
HAL Id: hal-02332080
https://hal.science/hal-02332080

Submitted on 24 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

TemporalNode2vec: Temporal Node Embedding in
Temporal Networks

Mounir Haddad, Cécile Bothorel, Philippe Lenca, Dominique Bedart

To cite this version:
Mounir Haddad, Cécile Bothorel, Philippe Lenca, Dominique Bedart. TemporalNode2vec: Tempo-
ral Node Embedding in Temporal Networks. COMPLEX NETWORKS 2019 : 8th International
Conference on Complex Networks and their Applications, Dec 2019, Lisbon, Portugal. �10.1007/978-
3-030-36687-2_74�. �hal-02332080�

https://hal.science/hal-02332080
https://hal.archives-ouvertes.fr

TemporalNode2vec: Temporal Node Embedding
in Temporal Networks

Mounir Haddad12, Cécile Bothorel1, Philippe Lenca1, Dominique Bedart2

1 IMT Atlantique, LUSSI Department, UMR Lab-sticc, 29238 Brest Cedex 3, France,
2 DSI Global Services, 41 avenue du Général Leclerc, 92350 Plessis-Robinson, France,

{cecile.bothorel, philippe.lenca, mounir.haddad}@imt-atlantique.fr
{dominique.bedart, mounir.haddad}@dsi-globalservices.fr

Abstract. The goal of graph embedding is to learn a representation
of graphs vertices in a latent low-dimensional space in order to encode
the structural information that lies in graphs. While real-world networks
evolve over time, the majority of research focuses on static networks, ig-
noring local and global evolution patterns. A simplistic approach consists
of learning nodes embeddings independently for each time step. This can
cause unstable and inefficient representations over time.
We present a novel dynamic graph embedding approach that learns con-
tinuous time-aware node representations. Overall, we demonstrate that
our method improves node classification tasks comparing to previous
static and dynamic approaches as it achieves up to 14% gain regarding to
the F1 score metric. We also prove that our model is more data-efficient
than several baseline methods, as it affords to achieve good performances
with a limited number of vertex representation features.

Keywords: Dynamic network embeddings, Graph representation learn-
ing, Latent representations

1 Introduction

The last decade has seen social networks flourish, as well as the data they gener-
ate. These data, usually represented using graphs, contain important information
on interaction phenomena at multiple scales: it goes from the local interaction
patterns between elementary entities to the global dynamics of communities.

Since several years, a multitude of research has focused on extracting net-
works’ relevant structural information. However, in order to make graph data
exploitation easier for machine learning inference models, one has to build a rel-
evant representation of nodes/edges. Traditional machine learning approaches
rely on user defined heuristics [3,22,14]. Nevertheless those task specific meth-
ods are time-consuming in terms of feature engineering. They also are without
warranty for prediction tasks different than the one they were conceived for.

New research approaches known as data embeddings aim to learn data rep-
resentation in low dimensional spaces [2]. These methods are data-driven as
they encode data into a generic representation, independent from downstream

2 Mounir Haddad et al.

machine learning tasks. The early applications of data embeddings focused on
text mining [16]. Regarding the advantages of such approaches, they have been
adapted to graph mining among other data structures. Therefore, last years have
seen a surge in graph representation learning. Some approaches are based on ma-
trix factorization [1,4,18], on random walks [20,10,6] or on the recent advances
in deep learning (auto encoders [5,23] or convolutional neural networks [11]).

Although graph embedding methods were disruptive, they avoid considering
the temporal dimension. They focus on static networks where the structure of
vertices and edges stays fixed among time. However, time is crucial for infer-
ence purposes in many use cases. Some approaches use temporal information for
the conception of more reliable global embeddings [17,27], while other methods
aim to obtain a representation for the network at each time step, and through
different scales [25,15].

Literature deals with time incorporation in several ways. Embeddings can
be learned independently for each time step using static methods [20,10]. Some
approaches learn time steps embeddings separately and search for the optimal
linear transformation of the output matrices minimizing the distance between
consecutive embeddings [12]. Another approach is to learn current time step
representation by initializing it with the previous embedding vectors [15]. Those
different methods can be sensitive to data sparsity: for example a missing node
in a time step would mislead its representation and place it far from its previous
and next embeddings.

We propose TemporalNode2vec, a novel dynamic graph embedding approach,
based on the static node embedding Node2vec and a smoothing mechanism
for dynamic words embeddings [24]. Our main contribution lies in the way we
incorporate the temporal information: the different time steps embeddings are
learned jointly. We show in our experiments that this method improves node
classification tasks comparing to relevant baseline algorithms. We also interpret
the hyper parameters influence, especially the embedding dimension.

The remainder of this paper is organized as follows. In Section 2, we provide
the problem definition. Section 3 describes how we set up TemporalNode2vec.
In section 4, we expose the performed experiments and interpret the results.

2 Problem definition

We consider a network composed of |V | vertices V = {v1, . . . , v|V |} connected
by timestamped interactions I = {ij,k,t} where ij,k,t represents an interaction
between vj and vk at t. The goal of temporal embedding is to have a represen-
tative vector of each vertex at each time step. However, regarding the number
of the different timestamps (sometimes equal to the number of interactions),
it is obvious that there should be some aggregation over time: we consider T
time slices (referred by time steps in the rest of the paper) rather than instant
moments. Within each time step, we aggregate the interactions between pairs
of vertices, to form weighted edges (weights represent the number of grouped
interactions). Formally, the whole input dataset is assumed to be a set of T

TemporalNode2vec 3

graphs {G1, . . . , GT } where Gt is the undirected weighted graph representing
the interactions of the t-th time step. For each time step t (t ∈ [[1, T]]), we aim
to learn mapping functions ft : V → Rd. Here, d is the embedding dimension
(d << |V |). The output expected is a set of T matrices of size d×|V | represent-
ing the learned mappings, i.e. the t-th matrix (let Ut be this matrix in the rest
of the paper) contains the embedding vectors of all vertices at time step t.

3 TemporalNode2vec

3.1 Random walks

The main idea behind the very first graph embedding approaches is adapting
word embedding techniques that offer remarkable improvement in terms of in-
ference comparing to previous work. For that purpose, one has to transform
graph data to sentences of vertices. DeepWalk comes with a method to build
those sequences of vertices called walks, inspired by early applications of random
walks [19]. The idea is to simulate a probabilistic walk all over a graph vertices
through its (un)directed (un)weighted edges. Node2vec comes with an extension
of random walks by offering more flexibility to the way nodes neighborhoods
are explored, i.e. whether to privilege local exploration. In our method, we build
our random walks in the same fashion. This means that, given a sequence of
temporal graphs {G1, . . . , GT }, we compute T sets of random walks. We then
obtain T ×N × |V | sequences of vertices of length l, where N is the number of
walks starting from each vertex.

3.2 PPMI matrices

In the literature of words embeddings, we observe that similar words have similar
neighboring words [7]. This property, called homophily, is also present in social
graphs [8]. One way to capture nodes neighboring structures uses statistics on the
frequencies by which vertices co-appear in the set of random walks considered [5].
We define the Positive Pointwise Mutual Information matrix (PPMI) as follows:

PPMIt(v1, v2) = max

(
0, log

(
θ
|v1, v2|wt · |V |
|v1|t · |v2|t

))
∀(v1, v2 6= v1, t) ∈ V 2 × [[1, T]]

(1)

where |v1, v2|wt is the number of times v1 and v2 co-appear in the set of walks of
Gt within a window of size w, |vi|t is the number of occurrences of vi in the set
of walks of Gt, and θ is a tunable hyper parameter. The PPMI matrices can
be seen as temporal similarity matrices. It is worthwhile to mention that we use
positive PMI matrices in order to reduce instability, as log

(
θ
|v1, v2|wt ×|V |
|v1|t×|v2|t

)
can

produce large negative values, which illustrate rare co-appearance, assimilable
to zero co-appearance. The trade-off between stability and rare co-appearance
is controlled by θ. Thresholding PMI matrices in this way is also used in [13].

4 Mounir Haddad et al.

3.3 Objective function components

Several static graph embedding techniques aim to learn Ut matrices satisfying:

u1(t)
T u2(t) ≈ PPMIt(v1, v2) (2)

where ui(t) is the embedded vector of vi at time step t. Node2vec uses negative
sampling to implicitly satisfy (2). [13] observes that it is equivalent to low-
rank factorization of PMI matrices, shifted by a constant (θ in equation (1)).
Therefore, the static term LSt of our objective function can be represented as:

LSt =

T∑
t=1

∥∥PPMIt − Ut U
T
t

∥∥2
F

(3)

An important issue of learning temporal embeddings of a dynamic network is
called alignment: the learned temporal vectors, encoding nodes/edges, may not
be placed in the same latent space over time. To conceive a dynamic embedding
method, one has to deal with alignment, since LSt is invariant to Ut matrices
different rotations. Thus, it is necessary to add a smoothing term LSm to our
objective function:

LSm =

T∑
t=2

‖Ut − Ut−1‖2F (4)

After adding a final term LLR standing for low-rank data-fidelity enforcement
as adopted in [24], the overall objective function to minimize is as follows:

L = LSt + τ LSm + λ LLR

=

T∑
t=1

∥∥PPMIt − Ut U
T
t

∥∥2
F
+ τ

T∑
t=2

‖Ut − Ut−1‖2F + λ

T∑
t=1

‖Ut‖2F
(5)

3.4 Objective function optimization

As common temporal networks contain tens of thousands of vertices, PPMI
matrices may not fit in memory. Minimizing the objective function may require
additional simplifications. In the same fashion as [24], we introduce Wt matrices
and γ hyper parameter to break the symmetry of PPMI factorization:

T∑
t=1

∥∥PPMIt − Ut W
T
t

∥∥2
F

+ λ

T∑
t=1

‖Ut‖2F + λ

T∑
t=1

‖Wt‖2F

+ τ

T∑
t=2

‖Ut − Ut−1‖2F + τ

T∑
t=2

‖Wt − Wt−1‖2F + γ

T∑
t=1

‖Ut − Wt‖2F

(6)

Minimizing (6) for Ut (equivalently for Wt) is solvable by simple 0 gradient, i.e.
Ut M = N , where

M =WT
t Wt + (λ+ 2τ + γ) I

N = PPMIt Wt + γ Wt + τ (Ut−1 + Ut+1)

TemporalNode2vec 5

for t ∈ [[2, T −1]] and constants adjusted for t ∈ {0, T}. We use block coordinate
descent in order to solve Ut M = N to afford scaling large PPMI matrices,
as only blocks of Ut (equivalently Wt) are updated at each time, therefore only
blocks of PPMIt are loaded in memory at each time.

3.5 Temporal embeddings initialization

As PPMI are a sort of temporal similarity matrices, they can be used during
the initialization step in order to speed up the convergence of our method. Thus,
for t ∈ [[1, T]], we initialize Ut and Wt by choosing carefully d rows of PPMIt.
We choose the top d l1-normalized rows maximizing the variance: a high vari-
ance means a better discrimination between nodes, and the l1-norm stands for
normalizing regarding nodes appearances.

Algorithm 1: TemporalNode2vec
Data: ({G1, . . . , GT }, V, d, l, w, p, q, θ, λ, γ, τ, iter)
for t← 1 to T do

walks = generateWalks(Gt, l, p, q);
PPMIt = computePPMI(walks, w, θ) ;

end
{U1, . . . , UT , W1, . . . , WT } = initialize(PPMI, d);
for i← 1 to iter do

for t← [[1, T]] do
for b← batch(V) do

Ut[b] = update(Wt[b], λ, γ, τ, PPMIt);
Wt[b] = update(Ut[b], λ, γ, τ, PPMIt);

end
end

end
return {U1, . . . , UT }

4 Experiments

4.1 Baseline methods

As seen above, our algorithm has multiple hyper parameters: {l, w, p, q, θ, λ, γ, τ}.
Testing 3 values for each over a grid search would lead to more than 6k sets of
parameters. To workaround this issue, we choose to look for optimal parame-
ters one by one, by fixing the others. Table 1 summarizes the tested values. To
evaluate TemporalNode2vec, we consider 3 state-of-the art baseline methods.

– DeepWalk [20]: This method learns representations of a static graph nodes
using random walks over edges. It has two hyper parameters: the walk length
l and the window size w. For our experiments, we test a grid search over
(l, w) ∈ {20, 40, 60, 80} × {4, 8, 12, 16}.

6 Mounir Haddad et al.

– Node2vec [10]: Node2vec extends DeepWalk’s way of discovering nodes
neighborhood by adding two hyper parameters (p, q): the return and the in-
out parameters. We keep the values of l and w giving the best performances
in DeepWalk tests, and perform a grid search over (p, q) ∈ {0.5, 1, 1.5, 2, 5}2.

– DynamicTriad [25]: DynamicTriad is a dynamic representation learning
approach focusing on how triads of vertices close, i.e how a pair of nodes
sharing a common neighbor vertex can connect over an edge. This method
has two hyper parameters: β0 which is the weight of triad closure process
and β1 the temporal smoothing parameter. For our benchmarking experi-
ments, we refer to DynamicTriad paper tests and consider a grid search over
(β0, β1) ∈ {0.01, 0.1, 1, 10}2.

Also, there are few other dynamic approaches we do not consider in our
comparison due to the unavailability of the code (Dynnode2vec [15]) or their
proven inefficiency3 (Temporal network embedding [26]).

Concerning the embedding dimension, we have chosen d = 48 for the sake of
memory space. Smaller values of d are tested in section 4.7.

4.2 Datasets

To compare the different algorithms embeddings performances, we gathered 3
real-world datasets. These datasets must meet some criteria. They should con-
sist of temporal networks, i.e. sets of timestamped graphs. Also, the datasets
must include metadata showing the existing evolving ground-truth communities
(called labels in the rest of the paper). Part of the evaluation determines whether
embedding approaches preserve community membership as much as possible.

– AMiner: This dataset4 consists of 51k researchers and 624k coauthor re-
lationships. It is divided into 17 timestamped weighted graphs, where weights
represent the number of common co-authorships between a pair of researchers
within a time step. As articles are published in conferences addressing differ-
ent research fields, it is possible to assign labels to authors: at each time step,
we assume that a researcher belongs to a community (i.e. research field) if
the majority of his papers are published in related conferences. Also, for the
experiments made for embedding dimension analysis, we consider 3 samples
of different sizes of this dataset (Table 2).

– Yelp : This dataset is an extract of Yelp5 challenge dataset. It traces internet
users comments on businesses (like restaurants and malls). We consider users
and businesses as being nodes, and comments are regarded as interactions.
Businesses are assigned with categories. We keep only the top eight categories
for our experiments. As businesses categories do not change over time, we
assign labels for users : within each time step, a user is assumed to belong to
a category if the majority of his comments are made on this category related

3 [25] proved its inefficiency comparing to later graph embedding methods
4 We use DynamicTriad [25] derived version of ArnetMiner [21].
5 https://www.yelp.com/dataset/challenge

TemporalNode2vec 7

businesses. Finally, our whole temporal graph is divided into 17 timestamped
graphs, with a total of 744k edges between 38k nodes.

– Tmall : This dataset is an extract of the sales at Tmall.com6 6 months
before the "Double 11 Day" event in 2014. It stores buyers interactions
with products (i.e. click on product page, add to cart, purchase or add to
favourites). Products are assigned with categories. For our experiments, we
consider only the top five categories. We assign labels to users as described
for Yelp dataset. We obtain a temporal graph divided into 10 timestamped
graphs, with a total of 2.9M edges between 27k nodes.

Parameter Tested Values
l {20, 40, 60, 80}
w {4, 7, 10, 13, 16}
p {0.2, 0.5, 1, 2, 5}
q {0.2, 0.5, 1, 2, 5}
θ {0.05, 0.25, 4, 20}
λ {0, 0.1, 0.3, 1, 3, 10}
γ {0.1, 0.3, 1, 3, 10}
τ {0, 0.1, 0.3, 1, 3, 10}

Table 1: Model tested values

Dataset nodes nodes time steps
AMiner 51 060 624 381

17SmpA 16 546 12 826
SmpB 9 244 5 884
SmpC 2 300 1 230
Yelp 38 475 744 195 17
Tmall 27 039 2 976 392 10

Table 2: Datasets

4.3 Application scenarios

We challenge our approach and baseline methods by executing different inference
tasks on the basis of their respective embeddings, regarding to the F1 score met-
ric. As those tasks are identical for the compared methods, better scores reflect
more efficient embeddings. Following inference tasks have been experimented:

– Node classification: A classifier is trained on nodes embeddings to find their
labels. Logistic regression is used as the classification method.

– Node class prediction: This task is similar to node classification. We predict
nodes labels at a time step using their embeddings at the previous time step.

– Edge reconstruction: In this task, the goal is to determine whether there
is an edge between a pair of nodes, based on the distance between their
embeddings.

– Edge prediction: This task is similar to edge reconstruction with the differ-
ence that we aim to predict the presence of edges between pairs of nodes
regarding their previous embeddings.

4.4 Comparison results

Table 3 shows the results of the experiments made using the different considered
methods. It demonstrates that TemporalNode2vec outperforms other baseline
6 https://tianchi.aliyun.com/competition/entrance/231576/information

8 Mounir Haddad et al.

methods in the tasks related to node classification (up to 14.2% in terms of F1
score). This means that learning the representations jointly across all time steps
improves the overall performances, as we force embeddings continuity over time.

On the other hand, our approach is less efficient in edge related inference
tasks7. We interpret those results as following: TemporalNode2vec captures bet-
ter the global temporal structures than the local ones, as edge reconstruc-
tion/prediction tasks focus on pairs of nodes independently from the rest of the
whole network, while node classification tasks consider the overall placement of
the embeddings. Thus, our model seems to be more suitable for community de-
tection and capturing their evolution. Concerning the efficiency of DynamicTriad
at the edge prediction task, we suppose that it is due to the algorithm core idea,
as DynamicTriad focuses on edges dynamics, i.e. how triads close/open. Finally,
further investigation is needed to explain Node2vec performances on the edge
reconstruction task.

Dataset Algorithm Node Node class Edge Edge
classification prediction reconstruction prediction

AMiner

DeepWalk 0.69884 0.67333 0.92628 0.75845
Node2vec 0.77080 0.75846 0.98362 0.80619

DynamicTriad 0.74432 0.73967 0.92363 0.87294
TemporalNode2vec 0.87999 0.85189 0.86086 0.74929

Yelp

DeepWalk 0.29759 0.25357 0.94453 0.75710
Node2vec 0.29747 0.26062 0.98831 0.79555

DynamicTriad 0.25554 0.24698 0.93704 0.91593
TemporalNode2vec 0.31512 0.28118 0.93214 0.81067

Tmall

DeepWalk 0.94436 0.68835 0.84765 0.68754
Node2vec 0.96451 0.70008 0.91305 0.72787

DynamicTriad 0.56336 0.53252 0.77821 0.73260
TemporalNode2vec 0.96632 0.77306 0.77289 0.68043

Table 3: Models scores

4.5 Hyper parameter analysis

We also analyze the impact of each hyper parameter on the overall method per-
formance. From figure 1 we can see that the most sensitive parameters are q (walk
return parameter) and θ (rare co-appearance / stability trade-off parameter).

Furthermore, there are two interesting observations we can notice. First,
larger widow sizes give better results. This may confirm the idea that our model
is more suitable for finding global temporal structures of networks, and conse-
quently giving better results on node classification/class prediction tasks; as a
matter of fact, while considering large values of w, vertices neighborhoods are
not confined to their immediate neighbors. The second observation concerns the
walk length l. We notice that smaller walks give better results. This may be due
to the fact that small l values output more balanced walks over nodes. For exam-
ple, if we imagine dense regions (in terms of edges and weights) in our temporal
graph, a long random walk may be unable to step out of it.
7 More tuning of the hyper parameters (especially p and q) may improve edge recon-
struction / prediction tasks results.

TemporalNode2vec 9

Fig. 1: Hyper parameter analysis

4.6 Alignment

Alignment is an important aspect in dynamic networks embedding, e.g. for visu-
alization purposes where the position of nodes has to be stable in the coordinate
referential. In order to challenge the different baseline methods alignment, em-
beddings are submitted to a test consisting on predicting nodes class change,
based on the difference of consecutive embeddings: the ground-truth commu-
nities of the considered datasets have a semantic meaning that we reasonably
assume to be constant over time (research fields, categories of products and
businesses). Consequently, if alignment is respected, communities locations in
the embedding latent space should be stable as well, or continuous at least.
Thus, for good aligned methods, a node’s trajectory in the embedding space
gives information about its future class. Then, given the difference vector of a
node’s consecutive embeddings (input data), it should be possible to predict the
class change of a node (target label). Table 4 shows the results of this experi-
ment. We observe that the dynamic embedding methods outperform the static
ones, proving alignment importance. However, the static methods present better
results than expected, suggesting that they might include some inherent normal-
ization mechanism of the output matrix, forcing alignment. Further investigation
is needed to explain this point.

Algorithm AMiner Yelp Tmall
DeepWalk 0.48921 0.40369 0.40710
Node2vec 0.48264 0.41124 0.43139

DynamicTriad 0.52823 0.48088 0.49889
TemporalNode2vec 0.54446 0.46089 0.56838
Table 4: Node class change prediction f1-score

10 Mounir Haddad et al.

4.7 Embedding dimension

The target latent space dimension is an important hyper parameter: the strength
of embedding algorithms lies in inference performance, but also on how efficient
their data encoding process is. For that purpose, we compare TemporalNode2vec
to the considered baseline methods regarding the influence of the embedding
dimension for the node classification task. Figure 2 shows the results of our
experiment: while TemporalNode2vec affords to have good performances with
a very limited number of features (from d = 10), the other approaches need a
consequent embedding dimension and are unstable when dimension grows.

Furthermore, we notice a sort of saturation regarding the embedding dimen-
sion: it seems that 20 features are sufficient to describe nodes neighborhoods.
This value may be the intrinsic latent dimensionality of our temporal graph, i.e.
the minimal latent space able to capture all structural information present in a
graph. It is related to the nature of the input data and do not depend on its
size [9]. To confirm this idea, we perform more experiments. Figure 3 shows the
impact of the embedding dimension on the inference score (node classification)
on the three samples of different sizes previously described in table 2. We observe
that the shapes of the curves are similar. In other words, the ratio between the
information encoded at a dimension d and the maximum information we can
capture do not depend on the sample size.

Fig. 2: Models data efficiency Fig. 3: Data efficiency on samples

5 Conclusion

In this paper, we presented TemporalNode2vec, a novel approach of dynamic net-
works embedding. We compared our algorithm to several state-of-the-art tech-
niques and showed its efficiency in node classification tasks. Furthermore, we
demonstrated the data encoding efficiency of our approach, as we showed that,
in a real-world dataset consisting of more than 51k nodes, a representation of 20
features is sufficient for gathering relevant temporal and structural characteris-
tics of the network. Further work tied up to embeddings exploitation for different
purposes (dynamics analysis and prediction, visualization) is under way.

TemporalNode2vec 11

References

1. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding
and clustering. In: Advances in neural information processing systems. pp. 585–591
(2002)

2. Bengio, Y., Courville, A., Vincent, P.: Representation learning: A review and new
perspectives. IEEE transactions on pattern analysis and machine intelligence 35(8),
1798–1828 (2013)

3. Bhagat, S., Cormode, G., Muthukrishnan, S.: Node classification in social networks.
In: Social network data analytics, pp. 115–148. Springer (2011)

4. Cao, S., Lu, W., Xu, Q.: Grarep: Learning graph representations with global struc-
tural information. In: Proceedings of the 24th ACM international on conference on
information and knowledge management. pp. 891–900. ACM (2015)

5. Cao, S., Lu, W., Xu, Q.: Deep neural networks for learning graph representations.
In: Thirtieth AAAI Conference on Artificial Intelligence (2016)

6. Chen, H., Perozzi, B., Hu, Y., Skiena, S.: Harp: Hierarchical representation learning
for networks. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

7. Firth, J.R.: A synopsis of linguistic theory, 1930-1955. Studies in linguistic analysis
(1957)

8. Fortunato, S.: Community detection in graphs. Physics reports 486(3-5), 75–174
(2010)

9. Granata, D., Carnevale, V.: Accurate estimation of the intrinsic dimension using
graph distances: Unraveling the geometric complexity of datasets. Scientific reports
6, 31377 (2016)

10. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: Pro-
ceedings of the 22nd ACM SIGKDD international conference on Knowledge dis-
covery and data mining. pp. 855–864. ACM (2016)

11. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

12. Kulkarni, V., Al-Rfou, R., Perozzi, B., Skiena, S.: Statistically significant detec-
tion of linguistic change. In: Proceedings of the 24th International Conference on
World Wide Web. pp. 625–635. International World Wide Web Conferences Steer-
ing Committee (2015)

13. Levy, O., Goldberg, Y.: Neural word embedding as implicit matrix factorization.
In: Advances in neural information processing systems. pp. 2177–2185 (2014)

14. Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks.
Journal of the American society for information science and technology 58(7),
1019–1031 (2007)

15. Mahdavi, S., Khoshraftar, S., An, A.: dynnode2vec: Scalable dynamic network
embedding. In: 2018 IEEE International Conference on Big Data (Big Data). pp.
3762–3765. IEEE (2018)

16. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

17. Nguyen, G.H., Lee, J.B., Rossi, R.A., Ahmed, N.K., Koh, E., Kim, S.: Continuous-
time dynamic network embeddings. In: Companion of the The Web Conference
2018 on The Web Conference 2018. pp. 969–976. International World Wide Web
Conferences Steering Committee (2018)

18. Ou, M., Cui, P., Pei, J., Zhang, Z., Zhu, W.: Asymmetric transitivity preserv-
ing graph embedding. In: Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining. pp. 1105–1114. ACM (2016)

12 Mounir Haddad et al.

19. Pearson, K.: The problem of the random walk. Nature 72(1867), 342 (1905)
20. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social represen-

tations. In: Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining. pp. 701–710. ACM (2014)

21. Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and
mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining. pp. 990–998.
ACM (2008)

22. Vishwanathan, S.V.N., Schraudolph, N.N., Kondor, R., Borgwardt, K.M.: Graph
kernels. Journal of Machine Learning Research 11(Apr), 1201–1242 (2010)

23. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and
data mining. pp. 1225–1234. ACM (2016)

24. Yao, Z., Sun, Y., Ding, W., Rao, N., Xiong, H.: Dynamic word embeddings for
evolving semantic discovery. In: Proceedings of the Eleventh ACM International
Conference on Web Search and Data Mining. pp. 673–681. ACM (2018)

25. Zhou, L., Yang, Y., Ren, X., Wu, F., Zhuang, Y.: Dynamic network embedding by
modeling triadic closure process. In: Thirty-Second AAAI Conference on Artificial
Intelligence (2018)

26. Zhu, L., Guo, D., Yin, J., Ver Steeg, G., Galstyan, A.: Scalable temporal latent
space inference for link prediction in dynamic social networks. IEEE Transactions
on Knowledge and Data Engineering 28(10), 2765–2777 (2016)

27. Zuo, Y., Liu, G., Lin, H., Guo, J., Hu, X., Wu, J.: Embedding temporal network via
neighborhood formation. In: Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. pp. 2857–2866. ACM (2018)

	TemporalNode2vec: Temporal Node Embedding in Temporal Networks

