪ VB so
(A, VA) v+ (C, VA ∪ VB) trivially holds. The same applies to (B, VB).

This lemma ensures that the least upper bound of two elements must be defined over the union
of their variables, or a lesser element could be deduced from it.

Counter example to join For this counter example we use the geometric approach to show
that there exists at least one case where for two abstract environments (A, VA) and (B, VB), there
does not exist a least element (C, VC) such that (A, VA) v+ (C, VC) and (B, VB) v+ (C, VC). This
means that we cannot define a join t+ for our domain: it would not be defined for any A+ and
B+. Let A be defined over VA = {a, c} with as a constraint (a = c), and B defined over VB = {b, c}

29

b

c

a

B+

A+
C+
2

C+
1

The different lines are defined by the following
constraints.

• A+, in the plane (a,c), by a = c

• B+, in the plane (b,c), by b = c ∈ [4, 6]

• C+
1 , in the space (a,b,c), by a = c and if

c ≤ 4, b = 4, if c ∈ [4, 6], c = b and if c ≥ 6,
b = 6

• C+
2 , in the space (a,b,c), by a = c = b

As for the elements of D, all represented in the
space (a, b, c), the projection of C1 and C2 are
both the plane defined by a = c, that is exactly
A. C1 and C2 both includes A in their projec-
tions on VA = {a, c} and B in their projection on
VB = {b, c}. Yet neither C1 ⊆ C2 nor C2 ⊆ C1.
Besides, they are minimal: removing a part of C1

or C2 would break the inclusion of A in their pro-
jection.

Figure 10: Example of impossible least upper bound with three variables

with as a constraint (4 ≤ b = c ≤ 6). These two elements are represented on the Figure 10. B+ is
represented as a segment, in the plane {b, c}. We want to find (C, VC) that would be the least upper
bound of (A, VA) and (B, VB). First, we must have VC = VA ∪VB = {a, b, c} to guarantee the order
and to be a least element (by Lemma 3.1). So C+ will be a 3D object in the space {a, b, c}. Then,
the projection of C on {a, c} must contain the line A, and its projection on {b, c} must contain the
segment B. But a unique minimal C cannot be found. Let us consider two candidates C1 and C2.
C1 is defined by the constraints a = c and is segmented for the constraints on b: if c ≤ 4, then b = 4,
if 4 ≤ c ≤ 6, then b = c and finally if c ≥ 6 then b = 6. Its projection on {a, c} is exactly A. Its
projection on {b, c} contains the segment B. It is a valid upper bound of both (A, VA) and (B, VB).
Now, C2 is defined by the constraint a = c = b, that is it is a line in the 3D space. Its projection on
{a, c} and {b, c} respectively are both lines that contains A and B respectively. So (C2, VC) is also
a valid upper bound for (A, VA) and (B, VB). But there is no telling whether C1 is greater than C2

or the contrary: none of this 3D object contains the other. Also, removing any part of C1 or C2

would break the order A v proj]VA(Ci). They are minimal elements but not unique. This prevents
us from defining a join.

Abstract union We define our abstraction of the union, noted ∪], as the meet of two infor-
mation. On the one hand we combine the information on the common variables (VA ∩ VB) and on
the other we combine the information from the other variables.

(A, VA)∪] (B, VB)
def
=
((

proj]VA∩VB (A) t proj]VA∩VB (B)
)
u proj]VA\VB (A) u proj]VB\VA(B), VA ∪ VB

)

30

And
X+ ∪] ⊥+ def

= ⊥+ ∪] X+ def
= X+

In practice this operator will be applied on values such that VA ⊆ VB, so the projection on VA\VB = ∅
will be >.

Example Let X def
= {i = 0, j = i+1}, Y def

= {i = 1, j = i+1, k = i}, V = {i, j},W = {i, j, k}.
First, we do not have (X,V) v+ (Y,W) as the information i = 0 is not included in Y . As for the
abstract union of these two elements, let us detail the result of each projection.

proj]V ∩W (X) = proj]V (X) = X

proj]V ∩W (Y) = {i = 1, j = i+ 1}

proj]V \W (X) = proj]∅(X) = >

proj]W\V (Y) = {k = 1}

And so

(X,V) t+ (Y,W) =
(
(X t {i = 1, j = i+ 1}) u > u {k = 1},W

)
=
(
{0 ≤ i ≤ 1, j = i+ 1} u {k = 1},W

)
=
(
{0 ≤ i ≤ 1, j = i+ 1, k = 1},W

)
In the end, the link between k and i has been lost.

This abstract union must be proven sound. This can be proved easily once we proved that the
abstract union is an upper bound of each of its operands.

Lemma 3.2. [Abstract union is upper bound] For any A+, B+ ∈ D+,

A+ v+ A+ ∪] B+ and B+ v+ A+ ∪] B+

Proof. Let us prove the order A+ v+ A+ ∪] B+, the proof is symmetrical for B. Let A+ = (A, VA)
and B+ = (B, VB). First, the set of variables VA is included in the set of variables of the abstract
union (VA ∪ VB). Then, let us consider the different terms of the meet.

A v proj]VA∩VB (A)

v proj]VA∩VB (A) t proj]VA∩VB (B)

and A v proj]VA\VB (A)

This give us that A is less than the meet of two of the operands.

A v
(
proj]VA∩VB (A) t proj]VA∩VB (B)

)
u proj]VA\VB (A)

v proj]VA

((
proj]VA∩VB (A) t proj]VA∩VB (B)

)
u proj]VA\VB (A)

)

31

This proves a first part: A+ v+
((

proj]VA∩VB (A) t proj]VA∩VB (B)
)
u proj]VA\VB (A), VA ∪ VB

)
. We

still have to prove that the remaining of the meet is an upper bound of A+. It corresponds to
the projection of B onto the variables VB not in VA. The projection on VA of this projection is
necessarily >.

A v proj]VA ◦ proj
]
VB\VA(B) = proj]VA∩(VB\VA)(B) = proj]∅(B) = >

Thus, A+ v+ (proj]VB\VA(B), VA ∪ VB). As we proved that A+ is less than all operands, we do
have that it is less than the meet.

A+ v+
((

proj]VA∩VB (A) t proj]VA∩VB (B)
)
u proj]VA\VB (A), VA ∪ VB

)
u+
(
proj]VB\VA(B), VA ∪ VB

)
=
((

proj]VA∩VB (A) t proj]VA∩VB (B)
)
u proj]VB\VA(B) u proj]VA\VB (A), VA ∪ VB

)
= A+ ∪] B+

In the case where VA ⊆ VB, the abstract union is indeed an upper bound.

Theorem 3.2. [Soundness of abstract union] The abstract union ∪] is sound with respect to the
concretization function γD+ : for any A+ and B+ ∈ D+,

γD+(A+) ∪ γD+(B+) ⊆ γD+

(
A+ ∪] B+

)
Proof. This is simply the result of applying the monotonicity of γD+ onto the result of the previous
lemma.

Abstract atomic instructions To be able to use the theory of abstract interpretation we still
need to define the abstract assignments and conditions in our domain. For assignments and condi-
tions, let (X,V) ∈ D+ be an abstract environment.

S]Jx← eK+(X,V) =

{
(S]Jx← eKX,V ∪ {x}) If vars(e) ⊆ V
⊥+ Otherwise

S]Jx1 ← e1| . . . |xn ← enK+(X,V) =

(S]Jx1 ← e1| . . . |xn ← enKX,V ∪ {x1, . . . , xn})

If vars(e1) ∪ · · · ∪ vars(en) ⊆ V
⊥+ Otherwise

C]Je11e2K+(X,V) =

{
(C]Je11e2KX,V) If vars(e1) ∪ vars(e2) ⊆ V
⊥+ Otherwise

S]Jx← eK+⊥+ = ⊥+ and S]Jx1 ← e1| . . . |xn ← enK+⊥+ = ⊥+ and C]Je11e2K+⊥+ = ⊥+

Theorem 3.3. [Soundness of the new operators] The operators of the new abstract domain are
sound with respect to the concrete semantics.

∀X+ ∈ D+ : SJx← eK ◦ γD+(X+) ⊆ γD+ ◦ S]Jx← eK+(X+)

∀X+ ∈ D+ : SJx1 ← e1| . . . |xn ← enK ◦ γD+(X+) ⊆ γD+ ◦ S]Jx1 ← e1| . . . |xn ← enK+(X+)

∀X+ ∈ D+ : CJe11e2K ◦ γD+(X+) ⊆ γD+ ◦ C]Je11e2K+(X+)

32

Proof. In the case where X+ = ⊥+, all these inclusions trivially hold.
Let us prove the soundness of our new assign for x ← e. Let (X,V) ∈ D+ be an abstract

environment. We first develop each side of the relation to prove (the concrete environments will be
noted s in the left side, t is the right one).

SJx← eK ◦ γD+(X,V) = SJx← eK({s|W |s ∈ γD(X),W ⊆ V })

=
{
s′ = s|W

[x 7→ v]
∣∣∣s ∈ γD(X),W ⊆ V, v ∈ EJeKs|W

}
If vars(e) 6⊆ V , then there is no v ∈ EJeKs|W

and the term becomes

SJx← eK ◦ γD+(X,V) = ∅ = γD+(⊥+) = γD+ ◦ S]Jx← eK+(X,V)

Else, vars(e) ⊆ V . We develop the right-hand term, defining an auxiliary term T .

γD+ ◦ S]Jx← eK+(X,V) = γD+(S]Jx← eK(X), V ∪ {x})

=
{
t′|U

∣∣∣t′ ∈ γD ◦ S]Jx← eK(X), U ⊆ V ∪ {x}
}

⊇
{
t′|U

∣∣∣t′ ∈ SJx← eK ◦ γD(X), U ⊆ V ∪ {x}
}

⊇
{
t′|U

∣∣∣t ∈ γD(X), t′ = t[x 7→ u], u ∈ EJeKt, U ⊆ V ∪ {x}
}

def
= T

Let us show that for all s′ ∈ SJx ← eK ◦ γD+(X,V)
def
= S, then s′ ∈ T . We have to find

the corresponding t, U and u ∈ EJeKt. s′ ∈ S implies the existence of an environment s and
a value v. Let t = s ∈ γD(X), u = v, U = W ∪ {x} and t′ = t[x 7→ u]. The equality
s′ =

(
s|W

)
[x 7→ v] = (s[x 7→ v])|W∪{x}

= t′|U
is valid on the whole domain W ∪ {x}.

Now, we must show that t′|U
is in T . First, we do have that t ∈ γD(X) as s = t and s is an

element of the concretization. Then, we must show that u ∈ EJeKt. The equality s = t implies that
u = v ∈ EJeKs = EJeKt. Finally, U ⊆ V ∪ {x} as U =W ∪ {x} ⊆ V ∪ {x}. This concludes the proof
that s′ ∈ T , and so

SJx← eK ◦ γD+(X,V) ⊆ γD+ ◦ S]Jx← eK+(X,V)

The proof for the parallel assignment can be done likewise.
The proof for the arithmetic condition is similar. We used the fact that if an expression e can

be computed on a environment s restricted over the set of variables W , that is EJeKs|W
6= ∅, then

extending the domain will yield the same set: EJeKs|W
= EJeKs. If vars(e1) and vars(e2) ⊆ V then

CJe11e2K ◦ γD+(X,V) = CJe11e2K({s|W |s ∈ γD(X),W ⊆ V })

=

{
s|W

∣∣∣∣∣ s ∈ γD(X),W ⊆ V
v1 ∈ EJe1Ks|W

, v2 ∈ EJe2Ks|W
, v11v2

}
= {s|W |s ∈ CJe11e2K ◦ γD(X),W ⊆ V }

⊆ {s|W |s ∈ γD ◦ C
]Je11e2K(X),W ⊆ V }

= γD+(C]Je11e2K(X), V)

= γD+ ◦ C]Je11e2K+(X,V)

33

Else, if V is too small, then the second line will be equal to the empty set as no W and no v1 or v2
can be found. The empty set is equal to the concretization of γD+ ◦ C]Je11e2K+(X,V) in the case
where V does not contain the variables of e1 and e2.

From global to local invariant We saw that in traditional flow-sensitive analysis, the semantics
of the program is computed with a function F applied on an element S of D|L|. F itself applies
transfer functions on each abstract environment S` of D. The soundness of the abstract semantics
with respect to the concrete one is proven with the concretization function γD from abstract envi-
ronments in D to set of concrete environments in P (E). Then, we link these different sets to their
labels, obtaining the set of states P (L × E). In our case, we won’t have one abstract environment
per label, so we do not have an element of D|L| for our invariant, but instead a single environment
in our overlay D+ for all labels. So we will still have a concretization function γD+ from D+ to
P (E) but then we have to define how to get the set of states P (L × E).

We decided to leave this job to a concretization function γ : D+ → P (L × E). Let us consider
a definition where every label is associated to any environment from the concretization.

γ(X+) = {(`, s)|` ∈ L, s ∈ γD+(X+)}

This concretization function is monotone in X+, as γD+ is also monotone in X+.
Associating the complete concretization to each program point is a significant overapproxima-

tion. We can actually be more precise by considering s ∈ γD+(X+) for label ` only if the variables
of s, its domain, may all be defined at `. Consider for instance the program of Figure 7. At program
point `1, only i1 is defined. There is no need to consider the partial function {i1 7→ 1, j1 7→ 0} as j1
cannot be defined. We did not present this more precise γ for the sake of concision.

3.3 Abstract semantics

In this Section, we define the abstract semantics computed by the analysis. We prove that it is
sound, with respect to the concrete semantics given to the SSI form of the program.

Abstract semantics soundness Let F] be the abstract transfer function of the program. Any
post-fixpoint X+ ∈ D+ of F] is a sound approximation of the concrete semantics if JP K ⊆ γ(X+).
Where JP K is the concrete semantics of P given in the previous section, that is to say the least
fixed point of the concrete transfer function F (JP K = lfp(F)). We saw with the fixpoint transfer
theorem that this condition on post-fixpoint is a consequence of F ◦ γ ⊆ γ ◦ F], provided that F
and γ are monotonic (Theorem 2.2). We already proved the monotonicity of F and γ. Let us define
F], prove that it is monotonic and that it respects the condition of the fixpoint transfer theorem.

Transfer function In the concrete semantics, we defined for each edge ` → `′ ∈ E, a transfer
function T`→`′ = Tφ ◦ Tf ◦ Tσ, where Tφ and Tσ are parallel assignments transfer functions, and Tf
corresponds either to the semantics of an assignment or an arithmetic condition, depending on the
edge ` → `′. We defined the abstract semantics of an edge similarly. Let us suppose that,

Tσ = SJx′1 ← x1| . . . |x′n ← xnK

Tφ = SJy1 ← y′1| . . . |ym ← y′mK

34

Then
T]`→`′

def
= T]φ ◦ T

]
f ◦ T

]
σ

T]σ
def
= S]Jx′1 ← x1| . . . |x′n ← xnK

T]φ
def
= S]Jy1 ← y′1| . . . |ym ← y′mK

Also, if Tf = SJx← eK then T]f
def
= S]Jx← eK. Else, if Tf = CJe11e2K then T

]
f

def
= C]Je11e2K. As

the abstract semantics of assignment and arithmetic condition are sound, one can show that their
composition is sound too. Thus T]`→`′ is a sound approximation of T`→`′ : for any X+ ∈ D+,

T`→`′ ◦ γD+(X+) ⊆ γD+ ◦ T]`→`′(X
+)

F] as a composition Let us define a new F] as a composition of transfer functions F]`→`′ each
associated to one edge (the order of the composition does not matter for soundness, only for efficiency
of the fixpoint iteration). We also define F]0 , the transfer function that will add the abstract
environment for the entry point, that we note X+

0 (S0 ⊆ γD+(X+
0)).

F]
def
= F]0 ◦©(`→`′)∈EF

]
`→`′

Let F]`→`′(X
+)

def
= X+ ∪] T]`→`′(X

+) and F]0(X
+)

def
= X+

0 ∪]X+. We will make all our proofs using
the facts that

X+ v+ F]`→`′(X
+) and T]`→`′(X

+) v+ F]`→`′(X
+)

X+ v+ F]0(X
+) and X+

0 v
+ F]0(X

+)

We need to ensure that this F] is sound with respect to F and γ. To do so, we will use a small
lemma, that ensures that F] is monotonic.

Lemma 3.3. [Monotony] F] is monotonic, that is for any X+ and Y + in D+,

X+ v+ Y + =⇒ F](X+) v+ F](Y +)

Proof. For each edge e, F]e is monotonic so their composition is monotonic too. Finally, F]0 is
monotonic, so F] is monotonic.

Theorem 3.4. [Soundness] F] respects the condition of the fixpoint transfer Theorem 2.2 with
respect to F and γ, that is to say F ◦ γ ⊆ γ ◦ F].

Proof. Let X+ ∈ D+ and S def
= γ(X+) = {(`, s)|` ∈ L, s ∈ γD+(X+)}. The proof consists in proving

the two inclusions:

F ◦ γ = F (S) ⊆ γ(X+
0) ∪

⋃
(`1→`2)∈E

γ ◦ T]`1→`2(X
+) ⊆ γ ◦ F](X+) = γ ◦ F]0 ◦©e∈EF

]
e (X

+)

Let us show the first one, F ◦ γ is included in the union of γ ◦X+
0 and the union of γ ◦ T]`1→`2 over

the edges `1 → `2 ∈ E. First, at line 3, we unpair in each state the label ` from the environment

35

s. As any label can be associated with any environment, we did overapproximate the set of states.
At line 4 we no longer give only the set of environments S`1 to the transfer function T`1→`2 , but
instead we give all the environments computed, for all labels. This overapproximation is possible
as the T`1→`2 are monotonic. We then exploit the soundness of T]`1→`2 and X+

O at line 5.

F ◦ γ(X+) = F (S) (1)
=
{
(`′, s)

∣∣(` → `′) ∈ E, s ∈ T`→`′(S`′)
}
∪ {(`0, s)|s ∈ S0} (2)

⊆
{
(`′, s)

∣∣(`1 → `2) ∈ E, s ∈ T`1→`2(S`1)
}
∪
{
(`′, s)

∣∣`′ ∈ L, s ∈ S0} (3)

⊆
{
(`′, s)

∣∣(`1 → `2) ∈ E, s ∈ T`1→`2(
⋃
`∈L

S`︸ ︷︷ ︸
γD+ (X+)

)
}
∪
{
(`′, s)

∣∣`′ ∈ L, s ∈ γD+(X+
0)
}

(∗)

(4)

⊆
{
(`′, s)

∣∣(`1 → `2) ∈ E, s ∈ γD+ ◦ T]`1→`2(X
+)
}
∪ γ(X+

0) (5)

= γ(X+
0) ∪

⋃
(`1→`2)∈E

γ ◦ T]`1→`2(X
+) (6)

This final result is included in γ ◦ F]. First, let us show by induction on the number of edges
that the right term is a subset of γ ◦©e∈EF

]
e (X+).

• If E = ∅, then the union is an empty set. The inclusion is trivial.

• If there is only one edge e ∈ E, then we can conclude by simply applying the monotonicity of
γ

γ ◦ T]e (X+) ⊆ γ ◦ F]e (X+)

• Else, let us suppose that E = E′ ∪ {e} and that we have proved the inclusion on E′:⋃
e′∈E′ γ ◦ T

]
e′(X

+) ⊆ γ ◦©e′∈E′F
]
e′(X

+). Also, we have X+ v+ ©e′∈E′F
]
e′(X

+). Then⋃
e′∈E

γ ◦ T]e′(X
+) = γ ◦ T]e (X+) ∪

⋃
e′∈E′

γ ◦ T]e′(X
+) (1)

⊆ γ ◦ T]e (X+) ∪ γ ◦©e′∈E′F
]
e′(X

+)︸ ︷︷ ︸
def
= C(X+)

(2)

= γ ◦ T]e (X+) ∪ γ ◦ C(X+) (3)

⊆ γ ◦ T]e ◦ C(X+) ∪ γ ◦ C(X+) (4)

⊆ γ ◦ F]e ◦ C(X+) = γ ◦ F]e ◦©e′∈E′F
]
e′(X

+) (5)

= γ ◦©e′∈EF
]
e′(X

+) (6)

We use the monotonicity of T]e to get line 4 from the previous one. We then use the hypotheses
on F]e and the soundness of ∪ to get the next line.

36

Thus the inclusion holds for any set of edges E. In the end,

F ◦ γ(X+) ⊆ γ(X+
0) ∪

⋃
(`1→`2)∈E

γ ◦ T]`1→`2(X
+)

⊆ γ(X+
0) ∪©e′∈EF

]
e′(X

+)

⊆ γ ◦ F]0 ◦©e′∈EF
]
e′(X

+)

= γ ◦ F](X+)

So F] satisfies the condition of the fixpoint transfer theorem.

Precision In the beginning of this last proof, the line (∗) raises an issue for precision. From
this line, we no longer say that s is an element of S′`1 = T`1→`2(S`1). This set of environments
corresponds to the application of the transfer function of an edge `1 → `2 on the environments at
`1. Now we apply this transfer function on all environments. Especially, we apply the transfer
function even if the set of environments at `1 could be empty (the branch is never taken). From
this point, we loose all information on the control flow.

Example Consider that the current abstract environment is (X,V) withX def
= {j2 ∈ [0, 4], i2 =

j2 + 1, j4 ∈ [0, 4], i4 = j4 + 1}, V = {i2, j2, i4, j4} and we are examining the program of Figure 7 3.
We need to apply the transfer function of the edges `3 → `4 and `4 → `5. With the first one, the
invariant forget that i4 = j4 +1 as we assign it a new value. But we also loose the relation between
i2 and i4, as we make an abstract union with (X,V) which does not have such relation.

F]`3→`4(X,V) = S]Ji4 ← i2 + 1K+(X,V) ∪] (X,V)

= ({j2 ∈ [0, 4], i2 = j2 + 1, j4 ∈ [0, 4], i4 = i2 + 1}, V ∪ {i4}) ∪] (X,V)

= ({j2 ∈ [0, 4], i2 = j2 + 1, j4 ∈ [0, 4], i4 ∈ [1, 6]}, V)

= (X ′, V)

Then we apply the transfer function of the other edge.

F]`4→`5(X
′, V) = S]Jj4 ← j2 + 1K+(X ′, V) ∪] (X ′, V)

= ({j2 ∈ [0, 4], i2 = j2 + 1, j4 = j2 + 1, i4 ∈ [1, 6], }, V ∪ {j4}) ∪] (X ′, V)

= ({j2 ∈ [0, 4], i2 = j2 + 1, j4 ∈ [0, 5], i4 ∈ [1, 6]}, V)

There we see that the relation between i4 and j4 has been lost.
Because we have one invariant for the whole program, we cannot prevent the application of

the transfer function on all environments. To still retain some information, we need to delay this
broad application as much as possible. Instead of applying the transfer function per edge, we want
to apply them per bloc. A bloc is a path with no ingoing or outgoing edges in the intermediate
program points, for instance, in Figure 4a, `2 → `3 → `4 → `5 → `6 → `2 is a block, but not

3In practice i1 and j1 should also be in V in this example, but it has no influence on the precision lost we explain
here.

37

Program
(with assertions)

Abstract domain

to CFG to SSI Analysis

Apron

Assertions checked
and Invariant

Our work

Figure 11: Workload of the prototype
The transformation to SSI is not our main contribution, as it is based on an already existing
algorithm [16]. However we choose a different formalism, based on the CFG, to conform to the
state of the art in abstract interpretation.

`0 → `1 → `2 → `7 → `8. What we mean by “apply per block” is that if in the CFG, there is a bloc
from `1 to `2, then the composition of all transfer functions along this path can be applied on the
abstract environment.

F]`6→`2 ◦ · · · ◦ F
]
`2→`3(X

+)
Becomes
=⇒ X+ ∪] T]`6→`2 ◦ · · · ◦ T

]
`2→`3(X

+)

Thus, if an arithmetic condition is not satisfied along the path, resulting in a bottom abstract
environment, none of the next transfer functions will be applied.

Example In the case of our example program, we build the paths p1
def
= `0 → `1 → `2,

p2
def
= `2 → `3 → `4 → `5 → `6 → `2 and p3

def
= `2 → `7 → `8. The path p1 has the transfer

function S]Ji1 ← i0|j1 ← j0K ◦ S]Jj0 ← 0K ◦ S]Ji0 ← 1K. The path p2 has the transfer function
S]Ji1 ← i4|j1 ← j4K ◦ id ◦S]Jj4 ← j2 + 1K ◦ S]Ji4 ← i2 + 1K ◦ C]Jj2 < 10K ◦ S]Ji2 ← i1|j2 ← j1K By
composition, this last transfer function only requires i1 and j1 to be defined in the abstract value.
Also, if j1 is never strictly less than 10, then the condition C]Jj2 < 10K will always result in a ⊥+

value. Then none of the following semantic functions will define the variables i2, j2, i4, j4 which will
not be defined in the final invariant.

3.4 Implementation

The analysis presented before, which consists in finding the least fixpoint of some abstract transfer
function, was implemented in OCaml. It takes as input a program in While language with assertions.
The analysis has an option to choose between an octagon or polyhedra abstract domain. The output
is the global invariant of the program (expressed as a value of the abstract domain). The analysis
is iterative and does not implement acceleration techniques. If the fixpoint is indeed found, then
each assertion of the original program is checked, and whether it passes or not is printed.

This analysis is based on a existing parser for the While language which outputed the CFG of
the input program. The algorithm to transform this CFG into an SSI form will not be detailed
here as an efficient transformation can be found in [2] (efficient computation of the dominance tree
necessary) and [16] (actual transformation). The main difference between our algorithm and the
one cited is that we perform the algorithm on a CFG, so the nodes are program points, while in the
cited one the nodes are instructions. In our implementation, the output is a value of type ssiPrgm.
This structure contains information on the program such as its variables, the CFG, or also the φ−

38

and σ− nodes attached to each label. (Arrays are often used to represent a total map with labels
as key.)
module VarMap : Map.S with type key = Syntax.var
module LabelMap : Map.S with type key = Syntax.label

type copyNode = (Syntax.var LabelMap.t) VarMap.t /* V 9 (L9 V) */

type ssiPrgm = {
nbLabels: int; /* The labels of the CFG */
root: Syntax.label; /* The entry point */
vars: Syntax.var array; /* The original variables of the program */
args: Syntax.var array; /* The arguments of the program */

/* The edges of the CFG , with the atomic instruction attached */
instrs: (Syntax.label * Cfg.instr * Syntax.label) array;
phis: copyNode array; /* φ− functions per label: L9 (V 9 (L9 V)) */
sigmas: copyNode array; /* Idem for σ− functions */

/* The dominance tree of the labels , as a parent -children relation */
parent: Syntax.label array;
children: (Syntax.label list) array;

/* Successors and predecessors for each label */
succ: (Syntax.label list) array;
pred: (Syntax.label list) array;

}

For abstract domains we used the Apron library [12]. The Apron module is a OCaml interface
to the C implementation of the library. It offers a common interface for various abstract domains
(such as interval, octagon, polyhedra, etc). Its architecture separates the manager of the abstract
domain from the user-interface that can for example ask the creation of a new abstract value, join
or meet existing ones, perform assignment or restrict an abstract value to satisfy a linear constraint.
Thanks to this library, we were able to write an analysis using the user-interface, and then test it
for different abstract domains.

As for the analysis itself, it is composed of two main steps: the extraction of the transfer functions
and the iteration until a fixpoint is found. The first step begins with the extraction of the blocs
from the SSI form. Then for each of these blocs `1 → · · · → `n we compute its transfer function
T]`1→···→`n(X

+)
def
= T]`n−1→`n ◦ · · · ◦ T

]
`1→`2(X

+). After that, the analysis starts from S+
0 (that is the

abstract state where only the arguments are defined, without any constraint on them), and iterates
until a fixpoint is reached. Let F]`1→···→`n(X

+)
def
= X+ ∪] T]`1→···→`n . At each step, the analysis

applies all F]`1→···→`n in composition. A verbose option allows to observe the change on the abstract
value each time a transfer function is applied. It also highlights the transfer function that can be
applied or not (due to our abstract semantics in D+ that only apply the transfer function of D if
all the necessary variables are present).

The analysis, which take the SSI program as input and displays the invariant and the summary
of assertions, corresponds to about 500 lines of OCaml code. The transformation to SSI, which do
not include a cleanup phase (to propagate copy and remove useless variables), corresponds to the
same amount.

The prototype currently does not handle convergence acceleration, in the form of a widening
operator for instance. Its iterations are bounded by an arbitrary number. (If the fixpoint is not
reached in this time, the resulting invariant is not correct.)

39

If the fixpoint is found, each assertion in the original program is evaluated with respect to this
invariant to check whether they can be verified by the analysis. As invariant can be complex to read
this also significantly help measure precision of the analysis. Notice that the assertion are merely
conditions with only one successor and can be extracted after the conversion to SSI. This means
that the variables used in it are correctly indexed with the accessible version of the variable, and
there is no other transformation to perform. Apron already provides the necessary function to test
whether an abstract value satisfies or not a constraint.

Example Let us consider the program from Figure 4a.
First, the program is put in SSI form. Then the Blocs are created. The assertion points are

extracted from the CFG. A condition in the CFG is an assertion if it has only one successor. (That
is why the condition `5 → `2, is considered to be an assertion.)

> ./ analyse -invaroct 16 example/ex.c
Transforms made (3 blocs)

Bloc 0 [|j_3 <- j_1|i_3 <- i_1|] /* Parallel assignements */

(\/ [|j_3 -_i,n 10 >= 0|]) /* Condition. Dijunction of conjunctions */
{\/ [|11 -_i,n i_3 = 0|]} /* Assertion. Idem */

Bloc 1 [|j_2 <- j_1|i_2 <- i_1|]
(\/ [|10 -_i,n j_2 > 0|])
[|j_4 <- j_2 +_i ,n 1|]
[|i_4 <- i_2 +_i ,n 1|]
{\/ [|j_4 +_i,n 1 -_i,n i_4 = 0|]}
{\/ [|0 -_i,n 0 = 0|]}
[|j_1 <- j_4|i_1 <- i_4|]

Bloc 2 [|j_0 <- 0|]
[|i_0 <- 1|]
[|j_1 <- j_0|i_1 <- i_0|]

The number of iteration has been here fixed to 16, and the abstract domain used is the octagon
one. It takes 14 iterations for the analysis to reach a fixpoint without any convergence acceleration.

Start computation (maxIteration = 16)

Fix point reached

Stop at iteration 14
Final invariant:
[|

i_0 -1. >=0; - i_0 +1. >=0; ...
|]

The invariant in the octagon domain is very verbose and we elude it here.

Variables: [|0> i:int; 1> i_0:int; 2> i_1:int; 3> i_2:int; 4> i_3:int;
5> i_4:int; 6> j:int; 7> j_0:int; 8> j_1:int; 9> j_2:int;

40

10> j_3:int; 11> j_4:int|]

Checking the assertion points
l7 : Assert {\/ [|11 -_i ,n i_3 = 0|]} is satisfied
l5 : Assert {\/ [|0 -_i,n 0 = 0|]} is satisfied
l4 : Assert {\/ [|j_4 +_i ,n 1 -_i,n i_4 = 0|]} is satisfied

In this case, the fixpoint is reached and so the assertion points are checked.
For the polyhedra domain, the fixpoint is reached in the same amount of steps and the assertions

are satisfied, but the invariant is concise.

> ./ analyse -invarpolka 16 example/ex2.c
...
Fix point reached

Stop at iteration 14
Final invariant:
[|

-i_1+j_1 +1=0; -i_2+j_4 =0; -i_2+j_2 +1=0; -i_2+i_4 -1=0; j_3 -10=0; j_0=0;
i_3 -11=0; i_0 -1=0; -i_1+i_2+1>=0; -i_2 +10 >=0; i_2 -1>=0; i_1 -1 >=0|]

In this invariant, one can observe that the relation i = j+1 is preserved for all matching versions
(same index) of i and j.

We then also tested the implementation on a variant of the program. This variant has an
argument c, which we constraint to be between 1 and 9.

i f (c > 0 and c < 10) then
i = 1 ; j = 0 ;
while (j <= c) do

i = i + 1 ;
j = j + 1 ;

done ;
assert (i >= c + 2) ; sa t
assert (i = j + 1) ; sa t
i f (5 < i) then
assert (4 < j) ; sa t

else
assert (4 >= j) ; sa t

endif
else skip endif

With the octagon domain the fixpoint is reached in 13 iterations. However the polyhedra domain
needs 22 iterations. This echoes with Astrée [8] using the more time efficient octagon domain rather
than the polyhedra one. Loosing in precision by making broader approximations accelerates the
convergence.

Efficiency One global invariant was the solution to avoid multiple memory-consuming invariants.
However in practice we do not have one invariant at any time. Indeed, we define the abstract

41

semantics of path transfer function as a union of the previous invariant and the one on which the
transfer functions of the edges have been applied. Thus we need two abstract values to be able
to compute the abstract union. Apron does provide an in-place union of assignment: the fold
operator [10] (also called weak-update). Folding the variable w in v on the abstract value X is the
same as making the union of X and S]Jv ← wKX and then remove w from the possible variables:

γD ◦ fold(w,v)(X)
def
= {s[v ← w]|V\{w}

|s ∈ γD(X)} ∪ {s|V\{w}|s ∈ γD(X)}

Unfortunately this operator can only perform a weak-update for one variable at a time. We saw in
the previous section that applying the union between each assignment makes us lost all precision.
The fold is thus not a solution. Thus for now, the prototype keeps in memory two invariants.

4 Conclusion

The goal of this internship was to design a static analysis that combines efficiency – the analysis
must be sparse with only one invariant for the whole program – with precision – it must keep
properties between several variables, not just properties on single variables.

Static analyses allows to check the correct behaviour of a program without executing it, only by
looking at its source code. Besides safety verification, it is also used to perform sound optimizations.
For instance ABCD [5] removes unnecessary bound checks and GVN [17] removes redundant compu-
tations, both optimizations being safe with respect to the semantics of the program. These analyses
are efficient, but their techniques are not easily reusable for other analyses. They are designed for
specific purposes. The theory of Abstract interpretation is a framework of mathematical concepts
and theorems that allow the design of analyses in a more generic way. It also provides generic proof
of the soundness of such analyses, unlike the specific proofs of ABCD or GVN. The principles of
this theory are versatile, the precision of the analysis (dependent of the abstract domain) or the
semantics of the language can be easily changed. That is why we chose Abstract interpretation to
design our analysis.

We target numerical analyses, that is analyses tracking the values of variables. Depending on
the abstract domain chosen, the expressivity available for these properties varies, and can allow
more precise conclusions. Numerical domains are usually classified into two categories: relational
or non-relational. In a relational domain, one can express properties between several variables, for
instance “x is less than y”, while it is not possible in a non-relationnal one.

State-of-the-art analyses for non-relational properties are quite efficient as they benefit from
representations of the program that helped them by giving more information, in a more practical
way. A popular example of such representation is the SSA form [13]. It makes explicit the def-
use chains, and gives for each program point, for each variable used at this program point, the
last definition of the variable, using indexing of variables to ensure the unicity of this definition.
Unfortunately, such representation of the program is not enough to perform efficient relational static
analyses.

Our goal was to design a sparse static relational analysis based on Abstract Interpretation and
on a convenient representation of the program, the SSI form [16]. We define an analysis as sparse
if it computes one invariant for the whole program, instead of one per program point. For instance
ABCD is sparse. Abstract Interpretation theory designs analyses with one invariant per program
point, but sparser relational analysis are possible, as shown with the tool PAGAI [11]. This analyzer

42

computes invariant per assertion points (chosen by the end user) and at the loop head. We want to
reach higher sparsity.

To compute a unique invariant, while keeping precision, we used or designed several elements
for the analysis. First, we needed to have several versions of the variables, to distinguish in the
invariant several moments of their lives. More concretely, the live-range of the variables is split
when the information about them changes. The SSI form guarantees this property. Then, we
needed to define an overlay of abstract domains that can represent partial functions. This is new
in Abstract Interpretation, where abstract domains represent total functions (both in theoretical
explanations [14] or concrete implementation of abstract domains [12]). In this report, we showed
that such overlay does not allow an abstract domain organized on a complete lattice, which is more
convenient but not mandatory for Abstract interpretation. Despite the weaker property on our
overlay, we were still able to design a sparse analysis that uses it, and we were able to prove its
soundness with respect to the concrete semantics of the program.

In addition, we implement a prototype of this analysis in OCaml, using the Apron library [12] to
manage abstract domains, and an existing parser to extract the CFG of a program. This prototype
helped evaluate the precision and efficiency of the program on concrete cases. The concrete benefits
of such analysis should now be studied on real-life examples. Its efficiency is a balance between the
number of variables introduced by the SSI form (at worst O(N) for each variable, with N the size
of the program) and the number of invariants removed with the sparsity policy (N , that is one per
program point). The abstract domain plays an important role here, as the linear increase of number
of variable can be a polynomial increase of time cost depending on the domain. For instance, the
polyhedra domain is known [11] to perform badly with more variables. A solution, implemented
in PAGAI [11], is to remove variables when they are equal to an affine combination of the other
variables. Such solution is domain-specific and was thus not studied here.

In conclusion, this works proves the possibility of designing a sparse relational static analysis. It
should now be compared with existing analyzer such as PAGAI, to determine its benefits or draw-
backs on efficiency on concrete cases. This a future work that requires a more clever implementation
than the current prototype. This prototype still lack a widening operator to guarantee convergence
of the analysis. Also, the precision of the analysis should be compared to a flow-sensitive one.
Although some intuition was given during the proofs of correctness, we need now to prove the
importance of the SSI form to keep precision.

References

[1] B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting equality of variables in programs. In
Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’88, pages 1–11, 1988. ISBN 0-89791-252-7. doi: 10.1145/73560.73561. URL
http://doi.acm.org/10.1145/73560.73561.

[2] A. W. Appel. Modern Compiler Implementation in Java. Cambridge University Press, 1998.
ISBN 0-521-58388-8.

[3] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT press, 2008.

[4] G. Barthe, D. Demange, and D. Pichardie. Formal verification of an SSA-based middle-end for
CompCert. ACM Trans. Program. Lang. Syst. (TOPLAS), 2014.

43

http://doi.acm.org/10.1145/73560.73561

[5] R. Bodík, R. Gupta, and V. Sarkar. ABCD: eliminating array bounds checks on demand. In
PLDI 2000, pages 321–333. ACM, 2000.

[6] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In Conference Record of the 4th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
238–252, 1977.

[7] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In POPL 1979,
pages 269–282. ACM Press, 1979.

[8] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. The
ASTRÉE analyzer. LNCS #3444, page 21. Springer, 2005. doi: 10.1007/b107380. URL
https://hal.archives-ouvertes.fr/hal-00084293.

[9] Edsger W. Dijkstra. On the reliability of programs. circulated privately. URL http://www.
cs.utexas.edu/users/EWD/ewd03xx/EWD303.PDF.

[10] D. Gopan, F. DiMaio, N. Dor, T. W. Reps, and S. Sagiv. Numeric domains with summarized
dimensions. In TACAS 2004, volume 2988 of Lecture Notes in Computer Science, pages 512–
529. Springer, 2004.

[11] J. Henry, D. Monniaux, and M. Moy. PAGAI: A path sensitive static analyser. Electr. Notes
Theor. Comput. Sci., 289:15–25, 2012.

[12] B. Jeannet and A. Miné. Apron: A library of numerical abstract domains for static analysis.
In CAV 2009, volume 5643, pages 661–667. Springer, 2009.

[13] C. Lattner and V. S. Adve. LLVM: A compilation framework for lifelong program analysis &
transformation. In CGO, 2004.

[14] A. Miné. Tutorial on static inference of numeric invariants by abstract interpretation. Foun-
dations and Trends in Programming Languages, 4(3-4):120–372, 2017.

[15] Antoine Miné. Weakly relational numerical abstract domains. PhD thesis, Ecole Polytechnique
X, 2004.

[16] F. Pereira and F. Rastello. Static Single Information form. Chapter 11 in the SSA-book, 2018.
URL http://ssabook.gforge.inria.fr/latest/book.pdf.

[17] Barry K Rosen, Mark NWegman, and F Kenneth Zadeck. Global value numbers and redundant
computations. In Proceedings of the 15th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 12–27. ACM, 1988.

44

https://hal.archives-ouvertes.fr/hal-00084293
http://www.cs.utexas.edu/users/EWD/ewd03xx/EWD303.PDF
http://www.cs.utexas.edu/users/EWD/ewd03xx/EWD303.PDF
http://ssabook.gforge.inria.fr/latest/book.pdf

	Introduction
	State of the art
	Static Inference of Numeric Invariants by Abstract Interpretation
	Abstract Interpretation main principles
	Concrete and abstract semantics of programs
	Abstract domains for numeric invariants

	Intermediate Representations for numerical static analysis
	Static Single Assignment form
	Static Single Information form

	Relational analyses
	Global Value Numbering
	Elimination of array bounds checks
	Path sensitive static analysis

	A sparse flow-insensitive relational static analysis
	SSI form and concrete semantics
	Abstract domain
	Abstract semantics
	Implementation

	Conclusion

