
HAL Id: hal-02332098
https://hal.science/hal-02332098v1

Submitted on 24 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Elastic perfectly plastic oscillator under random loads:
Linearization and response power spectral density

Djaffar Boussaa, Robert Bouc

To cite this version:
Djaffar Boussaa, Robert Bouc. Elastic perfectly plastic oscillator under random loads: Lineariza-
tion and response power spectral density. Journal of Sound and Vibration, 2019, 440, pp.113-128.
�10.1016/j.jsv.2018.10.002�. �hal-02332098�

https://hal.science/hal-02332098v1
https://hal.archives-ouvertes.fr


Elastic Perfectly Plastic Oscillator Under Random Loads:
Linearization and Response Power Spectral Density

Djaffar Boussaa and Robert Bouc
{boussaa,bouc}@lma.cnrs-mrs.fr
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Abstract

The randomly-excited elastic-perfectly-plastic oscillator—hysteretic bilinear oscillator with zero sec-
ondary stiffness—has been extensively researched. The vast majority of the work on that system has
investigated the time-domaine statistics of the response. No studies have focused on the power spec-
tral densities. This study specifically examines the system’s velocity power spectral density—the
system’s displacement is nonstationary—under wide-band random excitations by means of a sta-
tistical linearization/stochastic averaging technique that is developed in one existing and two new
procedures, one with constant, the other with amplitude-dependent parameters. The three proce-
dures are evaluated against Monte Carlo simulation and classical Gaussian linearization in terms
of the velocity average power, the peak frequency of the power spectral density, its peak value, its
bandwidth, and its overall shape around the main frequency. The best predictions were yielded by
the new procedure with amplitude-dependent parameters, which combines an extended amplitude-
phase transformation, a linearization with random parameters into a Maxwell system, a correlation-
function-based criterion, the conditional power spectral density concept, and a power conservation
correction step. The new procedures can be adapted to apply to other hysteretic systems.

Keywords: nonlinear random vibration; hysteretic systems; linearization with random parameters

1. Introduction

This study deals with the response of the symmetric elastic perfectly plastic (EPP) oscillator
subjected to wide-band random excitations. More precisely, the system under consideration is the
hysteretic bilinear oscillator with the same elastic stiffness and the same yield limit in traction and
in compression and zero secondary stiffness.

The vast majority of the work on this extremely nonlinear system has focused on the time-
domain statistics of various response quantities [1–21]. In comparison, the response power spectral
densities (PSDs) have drawn little attention despite their practical importance, as in structural
fatigue life assessment [22, 23] and floor spectrum modeling [24]. In [14], where the focus is on
the nonstationarity of the displacement response, the authors have obtained an approximation of
the value of the velocity PSD at zero frequency, which is the asymptotic rate of the variance of
the displacement response. The rest of the spectrum has remained unstudied. The aim of this
study is to obtain an analytical estimate to the velocity PSD, which can be used to estimate its
peak frequency, its peak value, its bandwidth, its overall shape around the main frequency, and the
velocity average power.
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The methodological approach taken combines statistical linearization with stochastic averaging
[25, 26]. As far as the estimation of response PSDs are concerned, linearization procedures fall into
two classes. In the first class, the nonlinear system is replaced by a linear system, the parameters
of which are constant and determined by minimizing an error function in some sense. The PSD of
the nonlinear system is then approximated by that of the equivalent linear system. The consensus
is that this class of procedures gives correct estimates of the second-order response moments but
may fail to predict the response PSD of strongly nonlinear systems [27, 28]. In the second class, as
initiated in the pioneering works of Crandall [29] and Miles [30], the nonlinear system is replaced by
a family of linear systems with random parameters related to the system’s response. The response
PSD of the nonlinear system is then approximated by the average, in some sense, of the response
PSDs of the family of equivalent linear systems. This latter class is regarded as an improvement
on the first class as it has successfully predicted the response PSDs of various systems where
linearization procedures of the first class failed [24, 27, 28, 31–33]. Two further points should be
mentioned about the second class. First, to yield good results, it has often required a post-processing
correction step that ensures that some quantities, reliable estimates of which exist, are conserved
during approximations. Second, the research to date has tended to focus on nonlinear oscillators
which, unlike the EPP system, have (i) a stiffness that increases with displacement (i.e., hardening
oscillators) and (ii) a stiffness and damping that are separable. To the authors’ knowledge, only one
linearization procedure of either class has been proposed to linearize the EPP system. The first one
is a (constant-parameter) Gaussian linearization [25, 34, 35]. The second one, which is based on
a mean-square criterion, is the random-parameter linearization procedure described in [14]. Their
ability to predict the velocity PSD, however, has not been assessed so far.

This study develops two new linearization procedures, one being a constant-parameter non-
Gaussian linearization with a mean-square criterion and the other being an amplitude-dependent-
parameter linearization with a correlation-function-based criterion. The equivalent linear system
is sought for as a Maxwell system. This choice has advantages. It preserves the dimension of the
ordinary differential equation describing the displacement: The displacement response is described
by a differential equation of order 3 for both the EPP and the Maxwell systems. It also preserves
an important feature of the displacement response: The displacement response of both the EPP
and the Maxwell systems exhibit drifting.

The remaining part of the paper is organized as follows. Section 2 provides the problem state-
ment and sets up the machinery needed to develop the PSD approximation approach. Section
3 illustrates the use of the machinery by addressing the linear Maxwell system. Section 4 dis-
cusses the linearization procedures based on a mean-square criterion: the new constant-parameter
linearization and (a variant of) the linearization described in [14]. Section 5 develops the new
amplitude-parameter linearization built using a criterion based on correlation functions. Section 6
provides the velocity PSD for each linearization. Section 7 compares the predictions of the three
procedures between them, with those of the classical Gaussian statistical linearization, and with
those of Monte Carlo simulations in terms of several PSD features. In Section 8, an average power
conservation correction is proposed as a post-processing step to improve on the predictions of the
amplitude-dependent linearization procedures.

2. Background

This section gives the equations governing the motion of the EPP oscillator. These equations are
then reformulated in terms of new variables. This leads to a new system that lends itself to various
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approximations, such as stochastic averaging. The number of the new variables exceeding that of
the old variables, closing relations are introduced. Moreover, because this study concentrates on
the region around the velocity PSD’s main frequency, it suffices to consider a white noise input.
The qualitative and quantitative conclusions reached in this study are expected to hold for more
general wide-band, stationary, physical inputs.

Below, the autocorrelation function Rη and the PSD Sη for a wide-sense stationary random
process η are taken to be related by the following Fourier transform pair:

Sη(ω) =

∫ ∞

−∞
Rη(τ) exp(−iωτ) dτ, Rη(τ) =

1

2π

∫ ∞

−∞
Sη(ω) exp(iωτ) dω. (1)

2.1. Problem statement

The non-dimensionalized stochastic differential equation governing the motion of the EPP sys-
tem has the form [14]

ẍt + zt =
√
εσẇt, (2)

żt = ẋt (1−H (|zt| − 1)H (ztẋt)) , (3)

where the overdot denotes differentiation with respect to time t; x is the displacement; z is the
restoring force (Figure 1);

√
εσ is the excitation intensity; H is the Heaviside function (H(x) =

0 if x < 0, 1 otherwise); w is the Wiener process; and ẇ, formal time-derivative of w, is the unit
Gaussian white noise (Sẇ = 1). The parameter ε is introduced as an order of smallness. No damping
other than the damping coming from the friction element is assumed. However, the methodology
developed below can be readily adapted to apply in the presence of a linear viscous damping element
in parallel with the spring/friction-element pair.

The aim of this study is to estimate the PSD of the velocity response ẋ.

2.2. Extended amplitude-phase transformation

The first change of variables is the following amplitude-phase transformation:

xt =

∫ t

0

uτ dτ + at cos Φt, (4)

ẋt = ut − atΩ(at) sin Φt, (5)

Φt =

∫ t

0

Ω(aτ ) dτ + ϕt. (6)

Eq. (4) is the decomposition of the displacement, x, into a drift term
∫ t

0
uτ dτ and an oscillatory

term at cos Φt. The displacement is nonstationary, and so is assumed the drift term, whereas the
oscillatory term is regarded as stationary [14]. The decomposition of the displacement translates
into decomposition (5) of the velocity, ẋ, into the drift rate u and the oscillatory velocity −aΩ sin Φ.
The velocity is stationary and so are assumed the drift rate and the oscillatory velocity. For brevity,
the amplitude of the oscillatory term, a, is referred to as the amplitude. The yet unknown function
Ω(a) is an amplitude-dependent frequency to be made precise later, and ϕ is a phase. Differentiating
(4) with respect to t and equating the result to (5) gives

ȧ cos Φ− aϕ̇ sin Φ = 0. (7)
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The second change of variables is a decomposition of z, namely,

zt = z̃(at,Φt) + vt, (8)

where v is a fluctuation, and z̃ is the periodic response to the quasi-static cyclic straining a cos Φ
with a and ϕ regarded as fixed. That is, z̃ is the unique 2π-periodic function with respect to Φ
that solves the following differential equation:

Ω(a)
∂z̃

∂Φ
= −aΩ(a) sin Φ (1−H (|z̃| − 1)H (−z̃aΩ(a) sin Φ)) , (9)

which, owing to the positivity of a and Ω, simplifies to

∂z̃

∂Φ
= −a sin Φ (1−H (|z̃| − 1)H (−z̃ sin Φ)) . (10)

One can check that the solution to this equation is as follows. If 0 ≤ a ≤ 1, then

z̃ = a cos Φ. (11)

Otherwise, if a > 1, then

z̃(a,Φ) =





a(cos Φ− 1) + 1, if 0 < Φ ≤ Φ0;

−1, if Φ0 < Φ ≤ π;

a(cos Φ + 1)− 1, if π < Φ ≤ π + Φ0;

1, if π + Φ0 < Φ ≤ 2π.

(12)

Here, Φ0 = arccos (1− 2/a) .
The first cosine and sine coefficients of z̃, respectively denoted by hc and hs, play an important

role below. They are given by

hc(a) =

{ a

2π
(2Φ0(a)− sin (2Φ0(a))), if a > 1;

a, if a ≤ 1;
(13)

and

hs(a) =





4

π

(
1

a
− 1

)
, if a > 1;

0, if a ≤ 1.
(14)

2.3. Closing relations

The motion of the system was initially described by two processes, x and z, and two equations,
(2) and (3). After the changes of variables (4)-(6) and the decomposition (8), the system becomes
described by the five processes a, ϕ, Φ, u, and v. The differential equations satisfied by these
processes are now derived.

Substituting the velocity ẋ in (5) and decomposition (8) of z into (2) leads to

−ȧ (Ω + aΩ′) sin Φ− aϕ̇Ω cos Φ + εr + (u̇+ v) +
(
hc(a)− aΩ2

)
cos Φ =

√
εσẇ, (15)

4



where the prime (′) denotes differentiation with respect to a and εr is the sum of the first sine
harmonic and the higher harmonics of the Fourier series of z̃, i.e.,

εr = z̃ − hc cos Φ. (16)

Inspection of (15) suggests the following:

Ω2(a) =
hc(a)

a
, (17)

u̇+ v = 0. (18)

Substituting (17) and (18) into (15) and using (6) and (7) shows that a, ϕ, and Φ are governed
by the following (Stratonovich) stochastic differential system:

ȧ =
εr

ΩD
sin Φ−

√
εσ

ΩD
(sin Φ) ẇ, (19)

ϕ̇ =
εr

aΩD
cos Φ−

√
εσ

aΩD
(cos Φ) ẇ, (20)

Φ̇ = Ω +
εr

aΩD
cos Φ−

√
εσ

aΩD
(cos Φ) ẇ, (21)

where D = 1 + (aΩ′/Ω) (sin Φ)
2
. The system (19)-(21) is in a form suitable for application of the

principle of stochastic averaging.
Now substituting decomposition (8) of z into the constitutive equation (3) yields the differential

equation in v:

v̇ = (y + u)
(

1−H
(
|z̃ + v| − 1

)
H
(

(z̃ + v) (y + u)
))
− ∂z̃

∂φ
(Ω + ϕ̇)− ∂z̃

∂a
ȧ. (22)

where ẋ = y + u, and y is the oscillatory velocity, namely,

y = −aΩ sin Φ, (23)

so that Eq. (18), (19)-(21), and (22) form the stochastic differential system governing the motion
of the EPP system in terms of the a, ϕ, Φ, u, v processes.

2.4. Averaged equations

Because of the whiteness of the input, applying the averaging principle here amounts to averaging
with respect to Φ the drift vector and diffusion tensor of the Itô equation corresponding to the
Stratonovich system (19)–(21). The joint process (at, ϕt) (respectively (at,Φt)) is replaced by a
Markov diffusion joint process over R+ × [0, 2π], which, by an abuse of notation, is also denoted
(at, ϕt) (respectively (at,Φt)). The application of the stochastic averaging principle to the case in
which the fast variable Φ has an integral dependence on a, as in (6), has been discussed in [27, 36]
(See also [37] for a more formal mathematical treatment of this point).

Under the first harmonic assumption (i.e., z̃ ≈ hc cos Φ + hs sin Φ or εr ≈ hs sin Φ), the applica-
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tion of stochastic averaging to the system (19)-(21) yields

ȧ =
hs(√

γ + γ
)

Ω
+ εσ2

(
6γ − 2γ2 − 3aγ′

)

16aΩ2γ5/2
+

√
εσ√

2Ωγ3/4
ẇ1, (24)

ϕ̇ =

√
εσ√

2aΩγ1/4
ẇ2, (25)

Φ̇ = Ω +

√
εσ√

2aΩγ1/4
ẇ2, (26)

where ẇ1 and ẇ2 are independent unit white noises, and γ = 1 + aΩ
′
/Ω. It can be shown that

γ ≥ 1/4.
The (stationary) joint probability density functions (pdfs) of (a, ϕ) ∈ R+ × S1 and (a,Φ) ∈

R+ × S1, where S1 is the unit circle, are then deduced from the Fokker–Planck equation as

paϕ(a, ϕ) =
1

2π
pa(a) = paΦ(a,Φ), (27)

with

pa(a) = CaΩ3/2γ3/4H(a) exp

(
4

εσ2

∫ a

0

hs(α)Ω(α)
γ

1 +
√
γ

dα

)
, (28)

where C is a normalization constant.
It can be shown (as in the appendix of [6]) that the expectation of hs(a) with respect to pa(a),

which is related to the average energy loss by cycle due to hysteresis, is of the order εσ2.

3. The Maxwell system

This section has been included for several reasons: it presents the Maxwell system, which is
the linear system used in all the linearizations to follow; it illustrates how the decompositions
and quantities introduced in the previous section can be used to analyze that system; and, more
importantly, it delineates a decomposition that highlights the respective contribution of the drift
rate, u, and oscillatory velocity, y, to the PSD of the velocity, ẋ = u+y. One advantage of opting for
the Maxwell system over the more commonly used Kelvin model is that the displacement response
of the former shares one essential feature—nonstationarity—with the EPP system whereas that of
the latter does not.

3.1. Velocity PSD of the Maxwell system

The response of the Maxwell system under white noise is governed by the following stochastic
differential equations:

dẋ

dt
+ z =

√
εσẇ, (29)

dz

dt
+Az = Bẋ, (30)

where A and B are two given constants such that A > 0, B > 0, and B −A2 > 0.
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The pair (ẋ, z) is (asymptotically) zero-mean and stationary. The PSD of ẋ is given by

Sẋ(ω) = εσ2 ω2 +A2

(ω2 −B)
2

+A2ω2
. (31)

It follows that Sẋ(0) > 0 , and therefore that the displacement response of the system exhibits drift
[38]. It also follows that

E
[
ẋ2
]

=
1

2π

∫ ∞

−∞
Sẋ(ω) dω =

εσ2

2

1

A

(
1 +

A2

B

)
. (32)

3.2. Decomposition of the velocity PSD

It is now shown that the decompositions and quantities introduced in the previous section make
it possible to recover (31) and (32) and to obtain a natural decomposition Sẋ = Sy + Su.

For this, the first step is to obtain the dynamical equations for a, ϕ, Φ, y, z̃, u, and v in the
case of the Maxwell system. The periodic response z̃ satisfies the following analog of Eq. (9):

Ω
∂z̃

∂Φ
+Az̃ = By. (33)

Now, combining the identities Φ̇ = Ω + ϕ̇, ẋ = y + u, and dz̃/dt = (∂z̃/∂Φ) Φ̇ + (∂z̃/∂a) ȧ with
(18), and (19)-(21) with D = 1, and (29)-(30) gives, after some algebra, the equations governing
the oscillatory components y and z̃ as

dy

dt
+ z̃ =

√
εσẇ, (34)

dz̃

dt
+Az̃ = By − εrA+A

√
εσẇ, (35)

and those governing the perturbations u and v as

du

dt
+ v = 0, (36)

dv

dt
+Av = Bu+ εrA−A√εσẇ. (37)

The solutions of both systems can be expressed as the superposition of the response to noise terms
and the response to εrA terms. Because εrA appears with opposite signs in the two systems, its
contribution to ẋ = u + y vanishes. The same can be said about its contribution to z = v + z̃. In
the rest of the section, (y, z̃) and (u, v) refer to the response to the noise terms alone.

The next step is computing the PSDs. Let Su and Sy denote the PSDs of u and y, respectively,
and Suy their cross-spectrum. From (34)-(37) with the term εrA omitted, it may be concluded that

Su(ω) = εσ2 A2

(ω2 −B)
2

+A2ω2
, (38)

Sy(ω) = εσ2 ω2

(ω2 −B)
2

+A2ω2
, (39)
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< (Suy(ω)) = 0, (40)

where < denotes the real part. Hence

Sẋ(ω) = Su(ω) + Sy(ω), (41)

which gives back Eq. (31).

3.3. Energy considerations

From (38) and (39), it follows that the stationary variance of the drifting rate, E
[
u2
]
, and the

variance of the oscillatory component, E
[
y2
]
, are given respectively by

E
[
u2
]

=
Aεσ2

2B
, and E

[
y2
]

=
εσ2

2A
. (42)

Adding Eu2 to Ey2 gives back (32).
The value of E

[
y2
]

in (42), obtained by integrating Sy(ω) over R, coincides with the value

obtained by averaging y2 = (−aΩ sin Φ)
2

over the joint pdf (27)-(28) given by stochastic averaging,
namely,

εσ2

2A
=

1

2π

∫ 2π

0

∫ ∞

0

(−aΩ sin Φ)
2
pa(a) dadΦ. (43)

To show this, note that pa in (28) reduces in the case of the Maxwell system to the Rayleigh
distribution

pa(a) =
a

q2
exp

(
− a2

2q2

)
with q2 =

εσ2

2AΩ2
=

εσ2

2A (B −A2)
. (44)

The decomposition of Sẋ into Sy and Su used here is applied to the velocity PSD of the EPP
system within the context of linearization in Section 8. The equality between the value of E

[
y2
]

estimated by stochastic averaging and that obtained by integrating Sy is not expected to hold in
the EPP case, since then the estimate to E

[
y2
]

based on Sy depends on the adopted linearization
whereas the estimate based on the joint pdf of (a,Φ) is not. Imposing the equality of the two
values, however, seems desirable. It strengthens the consistency of the approach as it enforces a
conservation of the average power of the oscillatory velocity y. It also offers a natural means to
introduce and determine a correction factor, as is described in Section 8.

4. Parameters of the equivalent Maxwell system via mean-square criteria

This section proposes two pairs of parameters (A,B) for the equivalent Maxwell system (29)-
(30) obtained via mean-square criteria. The first pair consists of constant parameters; the second,
of amplitude-dependent parameters.

4.1. Constant parameters

The constant pair is new and is based on the following criterion:

min
A,B

∫ ∞

0

[
1

2π

∫ 2π

0

G (y, z̃)
2

dΦ

]
pa(a) da, (45)
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where
G (y, z̃) = y

(
1−H (|z̃| − 1)H (z̃y)

)
+Az̃ −By (46)

with y and z̃ being the oscillatory components given by (23) and (11)-(12), respectively. The
criterion amounts to minimizing the expectation of the squared gap G using the joint pdf of the
pair (a,Φ), given by (27)-(28).

From (9), it follows that the problem is equivalent to

min
A,B

∫ ∞

0

[
1

2π

∫ 2π

0

(
Ω
∂z̃

∂Φ
+Az̃ −By

)2

dΦ

]
pa(a) da. (47)

Solving the problem for A and B gives

A = − 1

D

(∫ ∞

0

a2Ω(a)4pa(a) da

)(∫ ∞

0

aΩ(a)hs(a)pa(a) da

)
, (48)

B =
2

D

(∫ ∞

0

a2Ω(a)4pa(a) da

)(∫ ∞

0

‖z̃‖2 pa(a) da

)
, (49)

where ‖z̃‖2 = (1/2π)
∫ 2π

0
z̃ (a,Φ)

2
dΦ and

D = 2

(∫ ∞

0

a2Ω2pa(a) da

)(∫ ∞

0

‖z̃‖2 pa(a) da

)
−
(∫ ∞

0

aΩ(a)hs(a)pa(a) da

)2

. (50)

4.2. Amplitude-dependent parameters

The amplitude-dependent pair, perhaps the first such pair that comes to mind, is described in
[14] and is defined by the following minimization problem:

min
A,B

1

2π

∫ 2π

0

(
Ω
∂z̃

∂Φ
+Az̃ −By

)2

dΦ. (51)

It follows that

A(a) = − aΩ3hs

2 ‖z̃‖2 − h2
s

and B(a) = Ω2 2 ‖z̃‖2

2 ‖z̃‖2 − h2
s

. (52)

5. Linearization parameters via a correlation-function-based criterion

This section obtains a new pair of amplitude-dependent linearization parameters from a correlation-
function-based criterion. Because it is not clear how to directly apply this criterion to the EPP
system due to the nonsmoothness of its governing equations, a simpler, less nonsmooth hysteretic
system is first introduced as a nonlinear approximating system to the EPP system in a sense that
will be made precise below. The simpler system is then linearized according to the correlation-
function-based criterion.

5.1. The approximating system

The approximating system used here is the following:

dẋ

dt
+ z =

√
εσẇ, (53)
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dz

dt
+A∗ |ẋ| z = B∗ẋ, (54)

where A∗ and B∗ are the loop parameters. The constitutive model (54) is the simplest Bouc–Wen
(BW) constitutive model [39]. It is rate independent, like the EPP system, but is less nonsmooth.

In keeping with the spirit of this study, A∗ and B∗ are sought as functions of a. Their determina-
tion is carried out along the same lines as the determination of A and B in the amplitude-dependent
parameter linearization in Subsection 4.2. A gap between the EPP and BW systems is defined as

G (y, z̃) = y
(
1−H (|z̃| − 1)H (z̃y)

)
+A∗ |y| z̃ −B∗y, (55)

which can be rewritten as

G (y, z̃) = Ω
∂z̃

∂Φ
+A∗ |y| z̃ −B∗y. (56)

Now, a variant of criterion (51) is used that requires the vanishing of the first two Fourier coefficients
of G, namely, ∫ 2π

0

G (y, z̃)

(
cos Φ
sin Φ

)
dΦ =

(
0
0

)
. (57)

Under the additional z̃ ≈ hc cos Φ + hs sin Φ, solving (57) for A∗ and B∗ yields

A∗(a) = − 3π

4aΩ

hs
aΩ

and B∗(a) = Ω2 + 2

(
hs
aΩ

)2

. (58)

A mean-square criterion as in (51) and/or the full expression (11)-(12) for z̃ can be used in (57),
but this leads to unwieldy expressions for the parameters.

Moreover, let
∂z̃

∂Φ
+A∗ |a sin Φ| z̃ = −B∗a sin Φ (59)

be the analogue for the BW system of (10). It can be shown that the first order Galerkin approxi-
mation of the periodic solution of (59) coincide with the first order approximation of the periodic
solution of (9). It follows that the energy dissipated over a cycle by the EPP system and by the
BW system is the same.

5.2. Linearization parameters of the approximating system

The linearization of the BW system is carried out using correlation functions. From (53)-(54), it
follows that correlation functions cẋẋ(t, s) and czẋ(t, s) satisfy the following differential equations:

∂cẋẋ
∂t

(t, s) = −czẋ(t, s), (60)

∂czẋ
∂t

(t, s) = B∗cẋẋ(t, s)−A∗E [|ẋ(t)| z(t)ẋ(s)] , (61)

where t > s ≥ 0.
Because of the term E [|ẋ(t)| z(t)ẋ(s)], the following decomposition is introduced to make progress

analytically:

E [|ẋ(t)| z(t)ẋ(s)] ≈ αE [z(t)ẋ(s)] + βE [ẋ(t)ẋ(s)] , (62)
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= αczẋ(t, s) + βcẋẋ(t, s), (63)

where α and β are parameters to be determined. Note that if the response (ẋ, z) of the BW
system were Gaussian, then the decomposition would hold true, and using properties of Gaussian
variables would make it possible to obtain α and β. That response being non-Gaussian, further
approximation is required to determine them. This will be addressed shortly, but first note that
decomposition (63) is more pertinent and better justifiable for a term of the form E [|ẋ(t)| z(t)ẋ(s)]
than it is for a term of the form E [ẋ(t)H (|z(t)| − 1)H (z(t)ẋ(t)) ẋ(s)], whence the introduction of
the BW system. Parameters α and β are obtained following the approach described in the previous
section. A gap is introduced,

G (y, z̃) = y |y| z̃ − αyz̃ − βy2, (64)

and associated with the following criterion:

min
α,β

1

2π

∫ 2π

0

(
y |y| z̃ − αyz̃ − βy2

)2
dΦ. (65)

Solving (65) under the first-order approximation, z̃ ≈ hc cos Φ + hs sin Φ, gives

α(a) =
32

15π
aΩ and β(a) = − 32

45π
hs. (66)

Inserting decomposition (63) into (61) and eliminating czẋ from (60)-(61) gives the velocity corre-
lation equation of a Maxwell system with parameters A = A∗α and B = B∗ − A∗β. Combining
these with (58) and (66) yields

A = −8

5

hs
aΩ

and B = Ω2 +
22

15

(
hs
aΩ

)2

. (67)

These relations, which clearly show that A and B depend on a, are to be compared with those
given by (52), which under the first-harmonic approximation (namely, ‖z̃‖2 ≈

(
h2
c + h2

s

)
/2) reduce

to

A(a) = − hs
aΩ

and B(a) = Ω2 +

(
hs
aΩ

)2

. (68)

The approximation introduced in decomposition (63), along with criterion (64), turns out to
be a linearization approach. The coefficients A and B thus obtained are used as the linearization
parameters of the linearized EPP system.

6. Velocity PSD of the EPP system

6.1. Damping ratio

The damping ratio is defined as

ξ =
A

2
√
B
. (69)

It is a constant in the case of a linearization with constant parameters, and a function of a in
the case of a linearization with amplitude-dependent parameters. In the latter case, the average
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damping ratio is defined as

ξ̄ =

∫ ∞

0

A(a)

2
√
B(a)

pa(a) da, (70)

where pa is given by (28).

6.2. General form of the velocity PSD

The non-Gaussian constant-parameter linearization procedure readily gives the velocity PSD,
Sẋ, as (31), and the corresponding velocity average power, E

[
ẋ2
]
, as Eq. (32), with A and B given

by Eq. (48) and (49), respectively.
The amplitude-dependent-parameter linearizations lead to the same expression (31), except that

now parameters A and B depend on a, where a is considered as a random variable (assumption
motivated by the fact that process at is slow) independent of ẇ with pdf pa given in (28). The
quantity Sẋ thus obtained is regarded as the “conditional velocity PSD given a” [27, 40]. To reflect
this, the corresponding velocity PSD is denoted as

Sẋ(ω | a) = εσ2 ω2 +A(a)2

(ω2 −B(a)) 2 +A(a)2ω2
. (71)

The velocity PSD, Sẋ(ω), is then defined as the average Sẋ(ω | a) over the pdf of a:

Sẋ(ω) =

∫ ∞

0

Sẋ(ω | a) pa(a) da. (72)

An immediate difficulty arises with Sẋ(ω | a) in (71), which is singular at ω = 1 for all 0 ≤ a ≤ 1,
because then A(a) = 0 and B(a) = 1.

One approach to removing the singularity consists in replacing A(a) in the denominator of (71)
by a parameter Ā(a) defined from the average damping ratio in (70) as follows:

Ā(a) = 2ξ̄
√
B(a). (73)

This amounts to modifying (71) to

Sẋ(ω | a) = εσ2 ω2 +A(a)2

(ω2 −B(a)) 2 + Ā(a)2ω2
. (74)

It follows that

E
[
ẋ2 | a

]
=
εσ2

2

1

Ā(a)

(
1 +

A(a)2

B(a)

)
. (75)

Finally,

E
[
ẋ2
]

=
εσ2

2

∫ ∞

0

1

Ā(a)

(
1 +

A(a)2

B(a)

)
pa(a) da. (76)

7. Linearization procedure vs Monte Carlo simulation

Below, the procedure based on the classical Gaussian linearization with constant parameters
is referred to as the Gaussian linearization procedure; the procedure based on the non-Gaussian
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linearization with constant parameters, as the non-Gaussian linearization procedure; the procedure
based on the linearization with amplitude-dependent parameters and mean-square criterion, as the
direct linearization procedure; the procedure based on the linearization with amplitude-dependent
parameters and a correlation-function-based criterion, as the indirect procedure.

7.1. General trends of the main frequency in simulation velocity PSDs

Examination of the simulation PSDs for 0.1 ≤ √εσ ≤ 0.9 reveals the following general trends
(Figure 2):

• The peak frequency shifts to the left with increasing input level.

• The peak of the velocity PSD decreases with increasing input level, although the rate of
decrease slows markedly for

√
εσ ≥ 0.5.

• The velocity PSD widens around its peak frequency with increasing input level.

The various procedures are now evaluated on how well they reproduce these trends, qualitatively
and quantitatively. Particular attention is paid to the following quantities: average power, peak
frequency, peak value, and bandwidth.

7.2. Velocity average power

The indirect linearization and the non-Gaussian linearization procedures gave accurate estimates
of the velocity average power E

[
ẋ2
]

over the whole input level range investigated. Although the
Gaussian linearization procedure yielded acceptable predictions, it failed to capture the trend of the
simulation data. The direct linearization procedure significantly overestimated the velocity average
power over the whole input level range investigated (Figure 3A).

7.3. Velocity PSD peak frequency

The shift to the left of the peak frequency with increasing input level was reproduced quali-
tatively by the four procedures. The quantitative agreement varied from procedure to procedure.
The Gaussian linearization procedure gave good predictions for 0.1 ≤ √εσ ≤ 0.7. For

√
εσ > 0.7,

that procedure failed to reproduce the trend of the data. The non-Gaussian linearization proce-
dure yielded acceptable results for 0.1 ≤ √εσ ≤ 0.3. For

√
εσ > 0.3, it significantly overestimated

the frequency shift. The direct linearization procedure underestimated the frequency shift for
0.1 <

√
εσ ≤ 0.7, and grossly overestimated it for

√
εσ > 0.7. The indirect linearization proce-

dure reproduced the trend of the simulation data over the whole input level range investigated. It
outperformed the Gaussian linearization procedure for

√
εσ ≥ 0.7 (Figure 3B).

7.4. Velocity PSD peak

The direct linearization procedure significantly overestimated the peak of the velocity PSD over
the whole input level range investigated. The Gaussian linearization procedure also overestimated
the peak over a good portion of the range and failed to reproduce the trend of the data. The
non-Gaussian linearization procedure gave good predictions for 0.1 ≤ √εσ ≤ 0.5. For

√
εσ > 0.5,

its predictions deteriorated with increasing input level. The indirect linearization procedure is the
only procedure whose predictions were in accord with the simulations over the whole input-level
range investigated (Figure 3C).
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7.5. Velocity PSD bandwidth

The bandwidth is defined here as half the ratio of the velocity average power to the peak of the
velocity PSD (namely, E

[
ẋ2
]
/(2 maxω Sẋ(ω))) [41, p. 265].

Although the constant-parameter-linearization procedures gave good predictions of the band-
width for the lower values of the input level range, they failed to reproduce the trend of the simula-
tion data. The direct linearization procedure underestimated the bandwidth for 0.2 ≤ √εσ ≤ 0.5,
and gave good results for 0.6 ≤ √εσ ≤ 0.8. The indirect linearization procedure was the only one
to give acceptable predictions over the whole input level range (Figure 3D).

Taken together, these results suggest that the indirect linearization procedure was the best
performer.

8. Average power conservation correction

Experience with random vibration of nonlinear systems has shown that the predictions of various
approximation methods are often enhanced by implementing a mechanism that ensures that some
pertinent quantities, estimates of which exist and are deemed reliable, are conserved in some sense
during approximations [11, 42, 43]. This has been shown to be the case for linearization procedures
with random parameters [27, 32, 44]. This section develops an average power conservation correction
as a post-processing step to the linearization procedures with amplitude-dependent parameters. An
original contribution of this section lies in (i) partitioning the power into the partitioning Sẋ(ω | a)
into components Sy(ω | a) and Su(ω | a) by analogy with Section 3:

Sy(ω | a) =
εσ2ω2

(ω2 −B(a)) 2 + Ā(a)2ω2
, (77)

Su(ω | a) =
εσ2A(a)2

(ω2 −B(a)) 2 + Ā(a)2ω2
, (78)

and (ii) proposing an average power conservation for each component. The average power con-
servation correction does not modify the total average power but redistribute it between the two
components. It takes advantage of the availability of an estimate provided by stochastic averaging
to the average power of the cyclic component.

8.1. Average power conservation for the oscillatory velocity PSD

In contrast with what was observed with the Maxwell system (see the remark at the end of Sec-

tion 3), E
[
y2 | a

]
differs whether it is computed using (1/(2π))

∫ 2π

0
a2Ω2 (sin Φ)

2
dΦ or (1/(2π))

∫∞
−∞ Sy(ω |

a) dω with Sy given in (77). The former value is a natural estimate to E
[
y2 | a

]
within the frame-

work of stochastic averaging. To ensure that this value is conserved through linearization, Sy(ω | a)
is scaled by an amplitude-dependent factor G(a)2 which is determined by enforcing the average
power conservation in the sense of stochastic averaging [27]:

1

2π

∫ ∞

0

εσ2G(a)2ω2

(ω2 −B(a)) 2 + Ā(a)2ω2
dω = E

[
y2 | a

]
=

1

2π

∫ 2π

0

a2Ω2 (sin Φ)
2

dΦ. (79)

This forces

G(a)2 =
a2Ω(a)2Ā(a)

εσ2
. (80)
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Now, combining (77) and (80) gives

Sy(ω | a) =
Ā(a)a2Ω(a)2ω2

(ω2 −B(a)) 2 + Ā(a)2ω2
. (81)

Finally, averaging over the pdf of a yields

Sy(ω) =

∫ ∞

0

Ā(a)a2Ω(a)2ω2

(ω2 −B(a)) 2 + Ā(a)2ω2
pa(a) da. (82)

8.2. Average power conservation for the drift rate PSD

It is desirable to derive a correction mechanism for Su similar to the one implemented for Sy
in the previous subsection. However, unlike E

[
y2 | a

]
, for which stochastic averaging provides an

estimate (viz., E
[
y2 | a

]
= a2Ω2/2), E

[
u2 | a

]
has no natural a priori estimate. An estimate to

E
[
u2
]

is, however, provided by the following relation:

E
[
u2
]

= E
[
ẋ2
]
− E

[
y2
]
, (83)

where E
[
ẋ2
]

and E
[
y2
]

are given by

E
[
ẋ2
]

=
εσ2

2

∫ ∞

0

1

Ā(a)

(
1 +

A(a)2

B(a)

)
pa(a) da, (84)

E
[
y2
]

=
1

2

∫ ∞

0

a2Ω(a)2 pa(a) da. (85)

Figure 4 shows the (asymptotic) moments E
[
ẋ2
]

given in (84), E
[
y2
]

given in (85), and their

difference, E
[
u2
]
, as functions of the excitation intensity

√
εσ in the case of the indirect linearization

procedure.
Eq. (83) allows one to scale Su by a factor χ2. But this time, the factor χ2 is independent of

a, as the average power conservation is written between a-independent quantities. Writing E
[
u2
]

with account taken of the factor χ2 results in

E
[
u2
]

= χ2

∫ ∞

0

1

2π

(∫ ∞

−∞
Su(ω | a) dω

)
pa(a) da, (86)

= χ2εσ2

∫ ∞

0

A(a)2

2Ā(a)B(a)
pa(a) da. (87)

The average power conservation amounts to adjusting χ2 so that

E
[
ẋ2
]
− E

[
y2
]

= χ2εσ2

∫ ∞

0

A(a)2

2Ā(a)B(a)
pa(a) da. (88)

Hence

Su(ω) = χ2εσ2

∫ ∞

0

A(a)2

(ω2 −B(a)) 2 + Ā(a)2ω2
pa(a) da, (89)
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where

χ2 =
E
[
ẋ2
]
− E

[
y2
]

εσ2

∫ ∞

0

A(a)2

2Ā(a)B(a)
pa(a) da

. (90)

8.3. Consequences on the velocity PSD

Combining (82) and (89) yields the following approximate velocity PSD:

Sẋ(ω) =

∫ ∞

0

Ā(a)a2Ω(a)2ω2 + χ2εσ2A(a)2

(ω2 −B(a)) 2 + Ā(a)2ω2
pa(a) da. (91)

By design, the average power conservation correction does not alter the velocity average power
predicted by either the direct or indirect linearization procedures. There is therefore no point in
discussing the application of this correction to the direct linearization procedure, as it will not repair
a critical defect of the procedure, namely, its poor estimates to the average power (see Subsection
7.2.). As for the indirect linearization procedure, applying the average power conservation correction
(i) enhanced the (already good) predictions for the peak frequency of the PSD, its peak value, and
its bandwidth, as shown in figure 5, and (ii) yielded PSDs that are in good agreement with the
simulation PSDs around the main frequency, as shown in Figure 6.

9. Conclusions

Two original linearization procedures were developed for the EPP system. Their predictions,
along with those of the classical Gaussian linearization and of the linearization described in [14],
were evaluated against Monte Carlo simulation in terms of the velocity average power, the peak
frequency, the peak value, the bandwidth, and the overall shape around the main frequency. The
following conclusions can be drawn:

1. The classical Gaussian linearization procedure gave good predictions of the peak frequency
for small-strength inputs and performed acceptably well in estimating the velocity average
power. But it performed very poorly in estimating the peak of the velocity PSD.

2. The non-Gaussian linearization procedure performed well in predicting the velocity average
power over the whole input level range, the peak of the PSD and the bandwidth for small-
strength inputs. However, the procedure performed poorly in estimating the peak frequency.

3. The direct linearization procedure, despite being the most natural, poorly predicted the ve-
locity average power, the peak frequency and the peak of the velocity PSD. The application of
the average power conservation correction did not improve the predictions of the procedure.

4. The indirect linearization procedure, which combined the stochastic averaging principle, an
approximating nonlinear hysteretic system with amplitude-dependent loop parameters, a lin-
earization with amplitude-dependent parameters using a correlation-function-based criterion,
the conditional PSD notion, and an average power conservation correction, was the best per-
former. It performed well in estimating the velocity average power and the PSD peak over
the whole input level range; it performed acceptably in estimating the bandwidth over the
whole input level range and the peak frequency over almost the whole input level range. The
procedure qualitatively and quantitatively reproduced the simulation velocity PSDs in the
main frequency band, over an input level range of almost one order of magnitude.
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5. A pertinent estimation to the equivalent damping of the EPP system was obtained (Eq. (70)).

6. All the quantities occurring in the three linearization procedures are based on the two first
Fourier coefficients of the quasi-static periodic response of the system to a constant-amplitude
periodic input. To apply any of the three procedures to a given randomly excited symmet-
ric nonlinear hysteretic system, it suffices to have the two first Fourier coefficients of the
corresponding periodic response and proceed as described here for the EPP system.
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Figure 2: Two-sided simulation velocity PSDs in the circular frequency range [0, 2] for
√
εσ = 0.1 to 0.9 with

increment 0.2.
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Figure 3: Dependence on
√
εσ of the average power E

[
ẋ2

]
(A), of the peak frequency of the velocity PSD Sẋ

(B), of the peak value of the velocity PSD Sẋ (C), and of the bandwidth (D) as determined from Monte Carlo
simulations ( ) and as predicted by the four procedures: (1) constant parameter Gaussian stochastic linearization
(Classical statistical linearization) ( ), (2) constant parameter non Gaussian stochastic linearization ( ),
(3) amplitude-dependent parameter direct linearization ( ), (4) amplitude-dependent parameter indirect lin-
earization ( ).

23



0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

E
[ ẋ
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2
]

A

0.2 0.4 0.6 0.8 1

0.7

0.75

0.8

0.85

0.9

0.95

1

P
ea
k
fr
eq
ue
nc
y
of

S
ẋ
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Figure 5: Dependence on
√
εσ of the average power E

[
ẋ2

]
(A), of the peak frequency of the velocity PSD Sẋ (B), of

the peak value of the velocity PSD Sẋ (C), and of the bandwidth (D) as determined from Monte Carlo simulations
( ) and as predicted by the amplitude-dependent parameter indirect linearization after application of the average
power correction ( ).
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Figure 6: Two-sided velocity PSD Sẋ after application of the average power correction. The PSD Sẋ is represented
around its (positive) main frequency for input levels ranging from

√
εσ = 0.1 to

√
εσ = 0.9. The dots ( ) represent

the PSDs as determined from Monte Carlo simulations, and the solid line ( ) represents the PSDs predicted
by the amplitude-dependent parameter indirect linearization.
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