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Abstract The increasing availability of large-scale

Global Positioning System (GPS) data stemming from

in-vehicle embedded terminal devices enables the de-

sign of methods deriving road network cartographic in-

formation from drivers’ recorded traces. Some machine

learning approaches have been proposed in the past

to train automatic road network map inference, and

recently this approach has been successfully extended

to infer road attributes as well, such as speed limita-

tion or number of lanes. In this paper, we address the

problem of detecting traffic signals from a set of vehicle

speed profiles, under a classification perspective. Each

data instance is a speed versus distance plot depicting

over a hundred profiles on a 100-meter-long road span.

We proposed three different ways of deriving features:

the first one relies on the raw speed measurements; the

second one uses image recognition techniques; and the

third one is based on functional data analysis. We in-

put them into most commonly used classification algo-

rithms and a comparative analysis demonstrated that

a functional description of speed profiles with wavelet

transforms seems to outperform the other approaches

with most of the tested classifiers. It also highlighted
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that Random Forests yield an accurate detection of

traffic signals, regardless of the chosen feature extrac-

tion method, while keeping a remarkably low confusion

rate with stop signs.

Keywords Map Inference · GPS Speed Profiles ·
Functional Data Classification · Traffic Signal Detection

1 Introduction

1.1 Inferring road network

An exhaustive and accurate knowledge of road networks

is a prerequisite to many applications such as route

planning, traffic flow control or even risk management.

Besides, roads are often considered as structural ele-

ments in maps, insofar as one can use them as a visual

reference frame to get a quick grasp of one’s current

location. Accordingly, most mapping agencies consider

road networks as a major cartographic theme, and put

considerable effort in road data acquisition, update and

quality review (Bonin 2002; Liu et al 2012; Zhang and

Couloigner 2006).

This is traditionally done by photogrammetric resti-

tution on couples of stereographic images, or directly

by digitizing roads on aerial and satellite orthopho-

tographs. Some approaches have been introduced to

perform fully automatic road extraction, relying on mul-

ti-spectral and high resolution imagery (Bentabet et al

2003; Zhang and Couloigner 2006). These methods are

effective for surveying a road network ex-nihilo, but

most of the time, the updating process is bounded by

the frequency of image release, which may turn out to

be prohibitive when data currency is of utmost impor-

tance (Chen and Krumm 2010). Indeed aerial image



2 Y. Méneroux et al.

campaigns are typically conducted every several years,

which is to be put in perspective with the fast evolution

of cities. This is of course notwithstanding unavoidable

field survey completions that may render the whole pro-

cess slower and even more expensive (Zhang et al 2017).

More recently, the OpenStreetMap project (Haklay and

Weber 2008) aims at providing citizens with a plat-

form for sharing geographic information, though with

no quality guarantee and with large disparities in ac-

curacy and completeness (Girres and Touya 2010; Liu

et al 2012).

For the last few years, the availability of data stem-

ming from Global Positioning System (GPS) embedded

in mobile devices has given plenty of scope for techno-

logical developments in many fields. Indeed, as we are

moving closer to having about as many cell-phone sub-

scriptions as people on Earth (Lulli et al 2017), this new

source of data is the most qualified to conduct studies

where massive, crowdsourced and inexpensive informa-

tion on individual mobility is required, though it is of-

ten acknowledged to be sometimes biased (Arai and

Shibasaki 2013). As opposed to the traditional meth-

ods, map inference techniques aim at deriving carto-

graphic information from traces recorded by in-vehicle

GPS receivers (Biagioni and Eriksson 2012). Besides,

while aerial images may not always be easily accessed

in developing countries, or may only be available at a

prohibitive cost, local fleets or collaborative transport

smartphone applications, instead, produce large sets of

GPS traces which could be used as input in map in-

ference algorithms to offer a cheap surrogate for map

construction.

A few years ago, some authors such as Liu et al

(2012), introduced measures to assess the quality of

maps produced by GPS traces, which opened the way

for a full machine learning resolution of the problem

(Biagioni and Eriksson 2012).

1.2 Inferring road attributes

Detailed road maps are of utmost importance for self-

driving cars, whose trajectory planning system is es-

sentially relying on accurate and up-to-date informa-

tion. Embedded sensors are not always self-sufficient,

and a typical solution to this issue is to rely on a prior

map in order to identify beforehand the approximate

location and the type of the object that should be de-

tected (Lundgren et al 2014; Mu et al 2015). Sharing

information between intelligent vehicles detections can

therefore help maintaining accurate and up-to-date de-

tailed maps. Such innovative cloud-based solutions are

currently under development among original equipment

manufacturers (for example, the ”static eHorizon” solu-

tion from Continental Automotive). Eco-driving, road

safety (Chen et al 2016), vehicle-embedded driving as-

sistance devices conception (Andrieu et al 2013) or ac-

curate routing time estimation (Bonin 2002), are many

other examples of fields where road maps need to be

completed with up-to-date attributes.

Although geometry and topology are the base com-

ponents of road maps, semantic information (e.g. road

nature) and attributes (e.g. traffic calming infrastruc-

ture, speed limitation or number of lanes) are progres-

sively getting captured in the scope of map inference

(Van Winden 2014). For instance, Schroedl et al (2004)

proposed a complete workflow relying on probe vehi-

cles equipped with differential GPS to provide an ac-

curate estimate of the road centerline and the num-

ber of lanes for the refinement of road map intersec-

tions. This idea has been extended to standard qual-

ity receiver by Chen and Krumm (2010), who modeled

GPS traces on a road with multiple lanes as a Gaus-

sian Mixture whose components are estimated with the

Expectation-Maximization (EM) algorithm (Dempster

et al 1977) to determine the most plausible number

of lanes and their respective widths. In a similar way,

Van Winden et al (2016) found that Support Vector

Machines (SVM) (Vapnik 2013) and regression trees

(Breiman et al 1984) are the most adequate algorithms

for speed limit inference. In other approaches, GPS

traces are combined with external sources of data, like

in Li et al (2015) where Twitter data and SVM are used

for an automatic mining of street names. Another work

(Biljecki et al 2013) relies on an Expert System program

to analyze GPS traces and geographic information data

to infer users’ transportation modes. This was extended

by Endo et al (2016) and Dabiri and Heaslip (2018),

where expert knowledge is replaced by deep neural net-

works (LeCun et al 1999). The outputs of these works

may be a very useful source of information to provide

roads with a set of attributes describing the accessibil-

ity by type of vehicle.

1.3 Inferring traffic signs

Surprisingly, very few research works address the issue

of utilizing GPS data to infer punctual road infrastruc-

ture, such as traffic calming devices (traffic lights, stop

signs, speed bumps...) or speed management devices

(speed limits, speed enforcement cameras...). However,

such detailed information is often missing in geographic

databases produced by national mapping agencies (even
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though it may be available at individual city scales, it

is difficult to collect, especially in decentralized coun-

tries). Similarly, crowd-sourced project databases are

usually not complete or detailed enough. For instance,

OpenStreetMap contains 6746 traffic signal intersections

in France (2018), which barely corresponds to 5% of the

total number that is expected to be reported.

The most related work is certainly the one of Wang

et al (2017), who used a set of GPS trajectories to de-

tect and localize stop bars on each individual lane at

crossings. Intersection spots are identified with entropy

analysis of vehicle headings, then, in the second stage,

the set of GPS stop points is modeled as a mixture of

gaussians, and the EM algorithm is used to precisely

estimate the position of the stop bar. The results are

very accurate with a sub-meter level positional error.

However, the proposed method assumes that all inter-

sections are controlled by traffic signals, which means

that it does not distinguish between traffic signals, stop

signs and yield signs. Contrarily, with this approach,

traffic signals located far from intersection nodes (e.g.

traffic lights associated with pedestrian crossings) are

not detected.

More recently Munoz-Organero et al (2018) used

machine learning algorithms to detect in real-time sev-

eral kinds of road infrastructures based on an analysis of

speed and acceleration signals estimated from GPS po-

sitions of a single vehicle. Despite providing very good

results, the performance scores clearly exhibit some lim-

itation on traffic signal detection, with systematically

lower precision and recall performance scores on almost

all the tested classification algorithms, in comparison to

street crossings and roundabouts. Moreover, a natural

extension of this work would be to combine the infor-

mation stemming from all vehicles which traveled on

a specific road link to detect infrastructure elements.

This was proposed by Zourlidou et al (2019), where

predictions are performed on each individual trajec-

tory based on its representation as spatial and temporal

speed profiles. Subsequently, predicted labels are aggre-

gated to form the overall prediction at the intersection

level. However, we believe that machine learning should

be able to deal with a set of trajectories and infer pre-

dictions based both on individual speed profiles and on

their mutual variability. This is what we propose here-

after.

In this paper, we apply machine learning algorithms

on in-vehicle GPS speed profiles to detect traffic sig-

nals. We believe that speed profiles, as defined by An-

drieu et al (2013), are potentially more explicit than

raw trajectories (i.e. sequences of timestamped geo-

graphic coordinates) and contain all the information

needed to recognize different kinds of traffic calming

infrastructures, provided that a sufficient number of

traces are observed on the same road segment. How-

ever, as in any machine learning problem, the choice of

explanatory variables has a significant impact on the

prediction performance. We have applied 6 of the most

commonly used algorithms to compare different mod-

eling choices, depending on whether the set of speed

profiles is considered as an image or as a functional

dataset. These approaches lead to 2 different sets of

explanatory variables, modeling the same reality. This

has been completed with a third method, referred to as

direct approach hereafter, which constitutes our base-

line approach. Hence it amounts to train 18 models of

classifiers (3 approaches times 6 algorithms) in similar

conditions in order to compare their respective predic-

tion performances on a validation sample. The goal of

this paper is to estimate separately the fitness of each

couple of one data description model and one machine

learning algorithm; thus we do not investigate the in-

terest of combining different sets of descriptors. As far

as we know, we believe that this is the first attempt of

using machine learning techniques for the detection of

traffic signals on a collection of GPS speed curves.

The remaining of the paper is structured as follows:

the dataset and its preparation are briefly described in

the next section, while 3 different approaches along with

the selected machine learning algorithms are detailed in

section 3. After a summary of the performance indices,

section 4 provides the results which are discussed in

section 5. Eventually, section 6 concludes the paper.

2 Constitution of the dataset

2.1 Data acquisition

GPS traces were collected for the EU-funded Eco-driver

project1 in 2014. A total of 30 different non-professional

drivers recruited from the general public were requested

to run a predefined 25-km-long circuit loop in the town

of Versailles (France) and its outskirts. Each subject

had to repeat the experiment (non consecutively) be-

tween 4 and 6 times, which amounts to a total of 170

trips. About half of them were recorded in normal driv-

ing condition, while the remaining trips were carried

out with an eco-driving assistance system. The whole

experimentation was conducted under the supervision

of one of the authors.

1 http://www.ecodriver-project.eu/
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The experimentation route (depicted on Fig. 1) is

driven clockwise in the upper loop, and anti-clockwise

in the main loop. It mixes large urban conditions in

the north with inter-urban and motorway conditions in

the south. The whole trip takes between 45 minutes

and 1 hour, depending on traffic conditions. Statistical

representativeness of drivers and experiment modalities

enable to assume naturalistic driving conditions.

Fig. 1 Experimentation route. Average speed on the track
is symbolized with rainbow color scale (from blue to red as
speed increases).

Two cars of the same model were used for the ex-

periments. They were equipped with a data logger con-

nected to both the vehicle CAN bus and the antenna

of a Garmin GPS 16x LVC receiver. During each trip,

87 parameters were recorded, including general param-

eters such as position and its derivatives but also some

more specific information like the remaining quantity

of fuel or the steering wheel position. Most of these pa-

rameters were recorded at a 10 Hz sampling frequency,

while GPS position was only measured at 1 Hz. Besides,

starting times of all the sensors are usually different,

leading to non-synchronized measurement cycles. For

these reasons, data were post-processed in order to get

a simpler file with one line by epoch, containing the

corresponding timestamp and all the measured parame-

ters. In all our study, 1 Hz data are used. It is important

to note that speed measurements are not computed by

positions finite difference as they are directly observed

by Doppler measurement system integrated in the GPS

(Kaplan and Hegarty 2005). This provides estimated

speeds with one order of magnitude better accuracy (±
0.1 m/s). It shall be noted however that not all modern

in-vehicle receivers are able to provide such accurate

speed, but as mentioned by Schroedl et al (2004), de-

creasing costs of sensor technology enables to assume

that in the future, cars will be undoubtedly equipped

with instruments such as differential GPS, providing

equivalent performances. Before any further processing,

GPS longitude and latitude were projected into Lam-

bert 93 planimetric coordinates.

To build ground truth, 235 infrastructure elements

have been reported along the track, including 44 traffic

lights, 5 stop signs, 9 speed bumps and 92 crosswalks.

Each element has been geo-localized by pinpointing its

position on Geoportail2 ortho-images. Positional error

is estimated to be less than 3 m.

2.2 Pre-processing

Speed profiles were mathematically modeled by An-

drieu et al (2013) and are a classical tool to measure the

impact of traffic calming devices (Moreno and Garćıa

2013). Let us denote by x ∈ R the curvilinear abscissa

of a vehicle along the track. Speed profile is defined as

a function v : x→ v(x), the instantaneous speed of the

vehicle at location x. A collection of speed profiles is

depicted on Fig. 2.

1000 1200 1400 1600 1800

0
5

10
15

Curvilinear abscissa (m)

S
p

e
e
d
 (

m
/s

)

Fig. 2 A set of speed profiles. Each color corresponds to an
individual vehicle. Positions of traffic lights are depicted with
vertical dashed lines.

Curvilinear abscissa theoretically correspond to the

traveled distances provided that all vehicles followed

exactly the same path. This assumption is obviously

unrealistic, and the actual distance traveled by a car

is most of the time strongly related to the driver’s be-

havior. Moreover, the noise on the GPS receiver will

be embodied by local expansions and contractions of

speed curves. A way to deal with this issue is to map-

match GPS points on a reference road network, as illus-

trated on Fig. 3. This operation enables a) to express

2 French national web mapping service:
https://www.geoportail.gouv.fr/
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vehicle positions in a uni-dimensional reference coor-

dinate system and b) to get more accurate positions

(road network adds an external information for solving

the localization problem). The second point is partic-

ularly important in the north-west part of the circuit,

near Saint-Cyr l’École, where a tunnel obstructs GPS

signal for approximately 200 m (Fig. 1).

s4

Fig. 3 Map-matching (green) of raw GPS points (red) on a
reference road network (black lines) and curvilinear abscissa
computation (blue dashed lines).

We performed map-matching on a reference road

network with the method introduced by Newson and

Krumm (2009). However, map-matching a smooth tra-

jectory on a piecewise linear network may result in sys-

tematic artifacts which may turn out to be confusing

for machine learning algorithms. For example, in Fig.

3, points 4 and 5 are much further apart after map-

matching, resulting in an unnatural leap forward in the

corresponding speed profile. Consequently, GPS posi-

tions sequence has been smoothed with a monotonic

constrained Kalman filter (Tully et al 2011). This step

enabled to produce more realistic speed profiles, as illus-

trated on Fig. 4, with Kalman processed profile mostly

adjusted to the map-matched profile, except on the ar-

tifact around 2550 m where it has a shape more similar

to the raw profile. Enforcing a monotonic constraint on

curvilinear abscissas was motivated by the assumption

that vehicles never moved backwards.

2200 2400 2600 2800

0
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Curvilinear abscissa (m)

S
p

e
e
d
 (

m
/s

)

raw profile
map−matched profile
Kalman−corrected profile

Fig. 4 Kalman filtered speed curve (green line) compared to
curves before (red dashed line) and after (blue dashed line)
map-matching.

Eventually we computed functional box-plots (Sun

and Genton 2011) on the set of curves to remove outliers

(i.e. profiles whose behavior differs abnormally from

central tendency, which turned out to correspond to

sensor or logging failures during the experimentation).

As a result, 144 (over 170) profiles are remaining in

the data, for a total experiment duration of 126 hours,

and an approximate traveled distance of 3650 km.

2.3 Sliding window computation

Each window contains the 144 curves and has a length

L. Two consecutive windows are separated by a dis-

tance t, chosen smaller than L so that windows are over-

lapping each other (Fig. 5). This artificial increase of the

number of training data will enable to train algorithms

to detect a traffic light, wherever it is located in the

window. Obviously, since those new training data are

deeply correlated with original ones, one should expect

the gain in prediction performance to be incommensu-

rate with the increase of the training sample size. Also,

it will be important to take this correlation into account

when separating training and validation datasets.

Each window stands for an individual instance, from

which different approaches will extract a vector of fea-

tures X ∈ Rp. The dimension p of the vector depends

as well on the selected approach. It remains to compute

the target variable Y . Since we are facing a classification

problem, Y takes its values in the binary set Y = {0, 1}.

Fig. 5 Sliding windows extraction on a set of 3 speed profiles.
Each window covers a span L of the track and is a translation
t of its immediate left neighbor.

For the experiment, we set L = 100 m and t = 10 m

(90% overlap). This choice is mainly motivated by the

fact that 100 m appeared to be a fair compromise to

get sufficiently large window to capture as much traf-

fic light signature as possible, and at the same time it

enables to limit the risk of having two traffic lights in

the same window. Besides, an overlap of 90% enables

to get a dense cover of traffic light relative positions in

the windows on the whole dataset.
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With this method, a total of 2505 windows were

extracted, including 402 (16%) positive samples. Four

examples of sliding windows are depicted hereafter on

Fig. 6. Note that the top two windows correspond to

negative instances (a stop sign on the left and a cross-

walk on the right), while bottom instances are positive.
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Fig. 6 Four examples of sliding windows : each color corre-
sponds to an individual trip.

3 Methodology

In this section, we describe the methods used for ex-

tracting explanatory variables from sliding windows,

then selected machine learning algorithms are briefly

presented. Eventually, the training/test sample separa-

tion process is detailed.

3.1 Data description

Even after the preprocessing phase, windows of GPS

trajectories can not be immediately input into machine-

learning algorithms. One needs a modeling approach to

transform a set of curves in a vector of real features that

will characterize each window for our algorithms. This

modeling phase can greatly impact the performance of

the process. For this reason, three different methods

were experimented: 1) a straight-forward approach tak-

ing into account all speed measurements in a single or-

dered vector of features (referred to as direct approach

hereafter). 2) A more traditional approach considering

each sliding window as an image (image approach). 3) A

specific approach dealing with speed profiles as contin-

uous functions (functional approach). The first method

was chosen out of the desire to evaluate the fitness of a

model that considers, as much as possible, the data in

their primitive form.

In the present section, X ∈ Rp stands for a p-

dimensional feature vector, describing a sliding window,

whose response variable is denoted Y . The total number

of speed profiles is noted N . Let us notice that our ob-

jective is to design an operational classifier, adequated

to every GPS dataset, regardless of how many speed

profiles it contains. This is important as the number

of available traces on a given street is unknown before-

hand, and training one algorithm for each possible size

of dataset is not a reasonable solution. More formally,

we state the following constraint:

Constraint 1. The structure of the explanatory vector

must not depend on the number of available profiles.

This constraint ensures that a unique classifier model

is able to operate on every collection of curves. Obvi-

ously, for any consistent classifier, the expected predic-

tion accuracy will increase with the number of vehicle

traces recorded on a given road.

3.1.1 Direct approach

The most direct and straight-forward approach lies in

considering pointwise values of speed profiles as a finite

real vector, whose dimension depends on a discretiza-

tion step parameter.

For a discretization step of 1 m, the feature vector

X is composed of p = 14400 explanatory variables, each

of them corresponding to one of the 100× 144 = 14400

speed measurements reported in a window.

Curvilinear abscissa
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Fig. 7 An example of feature extraction with direct ap-
proach on 3 speed profiles.

In a given frame, the ordering of the variables is

done using the lexicographical order on the timestamp-

velocity couples. See Fig. 7 for an extraction of the ex-
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planatory variables on a fictive sliding window with 3

speed profiles and discretization step set at 1/7th of

total length L, hence generating 8 × 3 = 24 features

(X1, X2, ...X24). This choice leads to the loss of the

links between points of the same trajectories, but it

guarantees that the distance function is not affected by

an arbitrary ordering of trajectories.

Moreover, the rearrangement inequality guarantees

the following property: among the orderings abiding by

the natural constraint that variables having the same

timestamps share the same indices, this ordering always

minimizes the distance between two frames. This prop-

erty indicates that the distances we compute are at least

consistent. As this ordering does not take the whole

trajectories into account, but rather focus on the dis-

tribution of the velocities at each timestamp, it may be

viewed as predominantly image-driven, even if it works

on functional data.

Obviously, this approach does not abide by con-

straint 1, but it makes a useful basis to evaluate the

performance of the other two models, which entail more

complex modeling approaches

3.1.2 Image approach

This second approach is motivated by the fact that hu-

man recognition of a potential traffic light on graphics

depicting speed curves is mostly visual and based on

simple reference patterns (a traffic light is embodied by

a null value of a fraction of curves on a short distance,

while other curves do not seem to be much impacted).

Consequently, we may believe that an image-oriented

approach has some chance to be successful for solving

the present classification task. To do so, we used the

simple and efficient algorithm introduced by Ozuysal

et al (2007), based on a computation of binary features

randomly and evenly spread throughout the image. De-

spite its extreme succinctness, it has been proven to

perform very well on complex image recognition tasks.

The algorithm we present below is an adapted version,

for the specific case of speed profile images.

Given a position p = (x, v) ∈ [0, L]× [0, vmax] in the

window image, and a couple of dimension parameters

(dx, dv), let us define function J such that J (p) ∈ N
returns the number of speed profiles intersecting a dx×
dv rectangular cell, whose lower left corner is positioned

on p. Figure 8 provides an example of computation of

the function J for a simple case with 3 curves.

Curvilinear abscissa x

S
p
e
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d
 v

p

x

v

dx

dv

J(p) = 2

Fig. 8 Two curves intersecting cell positioned in (x, v).

At the beginning of the experiment, a number p

of position pairs (p1
j ,p

2
j ) are chosen at random with a

uniform sampling. Each feature Xj is then computed

as the normalized difference of the number of curves

intersecting cells positioned at p1
j and p2

j :

Xj =
J (p1

j )− J (p2
j )

N
(1)

The normalizing factor N ensures that explanatory

variables are insensitive to the total number of speed

profiles. As a consequence, each feature extracted with

this method corresponds to a difference of curves den-

sities at two specific locations selected in the image.

It is important to note that even though positions

are chosen at random, they are fixed during both the

training and classification steps. Then each variable Xj

corresponds to a specific couple of positions in the im-

age, and this definition is the same for all sliding win-

dows. For a sufficient number of features, the uniform

sampling provides a complete and homogeneous cover

of our image. Since this approach does not distinguish

between individual curves, it automatically abides by

constraint 1.

When the number of profiles is important, the ex-

traction process may be time-consuming. However, the

total computation time can be reduced by pre-arranging

curves in a quad-tree structure, and then performing

faster intersections research with each of the 2p cells.

Processing time gain is highly dependent on the quad-

tree parameters, but with a quick trial and error set-

tings, we divided the extraction time by 5 (from 4 hours

to less than 45 minutes on our machine).
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In our experiment, we set dx = 5 m, dv = 5 km/h

and vmax = 80 km/h (the model was evaluated for dif-

ferent values of vmax in the range [10; 130] km/h and we

selected the value providing optimal results). A number

p = 15000 features were extracted.

3.1.3 Functional approach

The particularity of our classification task is that our

data are inherently functional. Though it is always pos-

sible to consider a function as a Rp vector of explana-

tory variables, regularly sampled along the abscissa,

some research works have shown that this is seldom an

optimal modeling for classification and regression prob-

lems. Indeed, generally, for functions whose behavior is

not completely erratic, consecutive features will be sig-

nificantly correlated, hence decreasing the performance

of most classifiers. Some solutions rely on an irregular

sampling of the function, in order to acquire more in-

formation on intervals where variations are the most

important, and also on the contrary, saving memory

where no meaningful signal has to be registered. How-

ever, this assumes that a unique and optimal sampling

pattern can be found for all data, which is often impos-

sible since high-variation intervals of functions have no

reason to be colocated. For these reasons, a functional

description of such data is often a better solution than a

sequence of values taken in an arbitrary set of locations

(Berlinet et al 2008; Ferraty and Vieu 2011).

A functional description of speed profiles aims at
extracting a small number of meaningful parameters

that optimally represent the set of functions we may

be facing in the detection task. This is mathematically

expressed by a basis in a functional space, with each

data being described by its projection components on

basis functions. There exist multiple choices of basis,

and the most well-known is certainly the Fourier rep-

resentation, specifically designed for periodic signals.

Unfortunately, Fourier basis functions are not localized

in space (or time), which makes them inappropriate in

our classification task. On the reverse, Splines basis are

completely localized, implying that information is a pri-

ori evenly distributed in all coefficients, then render-

ing impossible to reduce the number of features by se-

ries truncation. Between these two extremal solutions,

wavelets are acknowledged to be localized both in space

and frequency, making them a perfect compromise for

functional classification problems (Berlinet et al 2008).

For more information on basis expansions for functional

data classification, refer to Gregorutti (2015).

Profile Description

f1 Pointwise mean
f2 Pointwise standard deviation
f3 Third standardized moment (skewness)
f4 Fourth standardized moment (kurtosis)
f5 Sarle’s bimodality coefficient
f6, f7, f8 Median, 15th and 85th pointwise percentiles
f9 Pointwise dispersion : f8 − f7
f10, f11 Pointwise minimal and maximal values
f12 Pointwise amplitude : f11 − f10

Table 1 Description of the 12 aggregated profiles used in our
approach. The term pointwise refers to the fact that calcula-
tions are performed separately for each abscissa x ∈ [0, L].

We propose to describe data with the discrete Haar

wavelet transform (Dremin et al 2001) for its simplic-

ity and computational efficiency. Using wavelet-based

features is not new in machine learning field, and many

authors reported them as being powerful descriptors for

signal data-based learning, notably in acoustic (Daniels

2010; Morizet et al 2016), medical (Aydemir and Kayik-

cioglu 2011; Sumathi et al 2014) and image (Lotfi et al

2009) classification fields.

In order to abide by constraint 1, we propose to

merge speed curves in a small number of aggregated pro-

files. The 12 aggregated profiles used for this approach

are summarized in Table 1.

The profile f1 represents the central tendency of the

speed curves collection. The average speed analysis is

not sufficient to distinguish between traffic lights, stop

signs or even speed bumps. Thus, we define the stan-

dard deviation profile f2. The rationale behind f2 intro-

duction is that stop signs and speed bumps are char-

acterized by a very normative response from drivers,

hence implying reduced speed variance at every loca-

tion x, unlike traffic lights, which most of the time split

drivers into two distinct sets depending on whether they

have to stop or not. This second aggregated profile will

be arguably less informative when the green waves phe-

nomenon3 is particularly important, for example in ma-

jor avenues. Accordingly, we believed that only poor re-

sults may be extracted from the analysis of these first

two profiles, and we decided to add higher order mo-

ments f3 and f4 (assuming f2 is strictly positive, i.e.

there exists no point in [0, L] where all profiles would in-

tersect), which can be combined to derive a bi-modality

profile with Sarle’s coefficient (Ellison 1987):

f5(x) =
f3(x)2 + 1

f4(x)
(2)

3 Series of coordinated traffic lights on major road axis.
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Hopefully, f5 is very informative to discriminate traf-

fic lights from other road infrastructure elements, based

on the observation that speeds distribution in some

neighborhood of the sign is inherently bi-modal.

Dispersion f9 is calculated by subtracting 85th and

15th percentiles, and forms a surrogate measure for the

dispersion, possibly more robust than standard devia-

tion profile f2. The motivation for selecting these per-

centile values, instead of the classically used interquar-

tile range, stems from the fact that the 85th percentile

of speed is a commonly used indicator in transportation

studies. Note that if outliers speed profiles were not pri-

orly removed from the data, f10 and f11 can be simply

and efficiently estimated as Q( · , ε) and Q( · , 1 − ε),

where Q(x, .) is the pointwise generalized inverse of

the speed cumulative distribution function at location

x and ε ∈ R+ is a small value like 0.05 for example.
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p15 / p85
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LCurvilinear abscissa x

Speed profiles

Fig. 9 Example of f6 (median in blue), f7, f8 (percentiles in
dashed lines) and f9 (percentiles difference in red) aggregated
profiles computation, the green curves being the 6 original
speed profiles considered.

Figure 9 depicts an example of aggregating profiles

on a simple example with 6 speed profiles. Median ag-

gregated profile, percentiles and difference of percentiles

are computed at each position.

Each of these 12 profiles contains 100 values, hence

implying a total of 1200 explanatory variables at the

end of this step. However, these variables are highly

correlated. First of all, speed variations of individual

profiles are considerably limited by vehicle inertia, thus

producing smooth curves, where values taken at neigh-

bor locations are precluded from being very dissimilar.

Secondly, profiles are computed by merging individual

values in a single curve, which decreases as much lo-

cal variability. For these reasons, the 1200 explanatory

variables are significantly redundant and Haar wavelet

basis expansion is used to reduce the number of features

while keeping most of relevant information.

Haar wavelet system may be thought of as a multi-

resolution analysis tool, designed to build a ladder of

closed subspaces corresponding to different levels of de-

tails (Berlinet et al 2008). Each function is then ex-

panded on a basis of orthogonal functions and only

meaningful coefficients are retained. Depending on the

desired refinement level, one can select the most ade-

quate number of dimensions. As a result, each function

is characterized by a unique set of parameters, each of

them describing the behavior of the function at a given

scale and position. To simplify without loss of general-

ity, we will assume that the length of sliding windows

is normalized, thus enabling to consider speed profiles

as individual elements of the square-integrable function

space L2([0, 1]).

Given Haar scaling function φ = 1[0,1] and its asso-

ciated mother wavelet function ψ = 1[0,1/2] − 1[1/2,1],

basis functions are scaled and translated versions of the

mother wavelet function : ψjk(x) = 2j/2ψ(2jx− k).

It can be proved that the set {ψjk}j>0,k=0..2j−1 com-

pleted with φ forms an orthonormal basis of L2([0, 1]),

therefore aggregated profiles can be written as linear

combinations of Haar functions (Dremin et al 2001).

∀ x ∈ [0, 1] fz(x) = ωz
0φ(x) +

∞∑
j=0

2j−1∑
k=0

ωz
jkψjk(x) (3)

where ω0 and ωz
jk coefficients are computed by projec-

tion on each basis function:

ωz
0 =

∫ 1

0

fz(x)φ(x)dx and ωz
jk =

∫ 1

0

fz(x)ψjk(x)dx

(4)

We decided to discard all coefficients above j = 3,

which corresponds to a most refined level of 6 meters:

fz(x) = ωz
0φ(x) +

3∑
j=0

2j−1∑
k=0

ωz
jkψjk(x) + εz(x) (5)
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where εz is the approximation error function containing

the smaller levels of details.

We also removed the first component ω0 since we

believe that average values of aggregated profiles are

too informative. Suppressing them compels the train-

ing algorithm to search discrimination criteria in most

refined levels of details components. Then, we are left

with a total of 15 coefficients to describe each one of

the 12 profiles i.e. p = 180 explanatory variables:

X = {ωz
jk} ∀z ∈ [1, 12] ∀j ∈ [0, 3] ∀k ∈ [0, 2j − 1]

For example, ω5
23 is modeling the behavior of the

bi-modality aggregated profile (z = 5) at the scale level

12.5 meters (j = 2) on the right (k = 3), i.e. for x in

[75, 100], of any sliding window. A simplified diagram

of the overall workflow is depicted on Fig. 10.

Wavelet transform was performed by matrix multi-

plication of resampled aggregated profiles with a 1024×
1024 normalized Haar matrix. Refer to Stanković and

Falkowski (2003) for further information on the discrete

Haar wavelet transform. In our implementation, Wave-

tresh R package was used for computing the transform

matrix (Nason and Maechler 2006; R Core Team 2015).

Aggregation Wavelets

Aggregated profiles InstanceRaw profiles

Fig. 10 Functional instance computation process. From left
to right: input sliding window (144 raw profiles sampled at
100 locations), aggregation into 12 profiles fi and projection
on a basis of 15 wavelet functions.

3.2 Classifiers

Given a dataset D of training samples (X,Y ) ∈ X ×Y,

where X ⊆ Rp and Y = {0, 1} denote input and out-

put spaces, respectively, and a previously unseen slid-

ing window whose feature vector Xnew ∈ X has been

extracted, the task of a classifier is to estimate the pos-

terior probability of a traffic signal presence in the win-

dow P(Ynew = 1|Xnew,D).

There exist a large number of classification algo-

rithms, and given the fact that we do not have many

data instances, we restrained to simple classifiers that

do not require too much tuning. For this reason, Arti-

ficial Neural Network, despite being very popular, will

not be included in the following comparison. In return,

in most cases, tuning step is not necessary since we

use default parameters recommended in the literature,

which enabled to save data for training and test steps.

Naive Bayes

Naive Bayes (NB) classifier relies on the often unre-

alistic assumption that explanatory variables are con-

ditionally independent given the class label (Rish et al

2001). Yet, it provides a simple way of assessing pos-

terior probabilities as a product of conditional proba-

bilities of each individual feature, which is much more

easily tractable. It appears that despite its simplicity,

Naive Bayes classifier usually achieves decent classifica-

tion performance even on moderately difficult problems

(Hand and Yu 2001). The input features being real-

valued here, we modeled their class-conditional proba-

bilities as normal distributions, whose means and vari-

ances are estimated from the training dataset, as de-

scribed more in depth in Ng and Jordan (2002).

K Nearest Neighbors

The k-Nearest Neighbors (kNN) (Fix and Hodges Jr

1951) is a simple algorithm, only requiring the defini-

tion of an integer parameter k and a metric on the

feature space. It classifies a new instance as the dom-
inant label among the k nearest training data. In our

experimentation, k was set to 7 and the p-dimensional

euclidean distance was used.

Decision Tree

Introduced by Breiman et al (1984) under the name

CART for Classification and Regression Trees, deci-

sion trees can be seen as an elaborate version of k-NN

algorithm. Among many advantages, they are simple,

computationally-efficient and easy to interpret. In our

experimentation, we set maximum depth to 25. Splits

homogeneity are evaluated with Gini criteria.

Support Vector Machine

Originating from Vapnik (2013) theoretical works

on the separability of instances in the feature space,

Support Vector Machine (SVM) finds a discrimination
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hyperplane separating positive and negative instances

with a maximal margin in order to optimize the gener-

alization capabilities of the model. When data are not

linearly separable, soft-margin SVM is used to allow for

errors in the training dataset. It can be demonstrated

that the traditional formulation of SVM is equivalent

to a Tikhonov regularization, hence implying that SVM

is naturally robust against overfitting (Evgeniou et al

2000). In our experimentation, the misclassification cost

parameter was set independently for each approach by

selecting the value providing optimal results in the range

[0.1− 100].

Random Ferns

Random Ferns have been introduced by Ozuysal

et al (2007). Since then they have been used successfully

in multiple research works, mostly in the field of im-

age recognition (Aniruddha and Babu 2014; Villamizar

et al 2012). Random Ferns can be considered as a semi-

naive Bayes (SNB) classifier, insofar as they rely on

the more realistic assumption of feature group condi-

tional independence. We used the extension proposed

by Kursa (2012) to handle real-valued features. In our

experimentation, 1000 ferns of 10 variables each were

trained.

Random Forests

Introduced by Breiman (2001), Random Forests al-

gorithm is a statistically robust version of CART, rely-

ing on the ensemble method concept to reduce the pre-

diction variance of individual decision trees. This makes

Random Forests a simple, fast and efficient classifica-

tion and regression tool, often considered as robust to

over-fitting and particularly useful in high-dimensional

problems where one has no strong reason to believe that

all features will be helpful for discriminating instances.

Moreover, in his foundation paper, Breiman also intro-

duced parameters setting empirical rules, which makes

the tuning process quite effortless and straight-forward.

For more detailed information about Random Forests,

we recommend the complete and extensive works of

Louppe (2014) for the theoretical background or Cri-

minisi et al (2011) for a presentation of some of its ca-

pabilities in a wide range of practical problems. In our

implementation, T = 500 trees were grown and
√
p di-

mensions were randomly chosen at each split (Breiman

2001).

Those 6 algorithms were selected for multiple rea-

sons. First of all, they represent a large variety of meth-

ods: 3 of them are based on hyperplanes (CART, SVM

and RF), one is based on the feature space distance

(kNN) and another one is fully probabilistic and gen-

erative (NB). Besides, the ensemble method class of al-

gorithms is represented, with RF and SNB (the lat-

ter being included to bridge the gap between NB and

RF). The selected panel of methods is well-balanced be-

tween parametric and non-parametric models, though

the separation is not always clear (Walsh 1962) and

two of them (SVM and RF) are particularly robust to

high-dimensional instances (Friedman et al 2001). In

our comparison, we could have also used logistic re-

gression (see Reunanen et al (2019) for example, for a

detailed formulation of the model), which is a popular

classification algorithm. However, considering that NB

and logistic regression form a generative/discriminative

pair, for the sake of conciseness, we decided to report

only one of them in our results. Besides preliminary ex-

perimentations revealed that logistic regression, despite

being much faster in the inference step, was markedly

longer to train and provided slightly lower performance

scores overall. This may be explained by the fact that

while they exhibit higher asymptotic error rate, gener-

ative classifiers have faster convergence rate (Ng and

Jordan 2002), hence requiring fewer training data in-

stances and making them particularly suitable for our

experimentation.

3.3 Experimentation protocol

For each of the 18 classifiers, prediction performance

was assessed with a 10-fold cross validation process.

Since sliding windows are overlapping each other, a

mere random split in 10 subsets is impossible. We de-

cided to split the 25-km-long track in 10 parts, so that

about the same number of traffic lights are included in

each of them. Then, a classifier is built from 9/10th of

the data and validated on the remaining 1/10th. This

process was repeated 10 times, until all data instances

were classified. In order to avoid that training and val-

idation sets share some common parts of the data, all

sliding windows overlapping the training and the val-

idation portions of the loop are removed. Then, the

whole 10-fold cross validation process itself is repeated

10 times with randomly selected fold splits in order to

perform a sensibility analysis of output results regard-

ing geometric separation of training and test datasets.

Due to the fact that data are significantly imbal-

anced (16 % of positive instances), some algorithms
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may be under-performing. To overcome this issue, at

each training process, the training dataset is balanced

with over-sampling (i.e. positive instances are randomly

replicated until their number matches the number of

negative instances). The validation dataset is left im-

balanced since there is no reason to think that any given

proportion is more realistic than another. For a compre-

hensive study on binary classification from imbalanced

datasets, refer to Menardi and Torelli (2014). All pre-

dictions of each validation subset is then compiled in a

unique confusion table on which most commonly used

performance indices are computed.

Note that the full set of drivers is included in both

training and validation sample. A more rigorous solu-

tion would have been to split drivers as well, so that pre-

diction performance is assessed on completely unseen

data. However, it is usually acknowledged that speed

profiles are mostly determined by road infrastructure,

implying that individual behavior of drivers should not

be of any further help in the detection process.

The experimental process was implemented in R

with most commonly used machine learning packages:

e1071 (Dimitriadou et al 2009), kknn package (Schliep

et al 2007), rpart (Therneau et al 1997), rFerns (Kursa

2012) and randomForest (Liaw and Wiener 2002).

4 Results

The experiment was launched on an Intel Core(TM)

i7-3770 processor (3.40 GHz RAM 8 Go) with a total

computation time just over 12 h 30 min. For each of

the 18 classifiers, the following indices are computed :

– Sensitivity (or recall) STV, the probability for a

traffic light in a given window to be detected:

TP/(TP + FN).

– Specificity SPC, the probability for an empty win-

dow to be classified as negative: TN/(TN + FP ).

– Precision PPV, the probability of a positive win-

dow to contain a traffic light in ground truth:

TP/(TP + FP ).

– F-measure F1M, the harmonic mean of recall and

precision indices: 2TP/(2TP + FP + FN).

– Accuracy ACC, the proportion of correctly classi-

fied instances: (TP +TN)/(TP +TN +FP +FN).

– Area Under Curve AUC of Receiver Operating Car-

acteristics (ROC) is the integral of TPR = f(FPR)

where TPR and FPR stand for true and false pos-

itive rates respectively.

– Stop signs confusion STP is the ratio of stop signs

incorrectly classified as traffic lights (out of 50 win-

dows containing a stop sign).

– Offline time OFT is the feature extraction and learn-

ing process computation time (measured in seconds

per window).

– Online time ONT is the feature extraction and clas-

sification computation time (measured in seconds

per window).

TP , TN , FP and FN indicate respectively the ra-

tios of true and false positive and negative instances

in the prediction out of the total number of tested in-

stances. The first 7 indices above should be as high as

possible, while the last 3 ones are expected to be as

small as possible.

Table 2 provides complete results where all fields

are expressed in % except last two columns which are

in sec/window. Confidence intervals are computed at

95 % level over the 10 training/test split replications

(Macskassy and Provost 2004).

Table 3 contains Student’s two-sample paired test

p-values over Area Under Curve index for 3 out of the

6 machine learning algorithms. Here, we shall note that

Student’s test is designed for normal distribution of val-

ues. Even though one may assume that AUC indices are

normally distributed according to Central Limit Theo-

rem, Wilcoxon signed rank paired test p-values (which

do not require normality assumption) were computed in

order to confirm Student’s test results. Overall consis-

tency ratio (for all couple of classifiers) is equal to 97%

(according to Rand index). This enables to state that

AUC normality assumption is realistic, though Wilcoxon

test results may be more robust, especially on couples of

series containing outliers. Given the agreement between

both test results, we will restrain hereafter to Student’s

test decision.

Receiver Operating Characteristic (ROC) curves are

depicted on Fig. 11 (for each classifier, 10 curves are

averaged with threshold averaging method, and con-

fidence bands have been computed at 95% level with

fixed-with band method, i.e. upper and lower bands

are translated versions of the ROC curve, along a line

with slope −
√
m/n where m and n denote, respectively,

numbers of positive and negative instances (Macskassy
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Performance

Methods STV SPC PPV F1M ACC AUC STP OFT ONT

Direct approach

NB 88.30 69.13 36.26 51.41 72.31 78.31 90.12 0.69 0.30
± 0.10 ± 1.78 ± 0.24 ± 0.25 ± 0.14 ± 0.35 ± 0.22

CART 86.56 87.68 58.29 69.66 87.50 88.14 46.53 0.72 0.30
± 0.41 ± 0.20 ± 0.49 ± 0.45 ± 0.22 ± 1.04 ± 2.14

kNN 62.18 93.07 64.10 63.13 87.95 82.54 37.79 1.24 0.30
± 0.22 ± 0.10 ± 0.45 ± 0.27 ± 0.53 ± 0.36 ± 0.45

SVM 83.58 83.08 49.55 62.22 83.16 91.94 44.37 6.77 0.30
± 0.41 ± 0.37 ± 0.28 ± 0.41 ± 0.32 ± 0.26 ± 1.02

SNB 95.52 64.19 34.65 50.86 69.38 88.07 97.85 0.40 0.30
± 0.14 ± 0.34 ± 0.23 ± 0.25 ± 0.27 ± 0.59 ± 2.27

RF 72.88 95.99 78.34 75.51 92.16 94.69 4.70 2.54 0.30
± 0.27 ± 0.08 ± 0.23 ± 0.16 ± 0.06 ± 0.99 ± 0.53

Image approach

NB 87.56 67.95 35.20 50.21 71.20 76.68 92.05 1.87 1.49
± 0.23 ± 2.90 ± 1.74 ± 1.94 ± 2.47 ± 1.48 ± 0.53

CART 82.33 87.09 55.91 66.59 86.30 85.92 56.00 1.87 1.49
± 1.29 ± 0.61 ± 1.29 ± 1.01 ± 0.49 ± 1.26 ± 4.74

kNN 68.40 91.24 60.84 64.40 87.45 83.05 54.12 3.10 1.49
± 0.73 ± 0.20 ± 1.00 ± 0.69 ± 0.18 ± 0.27 ± 2.47

SVM 70.64 87.53 52.98 60.55 84.73 82.98 68.27 9.23 1.49
± 0.41 ± 0.37 ± 0.28 ± 0.41 ± 0.32 ± 0.26 ± 1.02

SNB 94.27 62.11 33.10 48.99 67.45 86.59 99.02 1.50 1.49
± 1.56 ± 2.37 ± 2.56 ± 2.33 ± 0.37 ± 0.33 ± 1.59

RF 64.17 96.34 77.71 70.29 91.00 94.14 6.13 5.16 1.49
± 0.45 ± 0.18 ± 0.99 ± 0.55 ± 0.22 ± 0.23 ± 1.86

Functional approach

NB 88.30 90.60 65.13 74.97 90.22 91.88 67.95 0.31 0.31
± 0.22 ± 0.06 ± 0.22 ± 0.18 ± 0.06 ± 0.21 ± 0.47

CART 88.30 91.54 67.49 76.50 91.00 88.61 57.52 0.31 0.31
± 0.22 ± 0.31 ± 0.69 ± 0.53 ± 0.27 ± 0.58 ± 1.08

kNN 79.60 94.41 73.90 76.64 91.95 91.5 48.21 0.31 0.31
± 0.22 ± 0.04 ± 0.27 ± 0.20 ± 0.06 ± 0.32 ± 0.53

SVM 82.33 88.41 58.28 68.24 87.28 90.74 36.40 0.32 0.31
± 0.42 ± 0.53 ± 0.92 ± 0.72 ± 0.39 ± 0.22 ± 1.47

SNB 97.51 73.88 42.60 59.30 77.80 95.59 82.23 0.31 0.31
± 0.10 ± 0.41 ± 0.45 ± 0.45 ± 0.35 ± 0.25 ± 1.33

RF 82.58 97.23 85.56 84.05 94.80 97.28 2.81 0.32 0.31
± 0.23 ± 0.06 ± 0.69 ± 0.27 ± 0.08 ± 0.22 ± 0.80

Table 2 Prediction performance indices for the 5 classifiers on the 3 different approaches with 95% confidence level. Bold
type indicates the best performance in each column.

and Provost 2004). The displacement distance is chosen

such that a fraction r of curves is completely included

within the confidence bands (r is the confidence level).

This method is particularly relevant here since it does

not depend on the actual numbers of instances, pro-

vided that the ratio of positive over negative instance

numbers is known. In our case study, since windows

are overlapping each other, it is very difficult to esti-

mate the exact number of instances used for the valida-

tion process (data instances are very correlated to each

other, thus implying that this number is lying some-

where between the number of non-overlapping windows

and 10 times this number). However, estimating the ra-

tio of positive instances (16%) is easy and makes the

fixed-width band method well adapted to our situa-

tion. We shall note, though, that unlike some other ap-

proaches, this method is global, i.e. at 95% level for ex-

ample, 19 times out of 20, the real unknown ROC curve

is completely included in the confidence bands. This of-

ten results in larger bands than with local methods.

The results in Table 2 and Fig. 11 highlight that

the functional approach seems to achieve better per-

formance than its image and direct counterparts on 4

out of 6 investigated algorithms. There is an exception
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Approaches × Algorithms

Direct Image Functional

NB SNB RF NB SNB RF NB SNB RF
D
ir
e
c
t NB

SNB +
RF + +

Im
a
g
e NB 8.91 - -

SNB + 1.85 - +
RF + + 33.5 + +

F
u
n
c
. NB + + - + + -

SNB + + 16.9 + + + +
RF + + + + + + + +

NB = Naive Bayes SNB = Random Ferns RF = Random Forest

Table 3 Student’s paired test p-values (in %) for each couple of classifiers. The symbol + (resp. -) indicates a p-value is below
1 % and that row classifier is more (resp. less) performant (with respect to AUC index) than column classifier. The test is
symmetric, thus only lower triangular part is provided.

for decision tree classifier, where the direct approach

area under curve index (88.14% ± 1.04) is very close

to the functional approach (88.61% ± 0.58). However,

this can hardly be a strong conclusive evidence against

the adequateness of CART algorithm to classify func-

tional objects, since ROC curves (depicted on Fig. 11)

do not seem to be very precise, with large confidence

bands. This high variance may be partly explained by

the fact that CART algorithm is often acknowledged

as not being extremely robust to noise in observations,

and slightly different training data may often result in

markedly different models of decision trees. However,

interestingly, SVM algorithm provides significantly bet-

ter results on the direct approach, and ranks in sec-

ond position behind Random Forest on that approach.

These results seem to indicate to CART and SVM do

not take advantage of the low-dimensional description

of the functional approach, and perform better or as

well on the coarser, high-dimensional image approach,

which confirm the idea that these algorithms are well-

suited for high-dimensional data.

Conversely, on the 4 remaining algorithms, the func-

tional approach is clearly outperforming the other ap-

proaches and this is all the more noticeable in kNN,

NB and SNB. Contrary to CART and SVM, these algo-

rithms are more adapted to detect complex data struc-

tures in lower dimensions. We may think that a sophis-

ticated classifier like Random Forest should combine

the strengths of both sets of algorithms and be able

to get decent results, even with a poor set of features,

which results in slighter differences between curves in

ROC space for RF algorithm. Still, considering only

last row in Fig. 11, functional features give significantly

better results, with an AUC equal to 97.28 % i.e. more

than 2% above direct approach and 3% above image

approach. These AUC differences are illustrated on the

left part of Fig. 12 where it can be observed that even

though direct and image methods are equivalent for a

specific threshold, functional approach is undoubtedly

better on a wide range of thresholds.

Besides, the gap with other approaches is especially

large in the operational part of the ROC space, i.e.

where TP and FP rates have reasonable values for an

application to a real problem. More specifically in our

case study, we do not want to take the risk of updating a

road infrastructure database with some wrong informa-

tion. Hence, we have some reason to think that keeping

a low FP rate is the most important. As a result, opti-

mal operating point of any given classifier will be com-

puted by intersecting its ROC curve with a line whose

slope angle is higher4 than π/4. This part of the ROC

space, is especially where the gap between green curve

and other curves is the most prominent. This comes

from the fact that we have imbalanced data in favor

of negative instances, thus entailing larger confidence

bands along y-axis direction.

The widths of ROC curve confidence bands depend

on the variance introduced by selecting splits at ran-

dom on 10 different replications. For this reason, they

mostly emphasize the uncertainties of classifiers due

to variations in training-validation dataset inputs. As

mentioned before, we discarded the variance due to

the lack of data by using a fixed-width band method.

4 This holds provided that the class proportions are not
too much imbalanced in favor of positive instances. Even in
urban conditions, we may consider that this is a realistic as-
sumption.



Traffic Signal detection from GPS speed profiles 15

S
u
p
p
o
rt

 V
e
c.

 M
a
ch

in
e

Fig. 11 ROC curves at 95 % confidence level for each method

However, for Random Forest comparison on each ap-

proach, we also wanted to assess result uncertainties

in ROC curves that may be attributed to this second

factor. To do so, we computed a second set of confi-

dence bands at 90% confidence level, with threshold

averaging method under binomial distribution (Wilson

1927) assuming overlapping windows are independent.

These bands are depicted on the right part of Fig. 12,

on which we may observe that the functional approach

ROC curve prominence remains significant.

Differences between some of combinations (with 3

out of the 6 classification algorithms) may be analyzed

with paired tests p-values (Table 3). Given that we do

not have a very large number of data instances, it is de-
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Fig. 12 Comparison of Random Forest ROC curves at 90 %
confidence level

cided hereafter to consider a p-value as significant when

it is below 1%. It can be clearly seen that functional ap-

proach is quite often better than other approaches, es-

pecially when combined with Random Forest, and this

preeminence is most of the time below 1% threshold.

It is worth noticing as well that despite its simplicity,

Random Forest on direct features (sixth row in the ta-

bles) is performing very well.

More anecdotally, the functional approach is much

faster than the direct and the image approaches (Table

2, columns OFT and ONT), especially as far as train-

ing time is concerned. The difference in processing time

mostly comes from the fact that there are significantly

fewer functional features. However, on large feature set,

it may be seen, as might be expected, that Random

Ferns (SNB), by selecting only some subsets of inter-

dependent explanatory variables, are able to perform

comparatively fast training.

On any given approach, Random Forest is the most

accurate in terms of stop signs confusion (between 3

to 6% of stop signs are incorrectly classified as traffic

lights). This suggests that RF classifier is not blindly

scanning speed profiles at low speed (looking for stop

points) but has some higher discriminating power, giv-

ing confidence in future works, for multinomial classifier

specifically trained to detect and identify road infras-

tructure elements. As a drawback, in our experimenta-

tion RF required longer training time. This issue can be

addressed with parallel computing techniques. Training

time may also be reduced by decreasing the number of

trees to grow in the model (500 in our application).
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A more refined analysis would enable to set this pa-

rameter equal to the number of trees needed to assume

convergence has been practically reached.

On functional approach, all classifiers appear to need

about same training time (preparation time i.e. pro-

file aggregation and wavelet transforms, is compara-

tively much more time-consuming). Even though Ran-

dom Forest is significantly the best classifier for our

task, Random Ferns are not lagging far behind. To a

lesser extent, this is also the case for CART algorithm

(on the optimal point of ROC curve in terms of over-

all accuracy). However, both of these methods score

poorly on stop signs confusion index. Besides, RF nat-

ural threshold (SPC over STV) is more adequate to the

problem we would like to solve.

We must notice that, while the functional approach

has access to some extent to the acceleration data (via

the low order wavelet coefficients), it is not the case

for the direct approach (where speeds are ordered sep-

arately at each location, hence breaking the relation-

ship among individual profiles) and the image approach

(where only a group average acceleration can be seized

by the features). For the sake of consistency, we de-

rived the spatial acceleration profiles directly from the

speed profiles with chain rule derivative and centered

finite difference (or forward finite difference for the first

record in the windows):

a(x) =
dv

dt
(x) =

dv

dx

dx

dt
= v′(x)v(x)

ak =

{
vk(vk+1 − vk) if k = 1
1
2vk(vk+1 − vk−1) otherwise.

where k ∈ [[1; 100]] stands for the relative position in

the sliding window.

The vector of accelerations is then ordered at each

location and concatenated to the feature vector extracted

with the direct approach.

According to Table 4, taking into account pointwise

acceleration values in the classification process does not

seem to improve significantly the results, except on the

traffic signal / stop confusion (STP) performance in-

dices.

Eventually, we must validate an hypothesis formu-

lated in section 3.3: we assumed that speed profiles

Algo. ACC AUC STP OFT ONT

NB 71.31 77.12 85.05 1.96 0.44
CART 86.61 88.39 41.33 2.11 0.44
kNN 86.55 83.51 37.08 3.65 0.44
SVM 83.31 91.51 40.18 19.79 0.44
SNB 68.48 88.21 97.49 1.78 0.44
RF 91.79 95.72 4.50 7.55 0.44

Table 4 Prediction performance indices for the 6 classifiers
on the enhanced direct method with accelerations.

are mostly dependent upon the road infrastructure and

that the drivers’ specificities may not be of any help in

the detection process. As a consequence, we decided to

include all the drivers in both validation and training

datasets. As illustrated in Fig. 13, this amounts to train

a model on datasets 1 and 2, and test it on 3 and 4. In

order to confirm this hypothesis, we replicated one of

the experiments (RF classifier on functional features)

twice with two different protocols. In the first one, we

randomly sampled 15 drivers and the 84 speed profiles

generated by these drivers were used to create both the

training and the validation dataset. This process cor-

responds to the protocol detailed in section 3.3, except

that here, half of the drivers are discarded. In the second

protocol, 84 speed profiles (stemming from 50% of the

drivers) are used to create the training dataset, while

the 60 remaining profiles (stemming from the remain-

ing half of the drivers) have been used for the valida-

tion dataset. In Fig. 13, this schematically corresponds

to training a model with dataset 1 and validating with

4. Note that in both these experiments, the split of cir-

cuit loop (and then of traffic lights) is operated in a

similar way with the one described in the main part of

this paper. Hence, this additional experimentation aims

at capturing, if it exists, the difference between train-

ing and validating a model with the same or different

drivers.
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Fig. 13 Left: split training and validation dataset along
two dimensions: road infrastructure and drivers. Right: ROC
curves for a model trained and validated on the same (resp.
different) drivers in green (resp. red).
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The results of these two experiments confirmed our

hypothesis, since no significant difference was observed

in the respective ROC curves produced by the models,

as illustrated in Fig. 13. This means that, as we antici-

pated, training and validating our classifier models with

speed profiles stemming from the same drivers (for the

sake of simplicity) does not produce a bias in the clas-

sification scores that would lead to an overestimation

of the performances. We may notice as well that the

AUC index of the two models are slightly lesser than

the AUC of the original experiment (97.3%). This may

be explained by the fact that we used a smaller number

of speed profiles in this additional experiment.

5 Discussion

From the experimentation results, we clearly observed

that a functional description of profiles, apart from be-

ing remarkably faster, leads to better results in classi-

fication performance, especially when used in combina-

tion with Random Forest, which proved to be the best

algorithm regarding stop sign-traffic light discrimina-

tion. From a thematic perspective, this point is partic-

ularly important as future works will aim not only at

detecting but also classifying infrastructure elements.

We also found that Random Forest seems less sensitive

to the selected approach for extracting features from

speed profiles and is able to perform decent detection

task even on a poor set of features.

However, the lack of data is a strong limitation of

our experimentation. By considering only 44 instances

of traffic lights, even with an artificial increase of this

number via window overlap, it can hardly be assumed

that we have been dealing with a fully representative

set of instances. We tried to take this shortage into

account by randomly bootstrapping folds to compute

an estimate of confidence interval on ROC curves and

performance indices. While, overlapping data instances

was necessary to ensure that any given classifier is able

to detect an infrastructure element regardless of its rel-

ative position in the window, it also entailed challenging

issues in terms of validation procedure. Indeed, as data

are highly redundant, a sheer random split of data be-

tween training and validation sets is no longer possible

- by doing so we would risk to end up with a validation

set whose almost all instances have been used (in a very

similar version) during training phase. Unfortunately,

as far as we know, there is no proper methodology in

machine learning literature to address the issue of cross

validating continuous and overlapping instances. This

compelled us to perform a geometric separation of folds,

thus needing to reiterate the experiment multiple times

with different split patterns to ensure that our results

were not obtained by a singular split.

While the number of drivers is as well problem-

atic, we believe that by having each of them running

the circuit multiple times, we have a sufficient num-

ber of speed profiles in each window to perform de-

tection. In future works, we will aim at assessing the

influence of this parameter on the performance clas-

sification and try to estimate the minimal number of

profiles required to assume that convergence has been

reached. If we can confirm that this number is not so

large (e.g. 20 curves or so), we will orient our research to

non-experimental large-scale GPS datasets (with fewer

drivers but more traffic light instances). Such a real-life

data based experimentation will be the opportunity as

well to conduct sensitivity analysis of our algorithms

to GPS frequency and precision (especially when speed

is no longer observed with Doppler system but roughly

estimated by positions finite difference). It may as well

ensure that we are not overlooking any specific infras-

tructure element that might be easily confused with

traffic lights.

One of the main interests of using speed profiles

to detect road infrastructure, is that it does not re-

quire stop points, which are very specific to traffic lights

and stop signs. By learning detection directly on the

complete profile patterns, we give opportunities to our

method for the detection of other infrastructure ele-

ments, including those that do not require the vehicle

to stop (like speed bumps or yield signs for example).

These experiments show that building an operational

method based on these algorithm needs a larger dataset

to tune and assess the algorithms more thoroughly. The

functional approach seems to be both the most precise

and the most computationally efficient, it thus makes a

good basis to develop with more extended studies. As

for the machine-learning algorithms, random forest is

both efficient and easy enough to tune.

With more data, we will tune our more promising

approach to find other aggregated profiles, which may

help in classification task. Another significant improve-

ment may be found in leveraging spatial correlations

between instances. In our application case, labels are

positively correlated at short scale: when a given slid-

ing window is classified as containing a traffic light,

then due to overlapping between instances, it is more

likely that immediate neighbor instances are also la-

beled as positive. At a larger scale (neighbor but non-

overlapping, or slightly overlapping windows), spatial
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correlation becomes negative, since it is relatively un-

likely to find two successive traffic signals separated by

a short distance on a same road. In the more general

case where GPS trajectories are not located on a linear

path, spatial correlation may also be significantly posi-

tive at short distance between different streets leading

to the same intersection. All these considerations may

motivate instance modeling as a Markov Random Field

to detect traffic signals consistently and simultaneously

on the whole road network.

6 Conclusion

In this paper, we proposed a model for traffic signal

detection on speed profiles with machine learning tech-

niques and we derived it in 3 different approaches. Each

of them puts the stress on a different aspect of speed

curves and has been input to the most common classi-

fiers. One of these approaches has been adapted from

previous works in image recognition. We also used a

methodology combining paired tests and ROC curves

confidence bands on 10 repetitions of a 10-fold cross

validation to overcome data scarcity and compare the

different combinations of approaches and algorithms.

Experimental results analysis revealed that consid-

ering functional nature of profiles for extracting rele-

vant features enabled to build the fastest and the most

efficient classifiers with most of the investigated algo-

rithms. Besides, when combined with Random Forest,

which proved to be the best algorithm on each of the 3

approaches, the resulting classifier turned out to be sen-

sitive for discriminating traffic signals and stop signs,

with a low confusion rate. These results instilled con-

fidence in combining wavelet transforms and Random

Forest for detecting and locating any kind of road in-

frastructure element from a set of GPS speed curves.

The results obtained with random forests and a func-

tional modelization indicate that this combination can

be a sound basis to build an operational method to de-

tect traffic lights (and eventually general punctual road

infrastructure) using GPS datasets. The automatic con-

struction of a large scale database of such information

would be extremely useful for urban planning, navi-

gation application, and self-driving cars. Our next re-

search steps will aim at further investigating its capabil-

ities as well as its robustness to change of environment,

number of curves and sensor measurement rate and po-

sitional accuracy. We will also try to enhance the results

through the combination of the different data modeling

approaches in a single framework.

On behalf of all authors, the corresponding author

states that there is no conflict of interest.

7 Annexes: sensitivity analysis

This supplementary material provides a sensibility anal-

ysis of our results (for the case of Random Forest learn-

ing on functional features) upon the number of available

profiles (7.1) and the choice of features (7.2).

7.1 Number of available profiles

An important issue in map inference is to determine the

size of the dataset needed to get the desired results. The

answer to this question lies in the sensitivity analysis

of the detection algorithm to the available number of

profiles. In our experiment, we are taking advantage of

the fact that we have a large number of tracks (144 in

total) on all the sliding windows, to reduce this number

and evaluate the impact on the AUC index. We there-

fore selected a number N of profiles from 2 to 144 (the

algorithm is undefined for N = 1), in steps of one unit.

For each experiment, both the training and validation

sets contain N profiles. Fig. 14 illustrates the results.
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Fig. 14 Available number of profiles versus Area Under
Curve (AUC) index.

The results clearly show the convergence of the AUC

score from 30 to 40 profiles. Satisfactory performance

(i.e. about 92 %) may be obtained with as few as 10 pro-

files. A more detailed study in the future could attempt

to assess the impact of the number of available profiles

separately on the training and validation datasets.

7.2 Importance of features

It seems natural to assess the influence of the level of

representation of functional data on the quality of de-

tection, measured in terms of AUC index.
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Figure 15 hereafter illustrates the increase in detec-

tion performance with the level of detail of the wavelet

database (red curve). Convergence seems to be reached

for level 3 (6 m), but levels 4 (3 m) and 5 (1.5 m) allow

to obtain slightly better results, at the expense of an

extra computation time (each level doubles the number

of explanatory variables to be processed). On the other

hand, the green curve shows that the algorithm perfor-

mance is optimal after removing the coarsest level.

90

92

94

96

98

Fig. 15 Influence of the level of both the father wavelet (in
green) and the most refined mother wavelet (in red) on the
AUC index of the Random Forest model. The horizontal scale
is logarithmic, with a level h representing a metric scale equal
to L/2h+1 with L = 100 m.

Figure 16 provides the relative importance of in-

dividual features at different scales and positions. We

used the empirical importance index calculated by Monte-

Carlo simulation (Gregorutti 2015).
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Fig. 16 Importance computed by permutation for the 12
aggregated profiles, projected on the 15 base wavelets.

Figure 17 represents an integrated version of the

matrix shown on Fig. 16, revealing the significant im-

portance of mean profiles (AVG), standard deviation

(STD), bimodality (BMD), 15th percentile (P85) and

P85-P15 difference (DPP). The 85th percentile is seem-

SPN
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Fig. 17 Relative importance of aggregated profiles (inte-
grated on all level of details of the wavelet description).

ingly not so important, probably because of the redun-

dancy of the information provided by the 3 aggregated

profiles P15, P85 and DPP. The profiles featuring ex-

tremal vales (MNM, MXN and SPN) seem marginal,

suggesting that the data are too noisy for them to bring

decisive information. Order moments 3 (GAM) and 4

(KAP) also seem marginal with regard to their BMD

combination. Surprisingly, the median profile (MED) is

relegated to the background by the average profile.
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Fig. 18 Relative importance of level of details of the wavelet
description (integrated on all aggregated profiles).

Figure 18 reveals interestingly a more significant im-

portance for coefficients of basis wavelets located close

to the window edges. Further analysis is required to

understand the underlying process of this observation.
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