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Abstract

On a system that exposes disjoint memory spaces to the software, a program
has to address memory consistency issues and perform data transfers so that
it always accesses valid data. Several approaches exist to ensure the consis-
tency of the memory accessed. Here we are interested in the verification of a
declarative approach where each component of a computation is annotated with
an access mode declaring which part of the memory is read or written by the
component. The programming framework uses the component annotations to
guarantee the validity of the memory accesses. This is the mechanism used in
VectorPU, a C++ library for programming CPU-GPU heterogeneous systems.
This article proves the correctness of the software cache-coherence mechanism
used in VectorPU. Beyond the scope of VectorPU, this article provides a simple
and effective formalisation of memory consistency mechanisms based on the ex-
plicit declaration of the effect of each component on each memory space. The
formalism we propose also takes into account arrays for which a single validity
status is stored for the whole array; additional mechanisms for dealing with
overlapping arrays are also studied.

Keywords: Memory consistency, CPU-GPU heterogeneous systems, data
transfer, software caching, cache coherence

1. Introduction

Heterogeneous computer systems, such as traditional CPU-GPU based sys-
tems, often expose disjoint memory spaces to the programmer, such as main
memory and device memory, with the need to explicitly transfer data between
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these. The different memories usually require different memory access opera-
tions and different pointer types. Also, encoding memory transfers as message
passing communications leads to low-level code that is more error-prone. A
commonly used software technique to abstract away the distributed memory,
the explicit message passing, and the asymmetric memory access mechanisms
consists in providing the programmer with an object-based shared memory em-
ulation. For CPU-GPU systems, this can be done in the form of special data-
containers, which are generic, STL-like data abstractions such as vector<...>

that wrap multi-element data structures such as arrays. These data-container
objects internally perform transparent, coherent software caching of (subsets of)
accessed elements in the different memories so they can be reused (as long as not
invalidated) in order to avoid unnecessary data transfers. Such data-containers
(sometimes also referred to as ”smart” containers as they can transparently per-
form data transfer and memory allocation optimizations [1]) are provided in a
number of programming frameworks for heterogeneous systems, such as StarPU
[2] and SkePU [3, 1]. StarPU is a C-based library that provides API functions
to define multi-variant tasks for dynamic scheduling where the data containers
are used for modeling the operand data-flow among the dynamically scheduled
tasks. SkePU defines device-independent multi-backend skeletons like map, re-
duce, scan, stencil etc. where operands are passed to skeleton calls within data
containers.

VectorPU [4] is a recent C++-only open-source programming framework
for CPU-GPU heterogeneous systems. VectorPU relies on the specification of
components, which are functions that contain kernels for execution on either
CPU or GPU. Programming in VectorPU is thus not restricted to using prede-
fined skeletons like SkePU, but leads to more high-level and more concise code
than StarPU. Like StarPU, VectorPU requires the programmer to annotate each
operand of a component with the access mode (read, write, or both) including
the accessing unit (CPU, GPU), and uses smart data containers for automatic
transparent software caching based on this access mode information.

The implementation of VectorPU makes excessive use of static metapro-
gramming; this provides a light-weight realization of the access mode annota-
tions and of the software caching, which only require a standard C++ compiler.
Emulating these light-weight component and access mode constructs without
additional language and compiler support (in contrast to, e.g., OpenACC or
OpenMP), leads however to some compromises concerning the possibility to
perform static analysis. In particular, VectorPU has no explicit type system for
the access modes, as these are not known to the C++ compiler.

In this paper, we formalize access modes and data transfers in CPU-GPU
heterogeneous systems and prove the correctness of the software cache coherence
mechanism used in VectorPU. The contributions of this paper are:

• A simple effect system modeling the semantics of memory accesses and
communication in a CPU-GPU heterogeneous system,

• A small calculus expressing different memory accesses and their composi-
tion across program traces.
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Figure 1: A GPU-based system with distributed address space

• The interpretation of VectorPU operations as higher-level statements that
can be translated into the core calculus,

• A proof that, if all memory accesses are performed through VectorPU
operations, the memory cannot reach an inconsistent state and all memory
accesses succeed,

• The abstraction necessary to take into account arrays, possibly overlap-
ping, in the formalism.

This article is an extended version of [5], with two main additions. First
the relationship between the formal results and the VectorPU implementation
is detailed, illustrating the impact of the proven results on the behaviour of the
library. Second, the theoretical framework is extended to take into account the
fact that manipulated arrays may overlap and that the consistency mechanism
must take this information into account to be correct. While overlapping arrays
are not yet supported by VectorPU, based on the formal model we develop, we
show how a simple extension of the library could provide support for overlapping
arrays.

This paper is organized as follows: Section 2 reviews VectorPU as far as
required for this paper, for further information we refer to [4]. Section 3 provides
our formalization of VectorPU programs and their semantics, and proves that
the coherence mechanism used in VectorPU is sound. Section 5 discusses related
work, and Section 6 concludes.

2. VectorPU

In heterogeneous systems with separate address spaces, for example in many
GPU-based systems, a general-purpose processor (CPU) with direct access to
main memory is connected by some network (e.g., PCIe bus) to one or several
accelerators (e.g., GPUs) each having its own device memory, see Figure 1. Na-
tive programming models for such systems such as CUDA typically expose the
distributed address spaces to the programmer, who has to write explicit code
for data transfers and device memory management. Often, programs for such
systems must be organized in multiple source files as different programming
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models and different toolchains are to be used for different types of execution
unit. This enforces a low-level programming style. Accordingly, a number of
single-source programming approaches have been proposed that abstract away
the distribution by providing a virtual shared address space. Examples include
directive-based language extensions such as OpenACC and OpenMP4.5, and
C++-only approaches such as the library-based skeleton programming frame-
work SkePU [1] and the recent macro-based framework VectorPU.

VectorPU [4] is an open-source2 lightweight C++-only high-level program-
ming layer for writing single-source heterogeneous programs for Nvidia CUDA
GPU-based systems. Aggregate operand data structures passed into or out of
function calls are to be wrapped by special data containers known to VectorPU.
VectorPU currently provides one generic data container, called vector<...>,
with multiple variants that eliminate the overhead of managing heterogeneity
and distribution when not required (e.g., when no GPU is available). vector<...>
inherits functionality from STL vector and from Nvidia Thrust vector, and
wraps a C++ array allocated in main memory. VectorPU automatically cre-
ates on demand copies of to-be accessed elements in device memory and keeps
all copies coherent using a simple coherence protocol, data transfers are only
performed when needed.

VectorPU programs are organized as a set of C++ functions, some of which
might internally use device-specific programming CUDA constructs3 while oth-
ers are expected to execute on the host, using one or possibly multiple cores.
VectorPU components are functions that are supposed to contain (CPU or de-
vice) kernel functionality and for which operands are passed as VectorPU data
container objects. Components and the types of execution units that access
their operands are declared by annotating the operands of the function, either
at a call of the function or for the formal parameters in the function’s declara-
tion, with VectorPU access mode specifiers. For example, in contrast, SkePU
[3] overloads element access and iterator operations so that monitored accesses
are also possible on demand in non-componentized (i.e., ordinary C++) CPU
code. VectorPU only relies on access mode annotations to perform lazy data
transfer, not knowing when data is going to be accessed inside a component.

Table 1 summarizes the access mode annotations currently defined for Vec-
torPU. The access mode specifiers, such as R (read on CPU), W (write on CPU),
RW (update, i.e., both read and write, on CPU), GR (read on GPU) and so forth,
are available both as annotations of function signatures and as C++ prepro-
cessor macros that expand at compilation into (possibly, device-specific) C++
pointer expressions and side effects that allow to generate device specific access
code and use device-specific pointer types for the chosen execution unit. For
instance, GW(x) expands to a GPU pointer to the GPU device copy of x, which
might be dereferenced for GPU writing accesses to x, such as the GPU code:

2http://www.ida.liu.se/labs/pelab/vectorpu, https://github.com/lilu09/vectorpu
3VectorPU allows to directly annotate a CUDA kernel function, in addition to annotating

its C++ wrapper function.
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Table 1: VectorPU access mode annotations for a parameter [4]

Access Mode On Host On Device
Read pointer R GR

Write pointer W GW

Read and Write pointer RW GRW

Read Iterator RI GRI

Read End Iterator REI GREI

Write Iterator WI GWI

Write End Iterator WEI GWEI

Read and Write Iterator RWI GRWI

Read and Write End Iterator RWEI GRWEI

Not Applicable NA NA

*( GW(x) + 2 ) = 3.14. GWI(x) evaluates to a Thrust-compatible iterator
onto the GPU device copy of x, and WEI(x) to an iterator-end reference to the
last element of x on CPU side. The current VectorPU prototype implementation
does not (yet) check access-mode annotations in signatures of externally defined
functions. It is also possible to specify partial access of a vector instead of the
entire vector data structure. The current VectorPU implementation does not
(yet) support coherence for overlapping intervals of elements resulting from mul-
tiple (partial) accesses some of which (may) access the same element. A solution
for this problem has been described for SkePU smart containers by Dastgeer [1].
Section 4 details a solution for handling overlapping arrays in VectorPU.

The following example (adapted from [4]) of a CUDA kernel wrapped in an
annotated function bar shows the use of VectorPU access mode annotations at
function declaration:

// Example (annotations at function declaration):

__global__

void bar ( const float *x [[GR]], float *y [[GW]],

float *z [[GRW]], int size )

{ ... CUDA kernel code ... }

Here, the operand array pointed to by x may be read (only) by the GPU
within bar, operand array y must be written (only) by the GPU, and operand
array z may be read and/or written by the GPU. When calling bar, the first
three operands are passed as VectorPU vector container objects. The size

formal parameter is a scalar (not a data container), so it will be available on
GPU on a copy-in basis but no coherence will be provided for it by VectorPU.

It is also possible to put the annotations into a call, and hence characterize
a function as a VectorPU component:

// declare a CPU function:

void foo ( const float *x, float *y, float *z, int size );

// declare three vectors:

vectorpu::vector<float> vx(100), vy(100), vz(100);
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struct my_set {

template <class T>

__host__ __device__

void operator() (T &x) { x+=101; }

};

vectorpu::vector<int> vx(10); // the mother vector

vectorpu::pvector<int> vy(x, vx.begin(), vx.begin()+2);

vectorpu::for_each<int>( GWI(vy), GWEI(vy), my_set() );

vectorpu::for_each<int>( GWI(vy), GWEI(vy), my_set() );

SR( vy ); // explicit coherence management

vectorpu::for_each<int>( RI(vx), REI(vx), [](auto x) {cout<<x<<" ";} );

Figure 2: Example of using a partial vector (pvector) and the SR macro for explicit coher-
ence management. (Note: pvector is a short form and actually called parco vector in the
VectorPU API.)

// call to VectorPU annotated function foo:

foo ( R( vx ), W( vy ), RW( vz ), size ) ;

Here, the access mode specifiers and the resulting coherence policy only
apply to that particular invocation of foo, while other invocations of foo might
use different access mode specifiers.

The following example shows how to use iterators:

vectorpu::vector<My_Type> vx(N);

std::generate( WI(vx), WEI(vx), RandomNumber );

thrust::sort( GRWI(vx), GRWEI(vx));

std::copy( RI(vx), REI(vx), ostream_iterator<My_Type>(cout, ""));

where std::generate is a CPU function filling a section between two addresses
with values (here, random numbers), and thrust::sort denotes the GPU sort-
ing functionality provided by the Nvidia Thrust library.

2.1. Partial Vectors

Using iterators, it is possible in VectorPU to define references to contiguous
subranges of a vector, called partial vectors (pvectors), which can be passed as
vector-compatible operands to a function instead of an entire vector. In this
way, it is possible to pass several (disjoint or even overlapping) pvector objects
as seemingly different vector arguments that however are just windows onto a
common vector container variable. In contrast to vectors without pvectors,
where coherence is managed automatically by VectorPU, the coherence man-
agement in the presence of pvectors is exposed to the programmer.

A partial vector can be initialized by two iterators to a normal VectorPU
vector (we call it mother vector). No new memory is allocated for this partial
vector, only the two iterators are stored, and the coherence state for its range in
the mother vector. When a partial vector is declared, it automatically inherits
the coherence state information from its mother vector.

The aliasing introduced by pvectors can lead to coherence problems. One
such scenario could be that the programmer intends to operate on the previous
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void coherent_on_cpu_r(){

if( !cpu_coherent_unit ){

download();

cpu_coherent_unit=true;

}

}

void coherent_on_cpu_w(){

cpu_coherent_unit=true;

gpu_coherent_unit=false;

}

void coherent_on_cpu_rw(){

if( !cpu_coherent_unit ){

download();

cpu_coherent_unit=true;

}

gpu_coherent_unit=false;

}

void coherent_on_gpu_r(){

if( !gpu_coherent_unit ){

upload();

gpu_coherent_unit=true;

}

}

void coherent_on_gpu_w(){

gpu_coherent_unit=true;

cpu_coherent_unit=false;

}

void coherent_on_gpu_rw(){

if( !gpu_coherent_unit ){

upload();

gpu_coherent_unit=true;

}

cpu_coherent_unit=false;

}

Figure 3: Coherence control code, here for simple vectors, in vectorpu.h. Functions download
and upload are implemented using CUDA thrust::copy. Validity of copies on CPU and
GPU is indicated by the flags cpu coherent unit and gpu coherent unit respectively; both
are initialized to true in code allocating new vectors (not shown).

vector again after some part of it was updated via a pvector, hence the whole
vector would be in an inconsistent state. In such cases, VectorPU expects the
programmer to use a macro SX (Synchronize for access mode X, such as SR

for synchronized read) just before the programmer operates on the whole vector
again. It may be inefficient for a pvector to perform the SX synchroniza-
tion automatically, because multiple operations can be performed on the same
pvector before accessing the whole vector again, and because the pvector has
no knowledge about when the operations on itself will be finished, hence keeping
them coherent each time is not necessary and thus a waste of performance.

Figure 2 shows an example of using a pvector and the SX macro. It initial-
izes a mother vector vx and a pvector vy on it. The following two lines change
part of vy’s value multiple times. The SR macro explicitly restores coherence
for vy before the following read access, resulting in a write-back of vy elements
in GPU device memory to their locations in vx, thus also vx as a whole becomes
coherent again and line 6 is safe to operate on the whole vx.

2.2. Implementation Notes

Coherence protocol. In the source code of VectorPU, the code relevant for our
work is the part of vectorpu.h4 that handles coherence. Its implementation
for the various variants of vector (see the code excerpt in Fig. 3 for simple
vectors) follows a simple valid-invalid protocol.

4The VectorPU source code can be found at https://github.com/lilu09/vectorpu.
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Expansion of macro annotations to device-specific pointers. For function pa-
rameters, the macro annotations expand into appropriate C code to fit their
function call context. For illustration, we show the simplified code after a func-
tion parameter’s expansion (−→) for four typical annotations, where vx refers
to a VectorPU vector instance:

• R(vx) −→ set coherence state();

return this->std::vector<T>::data();

//casted as const in return value

• W(vx) −→ set coherence state();

return this->std::vector<T>::data();

• GR(vx) −→ set coherence state();

return thrust::raw pointer cast(

& (* thrust::device vector<T>::begin() ) );

//casted as const in return value

• GW(vx) −→ set coherence state();

return thrust::raw pointer cast(

& (* thrust::device vector<T>::begin() ) );

Hence, each annotated parameter is expanded to some code snippet5. In all
scenarios the expanded macros first update the coherence state according to the
annotation’s semantics. Then, for the CPU cases, a pointer to a std::vector

is returned, and for the GPU cases, a pointer to a Thrust pointer (which is
a pointer to GPU memory space) is returned. For read-only cases, the return
value is casted to const to ensure type safety in its function invocation. For
write-only cases, no such const cast happens.

Partial vector implementation and memory management. For implementing the
pvectors atop vectors, VectorPU uses the simplistic approach of allocating
memory for the entire vector on the device even if the pvector(s) might only
access a minor part of it. This may waste device memory space but makes local
address calculations easy, and anyway only the accessed elements (the pvector

range) will be transferred. As we will see later, it also simplifies coherence
management for overlapping pvector accesses, which was not really foreseen in
the original VectorPU design.

2.3. Efficiency

Using only available C++(11) language features, VectorPU provides a flexi-
ble unified memory view where all data transfer and device memory management
is abstracted away from the programmer. Nevertheless, its efficiency is on par
with that of handwritten CUDA code containing explicit data movement and
memory management code [4]. In particular, the VectorPU prototype was shown
to achieve 1.4x to 13.29x speedup over good quality code using Nvidia’s Unified

5One can think of those code snippets as anonymous functions or lambda functions. In
the real scenarios these code snippets are encapsulated within a function, and each macro as
shown above expands to a call to its function.
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Memory API on several machines ranging from laptops to supercomputer nodes,
with Kepler and Maxwell GPUs. For a further discussion of VectorPU features,
such as specialized versions of vector, for descriptions of how to use VectorPU
together with lambda expressions e.g. to express skeleton computations, and for
further experimental results we refer to [4].

3. A Formalization for Reasoning on Consistency in VectorPU

In this section we provide a minimal calculus to reason on the memory
operations that can exist in a framework that deals with memory consistency
like VectorPU. We first define a set of effects that operations can have on the
consistency of the memory. Then we define a small calculus expressing different
memory accesses and their composition into complex procedures. Finally, we
express VectorPU operations as higher-level statements that can be translated
into the core calculus, and show that if all memory accesses are annotated
correctly through VectorPU annotations the program cannot try to access an
invalid data and the memory spaces are put in coherence when needed. We also
show that VectorPU tracks the validity status of the memory adequately. In
this section we abstract away the values stored in memory and we do not deal
with any form of aliasing. A more precise analysis of aliasing is out of the scope
of this paper, it could be for example inspired from [6] or from our extension to
overlapping array (Section 4). We place ourself in a simplified setting where each
variable is hosted in exactly two memory locations, e.g. a CPU (main) memory
and a GPU memory location; our results could be extended to multiple memory
locations without any major difficulty.

3.1. An effect system for consistency between memory locations

We start from a simple effect system, it expresses the effect of writing or
reading a memory location on the consistency status of the memory. Each
location is either in valid state when it holds a usable data or invalid state
when the value at the location is not valid anymore. We express five operations:
reading, writing, Push for uploading the local memory location into the other
one, and Pull for the contrary. Noop does nothing.

E ::= Push | Pull | r | w | Noop

These operations involve a single memory location. We express below the
semantics of each of the operations on the consistency status of the concerned
memory location. The memory status of a variable is a pair of the status of
its locations, where each status is either V for valid or I for invalid. The first
element is the status of the local memory, and the second one is the status of
the remote memory. For example, for a program running on a CPU while the
remote memory is a GPU, a status (V, I) means that the memory is valid and
can be read on the CPU, but is invalid on the GPU and should be transferred
before being usable there. Each operation has a signature in the sense that it
may require a certain memory status and will produce another memory status.
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The signature of each operation is expressed below and is called its effect. We
use variables –X, Y – that are considered universally quantified in each rule.
They can be instantiated with either V or I.

Push : (V,X) 7→ (V, V ) Pull : (X,V ) 7→ (V, V ) r : (V,X) 7→ (V,X)

w : (X,Y ) 7→ (V, I) Noop : (X,Y ) 7→ (X,Y )

These signatures are effects expressing that r is a reading operation requiring
validity of data and ensuring not to modify it, the distant status is unchanged;
w is a writing operation that modifies data locally but do not require validity,
it invalidates the remote memory. Push uploads the local memory and thus
makes valid the distant memory; it requires that the data is locally valid, and
Pull is the symmetrical operation. Applying these signature consists in trying
to unify the current memory status with the effect of the variable, potentially
instantiating X and Y appropriately. No unification is possible if the status and
the effect cannot be made identical by instantiating variables.

Example: An operation r can be applied on a validity status (V, V ), leading
to the validity status (V, V ) because (V, V ) can be unified with (V,X) by in-
stantiating X with V . However r can not be applied on a validity status (I, V )
because (V,X) cannot be unified with (I, V ): I and V are different.

An additional operation could be defined: an rw operation would represent
a read and/or write access, it would both require data validity and invalidate
remote status: (V,X) 7→ (V, I). This operation is however not needed here but
we will have a similar one at the annotation level, see below.

3.2. A language for modelling consistency and effects

We now create a core calculus to reason on programs involving sequences of
effects on different memory locations. x, y range over variables and we introduce
statements manipulating variables. We use sequence and simple loops and con-
ditionals. Operations with effects now apply to a variable: E x denotes some
operation E on variable x; rem(E x) is a remote operation on the remote mem-
ory. We also have a Noop operation that has no effect and can be considered as
a neutral element for the sequence. Statements S are defined as:

S ::= E x | rem(E x) | S;S′ | While(cond)S | if (cond) S else S′ | Noop

Example: A GPU procedure writing x and reading y would correspond to the
pseudo-code: rem(w x); rem(r y).

We are interested in conditionals dealing with the validity status of the
variables. Other conditionals are expressed as a generic binary operator ⊕ but
operators with different arities could be added as well:

cond ::= isValid x | remIsValid x | x⊕ y

where isValid x, resp. remIsValid x, denote checks of the validity status flag of
the local, resp. remote, location of x.
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valid
σ(x) = (V,X)

JisValid xKσ = True

invalid
σ(x) = (I,X)

JisValid xKσ = False

rem-valid
σ(x) = (X,V )

JremIsValid xKσ = True

rem-invalid
σ(x) = (X, I)

JremIsValid xKσ = False

Effect
σ(x) = (X,Y ) E : (X,Y ) 7→ (Z, T )

(E x;S, σ)→ (S, σ[x 7→ (Z, T )])

Remote Effect
σ(x) = (X,Y ) E : (Y,X) 7→ (Z, T )

(rem(E x);S, σ)→ (S, σ[x 7→ (T,Z)])

While-True
JcondKσ

(While(cond)S;S′, σ)→(S;While(cond)S;S′, σ)

While-False
¬JcondKσ

(While(cond)S;S′, σ)→(S′, σ)

IF-True
JcondKσ

((if (cond) S else S′);S′′, σ)→(S;S′′, σ)

IF-False
¬JcondKσ

((if (cond) S else S′);S′′, σ)→(S′;S′′, σ)

Figure 4: Operational semantics of validity status.

We now define a small step operational semantics for our core calculus. It
relies on the validity status of variables, recorded in a store σ mapping variable
names to validity pairs. Semantics is written as a transition relation between
pairs consisting of a statement and a store: (S, σ). The sequencing operator ;
is associative with Noop as a neutral element. Consequently each non-empty
sequence of instruction can be rewritten as S;S′ where S is neither a sequence
nor Noop. σ[x 7→ (X,Y )] is the update operation on maps.

The semantics is presented in Figure 4. Like in the previous section, we
use validity variables X, Y , Z, T that are universally quantified in each rule.
The first four rules present the evaluation of conditional statements, we assume
additional rules exist for evaluating ⊕6. The next rule applies an effect of
the operation E on a variable x updating the validity store, and the Remote
Effect rule applies an operation occurring on the distant memory, it applies
the symmetric of the effect of the operation to the variable: validity values are
switched compared to the non-remote effect. Note that Push is the symmetric
of Pull and we could have removed one of those two operations without loss of
generality: Pull is the same as rem(Push). The last rules are standard ones for
if and while statements.
Initial state: To evaluate a sequence of statements S using the variables vars(S),
we create an initial configuration with a store where data is hosted on the CPU

6We suppose that evaluation of ⊕ always succeeds, and in particular variables accessed by
the operation are specified as a r operation preceding the condition.
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and all variables are mapped to (V, I): σ0 = (x 7→ (V, I))x∈vars(S).
A configuration is reachable if it is possible to obtain this configuration

starting from the initial configuration and applying any number of reductions:
(S, σ) is reachable if (S, σ0) →∗ (S′, σ) where →∗ is the reflexive transitive
closure of →. We write (S, σ) 6→ and say that the configuration is stuck if no
reduction rule can be applied on (S, σ).

Property 1 (Progress). A configuration is stuck if the validity status of the
accessed variable is incompatible with the effect to be applied:

(S, σ) 6→ ⇐⇒ S = E x;S′ ∧ σ(x) = (X,Y ) ∧ E : (X ′, Y ′) 7→ (Z, T )
∧ there is no unification between (X,Y ) and (X ′, Y ′)

∨S=rem(E x);S′ ∧ σ(x)=(X,Y ) ∧ E : (X ′, Y ′) 7→(Z, T )
∧ there is no unification between (X,Y ) and (Y ′, X ′)

∨S= Noop

Note that this supposes that ⊕ always succeeds.

Proof. Recall each non-empty sequence of instruction, here S, can be rewritten
as S′;S′′ where S is neither a sequence nor Noop. If the sequence is empty,
S = Noop, and the execution is finished, it corresponds to the last case of the
rule.

By case analysis on the first statement of S′, there is always one rule appli-
cable provided the premises of the rule can be evaluated.

In case the statement is an if or a while, it corresponds to the last four
rules this requires the evaluation of cond. If ⊕ always succeeds then cond can
always be evaluated to either True or False and consequently one of the rule
can always be applied.

The only cases remaining for S are E x and rem(E x). The applicable rules
are Effect and Remote Effect. These rules can always be applied except
if there is no unification possible between the effect of an operation and the
current validity status of the affected variable, i.e. there is no instantiation of
X and Y such that both σ(x) = (X,Y ) and E : (X,Y )→ (Z, T ) in the case of
Effect. This corresponds to the two first cases expressed in the theorem (one
for Effect and one for Remote Effect).

Property 2 (Safety). A state is said to be unsafe if at least one variable is
mapped to (I, I). It is impossible to reach an unsafe state from the initial state.

Proof. The principle is that unsafe states are avoided because of the effects of
operations. Indeed only the two effect rules (Effect and Remote Effect)
modify the store and no effect can reach (I, I), except Noop x starting from
σ(x) = (I, I). This is sufficient to conclude, by recursion, as the initial state is
not (I, I).

Example: The sequence w x; rem(r x) can never be fully evaluated and will lead
to a stuck configuration. Indeed, (wx; rem(r x), (x 7→ (V, I)))→ (rem(r x), (x 7→
(V, I))), but rem(r x) requires that x is mapped to (X,V ) for some X which is
not the case.
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However if we add a Push operation to ensure the validity of the accessed
memory the program w x; Push x; rem(r x) can be reduced as follows:
(wx; rem(r x), (x 7→ (V, I)))

→ (Push x; rem(r x), (x 7→ (V, I)))
→ (rem(r x), (x 7→ (V, V )))→ (Noop, (x 7→ (V, V )))

3.3. Declaring access modes and adding an abstraction layer

The calculus defined above only considers simple memory locations and di-
rectly manipulates them. But VectorPU and similar libraries manipulate struc-
tures representing the memory. For example, VectorPU vectors act as an ab-
stract representation of a set of memory locations. In this section, we add a
declaration and abstraction layer to the calculus to represent the access mode
declarations that will trigger data transfers according to the consistency mech-
anism. This abstraction layer is also a necessary first step to the modelling of
array structures that we will present in Section 3.5. Indeed, in array structures,
the validity status of the array is abstracted away by a single validity status
pair. Then a dynamic abstraction of the consistency status of the memory can
be used. Abstract variables are not part of the applicative code but can be used
in the access mode declarations.

Consider for example an array x. As it is not desirable to store the infor-
mation of the validity status of all the elements of the array, we will create for
this array and abstract variable x# that will represent all the elements of the
array – x[i] – from the validity status point of view. If the representation was
precise, a value (V, I) for x# would mean that all the elements of the array
are valid locally and invalid remotely. In practice we need to authorize some
approximation of the validity status, at least because most operations only act
on some of the elements of the array. Consequently, some information is lost in
the abstract representation: if σ(x#) = (V, I) then each element of the array x
must be locally valid, the remote elements may be valid or invalid. Like with
non-abstract variables, having σ(x#) = (I, I) is not desirable as the coherence
protocol would be unable to know where are the valid elements of the array –
even if for all i, x[i] = (V, I) or x[i] = (I, V ). In the case of arrays and usual
data-structures, the mapping between abstract and concrete elements is quite
trivial: one abstract variable represents a whole data structure. Other map-
pings (one variables for several structures or splitting a data structure) could
be defined but their definition might be too complex to be usable in practice.

The abstraction and declaration layer relies on two principles:

• Each variable x has an abstract variable x# that represents it. In this
section there is a single variable for each representative, but when we deal
with arrays we will have a single representative for the whole array.

• It is safe to “forget” that one memory space holds a valid copy of the data
if the other memory space has a valid one. In other words, (V, I) (resp.
(I, V )) is a safe abstraction of (V, V ) and we have (V, I)≤ (V, V ) (resp.
(I, V )≤(V, V )). Also for any X and Y we have (X,Y )≤(X,Y ).
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Syntax. We now define access mode declarations:

M ::= R x# |W x# |RW x# | rem(R x#) | rem(W x#) | rem(RW x#) |
M ∧M′ (where variables in M and M′ are disjoint)

These access modes declare the kind of access (read R, write W , or read
and/or write RW ) that can be performed on the variable x represented by x#.
In a set of access mode declarations the same variable cannot appear twice7.
There exist declared access modes for local accesses and for the remote memory
space.

A program is a sequence of calls to functions or components (i.e., statements
accessing only real variables) each protected by an access mode declaration (on
abstract variables representing the real variables):

P ::=M1{S1};M2{S2}; . . .

We write S ∈ S′ if S is one statement inside S′ (i.e. S is a sub-term of S′).
We define below the semantics of these programs and specify well-declared

program by comparing the statements they contain with the declared access
modes. The semantics relies on the translation of the access mode declarations
into consistency mechanisms with checks and data transfers triggered before
each function execution.

Extension of statements to abstract variables. When evaluating a program, the
store contains both real and abstract variables, and the existing statements have
the same effect on the abstract variables as on the real ones. However one should
notice that even if the effect is the same, the meaning of a statement acting on
a real variable or on its representative is different: in our calculus, the effect
on a variable is an abstraction of the real effect that involves side effects and
data transfers. On the contrary, only the validity status of abstract variables
is stored by the library: the effect triggered by an operation on an abstract
variable is exactly what happens when VectorPU updates the validity status of
its internal structures.

For example, a Pull operation on a real variable consists in transferring data
from a remote memory space to the local one. We abstracted it by changing
the local validity status. A Pull operation on an abstract variable only changes
the validity status, no data transfer has to be done because abstract variables
only need to be stored in one memory space. The validity status is stored in the
CPU address space in VectorPU. Comparing the validity status of real memory
and their representative allow us to reason formally on the correctness of the
validity tracking performed by VectorPU.

7This restriction simplifies the formal definition and the reasoning. Extending the results to
the same variable appearing twice with the same access mode is trivial (if the same parameter
is passed twice to the same function). Having the same memory location declared twice with
different access modes is not safe in the general case but Section 4 will study more precisely
the case of overlapping arrays.
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JR x#K = (if (isValid x#) Noop else (Pull x; Pull x#))

Jrem(R x#)K = (if (remIsValid x#) Noop else (Push x; Push x#))

JRW x#K = (if (isValid x#) Noop else (Pull x; Pull x#));w x#

Jrem(RW x#)K=(if (remIsValid x#) Noop else (Push x; Push x#)); rem(w x#)

JW x#K = w x# Jrem(W x#)K = rem(w x#)

JM1{S1};M2{S2}; . . .K = JM1K;S1; JM2K;S2; . . .

Figure 5: Semantics of access modes and programs

As no data is accessed by the effects on abstract variables, they cannot create
stuck configuration. Consequently, r x# has no effect as it does not change the
validity status of variables. The statement that should get stuck in case of a
read access is the read of the real variable that cannot access a valid data.

Semantics. Figure 5 defines the semantics of programs with access modes as a
translation into the core calculus of Section 3.2. This translation ensures that
the validity status is correct and records the effect of the function on the abstract
variable before running the function call that may read and write data (on the
real variables). Similarly to the VectorPU library, the protected accesses can be
considered as macros and the programs can be translated into the core syntax.

This encoding corresponds to the macros as they are implemented in Vec-
torPU. It is indeed easy to check that VectorPU tracks the effects in the same
way as our effect system does in the translation rules. These translation rules
perform Push or Pull operations in order to ensure that the memory is in a
correct validity status for the read or write operation to be performed. The va-
lidity conditions are checked on the abstract value, which corresponds to the fact
that VectorPU only check the status of the coherency flag stored with the vec-
tor structure; push/pull operations are performed twice: once for representing
the data-transfer, and once for representing the validity status update. Finally,
status is updated when writing operations are declared. When evaluating a pro-
gram we create a store where the validity status of real and abstract variables
are (V, I), corresponding to the fact that data is initially placed in one memory
location; typically, in VectorPU, in the CPU memory space.

3.4. Well-declared Programs and their Properties

We now define formally what it means for an access mode declaration to be
correct, i.e. to adequately specify the effect of a function. The principle is that
each operation on a memory location must be declared on its representative. It
is however possible to declare more read or RW accesses that what is done in
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practice, and one can declare a read and/or write access if only read or write is
performed. Additionally, the annotation W denotes an obligation to write which
allows the consistency mechanism to avoid any validity check and any transfer
before running the function that will overwrite the data. To represent this con-
cept, we need a first definition that states that an operation will be performed in
all execution paths of a (bigger) statement. This definition formalises a classical
static analysis concept that states that all branches of conditionals necessarily
execute a given statement. It considers executions that run to completion and
states that a given statement is necessarily evaluated in this execution.

Definition 1 (Occurs in all execution paths). We state that a statement S
occurs in all execution paths of S0 if, for any correct initial store σ0, for all
full reductions (S0, σ0)→ (S1, σ1)→ . . .→ (Noop, σn), there is an intermediate
state (Si, σi) such that Si = S;S′′ for some S′′.

Notice that an operation S can only appear in some of the execution paths
of S′ if S ∈ S′: if S is an operation, i.e. a single statement, then (S0, σ0) →∗
(S;S′, σ) then S ∈ S0.

Definition 2 (Well-declared program). A program P is well-declared if for all
M{S} in P we have:

• Push x 6∈ S and Pull x 6∈ S (for any x),

• w x ∈ S =⇒ (W x# ∈M∨RW x# ∈M),

• r x ∈ S =⇒ (R x# ∈M∨RW x# ∈M),

• W x#∈M =⇒ w x occurs in all execution paths of S,

• Plus the same rules for remote operations.

Note that a well-declared program does not perform synchronisation op-
erations (Push or Pull) manually, these operations are only performed when
evaluating the access mode declarations. Also each variable accessed by a well-
declared function has an abstract representative in the corresponding declara-
tion block.

A direct consequence of the definition above is that a well-declared program
cannot access, in the same function, the same variable in both address spaces.
This is in accordance with VectorPU where each function is entirely executed
either on a CPU or on a GPU, the formalisation is a bit more generic on this
aspect. This is expressed by the following property.

Property 3 (Localised access). Consider a well-declared program containing
M{S}, for any x, we cannot have rem(E x) ∈ S and E′ x ∈ S.

Proof. This is a consequence of the uniqueness of abstract variables in access
mode declarations. Indeed, if E′ x ∈ S and the program is well-declared, then
there must be R x# or W x# or RW x# in M. Similarly, as rem(E x) ∈ S, if
the program is well-declared rem(R x#) or rem(W x#) or rem(RW x#) in M,
it is impossible to have two different entries for the same variable and thus we
cannot have rem(E x) ∈ S and E′ x ∈ S.
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We now state and prove the two major properties ensured by our formalisa-
tion. The first property ensures that the abstraction is correct relatively to the
execution. This corresponds to the fact that VectorPU tracks adequately the
validity status of the memory. This is expressed as a theorem that is similar
to subject-reduction in type systems, it states that if the status of the abstract
variables represent correctly the validity status of the real variables, then the
abstraction is also correct after the execution of a well-declared function. We
first define the correctness of the representation of the validity status.

Definition 3 (Correct abstraction of the memory state). We have a correct
abstraction of the memory state if for each real memory location, the abstract
representative of this location has a validity status that is an approximation,
in the sense of ≤, of the validity status of the real memory. More formally, σ
stores a correct abstraction of the memory state if (recall x# stores the validity
information for x):

∀x ∈ dom(σ). σ(x#) ≤ σ(x)

The theorem below states that the execution of a well-declared function
maintains the correctness of the memory state abstraction.

Theorem 1 (Subject reduction). Suppose M{S} is well-declared, we have:

∀x ∈ dom(σ). σ(x#) ≤ σ(x) ∧ (JM{S}K, σ)→∗ (Noop, σ′)
=⇒ ∀x ∈ dom(σ′). σ′(x#) ≤ σ′(x)

This property is extended by a trivial induction to the execution of a well-
declared program P in an initial store σ0 = (x 7→ (V, I))x∈vars(P).

Proof. Notice that dom(σ′) = dom(σ), and if σ(x) = (V, I) or σ(x) = (I, V )
then σ(x) = σ(x#), else σ(x) = (V, V ). We reason on the read and write
access that occur in the considered reduction. Each variable x is either read or
written or not accessed (or read and written). For each case we compare the
status of abstract and local variable, and in particular we consider the status of
the reduction after executing the synchronisation code JM{S}K and call σs the
corresponding store (note that σs(x

#) = σ′(x#)). We detail operations on the
local address space, cases for remote operations are similar:
• If x is written, we have: (JM{S}K, σ)→∗ (w x;S′, σ′′)→∗ (Noop, σ′). What-
ever the initial value of σ(x), we have σ′(x) = (V, I). Two cases are possible:
(1) W x# ∈ M then the value cannot be read and we have σs(x

#) = (V, I).
σ′(x#) = σ′(x).
(2) RW x# ∈M then a data-transfer (Pull) may occur. Knowing that σ(x#) ≤
σ(x), by a case analysis on σ(x) and σ(x#) we have: σs(x

#) = (V, I) and
σs(x) = (V, I) or (V, V ). Whether x is read or not we have σ′(x#) = σ′(x).
• If x is read but not written, its validity status is not changed.
(1) R x# ∈ M. By a case analysis on σ(x) and σ(x#) we have: σs(x) = (V, I)
and σs(x

#) = (V, I), or σs(x) = (V, V ) and σs(x
#) = (V, I) or (V, V ). Reading

has no effect on validity status and in all cases we have σ′(x#) ≤ σ′(x) = σs(x).
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(2) RW x# ∈M then similarly to the case (2) above we have σs(x
#) = (V, I),

additionally σ′(x) = σs(x) = (V, I) or (V, V ). In all cases σ′(x#) ≤ σ′(x).
• If x is not accessed but is in the declaration, the reasoning is the same as if it
was only read. Note that a variable that is not accessed cannot be declared in
write mode, W x# ∈M, by Definition 2.

Finally, a well-declared program always runs to completion: it never tries to
access an invalid memory location.

Theorem 2 (Progress for well-declared programs). If a program P is well-
declared, then its execution cannot reach a stuck configuration.

Proof. By Property 1, it is sufficient to prove that unification on the validity
status is always possible. We consider a reduction (JM{S}K, σ)→∗ (S, σs)→∗
. . . similarly to the proof above.

By definition of well-declared programs and because of the signature of ef-
fects (w x cannot be stuck), only four cases have to be analysed for the local
operations:

• Pull operations (on x and x#) in the translation of R x# or RW x#.
Unification requires that σ(x) = (X,V ) and σ(x#) = (Y, V ).

• r x operation in the evaluation of S. Unification requires that σ′(x) =
(V,X) where σ′ is the store in which the read access is to be evaluated.

• Push x, Push x#, and rem(r x) that are similar to the cases above, they
require the symmetric validity status in similar conditions (not detailed
below).

Indeed, access mode declarations do not generate reading operations, and by
definition function statements contain no Push or Pull.

Concerning the first case, because of Theorem 1, we have σ(x#) ≤ σ(x),
and because of property 2 none of them is (I, I). By case analysis on the
possible values of σ(x#) and σ(x), it is easy to show that σ(x) = (X,V ) and
σ(x#) = (Y, V ) if we reach the two Pull statements that perform data transfers
before the execution of the function.

Concerning read access, they should be verified by an induction on the re-
duction steps following the state (S, σs) showing that, for any variable x that is
declared R or RW , in all states we have σ′(x) = (V,X). Indeed, by the same
analysis as in the proof of Theorem 1 we know that σ′(x) = (V,X). Because
of Property 3 no remote operation is possible on x and thus only r x and w x
operations are possible on x, both maintain the invariant σ′(x) = (V,X) for
some X.

Example: Consider the example above of a variable written on the CPU, and
then read on the GPU, a well-declared program encoding this behaviour would
be:

RW x#{w x};
rem(R x#){rem(r x)}
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This code automatically generates the Push instruction that prevents the pro-
gram from being stuck, indeed the RW annotation ensures that after exe-
cuting the first line, the validity status pf x# is: (V, I), the encoding of for
rem(R x#) checks whether the remote status is valid, as it is not the state-
ments: Push x; Push x#; are executed.

3.5. Effects and Access Mode Declarations for Arrays

In array structures, the validity status of the whole array is abstracted away
by a single validity status pair. We extend the syntax for arrays as follows,
x[i] denotes the indexed access to an element of the array. More precisely the
new operations on arrays and their elements are (we still have the previous
operations on non-array and abstract variables):

S ::= ... | r x[i] |w x[i]

Synchronisation operations (Push and Pull) exist for arrays but the whole
array is synchronised, and we write Push x and Pull x as above. All the elements
of the array are represented by a single abstract variable: x# represents a safe
abstraction of the validity status of all x[i]. In other words, as soon as one
element of the array x is invalid locally (resp. remotely) the validity status of
x# can only be (I, V ) (resp. (V, I)).

The semantics of access mode declarations and programs is unchanged be-
cause synchronisation operations and access mode declarations do not concern
array elements. The concept of well-protected programs must be adapted to
the case of array structures, and more precisely to the fact that several memory
locations are represented by a single abstract variable.

Definition 4 (Well-declared program with array access). A program P is well-
declared if for all M{S} in P, additionally to the rules of Definition 2, we
have8:

• w x[i] ∈ S =⇒ (W x# ∈M∨RW x# ∈M),

• r x[i] ∈ S =⇒ (R x# ∈M∨RW x# ∈M),

• W x#∈M =⇒ ∀i∈index(x). w x[i] occurs in all execution paths of S,

• Plus the same rules for remote operations.

Example: Consider the function body rem(w x[3]), corresponding to a function
made of the C++ statement x[3] = 0 executed on a GPU. The only safe access
mode declaration for it is rem(RW x#) indeed, some of the elements of the
array are written but not all. At the end of the function execution the valid
copy of the array is on the GPU.

8index(x) returns the set of valid indices of the array x
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The other definitions and properties are expressed similarly for arrays, com-
pared to standard variables, and both subject-reduction, Theorem 1, and progress,
Theorem 2, are still valid. The only change is the “correct abstraction of the
memory state” criteria – see Definition 3 – that becomes

∀x ∈ vars(S). σ(x#) ≤ σ(x) if x is not an array
∀i ∈ index(x). σ(x#) ≤ σ(x[i]) if x is an array

Theorem 3. If a program using arrays is well-declared according to Definition 4
then its execution verifies both the subject-reduction and the progress property.

Proof sketch. The proofs are similar to the non-array case except in the case of
W x declarations where the fact that all elements of the array must be written
is necessary to ensure that no element is in the status (I, V ) (which could not be
safely represented by (V, I)) at the end of the function execution. If we focus on
the proof of Theorem 1, case “x is written, sub-case (1) we have σ′(x#) = (V, I)
which is a safe abstraction because all elements have been written, and thus
σ′(x[i]) = (V, I) for all i. If one element j was not written, we could have had
σ′(x[i]) = (I, V ) which would invalidate the theorem. Overall, only arguments
about correctness of the abstractions need to be adapted.

3.6. Discussion: Similarities and differences relatively to VectorPU

Let us compare the formal definition of the coherence protocol, Figure 5
(valid for simple memory locations or arrays), with the VectorPU implementa-
tion of the protocol for simple arrays, Figure 3. Except the order of operations
and minor changes, the code is similar. The main difference is that there is no
view of abstract vs. concrete variables, however, if we consider that transfer op-
erations on abstract variables have no effect, and that validity status of concrete
variables can be abstracted away, the code is the same as the formalisation.

Taking a more global point of view, no verification is performed by the Vec-
torPU framework and thus, the property of “well-declared programs” is not
checked currently by the framework. In the current state of the library, the
property “well-declared programs” must be ensured by the programmer. The
implementation of VectorPU relies on the hypothesis that the function declara-
tions are correct, because of this the current formalisation is a significant step
forward as it allows us to express precisely what assumption is made by the
library on the programmer’s code.

Such a check could either be done by runtime verification checking that
each function performs exactly the required access, or statically by constraints
on the program and a static analysis (involving some approximations, meaning
some correct programs could be rejected). The first solution is not acceptable
considering the target application domain because of the overhead involved by
the dynamic checks. Let us now try to figure out how difficult it would be
to ensure that a given program verifies the “well-declared” property statically.
We focus on the case of arrays that is the most interesting. Checking which
accesses are performed on an array is a difficult task in general. However for
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reading access, declaring the array of constant type could enforce a reading
access and even allow us to infer the R annotation for constant arrays. RW is
not constraining the access and is always a safe annotation. W however requires
all the elements to be written, checking this relies on a static analysis that is
way beyond the scope of this paper and might be tricky. As already argued, the
fact that the same variable does not appear twice is more a restriction of the
formalisation provided the same array is always declared with the same access
(RW in the worst case), an additional pass could modify the annotations of
identical variables so that the least restrictive one is chosen. Possible aliasing
between variables can be seen as a particular case of overlapping array, studied
in the next section.

Finally concerning expressiveness, the “well-declared programs” definition is
a bit more flexible than what VectorPU targets at the moment because it is safe
to declare in our framework functions that access some variables on the CPU
and others on the GPU, and this is not planned in VectorPU, again due to the
supported usage scenario.

These differences highlight interesting improvement directions for VectorPU
while we can still consider that the current article is a faithful formalisation
of the library. In the next section, we investigate a feature that is not yet
supported by VectorPU, but exists in SkePU. It concerns the handling of arrays
that may overlap; this generalizes the problem of aliasing between variables. We
can somehow consider the theoretical results below as a specification of a future
extension of the library.

4. Overlapping arrays

In the preceding section we supposed that arrays were well-separated. The
preceding abstraction would also be valid for an array that would be split into
disjoint entities (such as VectorPU pvectors) and always used either as the
disjoint sub-arrays or as the whole. In this section we extend the framework
to take into account overlapping arrays. Here we still consider single dimension
arrays for simplicity but multi-dimensional arrays could easily be taken into
account.

4.1. Context and Objectives

In VectorPU, the first pvector on a vector passed as argument for access on
device will (over)allocate space for the entire vector, all subsequent pvector

accesses to the same vector can skip the allocation. Consequently, two suc-
cessive data transfers of the same memory location will be written to the same
memory location, even if the two initial locations are accessed through different
(overlapping) pvectors. Consequently, on the formal side, if several push or
pull are performed on overlapping memory locations, the transferred memory
has the same overlaps as the source. This is very important to ensure that no
two copies of the same array element will coexist in the same location.
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Problem statement. Overlapping arrays raises several difficulties making the
approach currently adopted in VectorPU not adapted. Indeed a single write
operation can change the validity status of a cell that belongs to several arrays.
Consequently, several access annotations may have to be written for a single
operation. As a consequence, some annotations may never be correct: a function
that is declared to write all the elements of an array x will necessarily write
some elements of the arrays that have an overlap with x, these overlapping
arrays should thus be annotated and transmitted, or another coherence protocol
should be used.

Approach. In this work we take the decision not to change the coherence proto-
col of VectorPU and instead work at the access mode declaration level to ensure
the consistency of overlapping arrays.

To take into account overlapping arrays in VectorPU, two approaches could
be envisioned. A naive solution consists in applying the results for non-overlapping
arrays. Indeed, Definition 4 of well-declared programs with array accesses is still
valid. However, the programmer now has to annotate more variables because
each array access operation may involve several arrays. Due to the array overlap,
the programmer should now know all the arrays that are impacted by a function
execution, including the overlapping arrays that are not passed as parameter,
and the library should be extended to pass them as “artificial” parameters. To
be more explicit, Definition 4 should be extended as follows (with a symmetrical
rule for remote writing):

For every y overlapping x, if i is in the range in common between x
and y, we have w x[i] ∈ S =⇒ (W y# ∈M∨RW y# ∈M).

First note that no additional rule is necessary for read operations. Indeed,
read operations use the validity status but do not modify it, consequently, read
operations do not modify the validity status of other arrays and have no con-
sequence on overlapping arrays. Note also that the above rule restricts a bit
the expressible effects as, for example, W x#; rem(R y#) cannot be valid if x
and y overlap. Indeed, W x# means that all the cells of x are written and thus
the access mode for y# must be W or RW . In this case, this is indeed a safe
restriction as the array x will be written, and reading y remotely might not
access a valid value.

4.2. Access mode inference for overlapping arrays

Though very precise, the approach described above does not seem realistic
and we additionally develop an inference mechanism for access mode decla-
rations in presence of overlapping arrays. The objective is to infer the correct
annotations on variables that are not passed as parameters. Knowing the access
modes for the function parameters, we infer what operation must be done on
other intersecting arrays to ensure the coherency of the system, and we express
these additional operations as implicit generated annotations. These additional
access mode declarations are inferred, the semantics of these added declarations
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E x# ∈M
E x# ∈ O(M)

rem(E x#) ∈M
rem(E x#) ∈ O(M)

W x# ∈M W y# 6∈ M x and y overlap

RW y# ∈ O(M)

RW x# ∈M x and y overlap

RW y# ∈ O(M)

rem(W x#) ∈M rem(W y#) 6∈ M x and y overlap

rem(RW y#) ∈ O(M)

rem(RW x#) ∈M x and y overlap

rem(RW y#) ∈ O(M)

Table 2: Extension of access mode annotations to deal with overlapping arrays

will result in additional data transfers and validation/invalidation operations
that make the program correct. This is less precise as it takes a pessimistic
approach on the operations performed by the declared arrays. For example, for
any array that is declared RW we will suppose that all the array elements may
be read and written, but the approach is safe and mostly automatic.

Starting from a given set of access mode annotations, we want to infer other
access modes that are consequences of the overlaps and the existing annotations.
Because we are only aware of an approximation of the effects (for each array
variable, effect is abstracted by a single global effect), the inferred accesses
will be approximate but can be a safe over-approximation of the effect of the
function. Without knowing the real accesses performed by the function, we
deduce from the declared access modes, a set of additional “artificial accesses”.

We considerM the set of all access modes declared for a given function and
extend it so that the function satisfies the well-declared program requirement
even with overlapping arrays.

Example: To understand the principle of the approach, consider the case where
W x# ∈ M then ∀i ∈ index(x).w x[i] occurs in all execution paths of S, and
thus for all arrays y overlapping x we must have (W y# ∈M∨RW y# ∈M). If
we have no additional information we will ensure that RW y# is also in the set
of access mode declarations, which is always safe. The extension O(M) defined
below not only contains the original annotations M but also the annotations
required for coherency of overlapping array. Here if W x# ∈ M then both
W x# and RW y# are in O(M).

Definition 5 (Extension of access mode declarations for overlapping arrays).
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Consider a set M of access mode declarations. The extension for overlapping
arrays of M is the smallest set O(M) defined by the rules in Table 2.

The following theorem states that if the set of function parameters is ex-
tended according to the preceding definition, then memory consistency is en-
sured. Note that it means that a set of artificial parameters are to be added to
some functions, in the sense that data-transfers and validity status modifications
have to be performed on vectors that are not among the original parameters of
the function.

Theorem 4. Consider a program that is well-declared according to Definition 4,
not taking into account overlapping arrays. Suppose its access mode declarations
are extended according to Definition 5 then the execution of the obtained pro-
gram verifies both subject reduction and progress, even in presence of overlapping
arrays.

Proof sketch. The principle of the proof is to prove that, provided a set M
correctly declares the accesses performed syntactically by a function on its pa-
rameters, the set O(M) is a correct approximation of the accesses performed by
the function on all the arrays of the program, i.e. the parameter arrays and the
arrays that overlap the parameter arrays. Then Theorem 3 will be sufficient to
conclude.

Trivially, the first two rules of Table 2 are sufficient to conclude about nor-
mal function parameters. We now need to ensure that operations on overlap-
ping arrays are well-declared. We focus on non-remote operations and prove
that (indirect) operations on overlapping arrays are well-declared, according to
Definition 4 modified by the additional rule introduced in above:

For every y overlapping x, if i is in the range in common between x
and y, we have w x[i] ∈ S =⇒ (W y# ∈M∨RW y# ∈M).

By a simple case analysis on the possible annotations and the possible operations
performed on the arrays, we deduce that the access modes added by the four
last rules of Table 2 are sufficient to ensure the statement above. Finally the
symmetrical statement for remote writing is ensured in the same way.

4.3. Towards an implementation in VectorPU

To implement the proposed mechanism that ensure the safety of overlapping
vector accesses in a function call f , we need to add to VectorPU the two following
components:

• A representation rv to retrieve, for any given pvector pv of a vector v, the
set of all other valid pvectors of v that overlap with pv. rv is initialized as
empty when declaring a new vector v, queried and/or updated at pvector
creations, deletions, and at calls, and is removed when v is deallocated.

• A mechanism which intercepts the function call f and, for every vector
operand (vector or pvector) pv accessed as W or RW in f , looks up in
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the corresponding representation rv all pvectors overlapping with pv. For
other arguments in f that overlap with pv and have access mode R or W,
their access mode is updated to RW, as proposed in Table 2. For any other
existing pvectors w of v not accessed in f (but possibly in earlier and/or
later calls) that do overlap with pv, we append shadow arguments RW (w)
to f as suggested by Table 2. Finally, the intercept mechanism performs,
as before, the resulting coherence actions (data transfers, status updates)
and delivers the call. For intercepting the function call, the function call
operator is overloaded.

Example: As a simple example, let us consider the following set of pvectors
and call sequence:

v = new vector(10, ...);

pv1 = new pvector( v, [2:5] );

pv2 = new pvector( v, [4:8] );

pv3 = new pvector( v, [7:9] );

pv4 = new pvector( v, [2:3] );

...

f1( ... R(pv1), R(pv2), ... );

f2( ... W(pv3) ... );

f3( ... RW(pv4), R(pv2), ... );

Intercepting the function calls, we maintain rv and update the calls as de-
scribed above. For the call to f2, we infer from W(pv3) and the overlap of pv3
with pv2 by Table 2 that the access mode of pv2 (not accessed in f2) must be
upgraded to RW, which we do by conceptually appending RW(pv2) as a shadow
argument to f2. The call to f2 is thus conceptually rewritten9 into

f2( ... W(pv3) ... , RW(pv2) );

hence we make sure that the access to pv2 in the subsequent call to f3 will be
handled correctly.

It remains to select an appropriate data structure for rv that allows for
efficient dynamic insertion and removal of pvectors of a vector v, i.e., index
intervals, and efficient lookup of all pvectors that overlap with a given query
interval. For very small numbers of pvectors of a vector v, a simple unordered
list of pvectors is sufficient; this is used e.g. in the smart-container coherence
management in SkePU [1]. For scaling up to larger numbers of pvectors, a
segment tree [7, Sec. 10.3] could be used. A segment tree storing n intervals can
be updated dynamically (insertion, removal) in time O(log n) and can retrieve
the set of all k intervals overlapping with a query interval in time O(k+ log n);
the space requirements is O(n log n).

9As all overlapping pvectors had been identified before the rewriting, the rule needs not
be applied recursively to the appended shadow arguments, here RW(pv2).
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The time and space required to handle overlapping arrays at runtime could
be saved with a precise enough static analysis that would infer potential over-
lapping between arrays; choosing a precise enough or static analysis designing
a dedicated one is outside the scope of this paper.

5. A few related works

Most of the verification works related to memory consistency focus on co-
herence protocols and/or weak memory models [8]. Among them, one could
cite works on a lazy caching algorithm [9], a formal specification of a caching
algorithm, and its verification in TLA [10]. These works shows the difficulty to
reason on memory coherency, but also that specifications in these models should
rely on a few simple instructions on the type of memory accessed, a bit simi-
larly to this proposal. Coherence protocols have also been verified using CCS
specifications [11]. These various works are quite different from the approach
presented in this paper because we rely here on a declarative approach for mem-
ory accesses: the programmer declares the kind of memory accesses performed
by a component, and the consistency mechanism ensures that each component
accesses a valid memory space.

More recently, and adopting a more language oriented approach, Crary and
Sullivan [12] designed a calculus for expressing ordering of memory accesses
in weak memory models. We are interested here in a much simpler problem
where memory access is sequential and clearly identified but the objective is to
prove the correctness of simple cache-coherency operations. Even an extension
of this work for parallel processes would result in a simpler model than the ones
that exist for weak memory models because of the explicit consistency points
introduced in the execution by the start/end of each function.

The closest work to ours is probably [13] that defines a memory access cal-
culus similar to ours and proves the correctness of a generic cache coherence
protocol expressed as part of the semantics of the calculus. Compared to this
work, we are interested in explicit statements on memory accesses and thus the
cache consistency is partially ensured by the programmer annotations, making
the approach and the properties proven significantly different. Some aspects
of the approaches could have been made more similar, e.g. by extending our
work to more than two address spaces or adopting a different syntax. However
our problem and formalisation are quite simpler, and we believe easier to read,
while sufficient for our study. The same authors also designed a formal model
written in Maude [14] to better understand the possible optimisations and the
impact of the memory organisation on performance in the context of cache co-
herent multicore architectures. This could be an interesting starting point for
future works, especially if we extend our work to better model the performance
aspects of VectorPU and want to reason formally on the improved performance
obtained by the library. Also from the same authors [15] extends the results
described above with parallel spawned task and could be a source of inspiration
to extend our work towards parallel function execution.
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6. Conclusion and future works

In this article we provided a formal approach to verify the consistency of
the memory accesses in heterogeneous computer systems made of two memory
spaces. We formalise the operations of memory accesses and memory synchroni-
sation between the two memory spaces and prove that a program adequately an-
notated with informations on the memory accesses always access valid memory
spaces and tracks correctly which of the memory space contains the up-to-date
data.

The practical result is that we can verify the coherency mechanism used
by the VectorPU library and ensure that, additionally to the significant per-
formance benefits of the approach, the VectorPU mechanisms is correct and
ensures the consistency of the memory accesses.

We also extended our model for studying the effect of operations made on
overlapping arrays. The current implementation of VectorPU supposes that the
(pvector) array operands always represent disjoint memory locations, it does
not take into account overlapping arrays. Based on the solution developed in
our model, we described an extension of the VectorPU library that could deal
safely with overlapping array accesses by overlapping pvector arguments.

We envision several extensions to this work. The current article only deals
with two memory spaces; the extension to many memory spaces (as supported
e.g. in SkePU) seems relatively simple but the mechanism dealing with memory
transfers between several memory locations becomes a bit more complex; its
formalisation should be similar.

Moreover, we are interested in the application of our approach to the veri-
fication of other frameworks. Indeed VectorPU uses the most primitive cache
coherence protocol, the VI-protocol. More elaborated coherence protocols like
MSI or MESI (as used e.g. in SkePU [1]) introduce additional states where the
number of readers has to be tracked for example. Also, SkePU uses a more
space-efficient management of partial vector accesses, the coherence protocol
itself involves explicit intersection tests with existing copies. Verifying such
framework would require a modification of our abstract state representation
and a modification of the access mode translational semantics.
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