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2LIMMS, CNRS-Institute of Industrial Science, UMI 2820, University of Tokyo, 153-8505 Tokyo, Japan

3IM2NP, UMR CNRS 7334, Aix-Marseille Université, Technopôle de Château-Gombert,
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We propose an original method to quantum mechanically treat anharmonic interactions in the
atomistic non-equilibrium Green’s function (NEGF) simulation of phonon transport. We demon-
strate that the so-called lowest order approximation (LOA), implemented through a rescaling tech-
nique and analytically continued by means of the Padé approximants, can be used to accurately
model a third-order anharmonicity. Although the paper focuses on a specific self-energy, the method
is applicable to a very wide class of physical interactions. We apply this approach to the simulation
of the anharmonic phonon transport in realistic Si and Ge nanowires with uniform or discontinuous
cross-section. The effect of increasing the temperature above 300 K is also investigated. In all the
considered cases, we were able to obtain a good agreement with the routinely adopted self-consistent
Born approximation (SCBA), at a remarkably lower computational cost. In the more complicated
case of temperatures much higher than the room temperature, we found that the first-order Richard-
son extrapolation applied to the sequence of the Padé approximants N-1/N results in a significant
acceleration of the convergence.

I. INTRODUCTION

The semiconductor fabrication technology exhibits
nowadays the capability of manipulating materials down
to the atomic level, therefore offering the opportunity to
realize well-defined nanoscale structures1–5. Nanoscale
systems are very attractive, since their use has been rec-
ognized as a powerful option to promote technology ad-
vances in several different application fields, ranging from
nanoelectronics (e.g. transistors6,7 and tunnel diodes8)
and nanophotonics (e.g. photovoltaics9,10) to energy har-
vesting devices (e.g. thermoelectric devices11,12).

The development of nanoscale devices requires the
modeling, on a quantum mechanical basis, of the physics
underlying the transport processes. Large efforts have
been traditionally devoted to investigate and accurately
describe electron transport mechanisms13–19. More re-
cently, however, an increasing number of researches20–25

have emphasized the fundamental role played by thermal
effects at the nanometric scale. Self-heating, for example,
has been shown to considerably reduce performance26

and lifetime27 of nanoscale electronic and optoelectronic
devices. Furthermore, nanostructures have been recog-
nized as promising building blocks for thermoelectric ap-
plications, due to their small thermal conductivity28.
Despite this increasing interest, the understanding of
nanoscale quantum phonon transport is still lacking com-
pared to the electron one, and further studies are needed
to gain a detailed physical picture, particularly for what
concerns the role of anharmonic phonon-phonon interac-
tions.

Nanoscale thermal transport has been investigated by
adopting several approaches (e.g. the linearized Boltz-
mann transport equation based on the Fermi golden
rule22,29–32, (non)-equilibrium molecular dynamics33–37

and first-principles perturbation theory38–40), able to

capture quantum mechanical effects within different
degrees of approximation. Among them, the non-
equilibrium Green’s function (NEGF) framework has at-
tracted wide interest, as it offers the opportunity to per-
form full quantum simulations, including many-body ef-
fects (e.g. anharmonic phonon interactions20,21,25,41,42)
via suitable self-energies.

From the numerical point of view, the main bottleneck
in applying the NEGF formalism, usually comes from
the iterative solution within the self-consistent Born ap-
proximation (SCBA) of the non-linear Dyson equation.
This task, particularly heavy in the simulation of three-
dimensional realistic nanostructures, requires performing
a large number of iterations in order to obtain accurate
results for the physical quantities of interest. This is
partly due to the intrinsic convergence properties of the
SCBA iterative scheme, which provides a self-energy ful-
filling the conservation laws (in particular, a Φ-derivable
self-energy43–46) only asymptotically.

In the last decade, several works, focusing on the mod-
eling of the electron-phonon interaction, have investi-
gated the possibility of avoiding such an expensive itera-
tive scheme47–54. In this paper, we tackle this problem by
considering a different kind of self-energy, which describes
the dominant phonon-phonon anharmonic interaction41

and is not a linear functional with respect to the phonon
Green’s function. We will show that the so-called Lowest
Order Approximation (LOA)49,50,52,54, combined with a
rescaling technique and the Padé approximation, can also
be effectively used in this case to compute the charge-
conserving expectation values of a generic linear operator
at any order. Importantly, the specific case considered
turns out to be just an example of a very wide class of
self-energies to which the method is applicable.

In order to assess the numerical efficiency of the
method against the SCBA, we simulated the anharmonic
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phonon transport in Si and Ge nanowires (NWs). They
are a relevant example of 3D nanostructures with po-
tentialities in a variety of application fields where the
thermal transport plays a relevant role and needs to be
accurately modeled. Several configurations have been
considered, differing in the NW crystallographic orien-
tation, the value of the temperature and the regular-
ity of the NW surface. The atomistic simulations have
been carried out within the NEGF framework by using
the OMEN25 code, which implements a modified-valence-
force field (VFF) model to describe the interatomic po-
tential.

As key findings, we report that for all the considered
structures at room temperature the third-order thermal
currents obtained from LOA diagrams, with an analytical
continuation of Padé approximants, can reconstruct the
SCBA values and lighten the SCBA computational bur-
den. For anharmonic effects at high temperature (500
K - 900 K), it turns out that higher-order LOA ther-
mal currents are required. In such a case, we suggest as
a solution the application of the first-order Richardson
extrapolation55–57 to the sequence of the Padé approxi-
mants N − 1/N .

The rest of the paper is organized as follows. In Sec.
II, we first describe the NEGF model for the anharmonic
phonon transport. We then introduce the LOA rescal-
ing technique for the case of the considered phonon-
phonon interaction self-energy, and the application of
the Richardson extrapolation to the Padé approximants
N − 1/N . In Section III, we present the simulation re-
sults obtained within the LOA and systematically com-
pare them with the corresponding obtained within the
SCBA. Conclusions and perspective for future develop-
ments are followed in Sec. IV.

II. THEORY

A. Phonon transport model

The phonon Hamiltonian in three dimensions reads as

Hph =
∑
l1

∑
µ

P̂ 2
µ

2Mµ
+

1

2

∑
l1,l2

∑
µ,ν

ûl1µ û
l2
ν ·

∂2

∂Rl1µ ∂R
l2
ν

Vharm

+
1

3!

∑
l1,l2,l3

∑
µ,ν,σ

ûl1µ û
l2
ν û

l3
σ ·

∂3

∂Rl1µ ∂R
l2
ν ∂R

l3
σ

Vanh

+O(û4µ),

(1)

where the first, second, and third term refers to the ki-
netic, harmonic, and anharmonic contributions, respec-
tively. The indices µ, ν, and σ denote the atomic pos-
tions, while the indices l1, l2, and l3 run over the x,
y, and z directions. Rµ, Mµ, and P̂µ are the position,
the mass, and the momentum operator, respectively, of
the atom at the position µ. The operator ûl1µ is the
quantized displacement of the atom at the position µ
from the equilibrium position along the direction l1. In
this work, Vharm and Vanh are the VFF harmonic58,59

and anharmonic25 potential energies, respectively. Free
boundary conditions are enforced on the external surface
of the nanowire.

The second derivative of the VFF harmonic potential
energy with respect to the atomic position µ in the l1
direction and to the atomic position ν in the l2 direction
corresponds to the entries of the dynamical matrix Φ

Φl1l2µν =
∂2

∂Rl1µ ∂R
l2
ν

Vharm. (2)

The retarded (DR(ω)) and greater/lesser (D≷(ω))
phonon Green’s functions satisfy the equations:

∑
l1

∑
µ

[
Mνω

2δl2l1δνµ − Φl2l1νµ −ΠRB, l2l1
νµ (ω)−ΠRS, l2l1

νµ (ω)
]
DR, l1l3
µσ (ω) = δl2l3δνσ,

D≷, l2l3
νσ (ω) =

∑
l1,l

′
1

∑
µ,µ′

DR, l2l1
νµ (ω)

(
Π

≷B, l1l
′
1

µµ′ (ω) + Π
≷S, l1l

′
1

µµ′ (ω)

)
D
A, l

′
1l3

µ′σ (ω)
(3)

where DA (ω) =
(
DR (ω)

)†
is the advanced phonon

Green’s function, ω is the phonon frequency, ΠRB (ω)
(Π≷B (ω)) is the retarded (greater/lesser) open bound-
ary self-energy60, and ΠRS (ω) (Π≷S (ω)) is the retarded
(greater/lesser) anharmonic phonon-phonon scattering
self-energy25. The kinetic and harmonic terms of the

phonon Hamiltonian are therefore directly included in
the phonon Green’s function, while the anharmonic term
is perturbatively treated by defining a scattering self-
energy.

In this work, we model the anharmonic interactions in
terms of the lowest order three-phonon process depicted
in Fig. 1. It consists in the decay of a high-energy phonon
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(ω+ω′) into two lower energy phonons (ω and ω′) or vice
versa25,61. The corresponding greater/lesser self-energy
turns out to be Φ-derivable62 and reads as25:

Π
≷S, l2l3
νσ (ω) = 2i~

∑
l1,l

′
1,l

′′
1 ,l

′′′
1

∑
µ ,µ′ ,µ′′ ,µ′′′

∫ ∞
−∞

dω′

2π
dV

(3)l2l1l
′
1

νµµ′

×D≷, l1l
′′
1

µµ′′ (ω + ω′)D
≶, l

′′′
1 l

′
1

µ′′′µ′ (ω′)

× dV (3)l
′′
1 l

′′′
1 l3

µ′′µ′′′σ ,

(4)

with

dV
(3)l2l1l

′
1

νµµ′ =
∂3

∂R
l2
ν ∂R

l1
µ ∂R

l
′
1

µ′

Vanh. (5)

The retarded scattering self-energy can be derived from
the lesser and greater self-energies as

Π
RS, l2l3
νσ (ω) =

1

2

[
Π
>S, l2l3
νσ (ω)−Π

<S, l2l3
νσ (ω)

]
+ iP

∫
dω′

2π

Π
>S, l2l3
νσ (ω′)−Π

<S, l2l3
νσ (ω′)

ω − ω′
,

(6)

where P is the Cauchy principal integral value. In order
to exploit the efficient recursive algorithm of Ref. 63 to
solve Eqs. (3), we resort to a diagonal approximation25,54

of the scattering self-energy with respect to the atomic
position indexes ν and σ. Although this approxima-
tion may lead to an underestimation of the interac-
tion strength, in our model this is partly compensated
through the calibration of the model parameters for the
anharmonic force against available experimental data25.
As a further approximation, we neglect the real part of
the retarded self-energy, as it mainly contributes to an en-
ergy renormalization64–66. Finally, the phonon frequency
shift due to the temperature-dependent lattice expansion
is not taken into account.

The self-consistent solution of Eqs. (3), (4) and (6)
provides the interacting Green’s functions within the
SCBA. The local thermal current Ip,p+1

ph between two
unit cells p and p+ 1 can then be calculated as

Ip,p+1
ph =

~
2π

∑
ν∈p

∑
σ∈p+1

∑
l2,l3

×
∫ ∞
0

dω ω
[
Φl2l3νσ D

<,l3l2
σν −D<,l2l3

νσ Φl3l2σν

]
,

(7)

where the atoms at the positions ν and σ belong to the
unit cells p and p + 1, respectively. A unit cell is com-
posed of N consecutive atomic layers along the transport
direction, with N = 4 for the 〈100〉 direction and N = 2
for the 〈110〉 one.

FIG. 1. Lowest order anharmonic phonon-phonon self-energy
diagram, describing the anharmonic decay of a high-energy
phonon (ω + ω′) into two lower energy phonons (ω and ω′).

B. Lowest Order Approximation

The approach routinely used in NEGF numerical sim-
ulations to compute an interacting Green’s function D
consists in iteratively solving, within the SCBA, the
Dyson equation13

D = d0 + d0Π[DD]D, (8)

where d0 denotes the non-interacting Green’s function,
Π is the self-energy that accounts for the interactions,
and the simplified matrix notation [i = (ri, ωi), d0ΠD =∫
d2
∫
d2′ d0(1; 2) Π(2; 2′)D(2′; 1′)] has been used. The

product DD in the argument of Π highlights that the
considered self-energy (4) depends on the square of the
Green’s function. The iteration scheme to solve Eq. (8)
can be expressed as

DN = [d−10 −Π[DN−1DN−1]]−1, (9)

where DN denotes the Green’s function approximation at
the N th iteration and D0 = d0. By performing a Taylor
series expansion in powers of Π[DN−1DN−1], we can also
rewrite Eq. (9) as

DN = d0 + d0Π[DN−1DN−1]d0

+ d0Π[DN−1DN−1]d0Π[DN−1DN−1]d0 + · · · .
(10)

Moreover, by recursively expanding DN−1 in terms of
Π[DN−2DN−2],Π[DN−3DN−3], · · · ,Π[d0d0], we can re-
arrange the right hand side of Eq. (10) in the form of
products and compositions of the basic term d0Π[d0d0]:

DN = d0 + d0Π[d0d0]d0 + d0Π[d0d0]d0Π[d0d0]d0 + · · · .
(11)

The second term on the right hand side of Eq. (11) cor-
responds to the diagram of Fig. 1, while the other terms
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correspond to higher order diagrams. Here and in the
following, the order of a term/diagram is intended as its
order in Π, namely as the number of occurrences of Π
in that term/diagram. For each N , the expansion (11)
can be split in two parts: a perturbation series trun-
cated at the order N , which includes all the possible
(non-crossing) diagrams of order smaller or equal to N ,
and the remaining infinite sum, which misses some di-
agrams at any order. It can be shown50 that, if the
self-energy is Φ-derivable, the perturbation series part al-
ways provides a conserving approximation of the Green’s
function. On the contrary, due to the presence of the
renormalizing higher order terms, the SCBA provides a
conserving approximation only asymptotically, when the
self-consistency is achieved.

Differently from the SCBA, the LOA provides a se-
quence of expectation values of a generic linear operator
by directly relying on the Green’s function perturbation
series. The N th element of the sequence, which is referred
to as LOA of order N , is computed by approximating
the Green’s function with its perturbation series trun-
cated at the order N . According to the considerations
above, each element of the sequence fulfills the conser-
vation laws. However, as the perturbation series has a
finite convergence radius53, the sequence of expectation
values can also diverge. In order to turn this sequence
into a convergent one, analytical continuation techniques
can be resorted.

By using these techniques, higher order effects missed
in the truncated perturbation series can be included,
therefore obtaining a renormalized approximation of the
LOA expectation values. These latter can still fulfill the
conservation laws, if the analytical continuation preserves
the conserving character of the LOA. Essentially, while
both the SCBA and the analytically continued LOA im-
plement a convergent iterative scheme, only the latter
provides conserving results at each iteration. In the con-
text of electron-phonon interaction, this difference has
been shown to result in a significant acceleration of the
convergence of the LOA with respect to the SCBA52,54.
In the following, we will show how, by using a rescaling
technique, the LOA expectation values can be obtained
from the non-conserving estimates provided by the SCBA
during the iteration process.

The idea of the rescaling technique is to precondition
the expression of Π[DN−1DN−1] in order to obtain, as
the result of the SCBA iteration, a ”rescaled” version of
the expansion (11), in which terms corresponding to dia-
grams of increasing order are divided by increasing pow-
ers of the same scaling factor λ. A rescaled expression for
DN , in which terms of order i are divided by λi, can be
easily obtained by using in the SCBA algorithm a version
of Π[DN−1DN−1] in which any occurrence of the func-
tional Π is divided by λ. If λ is suitably chosen, the non-
conserving terms of order higher than N will be strongly
suppressed relative to the conserving ones, thus making

it possible to isolate them and build the corresponding
LOA. We proceed now to show how the rescaling tech-
nique can be implemented in practice, by describing its
application to the first two SCBA iterations.

By rescaling Π[d0d0] by λ1, the first SCBA iteration
gives

D1 = d0 +
d0Π[d0d0]d0

λ1
+
d0Π[d0d0]d0Π[d0d0]d0

λ21
+ · · · .

(12)

For λ1 large enough, the non-conserving terms with or-
der higher than the first are strongly suppressed, and the
LOA expectation value of a linear operator O can be ex-
tracted as O1 = O0+∆O1 = O0(d0)+O(d0Π[d0d0]d0) =

O0(d0) + λ1[O(Dλ1
1 ) − O(d0)], where Dλ1

1 denotes the
first-order phonon LOA Green’s function rescaled by λ1:

Dλ1
1 = d0 + d0Πλ1

1 d0, Πλ1
1 =

Π [d0d0]

λ1
, (13)

To proceed with the computation of the second order
LOA, we build the rescaled version Πλ2

2 of the phonon
self-energy Π[D1D1]:

Πλ2
2 =

1

λ2
Π
[
Dλ2

1 Dλ2
1

]
,

=
1

λ2
Π

[
(d0 +

1

λ2
∆d1)(d0 +

1

λ2
∆d1)

]
,

=
1

λ2
Π [d0d0] +

1

λ22
Π [2d0∆d1] +

1

λ32
Π [∆d1∆d1] ,

(14)

where ∆d1 = d0Π1d0 = d0Π [d0d0] d0 and the linearity of
Π has been exploited. It can be checked that terms of
order i are divided by λi2. This remains true for any poly-

nomial in Πλ2
2 , and thus for the rescaled Green’s function

Dλ2
2 provided by the second SCBA iteration. Again, if

the scaling factor λ2 is appropriately chosen54, the (non-
conserving) terms of order higher than the second are
strongly suppressed, and the second-order LOA expecta-
tion value can be obtained as O2 = O0 + ∆O1 + ∆O2,
with ∆O2 = λ22[O(Dλ2

2 )−O(d0)]− λ2∆O1.
This strategy can be generalized to the computation

of the phonon Green’s function LOA at any order. In
particular, from a Green’s function exact to the (N−1)th

order, rescaled by a factor λN

DλN

N−1 = d0 +
1

λN
∆d1 + · · ·+ 1

λN−1N

∆dN−1, (15)

where ∆i denotes the term of order i of the Green’s func-
tion perturbation series, we can obtain a rescaled self
energy ΠλN

N exact to the N th order as
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ΠλN

N = Π
[
DλN

N−1D
λN

N−1

]
= Π

d0d0λN
+ · · ·+

N−1∑
i=0

∆di∆dN−1−i

λNN
+

N−2∑
i=0

∆di+1∆dN−1−i

λN+1
N

+ · · ·

 . (16)

In this paper, a conserving analytical continuation
technique relying on the Padé approximation is used50,52.
We compute the LOA expectation values of the thermal
current up to the third order, as our results indicate that
the Padé approximants 0/1, 1/1 and 1/2 built from them
can already provide good estimates of the SCBA con-
verged current.

The rescaling technique has been presented for the case
of the self-energy (6), which depends on the square of the
phonon Green’s function. However, it is easy to argue
that it can be used exactly in the same form in the case
of the composition Σ[Gk] of a linear self-energy Σ with
any positive integer power k of the Green’s function G.
By going a small step further, we observe that, due to
the linearity of Σ, the method can be applied to self-

energies of the form Σ[
∑M
i=0 fiG

k(i)] =
∑M
i=0 fiΣ[Gk(i)],

where the function k associates i a positive integer. If the
functional Σ is bounded, the previous equality holds also
forM =∞, and, by taking k(i) = i, we can conclude that
the rescaling technique is applicable to all the conserving
self-energies of the form Σ[f(G)], where f is an analytic
function.

These considerations show that the case of the phonon-
phonon scattering self-energy on which the paper focuses,
while important, represents just a very simple example
among the wide range of physical situations the method
can deal with. The achievable numerical efficiency will
obviously depend on the particular case at hand.

C. Richardson extrapolation

When the anharmonic scattering is strong, as in the
case of temperatures much higher than room tempera-
ture (see below, subsection III B), the convergence of the
series of the Padé approximants can be slow. In such
cases, we propose to apply the Richardson extrapolation
to the LOA expectation values analytically continued by
the Padé approximants N − 1/N .

The Richardson extrapolation is a method to acceler-
ate the convergence of monotone series. If a sequence SN
approaches monotonically a certain value S, we can write
SN in an asymptotic form as56

SN ≈ S +
c1
N

+
c2
N2

+
c3
N3

+ · · · , (17)

where c1, c2, · · · are unknown parameters. By consider-
ing only the first correction term for SN and SN+1

SN = S +
c1
N
, SN+1 = S +

c1
N + 1

, (18)

the first-order Richardson extrapolation can be expressed
as

S
[1]
N = (N + 1)SN+1 −NSN . (19)

We used this technique to accelerate the convergence
of the sequence ON−1/N of the LOA expectation values
of an operator O, analytically continued by the Padé ap-
proximants N − 1/N . If, as N →∞, ON−1/N converges
monotonically, we can set SN = ON−1/N and apply Eq.
(19). In the paper, the Richardson extrapolation is ap-
plied to the sequence elements O0/1 and O1/2 as

S
[1]
1 = 2S2 − S1 = 2O1/2 −O0/1, (20)

to obtain an improved estimate S
[1]
1 of the corresponding

SCBA result.

III. RESULTS AND DISCUSSIONS

In this section, we present and discuss the simulation
results for the thermal current in Si and Ge NWs, ob-
tained by using either the LOA analytically continued
with Padé approximants and possibly further improved
by using the Richardson extrapolation or the SCBA. The
SCBA results have been obtained within a tolerance of
1% on the current conservation. All the NWs are un-
doped. The resulting low electron density allows us to
neglect the electron contribution to the thermal current
and the electron-phonon scattering. In all the considered
cases, the thermal current is sustained by a temperature
gradient of 0.1 K, enforced at the NW extremities.

In subsection III A, we consider the case of NWs with
a uniform cross-section at room temperature. In sub-
section III B, we discuss the results obtained by increas-
ing the temperature up to 900 K. In these conditions,
the increase in the phonon population entails a signifi-
cant enhancement of the phonon-phonon scattering rate.
Finally, as an example of geometry-driven mode-mixing
enhancement, in subsection III C we address the case of
NWs with discontinuous cross-section.
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FIG. 2. Top panel: atomic structure of the 〈100〉-oriented Si
or Ge NWs investigated in subsection III A. The length and
the diameter of the nanowires are LNW = 60 nm and dNW = 3
nm, respectively. Bottom panel: cross-section view of (left)
the 〈100〉-oriented and (right) the 〈110〉-oriented nanowires.

A. Uniform cross-section nanowires at room
temperature

The atomic structure of the considered Si and Ge NWs
is depicted in Fig. 2. The nanowires are 60 nm long
and have a circular cross-section with a diameter of 3
nm. The Ge NW is oriented in the 〈110〉 direction, while
for the Si NW both the 〈110〉 and 〈100〉 directions are
considered. In the following, we refer as ”ballistic” the
results for the thermal current obtained with uncoupled
phonon modes, namely in the harmonic approximation.

Fig. 3 (a) illustrates the values of thermal current along
the 〈110〉-oriented Si NW, in the ballistic regime and
in the presence of anharmonic phonon-phonon scatter-
ing. For this latter case, the SCBA converged value and
the LOA approximations up to the third order are re-
ported. The results confirm that the rescaling technique
is actually able to provide current-conserving expectation
values at any order. However, the LOA power series di-
verges, due to the already significant anharmonic scatter-
ing strength at room temperature25. Analogously to the
case of the previously investigated electron-phonon self-
energy52,54, an analytical continuation of the LOA series
based on the Padé approximation has been resorted to
obtain a convergent behavior. Fig. 3 (b) shows the Padé
approximants built from the LOA values. The sequence
of Padé approximants 0/1, 1/1 and 1/2 oscillates around
the SCBA value, the best approximation of which is ob-
tained by the 1/2 approximant with a relative error ε

FIG. 3. (a) Room temperature ballistic, SCBA and LOA
thermal currents up to the third order in the 〈110〉-oriented
Si NW. Inset: enlargement around the value of the SCBA
current. (b) Padé approximants 0/1, 1/1 and 1/2 built from
the LOA results. The ballistic and SCBA currents are also
represented.

(= 100× |ISCBA − IPade|/ISCBA) lower than 9.2%. This
result is achieved with around half of the computational
burden needed for the SCBA (6 against 10 SCBA iter-
ations). The same behavior is observed for the 〈100〉-
oriented Si NW (not shown). In this case, the diver-
gence of the LOA series is faster, which suggests stronger
anharmonic interactions. The Padé approximant 1/2 is
also in this case in good agreement with the SCBA value
(ε = 10%).

Figure 4 illustrates the corresponding results obtained
for the 〈110〉-oriented Ge NW. The divergence of the
LOA series is slower than for the Si NWs, which indi-
cates a higher ballisticity (the lower thermal conductiv-
ity of Ge NWs40,67–69 with respect to Si NWs is a conse-
quence of the lower group velocity of the acoustic phonon
branches25, which mainly sustain the thermal current).
Figure 4 (b) shows that, once again, the 1/2 Padé ap-
proximant provides a good estimate of the SCBA cur-
rent (ε = 10%), while resulting in an improvement of the
numerical efficiency similar to that found for the Si NWs.

B. Uniform cross-section nanowires at higher
temperatures

A different scenario is observed when temperatures
much higher than 300 K are considered. Table I reports
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FIG. 4. (a) Room temperature ballistic, SCBA and LOA
thermal currents up to the third order in the 〈110〉-oriented
Ge NW. (b) Padé approximants 0/1, 1/1 and 1/2 built from
the LOA results. The ballistic and SCBA currents are also
represented.

the LOA thermal current analytically continued by the
0/1 and 1/2 Padé approximants for the 〈110〉-oriented Si
NW considered in subsection III A, and the correspond-
ing values obtained through a first-order Richardson ex-
trapolation. The SCBA and ballistic current, and the
number of SCBA iterations needed to obtain each result
are also shown. The data are provided for temperatures
ranging from 300 K to 900 K. It can be noticed that
the current degradation with respect to the ballistic case
δI = 100 × [1− ISCBA/Ibal], where ISCBA and Ibal are
the SCBA and ballistic value of the current, respectively,
significantly increases with the temperature: δI = 46%
at 300 K, 64% at 500 K, 74% at 700 K and 81% at 900 K.
This is a consequence of the enhancement of the anhar-
monic interactions at high temperature25. The accuracy
of the Padé approximant 1/2 in retrieving the SCBA re-
sult progressively degrades with increasing temperature
(ε = 17.4% at 500 K, 20.8% at 700 K, and 29.2% at 900
K), suggesting that higher-order LOA terms are needed.
However, it can be seen that in all the cases the Richard-
son extrapolation obtained from the Padé approximants
0/1 and 1/2 significantly improves the estimate of the
SCBA result (we find ε = 4.0% at 300 K, 0.0% at 500
K, 1.3% at 700 K, and 11.3% at 900 K). We remark
that the use of the Richardson extrapolation does not
require further iterations and therefore does not increase
the computational burden. In this way, it is possible to
considerably boost the numerical efficiency of the LOA

FIG. 5. (a) Illustration of the atomic structure (not to scale)
of the 〈100〉-oriented Si NW in the presence of a single recessed
region (NWR1). (b) Illustration of the atomic structure (not
to scale) of the 〈100〉-oriented Si NW in the presence of two
recessed regions (NWR2). For the sake of clarity, the Si atoms
in the recessed regions are shown in yellow.

with respect to the SCBA scheme. For example, Table I
shows that approximating the anharmonic thermal cur-
rent at T = 900 K within a relative error close to 10% is
more than 7 times faster than computing the correspond-
ing SCBA result.

We tested the first-order Richardson extrapolation also
in the case of the self-energies describing electron-phonon
interactions considered in Ref. 54. In all the cases in
which the sequence of the N − 1/N Padé approximants
converged monotonically, we again obtained a significant
acceleration.

C. Nanowires with discontinuous cross-section

The atomic structure of the NWs with discontinuous
cross-section is sketched in Fig. 5. We consider a 〈100〉-
oriented Si NW with LNW = 60 nm and dNW = 4 nm
at room temperature. The choice of the 〈100〉 orienta-
tion allows us to discuss a different convergence behav-
ior, which we did not observe in the 〈110〉 orientation.
The NW in Fig. 5 (a), which we will refer to as NWR1,
has one recessed region of length LRec = 10 nm. The
recess is obtained by removing the outermost layer of
atoms. The length of the left/right unrecessed parts is
LLeft = LRight = 25 nm. The NW in Fig. 5 (b), which
we will refer to as NWR2, has two recessed regions of
length LRec1 = LRec2 = 5 nm. The lengths of the left,
center, and right unrecessed regions are LLeft = 12.5 nm,
LCenter = 25 nm, and LRight = 12.5 nm, respectively.

These structures can be considered as elemental cells
from which one-dimensional nanoscale phononic crystals
with tailored phonon band structures70 could be assem-
bled. We remark that, in our model, the discontinuities
of the NW cross-section affect the self-energy in a qualita-
tively different way with respect to an increase of the tem-
perature. This latter induces an increase of the anhar-
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TABLE I. LOA thermal currents analytically continued by the Padé approximants 0/1 and 1/2 and the corresponding Richard-
son extrapolations for the 〈110〉-oriented Si NW, at different temperatures. The number of SCBA iterations required to obtain
each approximation, the relative difference with respect to the SCBA results, and the corresponding ballistic and SCBA currents
are also reported.

Ballistic 1stLOA + Padé 0/1 3rdLOA + Padé 1/2 1stRichardson SCBA Temperature
Iph [W] 5.16e-10 2.17e-10 2.53e-10 2.89e-10 2.78e-10 300 K
ε [%] 85.6 21.9 9.0 4.0 0.0

Iterations 0 1 6 6 10
Iph [W] 5.71e-10 1.34e-10 1.71e-10 2.07e-10 2.07e-10 500 K
ε [%] 175.8 35.3 17.4 0.0 0.0

Iterations 0 1 6 6 19
Iph [W] 5.89e-10 8.87e-11 1.22e-10 1.56e-10 1.54e-10 700 K
ε [%] 282.5 42.4 20.8 1.3 0.0

Iterations 0 1 6 6 28
Iph [W] 5.97e-10 6.05e-11 8.14e-11 1.02e-10 1.15e-10 900 K
ε [%] 419.1 47.4 29.2 11.3 0.0

Iterations 0 1 6 6 44

FIG. 6. (a) Room temperature ballistic, SCBA and LOA
thermal currents up to the third order in the NWR1 structure.
Inset: enlargement around the value of the SCBA current.
(b) Padé approximants 0/1, 1/1 and 1/2 built from the LOA
results. The ballistic and SCBA currents are also represented.
Inset: enlargement around the value of the SCBA current.

monic scattering rate essentially by modifying the non-
interacting phonon Green’s function. Differently, in the
case of geometrical irregularities, this increase is mainly
due to a change in the interaction strength, through the
derivatives of the anharmonic components of the poten-
tial energy (see Eq. (5)).

Figure 6 illustrates the results obtained for the struc-
ture NWR1. Contrary to the cases previously discussed

FIG. 7. (a) Room temperature ballistic, SCBA and LOA
thermal currents up to the third order in the NWR2 structure.
Inset: enlargement around the value of the SCBA current.
(b) Padé approximants 0/1, 1/1 and 1/2 built from the LOA
results. The ballistic and SCBA currents are also represented.

in subsections III A and III B, it can be noticed that
the SCBA and the first-order LOA thermal currents are
higher than the ballistic one. This behavior is similar
to the one observed in the n-type 〈111〉-oriented Si NWs
in the case of electron-phonon scattering (see Table I in
Ref. 54). Physically, the increase of the current in the
presence of anharmonic scattering originates from the
occurrence, in ballistic conditions, of localized phonon
modes, induced by the cross-section nonuniformity. In
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the presence of mode-mixing, these modes can contribute
to transport, therefore entailing an increase of the cur-
rent. Figure 6 (b) shows that the best approximation
of the SCBA current is provided by the 1/1 Padé ap-
proximant, able to almost perfectly recover the SCBA
value (ε = 0.1%). This could suggest that in similar
cases the sequence of N/N Padé approximants converges
faster than the N − 1/N one. The LOA approximation
turns out to be one order of magnitude faster, as only
3 SCBA iterations are needed to compute the 1/1 Padé
approximant, against the 32 iterations required to obtain
the converged SCBA result. This behavior is of course
not always observed for NWs with surface recesses. Fig-
ure 7 shows the results for the slightly more complex
NWR2 structure. In this case, the anharmonic scattering
induces a decrease of the thermal current, and the behav-
ior is the same as that observed for NWs with uniform
cross-section. Accordingly, the best approximation of the
SCBA thermal current is provided by the 1/2 Padé ap-
proximant. The relative error with respect to the SCBA
result is ε = 1.4%, and the numerical efficiency is im-
proved by more than 3 times.

It is interesting to compare the results for the struc-
ture NWR1 with those obtained for the NW with uniform
cross-section at T = 700 K. We observe that, while the
total number of SCBA iterations slightly increase from
28 to 32, the relative error of the best Padé approximant
with respect to the SCBA significantly improves from
20.8% to 1%. The different behavior can be attributed
to the local character of the NW cross-section discontinu-
ities. A localized scattering center is less efficient in trig-
gering high order scattering processes with respect to a
homogeneous increase of the temperature. This explains
the higher accuracy of the analytically continued LOA
in the case of the NWR1 structure. On the other hand,
within the SCBA scheme, localization effects typically
result in significant spatially localized fluctuations of the
current, which need numerous iterations to be canceled
out. The SCBA scheme cannot benefit from the same im-
provement as the LOA, because its numerical efficiency
is limited by the non-automatic current conservation.

IV. CONCLUSION

We investigated the opportunity to adopt the LOA ap-
proach as a more efficient option with respect to the
SCBA in the description of the anharmonic phonon-
phonon scattering in thermal transport NEGF simu-
lations. We found that the LOA, in the rescaling-
technique-based implementation, is able to provide the
correct thermal current-conserving expectation values at
any order. This method can be generalized to any
conserving self-energy that analytically depends on the
Green’s function. We benchmarked the numerical effi-
ciency of the LOA approach against the SCBA through
atomistic phonon transport simulations in Si and Ge
NWs. For constant cross-section NWs at room temper-
ature, our results indicate that the Padé approximants
built with the LOA currents up to the third order can
provide high accuracy and a significant computational
advantage with respect to the SCBA (typically, a reduc-
tion of the numerical burden by a factor 2). The largest
improvement (up to a factor 10) of the computational ef-
ficiency relative to the SCBA has been observed in NWs
with discontinuous cross-section. A similar improvement
can be obtained also at temperatures substantially higher
than the room temperature, if the first-order Richardson
extrapolation is applied to the Padé N − 1/N sequence
in order to accelerate the convergence.
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