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New and consistent expressions for the coupled heat equation are developed within the framework of small-strain thermoelasticity for both the Fourier and Cattaneo-Vernotte conduction models. These expressions place no restrictions on the changes in temperature, allow for the temperature dependence of the thermoelastic moduli, and include all the coupling terms as functions of the thermoelastic moduli and their derivatives. As applications, (i) an extended Lord-Shulman-type model is derived that takes into account the temperature dependence of the thermoelastic moduli, and (ii) the equations underpinning the experimental technique of thermoelastic stress analysis are revisited.

Introduction

The thermoelastic coupling terms occurring in the heat conduction equation are usually small and neglected in practice [START_REF] Boley | Survey of recent developments in the fields of heat conduction in solids and thermo-elasticity[END_REF][START_REF] Allen | Thermomechanical coupling in inelastic solids[END_REF][START_REF] Barron | Design for Thermal Stresses[END_REF]. Taking them into account, however, has been found important in many applications, such as the modeling of the vibration of resonant microelectromechanical systems (MEMS) [START_REF] Prabhakar | Analysis of frequency shifts due to thermoelastic coupling in flexural-mode micromechanical and nanomechanical resonators[END_REF][START_REF]Resonant MEMS. Advanced Micro and Nanosystems[END_REF][START_REF] Li | Study of intrinsic dissipation due to thermoelastic coupling in gyroscope resonators[END_REF], dynamic crack propagation [START_REF] Kokini | Thermal shock of a cracked strip: Effect of temperature-dependent material properties[END_REF][START_REF] Atkinson | Fracture in fully coupled dynamic thermoelasticity[END_REF][START_REF] Zamani | Implementation of the extended finite element method for dynamic thermoelastic fracture initiation[END_REF], thermal shocks [START_REF] Shindo | Thermal shock of cracked composite materials with temperature dependent properties[END_REF][START_REF] Ekhlakov | A BDEM for transient thermoelastic crack problems in functionally graded materials under thermal shock[END_REF][START_REF] Zhang | Thermomechanical coupling of non-Fourier heat conduction with the C-V model: Thermal propagation in coating systems[END_REF][START_REF] Wang | Thermoelastic response of thin plate with variable material properties under transient thermal shock[END_REF][START_REF] Wang | Thermoelastic behavior of elastic media with temperature-dependent properties under transient thermal shock[END_REF], ultrafast laser heating in thermal processing of materials [START_REF] Tzou | Recent development of ultrafast thermoelasticity[END_REF][START_REF] Tsai | Analysis of microscale heat transfer and ultrafast thermoelasticity in a multi-layered metal film with nonlinear thermal boundary resistance[END_REF][START_REF] Yu | Macro-to microscale heat transfer: the lagging behavior[END_REF][START_REF] Entezari | 3D dynamic coupled thermoelastic solution for constant thickness disks using refined 1D finite element models[END_REF], and wave propagation [START_REF] Sinha | Reflection of thermoelastic waves at a solid half-space with thermal relaxation[END_REF][START_REF] Sharma | Generalized thermoelastic wave propagation in circumferential direction of transversely isotropic cylindrical curved plates[END_REF][START_REF] Jiangong | Circumferential thermoelastic waves in orthotropic cylindrical curved plates without energy dissipation[END_REF][START_REF] Dobovšek | Structure and intrinsic properties of dispersion relation in hyperbolic thermoelasticity[END_REF]. In some of these applications, using the Cattaneo-Vernotte conduction model instead of Fourier's law and/or accounting for the temperature dependence of the material moduli have resulted in better predictions [START_REF] Wang | Thermoelastic behavior of elastic media with temperature-dependent properties under transient thermal shock[END_REF][START_REF] Tay | Finite element analysis of thermoelastic coupling in composites[END_REF][START_REF] Palumbo | Data correction for thermoelastic stress analysis on titanium components[END_REF].

The interest in retaining thermoelastic coupling terms is not limited to extreme applications. For instance, these terms are the foundation of the experimental technique known as thermoelastic stress analysis (TSA), which does not involve severe conditions. In a typical TSA test, temperature changes of an order of magnitude of one thousandth of a Kelvin are induced by sinusoidal reversible straining at a frequency of the order of magnitude of ten Hertz [START_REF] Greene | Thermoelastic stress analysis[END_REF][START_REF] Stanley | Beginnings and early development of thermoelastic stress analysis[END_REF]. Interestingly, despite the smallness of the temperature changes in TSA tests, models that (i) take into account the temperature dependence of the material moduli and (ii) involve their temperature-derivatives have been found to explain experimental observations more satisfactorily than linear thermoelasticity [START_REF] Belgen | Infrared radiometric stress instrumentation application range study[END_REF][START_REF] Wong | Thermoelastic constant or thermoelastic parameter?[END_REF][START_REF] Pitarresi | A review of the general theory of thermoelastic stress analysis[END_REF], in which the elasticities and the coefficients of thermal expansion are assumed temperature-independent.

In the case of small strains, small temperature changes, and temperatureindependent thermoelastic moduli, there is a consensus on the explicit form of the coupled heat equation for both the Fourier and Cattaneo-Vernotte conduction models [START_REF] Hetnarski | Thermal Stresses -Advanced Theory and Applications[END_REF]. In the case of large temperature changes and temperaturedependent thermoelastic moduli, there currently seems to be no consensus on the explicit form of the coupled heat equation, even for the Fourier conduction model. So far, several distinct expressions have been used that (i) involve different, often implicit, assumptions, and (ii) generally lack some of the coupling terms. Thus, the expressions obtained by letting the material moduli depend on temperature in the coupled heat equation obtained in linear thermoelasticity [START_REF] Wang | Thermoelastic behavior of elastic media with temperature-dependent properties under transient thermal shock[END_REF][START_REF] Ezzat | The dependence of the modulus of elasticity on the reference temperature in generalized thermoelasticity[END_REF][START_REF] Mohamed | Lord-Shulman theory under the dependence of the modulus of elasticity on the reference temperature in twodimensional generalized thermoelasticity[END_REF][START_REF] Hamdy | Thermal shock problem of generalized thermoelasticity for an infinitely long annular cylinder with variable thermal conductivity[END_REF][START_REF] Ashraf | A generalized thermoelasticity problem of an annular cylinder with temperature-dependent density and material properties[END_REF][START_REF] Kumar | Investigation on the effects of temperature dependency of material parameters on a thermoelastic loading problem[END_REF] implicitly neglect, among other things, the coupling terms involving the temperature derivatives of the elasticity tensor. Similarly, the expressions stemming from polynomial expansions of the Helmholtz energy to an order higher than second in the temperature change [START_REF] Wang | Thermoelastic behavior of elastic media with temperature-dependent properties under transient thermal shock[END_REF][START_REF] Dillon | A nonlinear thermoelasticity theory[END_REF][START_REF] Lord | A generalized dynamical theory of thermoelasticity[END_REF][START_REF] Wang | The expression of free energy for thermoelastic material and its relation to the variable material coefficients[END_REF] also lack some of the coupling terms because of the truncation. Moreover, such expansions result in forms for the thermoelastic moduli, as functions of temperature, that do not fit well the actual temperature dependence of these moduli in many instances, for example, between room and cryogenic temperatures [START_REF] Marquardt | Cryogenic material properties database[END_REF].

The purpose of this study is to provide expressions for the coupled heat equation that include all the coupling terms for both the Fourier and Cattaneo-Vernotte conduction models while taking into account large temperature changes, defined as temperature changes large enough to require consideration of the temperature dependence of the thermoelastic moduli. The thermoelastic framework used here assumes the strain to be small but does not place the usual restrictions imposed in linear thermoelasticity on the temperature changes [START_REF] Kovalenko | Osnovy termouprugosti[END_REF][START_REF] Kovalenko | The current theory of thermoelasticity[END_REF][START_REF] Carlson | Linear thermoelasticity[END_REF]. The approach is based on the expressions of the thermodynamic potentials obtained in [START_REF] Boussaa | On thermodynamic potentials in thermoelasticity under small strain and finite thermal perturbation assumptions[END_REF].

The rest of the paper is organized as follows. Section 2 reviews some basic thermodynamic results of thermoelasticity with temperature-dependent material moduli. Section 3 introduces thermoelastic moduli that enter the expressions of the coupled heat equations to be developed in later sections. The presentation emphasizes the dependence of these moduli on the mechanical variables in addition to temperature. Section 4 develops the coupled heat equation for both the Fourier and the Cattaneo-Vernotte conduction models, with strain and temperature as independent variables. Section 5 does the same with stress and temperature as independent variables. Section 6 applies the results of Sections 4 and 5 to obtain (i) approximate expressions for the coupled heat equation, including a Lord-Shulman-type model that accounts for the temperature dependence of the thermoelastic moduli and (ii) a specialization of the coupled heat equations to the adiabatic case, which is the framework underpinning the TSA. Section 7 offers conclusions.

2 Framework, energy balance, potentials and heat conduction laws

Framework

The framework of this study is small-strain thermoelasticity with allowance made for large changes in temperature, as defined in the introduction, and temperature dependence of the material moduli [START_REF] Kovalenko | Osnovy termouprugosti[END_REF][START_REF] Kovalenko | The current theory of thermoelasticity[END_REF][START_REF] Boussaa | On thermodynamic potentials in thermoelasticity under small strain and finite thermal perturbation assumptions[END_REF]. The basic assumption of the framework is that the stress-strain relation is an affine function with temperature-dependent coefficients. This amounts to assuming that the elasticity tensor and, as to be expected from a thermoelasticity model, the thermal strain tensor are temperature dependent. This assumption fixes the form of the thermodynamic potentials as functions of temperature and either stress or strain [START_REF] Boussaa | Effects of superimposed eigenstrains on the overall thermoelastic moduli of composites[END_REF], and therefore that of the remaining thermoelastic moduli, i.e., the heat capacities, the coefficient of thermal expansion (CTE) tensor, and the stress-temperature tensor.

Local energy balance equation

In small deformation, the local form of the energy balance equation reads [45, p. 42]

u = σ • ˙ -div q + r, (1) 
where the central dot denotes the inner product between two second-order tensors, the overdot denotes differentiation with respect to time, u is the internal energy per unit reference volume, σ is the stress tensor, is the (small) strain tensor, q is the heat flux vector, and r is the heat supply per unit reference volume.

Let h denote the enthalpy per unit reference volume. The identity

u = h + σ • (2) 
allows rewriting the energy balance equation ( 1) in terms of the enthalpy as

ḣ = -• σ -div q + r. (3) 

Helmholtz potential in the case of temperature-dependent moduli

The Helmholtz potential per unit reference volume, expressed in terms of its natural variables, is given by [START_REF] Boussaa | Effects of superimposed eigenstrains on the overall thermoelastic moduli of composites[END_REF] f

( , T ) = 1 2 • L(T ) + l(T ) • - T T0 ξ T0 C (0, ν) ν dν dξ -η 0 (T -T 0 ) + f 0 . ( 4 
)
where T is the temperature; T 0 is the reference temperature; L is the isothermal elasticity tensor; l is the thermal stress, i.e., the stress that develops in the material when the temperature is made to vary under zero-strain conditions; C ( , T ) is the heat capacity at constant strain per unit reference volume at a state ( , T ) and C (0, T ) its value at the state (0, T ); ν and ξ are dummy variables; and η 0 and f 0 are the values of the entropy and the Helmholtz potential at the reference state, respectively. The elasticity tensor L is assumed to be symmetric, and the thermal stress l is assumed to vanish at the reference state (i.e., l (T 0 ) = 0). From

σ = ∂f ∂ T , (5) 
η = - ∂f ∂T , (6) 
it follows that the state equations associated with the Helmholtz potential ( 4) are

σ = L(T ) + l(T ), (7) 
η = - 1 2 • dL dT - dl dT • + T T0 C (0, ν) ν dν + η 0 , ( 8 
)
where η is the entropy.

Combining the Gibbs-Helmholtz equation

u = f -T ∂f ∂T (9) 
with the Helmholtz potential (4) yields the following expression for the internal energy:

u ( , T ) = 1 2 • L -T dL dT + l -T dl dT • + T T0 C (0, ν) dν + f 0 + η 0 T 0 . (10) 

Gibbs potential in the case of temperature-dependent moduli

The Gibbs potential per unit reference volume, expressed in terms of its natural variables, is given by [START_REF] Boussaa | Effects of superimposed eigenstrains on the overall thermoelastic moduli of composites[END_REF] g(σ, T ) = -

1 2 σ • M (T ) σ -m(T ) • σ - T T0 ξ T0 C σ (0, ν) ν dν dξ + g 0 -η 0 (T -T 0 ) . ( 11 
)
where M = L -1 is the compliance tensor; m is the thermal strain, i.e., the strain, measured from the reference state, that develops in the material when the temperature is made to vary under zero-stress conditions; C σ (σ, T ) is the heat capacity at constant stress per unit reference volume at a state (σ, T ) and C σ (0, T ) is its value at the state (0, T ); and g 0 is the value of the Gibbs potential at the reference state. By definition, m (T 0 ) = 0. From

= - ∂g ∂σ T , (12) 
η = - ∂g ∂T σ , (13) 
it follows that the state equations associated with the Gibbs potential [START_REF] Ekhlakov | A BDEM for transient thermoelastic crack problems in functionally graded materials under thermal shock[END_REF] are

= M (T ) σ + m(T ), (14) 
η = 1 2 σ • dM dT σ + dm dT • σ + T T0 C σ (0, ν) ν dν + η 0 . ( 15 
)
Combining the Gibbs-Helmholtz equation

h = g -T ∂g ∂T σ ( 16 
)
with the Gibbs potential [START_REF] Ekhlakov | A BDEM for transient thermoelastic crack problems in functionally graded materials under thermal shock[END_REF] gives

h(σ, T ) = - 1 2 σ • M -T dM dT σ -m -T dm dT • σ + T T0 C σ (0, ν) dν + g 0 + η 0 T 0 . (17) 

Heat conduction laws

Two heat conduction laws are used below. The first is Fourier's law, i.e.,

q = -k grad T, ( 18 
)
where k is the heat conductivity tensor, which, in general, is a function of the thermodynamic state.

The second is the Cattaneo-Vernotte heat conduction law, which is characterized by the following equation:

q + τ q = -k grad T, ( 19 
)
where τ is the relaxation time, assumed to be a nonnegative constant. This equation is postulated to hold as given for general anisotropy [START_REF] Chandrasekharaiah | Thermoelasticity with second sound: A review[END_REF][START_REF] Chandrasekharaiah | Hyperbolic thermoelasticity: A review of recent literature[END_REF].

3 Thermoelastic moduli

Coefficient of thermal expansion tensor

The CTE tensor, α, is defined by

α = ∂ ∂T σ . (20) 
From ( 14) it follows that

α (σ, T ) = dM dT σ + dm dT . (21) 
Unlike in linear thermoelasticity, where M is independent of T and m is linearly dependent on T so that α is independent of the state, equation [START_REF] Jiangong | Circumferential thermoelastic waves in orthotropic cylindrical curved plates without energy dissipation[END_REF] shows that the CTE tensor depends on σ in addition to T . The free thermal expansion coefficient (CFTE) tensor, α 0 (T ), is defined as α (0, T ) in ( 21), i.e.,

α 0 (T ) = dm dT , (22) 
whence

m(T ) = T T0 α 0 (ν) dν, (23) 
where m (T 0 ) = 0 was used. The CFTE tensor defined by ( 22) is referred to as the tangent or instantaneous CFTE tensor. Another CFTE tensor is used in the literature, namely, the secant CFTE tensor, which is defined as

α sec 0 (ν) = 1 T -T 0 m (T ) = 1 T -T 0 T T0 α 0 (ν) dν. ( 24 
)
In terms of this quantity, the stress-strain relation reads

= M (T )σ + α sec 0 (T ) (T -T 0 ) . (25) 
In linear thermoelasticity, α, α 0 and α sec 0 coincide and the fact that they are not distinguished from each other has no consequences. This is not the case if the temperature dependence of the elasticities is taken into consideration.

Stress-temperature tensor

The stress-temperature tensor β is defined by

β = ∂σ ∂T . (26) 
From ( 7) it follows that

β ( , T ) = dL dT + dl dT . (27) 
As with α, the dependence of the elasticities on T causes a dependence of β on the mechanical variable, here . The discussion in Subsection 3.1 on α can be repeated for β in an obvious manner, yielding

β 0 (T ) = β(0, T ), (28) 
l(T ) = T T0 β 0 (ν) dν, (29) 
and

β sec 0 (ν) = 1 T -T 0 l (T ) = 1 T -T 0 T T0 β 0 (ν) dν, (30) 
as well as

σ = L(T ) σ + β sec 0 (T ) (T -T 0 ) . ( 31 
)

Heat capacities

The heat capacity per unit reference volume at constant strain, C , is defined by

C = T ∂η ∂T . (32) 
It follows from (8) that

C ( , T ) = C (0, T ) -T 1 2 • d 2 L dT 2 + d 2 l dT 2 • . ( 33 
)
In view of [START_REF] Shindo | Thermal shock of cracked composite materials with temperature dependent properties[END_REF], it is possible to check that, as was to be expected,

∂u ∂T = C ( , T ) . ( 34 
)
The heat capacity per unit reference volume at constant stress, C σ , is defined by

C σ = T ∂η ∂T σ , (35) 
which, combined with (8), gives

C σ (σ, T ) = C σ (0, T ) + T 1 2 σ • d 2 M dT 2 σ + d 2 m dT 2 • σ . ( 36 
)
In view of [START_REF] Yu | Macro-to microscale heat transfer: the lagging behavior[END_REF], one can check that, as was to be expected,

∂h ∂T σ = C σ (σ, T ) . ( 37 
)
Within the thermoelasticity framework used here, the thermoelastic moduli discussed in this subsection depend not only on the temperature but also on the mechanical variable, which will increase the number of coupling terms.

Remark

If expressions in terms of the thermal strain, m, its first T -derivative, α 0 , and its second T -derivative , dα 0 /dT , are preferred to those involving the thermal stress, l, then the following equations can be used:

l = -Lm, ( 38 
) dl dT = - dL dT m -Lα 0 , (39) 
d 2 l dT 2 = - d 2 L dT 2 m -2 dL dT α 0 -L dα 0 dT . (40) 
Equation ( 38) can be derived from [START_REF] Kokini | Thermal shock of a cracked strip: Effect of temperature-dependent material properties[END_REF] by noting that during a free thermal expansion σ = 0 and = m.

4 Coupled heat equation with strain and temperature as independent variables

General form

From (1), ( 7), ( 10), ( 26), ( 27), [START_REF] Hamdy | Thermal shock problem of generalized thermoelasticity for an infinitely long annular cylinder with variable thermal conductivity[END_REF] and [START_REF] Ashraf | A generalized thermoelasticity problem of an annular cylinder with temperature-dependent density and material properties[END_REF] it follows that

C ( , T ) Ṫ = -div q + T β • ˙ + r. (41) 

Case of Fourier's law

Inserting ( 18) into [START_REF] Kovalenko | The current theory of thermoelasticity[END_REF] gives

div (k grad T ) + r = C ( , T ) Ṫ -T β( , T ) • ˙ . (42) 
The thermoelastic coupling occurs through not only ˙ terms as in linear thermoelasticity but also through terms, in view of the expressions of β( , T ) and C ( , T ) as given by ( 27) and ( 33), respectively. Another potential source of coupling is the possible dependence of k on . A thermoelastic model where the two-way coupling is caused by the dependence of k on is described in [START_REF] Fu | Thermo-Mechanical Coupling for Ablation[END_REF].

The coupling in ( 42) is now discussed according to whether or not the conductivity depends on the strain.

Case of -dependent conductivity If the conductivity depends on the strain, then the two-way coupling is operative whether or not the problem depends on time.

Case of -independent conductivity If the conductivity is independent of the strain, then, in general, the two-way coupling is inoperative in timeindependent problems and operative in time-dependent problems. For the twoway coupling to be inoperative and the heat equation ( 42) uncoupled from the mechanical fields in the time-dependent case, it is necessary that the stresstemperature tensor β be zero. The vanishing of β implies that L is independent of T and l is zero. In turn, this implies that C is independent of the strain. The vanishing of the stress-temperature tensor β is therefore also a sufficient condition for the heat equation to be uncoupled from the mechanical fields.

Case of the Cattaneo-Vernotte law

Combining [START_REF] Kovalenko | The current theory of thermoelasticity[END_REF] and its time derivative with [START_REF] Sinha | Reflection of thermoelastic waves at a solid half-space with thermal relaxation[END_REF] gives

div (k grad T ) + r + τ ṙ = τ C T + τ ∂C ∂T Ṫ 2 + C + τ ∂C ∂ T -β -T ∂β ∂T • ˙ Ṫ -β • ˙ + τ β • ¨ + ˙ • ∂β ∂ T ˙ T, (43) 
where

∂C ∂ T = -T d 2 L dT 2 + d 2 l dT 2 , ∂C ∂T = ∂C ∂T (0, T ) - 1 2 • d 2 L dT 2 - d 2 l dT 2 • -T 1 2 • d 3 L dT 3 + d 3 l dT 3 • , and 
∂β ∂ T = dL dT , ∂β ∂T = d 2 L dT 2 + d 2 l dT 2 .
The following higher order Maxwell relation can be used in ( 43)

∂C ∂ T = -T ∂β ∂T . (44) 
Similar conclusions to those reached in subsection 4.2 on the thermoelastic coupling hold true in this subsection. In particular, for the thermoelastic coupling to be inoperative, it suffices that k be independent of and β be zero.

Equation [START_REF] Boussaa | On thermodynamic potentials in thermoelasticity under small strain and finite thermal perturbation assumptions[END_REF] represents the general coupled heat equation in the case of the Cattaneo-Vernotte law. It contains all the coupling terms in explicit form while being more convenient and more accurate than the equations based on the expansion of the Helmholtz potential in power series of the temperature change.

5 Coupled heat equation with stress and temperature as independent variables

General form

From ( 3), ( 14), ( 17) , ( 20), ( 21), ( 36) and ( 37) it follows that

-div q + r = C σ Ṫ + T α • σ. ( 45 
)

Case of Fourier's law

Combining ( 18) and [START_REF] Lubliner | Plasticity theory[END_REF] gives

div (k(σ, T ) grad T ) + r = C σ (σ, T ) Ṫ + T α(σ, T ) • σ, (46) 
where α(σ, T ) and C σ (σ, T ) are given by ( 21) and [START_REF] Dillon | A nonlinear thermoelasticity theory[END_REF], respectively.

It can be shown, as in Subsection 4.2, that in the case of σ-independent conductivity the vanishing of the CTE tensor α is a necessary and sufficient condition for the heat equation to be uncoupled from the mechanical fields. The vanishing of only the CFTE tensor α 0 does not suffice to uncouple the heat equation from the mechanical fields.

Case of the Cattaneo-Vernotte law

Combining [START_REF] Lubliner | Plasticity theory[END_REF] and its time derivative with [START_REF] Sinha | Reflection of thermoelastic waves at a solid half-space with thermal relaxation[END_REF] gives

div (k grad T ) + r + τ ṙ = τ C σ T + τ ∂C σ ∂T σ Ṫ 2 + C σ + τ ∂C σ ∂σ T + α + T ∂α ∂T σ • σ Ṫ + α • σ + τ α • σ + σ • ∂α ∂σ T σ T, (47) 
where

∂C σ ∂σ T = T d 2 M dT 2 σ + d 2 m dT 2 , ∂C σ ∂T σ = ∂C σ ∂T (0, T ) + 1 2 σ • d 2 M dT 2 σ + d 2 m dT 2 • σ + T 1 2 σ • d 3 M dT 3 σ + d 3 m dT 3 • σ , and 
∂α ∂σ T = dM dT , ∂α ∂T σ = d 2 M dT 2 σ + d 2 m dT 2 .
Note that in (47)

∂C σ ∂σ T = T ∂α ∂T σ . (48) 
Equations ( 43) and ( 47) are of course equivalent. It is keeping all the coupling terms that makes it possible to pass from one equation to the other without unnecessary additional assumptions. The appendix gives relations that can be used to move from [START_REF] Boussaa | On thermodynamic potentials in thermoelasticity under small strain and finite thermal perturbation assumptions[END_REF] to [START_REF] Chandrasekharaiah | Hyperbolic thermoelasticity: A review of recent literature[END_REF].

The conclusions reached in Subsection 5.2 on the thermoelastic coupling hold true in this subsection. In particular, for the thermoelastic coupling to be inoperative, it suffices that k be independent of σ and α (and not α 0 ) be zero.

Applications

Some simplified expressions

Equations ( 42), ( 43), [START_REF] Chandrasekharaiah | Thermoelasticity with second sound: A review[END_REF], and (47) are numerically challenging and are not meant to be used as they are in all circumstances. They are rather intended to build justified approximate models. As they do not involve any approximations other than those defining their theoretical framework (small strains and linear stress-strain relation with temperature-dependent coefficients) and contain all the corresponding coupling terms, they make it possible to estimate on a caseby-case basis the order of magnitude of each of the coupling terms and decide which ones to keep. This subsection discusses some such approximate models.

An approximate heat equation within Fourier conduction

If the temperature gradient, temperature rate, strain rate, heat supply, together with strain, are assumed to be small of the same order, then, up to first-order, the heat equation for Fourier's law [START_REF] Carlson | Linear thermoelasticity[END_REF] 

reduces to div (k(0, T ) grad T ) + r = C (0, T ) Ṫ -T dl dT (T ) • ˙ . ( 49 
)
This equation is valid even for large temperature changes. If in addition to the above assumptions the relative change in temperature, (T -T 0 )/T 0 , is also assumed to be small, then the foregoing equation reduces to div (k (0, T 0 ) grad

T ) + r = C (0, T 0 ) Ṫ -T 0 dl dT (T 0 ) • ˙ . ( 50 
)
Since dl/dT (T 0 ) = -L (T 0 ) α 0 (T 0 ), (50) can be recognized as the heat conduction equation used in linear thermoelasticity, namely, div (k (0, T 0 ) grad

T ) + r = C (0, T 0 ) Ṫ + T 0 L (T 0 ) α 0 (T 0 ) • ˙ . (51) 
It is worth noting that it does not suffice to replace T 0 by T in the foregoing equation to retrieve the coupled heat equation in the case of temperature-dependent material moduli [START_REF] Carlson | Linear thermoelasticity[END_REF], or even the approximate version (49).

An extended Lord-Shulman model

In the case of the Cattaneo-Vernotte conduction also, if the temperature gradient, temperature rates, strain rates, heat supply, and heat supply rate, together with strain, are assumed to be small, then [START_REF] Boussaa | On thermodynamic potentials in thermoelasticity under small strain and finite thermal perturbation assumptions[END_REF] reduces to div (k(0, T ) grad

T ) + r + τ ṙ = C (0, T ) Ṫ + τ T -T dl dT (T ) • ( ˙ + τ ¨ ) . ( 52 
)
Equation ( 52) takes into account large temperature changes and the temperature dependence of the moduli. It therefore represents an extended version of the classical Lord-Shulman equation.

Again, if in addition to the above assumptions the temperature change is also assumed to be small, then the above equation reduces to

div (k (0, T 0 ) grad T ) + r = C (0, T 0 ) Ṫ + τ T + T 0 L (T 0 ) α 0 (T 0 ) • ( ˙ + τ ¨ ) .
(53) This is the anisotropic version of of the coupled heat equation proposed by Lord and Shulman [START_REF] Lord | A generalized dynamical theory of thermoelasticity[END_REF]. Replacing T 0 by T in this equation gives back neither (43) nor (52).

Application to TSA

The independent variables commonly used in TSA are the temperature and stress and the conduction model is Fourier's law. This subsection will therefore focus on [START_REF] Chandrasekharaiah | Thermoelasticity with second sound: A review[END_REF]. This equation is first particularized to the adiabatic case, which is the usual case considered in TSA studies. The results obtained are then compared with those given in [START_REF] Wong | Thermoelastic constant or thermoelastic parameter?[END_REF], which are presently the most widely used [START_REF] Pitarresi | A review of the general theory of thermoelastic stress analysis[END_REF][START_REF] A F Robinson | A review of residual stress analysis using thermoelastic techniques[END_REF][START_REF] A F Robinson | Paint coating characterization for thermoelastic stress analysis of metallic materials[END_REF][START_REF] Garinei | Constant stress field measurements through thermoelasticity[END_REF][START_REF] Howell | A stress-free model for residual stress assessment using thermoelastic stress analysis[END_REF][START_REF] Howell | Identification of Plastic Strain using Thermoelastic Stress Analysis[END_REF] if there is a need to take into account the experimentally observed dependence of the thermoelastic parameter on both temperature and stress [START_REF] Belgen | Infrared radiometric stress instrumentation application range study[END_REF][START_REF] Machin | Mean stress dependence of the thermoelastic constant[END_REF].

In the adiabatic case, i.e., q = 0 and r = 0, (46) reduces to

C σ (σ, T ) Ṫ T = -α(σ, T ) • σ, (54) 
or equivalently, by [START_REF] Jiangong | Circumferential thermoelastic waves in orthotropic cylindrical curved plates without energy dissipation[END_REF], to

C σ (σ, T ) Ṫ T = - dM dT σ + α 0 • σ. (55) 
Specializing equation (55) to the isotropic case gives

C σ (σ, T ) Ṫ T = -α 0 + ν E 2 dE dT - 1 E dν dT tr σ tr σ + 1 + ν E 2 dE dT - 1 E dν dT σ • σ, (56) 
where α 0 is the coefficient of free thermal expansion (α 0 = α 0 i, with i being the second-order identity tensor), E is Young's modulus and ν is Poisson's ratio. Equation ( 56) is now compared with equation (2.23) given in [START_REF] Wong | Thermoelastic constant or thermoelastic parameter?[END_REF], which is often referred to as "revised higher order theory equation." The general form of the two equations is the same. The terms involving the mechanical moduli are identical in the two equations. However, those involving the heat capacities and those involving the coefficients of free thermal expansion differ. First, the heat capacity at constant strain is used in [28, equation (2.23)], whereas the heat capacity at constant stress is used in (56). Second, the secant CFTE is used in [28, equation (2.23)], whereas the tangent CFTE is used in (56). The two equations are therefore different for general adiabatic transformations.

The difference can be explained by approximations used in [START_REF] Wong | Thermoelastic constant or thermoelastic parameter?[END_REF] but not used here. The derivation of the stress-based equations [28, equation (2.22)] and [28, equation (2.23)] from the strain-based equation [28, equation (2.20)] and [28, equation (2.21)] has required approximations, such as "omitting higher order terms". By contrast, (56) is free of such approximations. Now, as far as TSA is concerned, the new equations should not a priori question most existing results, as C σ and C are close to each other, as are, even more so, the tangent and secant CFTE tensors in view of the smallness of the change in temperature in typical TSA tests.

Conclusions

This study has developed expressions for the coupled heat equation within the framework of small-strain thermoelasticity with temperature-dependent thermoelastic moduli and without the restrictions on temperature changes imposed in linear thermoelasticity. The expressions, developed for the Fourier and Cattaneo-Vernotte conduction laws, contain all the coupling terms, which involve not only the thermoelastic moduli but also their derivatives with respect to the independent state variables. Retaining all the coupling terms has made it possible to present a coherent framework without unnecessary assumptions and to obtain equations that are more accurate and more convenient than those obtained by polynomial expansion. As applications, the expressions obtained were used (i) to derive a new Lord-Shulman-type model that accounts for the temperature dependence of the thermoelastic moduli and large changes in temperature, and (2) to revisit the theory underpinning TSA.
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Appendix

The heat equations [START_REF] Boussaa | On thermodynamic potentials in thermoelasticity under small strain and finite thermal perturbation assumptions[END_REF] and ( 47) are of course equivalent. One can use the following relations to derive (47) from ( 43):

• Terms in C