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Summary 

The infection with the hepatitis C virus (HCV) is an example of the translational research 

success. The reciprocal interactions between clinicians and scientists have allowed in 30 

years the initiation of empirical treatments by interferon, the discovery of the virus, the 

development of serological and virological tools for diagnosis but also for prognosis (the 

non-invasive biochemical or morphological fibrosis tests, the predictors of the specific 

immune response including genetic IL28B polymorphisms). Finally, well-tolerated and 

effective treatments with oral antivirals inhibiting HCV non-structural viral proteins involved 

in viral replication have been marketed this last decade, allowing the cure of all infected 

subjects. HCV chronic infection, which is a public health issue, is a hepatic disease which may 

lead to a cirrhosis and an hepatocellular carcinoma (HCC) but also a systemic disease with 

extra-hepatic manifestations either associated with a cryoglobulinemic vasculitis or chronic 

inflammation. The HCV infection is the only chronic viral infection which may be cured: the 

so-called sustained virologic response, defined by undetectable HCV RNA 12 weeks after the 

end of the treatment, significantly reduces the risk of morbidity and mortality associated 

with hepatic and extra-hepatic manifestations which are mainly reversible. 

The history of HCV ends with the pangenotypic efficacy of the multiple combinations, easy 

to use for 8 to 12 weeks with one to three pills per day and little problems of tolerance. This 

explains the short 30 years from the virus discovery to the viral hepatitis elimination policy 

proposed by the World Health Organization (WHO) in 2016. 
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The hepatitis C virus (HCV) infection is an example of the translational research success. The 

reciprocal interactions between clinicians and scientists have allowed in 30 years the 

initiation of empirical treatments by interferon, the discovery of the virus, the development 

of serological (ELISA, RIA) and virological (reverse transcriptase polymerase chain reaction or 

RT-PCR enabling the qualitative and quantitative detection of viral RNA, genotyping, 

resistance analysis such as basic virology) diagnostic tests with an increasing sensitivity and 

specificity. In parallel, non-invasive biochemical or morphological fibrosis tests, predictors of 

the specific immune response including genetic (IL28B) have been developed and finally, 

radically effective treatments with HCV- specific oral antivirals inhibiting non-structural viral 

proteins involved in viral replication have been marketed this last decade, allowing the cure 

of all infected subjects. The elimination agenda of the World Health Organization (WHO) 

illustrates these major advances but must not hide the global challenges of tomorrow. If the 

diagnosis, efficacy and tolerability of treatment are no longer an issue, less than 1% of the 71 

million infected individuals worldwide has been treated and the majority of patients are 

unaware of their infection: the next challenges are therefore mainly to improve the 

screening and access to treatment for this frequent infection which represents a public 

health although that is the only viral chronic infection that can be cured. 

Epidemiology 

Between 1990 and 2013, the viral hepatitis rised from the tenth to seventh place worldwide 

as a cause of death today, higher than the mortality from infection with HIV (HIV), malaria 

and tuberculosis [1]: The viral hepatitis appear as the leading cause of infectious mortality in 

the world despite the HCV prevalence decreased from approximately 170 million chronic 

carriers worldwide in 1999 [2] to 71 million in 2017 [3, 4]. This reduction in prevalence is 

linked to reducing the risk of nosocomial infection, improving access to an efficient antiviral 

treatment (still a minority), but also to the mortality of infected subjects. We now consider 

that 1% of the world's population is infected with HCV with over one million seven hundred 

and fifty thousand new infections in 2015 mainly related to the parenteral risk, intravenous 

drug use in the northern countries but also the lack of hemovigilance in countries of 

intermediate or low economy [3,4]; 2.3 million people are co-infected with HIV and HCV. 

There are major regional disparities in this prevalence since the most exposed areas are 

Egypt or Mongolia with 15% of the historically infected population. In these countries, the 
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contamination was mainly nosocomial due to the absence of hemovigilance in Mongolia or 

due to the systematic treatment of schistosomiasis without single-use equipment in Egypt 

[5]. Other regions such as West Africa or Central Africa are heavily infected with 

approximately 5% to 8% of the contaminated population, not only because of nosocomial 

transmission but also because of certain "folkloric" practices (scarification, excision, cupping 

in Japan or barber in Sicily). In northern countries, the prevalence of Hepatitis C is less than 

1% with a steady decrease in prevalence and incidence over the past 20 years: as an 

example, in France, the prevalence among insured persons decreased from 1.2% in 1996 to 

0.8% in 2011 and probably 0.47% in 2017 and this decline is related to the high rate of the 

screening and antiviral treatment and to the pro-active policy of harm reduction especially 

among intravenous drug users (IVDU). 

The overall mortality attributable to viral hepatitis in 2015 is approximately 720 000 deaths 

from cirrhosis and 470,000 deaths from hepatocellular carcinoma (HCC) with an increase of 

22% since 2000 [4]. Although the hepatitis B virus infection mortality is almost twice as high, 

despite a vaccine that has been available for more than 30 years, about 400 000 people die 

each year because of their chronic hepatitis C infection, mainly because of cirrhosis (about 

2/3) but also because of hepatocellular carcinoma (1/3) [4]. 

 

The history of the hepatitis C virus 

The history of HCV is unique in the history of microbiology because its discovery was late, in 

1988 occurring after the first empiric therapeutic trials but later developments were 

extremely fast since in 30 years from HCV isolation of the virus, the reciprocal interactions 

between the research and the clinical field have led to the development of reliable 

serological and virological diagnostic tests, the development of effective treatments allowing 

to hope for the cure of all the patients and the efficacy of HCV elimination policies 

elimination programs [4]. 

This policy, promoted by the WHO and initiated by at least 12 countries in the world, is not 

strictly speaking a policy of elimination since it is expected a reduction of new infections by 
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30% in 2020 and 90% in 2030 and a reduction in hepatitis-related mortality of 10 and 65%, 

respectively [4]. 

In 1988, Michael Houghton's team isolated complementary DNA from the blood of a person 

infected with a "non-A non-B" virus, allowing the isolation of viral RNA and the rapid 

development of serological diagnostic tests. Elisa tests (EIA) and radio-immunoassays (RIA, 

now abandoned) were developed in parallel [6]; their sensitivity and specificity are now 

excellent. The presence of anti-HCV antibodies testified to the past exposure to HCV but did 

not determine the active nature of the infection, suspected by the presence of 

hypertransaminasemia but absent in a quarter of chronically infected patients. The only limit 

of the serology is the seroconversion time of about 4 to 10 weeks after contamination 

compared to HCV viremia, which is detectable by RT-PCR within 4 days post-infection. 

The detection of HCV RNA by RT-PCR (and in particular of the negative strand) allows itself to 

assert the active nature of the infection. The detection thresholds have been lowered over 

the past 20 years and are now around 1.2 log, i.e 12 IU/mL. HCV RNA is detectable in the 

liver [7] or in the peripheral blood mononuclear cells and, of course, in the serum where it is 

classically sought to affirm the active infection. The isolation of the HCV RNA allowed the 

sequencing of the virus and the definition of different genotypes (numbered from 1 to 7) 

and subtypes (a, b, c ...) [8]. Quantitative tests of viremia have been developed, allowing, for 

a given patient, the quantification and genotypic identification, at first, conditioning the 

therapeutic choices and the duration of treatment in the interferon era and enabling 

communities to trace contaminations and migrations. 

Prior to identification of HCV RNA [6], standard Interferon therapies for non-A non-B 

hepatitis began in the late 80s (Fig. 1) [9]. It had been shown that 3 to 5 million Interferon 

units, 5 days a week or every 2 days for 24, 48 or 72 weeks allowed a viral eradication or 

sustained virological response (RVS) defined by undetectable HCV-RNA within 24 weeks 

after the end of treatment and corresponding to virological cure [9]. In parallel to the 

standard virological tests, a serological identification of the HCV capsid antigen has been 

developed; this test, which has a comparable sensitivity to HCV-RNA quantification, has not 

experience the expected developments but could be a less expensive and as effective test as 

the viral load quantification. 
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The development of the serological tests allowed on the one hand the identification of the 

subjects having met the HCV (presence of anti-HCV antibodies) and the detection of the HCV 

RNA by RT-PCR in the serum the identification of the subjects having an active infection. 

Thus a patient with anti-HCV antibodies and undetectable HCV RNA is a patient exposed but 

cured of his infection. Serological tests allowed for a mass screening including blood donors. 

After the identification of hepatitis B virus markers (anti-HBc or HBs antigen) leading to the 

exclusion of blood donation, the identification of anti-HCV antibodies reduced the risk of 

"transfusion" contamination by HCV related to blood products (blood, immunoglobulins, 

anti-hemophilic factors, fresh frozen plasma ...). Before this screening, the risks were 

approximately 5% to 10% per transfused blood pellet; they are today about 1 to 700,000 to 

1 million, corresponding to occult infections despite the viral genomic diagnosis in blood 

bank. 

The HCV identification thus had a major individual and collective effect, transforming the 

diagnosis and prevention of nosocomial or community-based risk, particularly among drug-

using patients. 

The major scientific steps 

HCV life cycle 

HCV is a small, enveloped, positive single-stranded RNA virus belonging to the Flaviviridae 

family, genus Hepacivirus. The enveloped particles have an icosahedral diameter of 56 to 65 

nm [10], while the viral core is around 45 nm [11]. It is important to understand the key 

stages of the HCV viral cycle in order to understand the mode of action of different 

treatments even if the molecular mechanisms underlying this cycle are not completely 

understood and remain extremely complex. We have therefore selected important steps in 

this cycle and their protein actors, in order to introduce therapeutic objectives and the 

particular relationship of HCV with the liver.  

The first step in the HCV replication cycle is its entry into the cell, through the interaction of 

its E1 and E2 surface glycoproteins with the baso-lateral hepatocyte membrane, in contact 

with the blood stream. HCV can be associated with lipoproteins in the serum, thus escaping 

neutralizing antibodies [12]. As many other viruses, the initiation of HCV entry seems to 

utilize for attachment glycosaminoglycans (GAGs) [13, 14]. The HCV particle interacting with 
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lipoprotein, it is more likely that the apolipoprotein E is responsible for the interaction with 

GAGs [15]. Many membrane molecules seem to be the target of the pathogen and allow its 

entry, including ubiquitous CD81 (tetraspanin family protein -TSPAN28) [14, 15], the LDL 

receptor, claudin-1 (Cldn1) or occludin (OCLN) [16-18]. In vivo, its entry into the cell is done 

in several steps: the envelope glycoprotein E2 interacts with a co-receptor that is scavenger 

receptor B1 (SR-B1), and with CD81 [19].  The interaction between CD81 and the E2 

glycoprotein appears to be essential for initiating the adsorption [12], then the receptor 

complex with attached virion is moving to the tight junction, where an interaction with 

proteins claudin-1 and occluding set up. Finally, other cellular factors such as Epidermal 

Growth Factor (EGF) receptor [20] and the Niemann-Pick C1-like 1 (NPC1L1) cholesterol 

uptake receptor [21] are likely involved in HCV entry. Subsequently, the virus is internalized 

in clathrin vesicles and fused with early endosomes [22-25]. The acidification of the vacuole 

allows the membrane fusion of the virus, the virus capsid is then released and destroyed 

while the viral RNA is released in the cytosol. Once in the cystosol, the viral RNA is used for 

both processes the replication and the polyprotein translation. The RNA translation into 

polyprotein occurs in endoplasmic reticulum (ER) and is initiated by binding of the 5’UTR 

IRES to the ribosome [26]. The primary translation product is ~3000 amino acid long 

polyprotein precursor which contains structural and non-structural proteins of HCV. Then, 

the polyprotein is cleaved by host and viral proteases into three structural proteins (Core 

protein, envelop proteins E1 and E2) as well as seven non-structural proteins (p7, NS2, NS3, 

NS4A, NS4B, NS5A, NS5B) of the viral replication machinery [12] and in addition a Frameshift 

protein (F protein) or Alternate reading frame protein (ARFP). The functions of ARFP in the 

viral life cycle remain to be elucidated [27, 28] and could modulate the dendritic cells 

function and stimulate the T cell responses [29, 30]. 

The viral RNA will be replicated by the protein NS5B, the RNA-dependent RNA 

polymerase (RdRp) containing the GDD motif in its active site [31]. For HCV RNA replication, 

the polarized positive HCV RNA genome synthesizes a negative strand HCV RNA by the NS5B 

RNA-dependent RNA polymerase. The newly synthesized negative strand of HCV RNA may 

act as a template to synthesize the positive strand of viral RNA [32-34]. 

 After an accumulation of structural proteins and the viral RNA in the cytosol, the 

morphogenesis of virions can start. HCV needs a liver-specific microRNA named miR122 to 
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replicate properly. The latter recruits proteins in 5' viral RNAs, thus preventing their 

degradation by intracellular exonucleases [35, 36].  

The life cycle of HCV seems to be related to that of lipoproteins: beyond its association with 

them to escape the immune system in the blood and facilitate its entry into hepatocytes, 

they are also necessary for its morphogenesis. The Core protein, forming the viral capsid, will 

bind to intracellular lipid droplets to initiate the virion morphogenesis. The replication of the 

virus completely changes the distribution of intracellular lipid droplets: they are 

physiologically distributed equitably throughout the cytosol of the hepatocytes but are 

found concentrated in the perinuclear domain during the replication of the virus. 

In addition, apolipoproteins A1, B, C1, C3 and E are found on the surface of the envelope of 

viruses. Only Apo E seems strictly necessary for the viability of virions. Finally, if one blocks 

certain proteins necessary for the genesis of VLDL, such as MPT (microsomal triglyceride 

transfer protein), the virus can no longer replicate. The NS5A protein plays an important role 

in the assembly of the virus, in the lipid protein C-droplet stage. The lipid-capsid 

combination will surround the freshly replicated RNA and then bind with the other structural 

proteins of the glycoprotein envelope (E1 and E2) derived from the endoplasmic reticulum 

[37-41].  After entering the cell, its replication and translation of its proteins, as well as the 

assembly of its various components, the virion is ready to be exocyted and to infect new 

cells [42]. 

 

Cloning and sequencing of HCV, pseudo-particles: the understanding of HCV replication cycle  

The HCV genome was identified in 1989 by cloning it from infected chimpanzee, while in 

humans the amounts were too low for detection [6]. The first complete full-length HCV 

cDNA clone was constructed from the HCV strain H77 (genotype 1a). The HCV RNA 

transcribed from this clone, then followed by several full-length HCV RNAs was found to be 

infectious after intrahepatic injection in a chimpanzee. The HCV viremia was detected at 

week 1 and increased from 1 × 102 genomes/mL to 1 × 106 genomes/mL at week 8 [43, 44]. 

Since these HCV clones were found to replicate inefficiently in vitro, this limitation was 

resolved by R. Bartenschlager et al when subgenomic HCV replicon, cloned from the HCV 

genome was constructed after transfection into the Huh7 cells [45]. Several studies 

demonstrated that the virus and host factors were important for the HCV replication in cells; 
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some mutations in the wide-type (wt) consensus sequence efficiently contributed to the 

replication and the adaptation to the host cells but these replicons with adaptive mutations 

could replicate with a high efficiency, they were not able to produce infectious particles in 

vitro. Finally, a selectable HCV replicon was constructed containing the full-length HCV cDNA 

of the genotype 2a infectious clone JFH-1 (the only HCV strain reported to induce fulminant 

HCV-related hepatitis) and was shown to produced infectious particles in vitro and in vivo 

[46]. The most efficient construct is the genotype 2a/2a clone which consists of J6CF and 

JFH-1 derived sequence [47]. The HCV replicon is remarkably valuable for studying             

HCV replication and for testing new antiviral drugs. The HCV subgenomic replicons 

containing reporter genes (luciferase, secreted alkaline phosphatase and chloramphenicol 

transferase) facilitated the study of the HCV infection. This high-throughput screening assay 

allowed the visualization and tracking of the HCV replication complex in living host cells 

without affecting HCV replication [48, 49]. 

HCV pseudotyped particles were constructed with chimeric genes expressing HCV (genotype 

1a) envelope E1 and E2 proteins (HCVpp) and the transmembrane and cytoplasmic tail of 

vesicular stomatitis virus G protein. These pseudotyped particles allowed a detailed study of 

the role of HCV receptors in the early steps of HCV infection (adsorption, and viral entry) [50, 

51] and for testing new antiviral drugs [52]. All these major discoveries have been previously 

detailed [53, 54].  

Non-invasive tests of fibrosis improving screening and individualizing therapies: 

Given their limited efficacy and their poor tolerance, interferon-based therapies were 

restricted to patients with significant fibrosis. The evaluation of hepatic lesions was only 

performed by liver biopsy. This has been revolutionized by the development of non-invasive 

fibrosis tests evaluating both the necro-inflammation activity (A) and the fibrosis stage 

according to different scoring system [55]. At the same time blood tests (Fibrotest, 

Fibrometer, Hepascore, FIB-4 or APRI) [56, 57] or morphological tests including pulse 

elastometry [58, 59] which measures a shearing force corresponding to the liver stiffness 

makes it possible. These tools make it possible to evaluate F fibrosis on a conventional 

Metavir scale of 0 to 4, where F0 and F1 correspond to a null or minimal fibrosis as opposed 

to medium F2 fibrosis, extensive F3 or cirrhotic F4 which justify not only a therapeutic 
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treatment but also a follow-up of the patients because of the risks of hepatocellular 

carcinoma. 

The polymorphism of IL28B 

Well-established on-treatment and baseline predictors of sustained virological response 

(SVR) to pegylated interferon and ribavirin (PEG-IFN/RBV) in patients with chronic hepatitis C 

virus (HCV) genotype 1 infection include rapid virological response (RVR; undetectable HCV 

RNA at week 4), low baseline viral load (<600 000 IU/mL), non-black race, and absence of 

severe fibrosis or insulin resistance [60, 61]. For some years, low serum levels of the 10k Da 

interferon gamma-induced protein (IP-10) have also been associated with a better PEG-

IFN/RBV response [62]. 

Candidate genes have long been targeted to explain the differences in host antiviral 

response, and it is now well established that host genetics plays a role in the response to 

IFN-based therapy in HCV infection [63].  Five GWAS investigations described several single 

nucleotide polymorphisms (SNPs) in the IL28B gene region on chromosome 19 as being 

highly predictive of spontaneous clearance of acute hepatitis C infection [63], response to 

PEG-IFN α/RBV therapy in the general population as well as in human immunodeficiency 

virus (HIV) co-infected individuals and liver transplant recipients in whom both donor and 

recipient IL28B haplotypes contribute to the probability of treatment response [64, 65].   

The GWAS data demonstrated an association between variations at the IL28B gene locus and 

outcomes in HCV infection, but did not identify a causal variant responsible for these effects: 

the specific immunologic mechanisms involved in HCV clearance associated with IL28B 

genotype remain elusive and a functional link between IL28B genotype and liver cytokine 

expression has not been established [66]. IL28B encodes for IFN- λ3 which belongs to the 

family of type III IFNs; type III INFs effect their antiviral activity by activating the JAK-STAT 

pathway which leads to the induction of IFN stimulated genes (ISGs) from interferon 

stimulated response elements (ISREs) in the nucleus [66]. Thus, it is involved in the T-cell 

adaptive immune response [67] and IL28B has been associated with increased CD8+ 

cytotoxic T cell responses. Interestingly, it has been demonstrated that in non-responders, 

some interferon-stimulated genes were upregulated before treatment. In addition, minor 

alleles of IL28B polymorphisms (i.e. rs8099917 G and rs12979860 T) have been associated 
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with reduced IL28B expression in peripheral blood mononuclear cells [67]. Thus, IL28B 

genotypes may play a role in viral containment, and recent results suggest that IL28B 

polymorphisms associated with poor HCV clearance may actually be protective against 

hepatic necro-inflammation and fibrosis progression, particularly in patients with HCV 

genotypes other than 1 [68].  

 

 

A chronic infection with liver and extra-hepatic consequences 

The natural history of viral infection C is characterized by hepatotropism and lymphotropism 

of the virus (Fig. 2). Hepatotropism accounts for the risks of chronic hepatitis (there is no risk 

of fulminant hepatitis outside the only strain of genotype 2 at the origin of the first replicon) 

and of cirrhosis and hepatocellular carcinoma like all chronic hepatitis [69]. Lymphotropism 

is characterized by HCV replication within B cells and explains the detection of 

cryoglobulinemia in about half of infected patients. This cryoglobulin is predominantly of 

type II associating a monoclonal IgM contingent and a polyclonal IgG contingent, and more 

rarely a type III cryoglobulinemia. It is a protein complex associating the virus with antiviral 

antibodies and rheumatoid factor that will be deposited in the walls of small and medium-

caliber vessels causing cryoglobulinemic vasculitis responsible for cutaneous involvement 

(purpura, necrotizing vasculitis), rheumatologic (polyarthritis of the small joints), renal 

(membranoproliferative glomerulonephritis) and neurological manifestations with frequent 

peripheral neuropathies and rarely central attacks [70, 71]. At most, the B lymphocyte 

infection can lead to a clonal selection responsible for lymphoma predominantly Non-

Hodgkin B-cell lymphoma (splenic villous lymphoma, but sometimes more diffuse 

lymphomas) [72, 73]. 

The chronic infection that occurs in three quarters of infected subjects is also responsible for 

chronic inflammation that will lead to extra-hepatic manifestations associating 

neurocognitive disorders, insulin resistance with a risk 1.5 times higher of diabetes, a risk 

two to three times higher of cardio-, cerebro- or reno-vascular diseases and an increased risk 

of extra-hepatic cancers [70-75]. These liver and extra-hepatic events account for a ten-fold 
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higher mortality in patients with antibodies to HCV with detectable viral C RNA compared to 

those without detectable HCV RNA or in patients who have never met HCV [74, 75]. Extra-

hepatic mortality is twice as frequent in patients with active infection as in patients without 

active viral infection C or without prior HCV exposure. When HCV infection is confirmed, it is 

important to evaluate the clinical consequences of hepatic and extra-hepatic infections. The 

evaluation of hepatic lesions was previously performed only on the basis of a liver biopsy 

and has been revolutionized by the development of non-invasive fibrosis tests (see above). 

Patients with "significant" fibrosis (extensive F3 or cirrhotic F4) or even intermediate (F2) but 

with hepatic co-morbidities justify not only a priority therapeutic management and 

therefore a virological cure, a hygiene and dietary education to reduce chronic alcohol 

consumption, overweight or metabolic syndrome (liver co-morbidities) but also a follow-up 

because of the risk of occurrence of hepatocellular carcinoma, admittedly reduced but not 

zero [69]. 

Thus, HCV infection is not only a hepatic infection but a systemic disease [70-75] whose 

consequences are less related to a direct toxicity of the virus than to immuno-mediated 

mechanisms: chronic hepatitis is mainly related to a destruction of hepatocytes by specific 

cytotoxic T lymphocytes recognizing the viral antigens expressed on the surface of the cells. 

In immunocompetent and immunocompromised patients with little, or no intrahepatic 

damage, including inflammation, high levels of the HCV replication have been reported [76]. 

In about 30% of HCV liver transplanted patients, despite the high levels of HCV replication, a 

recurrent hepatitis is developed one year after transplantation. However, high levels of an 

intrahepatic HCV replication are usually tolerated by the host immune system. A lympho-

mononuclear infiltrate represented mainly by CD8+ T cells is expected to play a major role in 

the viral containment, though other subsets, such as CD4+ T and natural killer (NK) cells, and 

regulatory T cells (Treg) are considered [77]. The intrahepatic CD4+ and CD8+ T cells can 

recognize HCV structural and nonstructural antigens [78]. However, why in most patients the 

immune response cannot resolve the infection, remains obscure. In fact, cytotoxic CD8+ T 

cell-mediated killing could be blunt by a predominant Treg response [79]. 

The only chronic viral infection that is virologically cured 



 13

The biology of HCV is simple with a positive-polarity HCV-RNA that will be translated into a 

polyprotein that will be split by a protease into different structural and non-structural 

proteins. The NS3/4 protease, the NS5B polymerase are like the key enzymes in viral 

replication as well as the NS5A protein or replication complex which participates not only in 

the replication of the viral RNA but also in the assembly of the viral particles. The specific 

inhibition of these proteins from the years 2005 allowed a control of the viral multiplication 

[80]. Viral replication and viral organogenesis are exclusively cytoplasmic, which facilitates 

the targeting of antiviral drugs. In contrast to HIV or hepatitis B virus (HBV), there is no 

reservoir, no pro-viral DNA, no micro-chromosome (HBV cccDNA) and no genomic 

integration. 

This explains that one can obtain with the treatments a virologic cure, the so-called SVR, 

defined by undetectable HCV-RNA at 12 weeks after the infection or after the end of the 

treatment corresponds to a true virological cure. HCV RNA undetectability in the serum is 

accompanied by undetectability in peripheral blood mononuclear cells and in hepatocytes 

testifying to the complete and lasting nature of virologic cure [81]. This cure is confirmed by 

organ transplantation of infected subjects who have benefited from effective treatment, 

unlike HBV for example, transplantation (derogatory) of these organs, and despite deep 

immunosuppression, does not lead to any infection [82]. 

Clinico-biological benefits of virological cure and reversibility of manifestations 

Virologic cure is usually accompanied by clinical improvement or even clinical cure of liver 

and extra-hepatic manifestations [71, 75, 83-89]. This explains the expected reduction in 

mortality from hepatic and extra-hepatic impacts of chronic infection. As an example in the 

prospective CIRVIR cirrhotic compensated cohort of ANRS-INSERM, we observed a reduction 

in the risk of the HCC occurrence at 3 and 5 years in cured patients (13.6 versus 1.9 and 21), 

8 versus 3.3% incidence of HCC) [90]; in cured patients, HCC is observed only in cases of 

hepatic comorbidity (metabolic syndrome, overweight, diabetes, alcohol abuse). In addition 

to the reduced risk of HCC observed in cirrhotic and non-cirrhotic patients, a virological 

healing also reduces liver and overall mortality in patients [75, 91]. The reduction in hepatic 

mortality is at least in part, related to the ability to remodel fibrosis at all stages of the 

disease, including the possibility of cirrhosis reversibility that contributes to this reduction in 
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mortality [85, 86]. Alongside the significant reduction in liver risk (HCC and decompensation) 

in cirrhotic patients, there is a similar reduction in the risk of bacterial infections and a 

reduction in vascular risks (myocardial infarction, stroke or peripheral arterial disease) with a 

reduction from 9.1 to 2.3% at 3 years and 12.3 versus 3.5% at 5 years in cirrhotic patients 

cured compared with non-cured patients [92]. An extensive fibrosis or cirrhosis is associated 

with an increased risk of carotid arteriosclerosis, and oral antiviral therapies allow rapid 

reduction of carotid intimal thickness [93]. 

Antiviral treatments  

For more than 20 years Interferon for its antiviral and immune-stimulatory properties has 

been used as the main treatment for chronic infection with HCV [9, 60, 61]. 

Pegylation after 1997 resulted in weekly subcutaneous rather than tri-weekly injections, and 

the addition of Ribavirin, a nucleoside analogue, in the early 1990s significantly increased 

the treatment efficacy [94]. Their limitations were mainly poor clinical tolerance (flu-like 

syndrome, acuity of dysimmunitary conditions, neurocognitive disorders aggravated by 

Ribavirin) and biological (myelosuppression with neutropenia and thrombocytopenia for 

Interferon, haemolytic anemia for ribavirin). The SVR rate increased from about 6% to at 

most 50% with 48-week treatments for the most common genotypes 1 and 4 (24 weeks for 

genotypes 2 and 3 with a PVR rate of about 75%) [60]. A large number of factors limited 

therapeutic efficacy, extensive fibrosis, overweight, genotype 1, HIV-associated infection or 

insulin resistance (see above). This limited efficiency and this difficult tolerance of 

interferon-based treatments explain that availability of direct oral antivirals, specific 

inhibitors of viral proteins, has been a real therapeutic revolution. The first protease 

inhibitors, Telaprevir and Boceprevir, used from 2011 to 2014, were combined with standard 

treatment with pegylated interferon and ribavirin: they allowed a halving of the treatment 

duration of genotypes 1 and 4 (24 weeks) and cured about three quarter of the patients [95] 

but the safe issues remained. Since 2014, the combination of 2 to 3 antivirals has been used 

to cure almost all patients [80, 83, 84, 96-101]; the duration of the pangenotypic treatments 

available since 2017 are 8 to 12 weeks with one to three capsules per day (Fig. 1). The 

efficacy of these pangenotypic treatments (RVP> 97%) completely removed the factors of 

poor response to treatment that can be given in all clinical situations [96-100]. 
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Therapeutic recommendations are today to treat all patients infected with HCV by 

prioritizing those with advanced liver diseases (fibrosis) or extra-hepatic (vasculitis), risks of 

rapid progression of fibrosis (liver comorbidities or transplants) or risks of community 

diffusion [83, 84]. The benefit of these treatments is not only individual but also collective by 

reducing the risk of infection and infection/re-infection in risk communities such as men who 

have sex with men (MSM) [101] or drug addicts [102, 103]. 

The only limits that can be avoided today are the drug interactions, the therapeutic 

observance and the rare side effects associated with these treatments [104]. 

In summary, the history of HCV ends with this great pangenotypic efficacy of multiple 

combinations, easy to use 8 to 12 weeks with one to three pill-s per day and little problem of 

tolerance. The virological cure allows a clinical benefit with at worst a stabilization and at 

best a reversibility of the clinico-biological manifestations. This explains the short 30 years 

from the discovery of the virus to a policy of elimination proposed by the WHO in 2016 [4]. 

HCV Elimination 

With the antiviral efficacy and good tolerance of pangenotypic drugs, the elimination (and 

not eradication in the absence of an effective vaccine) is feasible provided that the screening 

and access to care policies are improved. It is considered that only 1% of the infected 

population worldwide has been treated and cured [105], this is, of course, linked to the 

policy lack of screening and access to care but also the drugs price. Of the approximately 5 

million subjects treated worldwide, probably 3 million have been treated with low-cost 

generic treatments. 

The provision of universal treatment and the simplification of therapeutic strategies should 

make it possible to hope for the effectiveness of elimination policies [106] subject to: 1. 

improving screening policies through rapid diagnostic orientation and "Point of Care" tests 

allowing, in the different structures of care, to identify the infected subjects with active 

infection and to initiate the treatments ("test and treat" policy); 2. to open beyond the 

hospital and specialized hepato-gastro-enterology, infectiologist or internist structures an 

access to the prescription; 3. "decentralize" patient care by relocating diagnostic and 

treatment policies to sexual health structures, care facilities in different communities, 
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prisons, addiction centers, maternity wards, migrant care centers, psychiatric services. The 

provision of easy-to-use and low-cost treatment should make this elimination possible. 

The elimination as defined by WHO is feasible in European countries, and even planned for 

2025 in France. It is expected in Egypt but seems difficult in the US because of the epidemic 

HCV related to intravenous drug use but it seems impossible in sub-Saharan Africa. 
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Legend to figures. 

Fig. 1 Summary of the hepatitis C virus history and the antiviral treatments against the 

Hepatitis C virus infection. IFN = Interferon; RBV = Ribavirin; the protease inhibitors are in 

red (TVR = Telaprevir; BOC = Boceprevir; SMV = Simeprevir; PTV/r = Paritaprevir boosted by 

ritonavir; GZR = Grazoprevir; G = Glecaprevir; VOX = Voxilaprevir); the polymerase inhibitors 

NS5B are in yellow (SOF = Sofosbuvir; DSV = Dasabuvir) and the replication complex NS5A 

inhibitors are in white (LDV = Ledipasvir; DCV = Daclatasvir; EBR = Elabsvir; VEL = Velpatasvir; 

P = Pibentrasvir). 

 

Fig. 2 The natural history of HCV infection combining hepatic and extra-hepatic 

manifestations. 

 

 








