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We propose a diagonal approximation for the self-energy that describes the interaction between
electrons and polar optical phonons in the framework of non-equilibrium Green’s function transport
simulations. Our model is based on the definition of a scaling factor, which renormalizes the local
electron-phonon coupling, to take into account the non-locality of the interaction and provide the
correct scattering rates. While previous studies relied on empirical values of this factor, we derive,
from basic physical relationships, analytical expressions in the presence of one- and two-dimensional
confinement of phonons. We apply our model to the self-consistent simulation of double-gate p-type
transistors made of technologically relevant III-V materials (InAs, InSb and GaSb). Their perfor-
mance are benchmarked, for different crystallographic orientations and strain constraints, against
the corresponding Si and Ge devices. We find that the electron-polar optical phonon scattering plays
a major role in degrading the performance of the III-V devices and typically results in a widening of
the performance gap existing between III-V and Si or Ge devices in ballistic transport conditions.

INTRODUCTION

During more than 40 years the impressive growth of
semiconductor industry was based on the scaling of the
transistor, which represents the elementary brick of inte-
grated circuits. However, since the 90 nm node, the de-
vice scaling in itself is no more capable to maintain this
continuous technological development. Additional tech-
nological boosters (e.g, high-κ dielectric and mechanical
strain) were first incorporated to improve the electrical
characteristics of transistors [1]. Multiple gate Metal Ox-
ide Semiconductor Field-Effect-Transistors (MOSFETs)
have also been developped to counteract the short chan-
nel effects when reaching the nanometer scale [2, 3].

Another important option is to consider alternative
channel materials with better electrical properties than
Si [4–6]. Due to their very high electron mobility, III-V
materials have been recognized to be good channel mate-
rial candidates [7, 8]. While several technological [9] and
physical [10] challenges must be overcome to incorporate
III-V devices in future CMOSFETs, they are considered
as a promising solution to meet the power constraints
arising in several applications. The recent International
Roadmap for Devices and Systems (IRDS) pointed out
the achievement of high performances p-type strained III-
V MOSFETs as key near-term challenges to address for
the device scaling [11].

A drawback of using III-V materials for a monolithic
integration is the large imbalance between electron and
hole mobilities (e.g., in bulk InAs, the electron mobility
is µe = 40 × 103 cm2 ·V−1 · s−1 while the hole mobility
is µh = 500 cm2 ·V−1 · s−1) [12]. Since CMOS circuits
require both n- and p-channels with reasonably matched
performances, the future III-V CMOS technology is re-
quired to narrow the gap between n- and p-type MOS-
FETs.

The use of mechanical strain represents a relevant tech-
nique to reach this aim [13–16]. Therefore, compre-
hensive investigations on III-V pMOSFETs are urgently
needed in order to better predict and optimize their per-
formances with respect to the choice of the material, me-
chanical strain and crystallographic orientation.

Quantum transport modeling can play a central role to
determine the best device configuration. Most theoreti-
cal studies have so far explored the n-type III-V MOS-
FETs [17–20] while few investigations focused on their
p-type counterparts. Indeed, modeling hole transport in
semiconductor nanostructures is typically a more com-
plex task, as it requires to take into account the coupling
between several bands [21, 22]. The situation is even
more complicated when strain and phonon scattering are
included [23–25].

Non-Equilibrium Green’s Function (NEGF) formalism
is one of the most established approach to treat quan-
tum transport in nano-devices [26–28]. It is able to de-
scribe inelastic scattering, like electron-phonon interac-
tions, through the concept of self-energy [29]. For numer-
ical convenience the electron-phonon scattering is usually
treated within a local approximation, since most of the
NEGF codes are based on a recursive algorithm [30, 31],
which requires a diagonal (i.e. local) description of the
self-energy. This assumption was demonstrated to be
physically sound for interactions with acoustic and non-
polar optical phonons [32–35].

However, III-V compound semiconductors are subject
to strong polar optical (PO) interactions of the Fröhlich
type [36–38], which intrinsically have a non-local char-
acter. Indeed, this type of electron-phonon interaction
decays very slowly in space like a Coulomb potential [36].
This non-locality increases the numerical complexity of
the quantum transport computations in a prohibitive
manner. Previous NEGF studies have proposed to model
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PO phonon scattering through diagonal self-energies mul-
tiplied by a scaling factor [39], but without providing
general prescriptions.

In this paper, by directly starting from the Fröhlich
theory of bulk polar optical phonons, we derive an an-
alytical expression of the scaling factor in confined sys-
tems, which can be used to mimic the effects of polar
optical phonons within a local approximation. We then
use our model to calibrate the electron-PO phonon cou-
pling strength in self-consistent NEGF simulations, in
order to assess the performances of p-type double-gate
(DG) MOSFETs as a function of the channel material,
of the crystallographic orientation and of the strain.

FIG. 1. Sketch of the considered Double-Gate MOSFETs.
For all the considered devices, TSC=2.4 nm, TOX=1 nm,
and the source and drain doping is 8×1019 cm−3. Two gate
lengths, LG=15 nm and 7 nm, are considered. VDS=-0.6 V.

We use a two-dimensional (2D) NEGF code self-
consistently coupled with the Poisson equation [40, 41].
The valence bandstructure of III-V direct gap materials
is described by a 8-band k.p Hamiltonian [42].

The paper is organized as follows: Section presents
the NEGF framework. In Section , an expression of the
PO phonon self-energy is derived, first in the bulk case
and then for a thin film DG MOSFET. In Section , the
diagonal approximation is introduced, and an analytic
expression of the scaling factor is derived. In Section ,
we present and discuss the results of our numerical sim-
ulations of III-V DG MOSFETs. Section IV summarizes
the key findings.

METHOD

Quantum kinetic equation within the eight-band k · p
framework

We consider a 8-band k · p Hamiltonian including the
spin-orbit coupling to model the valence bandstructure of
the 2D DG pMOSFET shown in Fig. 1. The DG pMOS-
FET geometry is sketched in Fig. 1. We model the va-
lence band structure through a 8-band k ·p Hamiltonian,

which is able to take into account the coupling between
the light, heavy and split-off hole bands, and the coupling
between them and the conduction band [42, 43]. The
device is assumed translationally invariant in the trans-
verse y direction. Accordingly, the Hamiltonian can be
parametrized in terms of the wave vector component ky.
In order to obtain accurate results, in numerical compu-
tations, a large enough number of suitably spaced values
of ky has to be considered. We chose ky of the form
2πn/Ly, with n an integer and Ly=10 nm.

Mechanical strain is modeled through the Bir-Pikus
Hamiltonian, and by assuming bulk values of deformation
potentials [44]. The bandstructure material parameters
are extracted from reference 45 and reported in Table I.

TABLE I. Principal k · p parameters used in this work [45].

γL
1 γL

2 γL
3 Eg Ep ∆so a0

InAs 20.0 8.5 9.2 0.417 21.5 0.39 6.06
InSb 34.8 15.5 16.5 0.23 23.3 0.81 6.48
GaSb 13.4 4.7 6.0 0.81 27 0.76 6.09
Units eV eV eV Å

To solve the transport problem in the presence
of inelastic interactions, the Keldysh retarded and
lesser/greater-than Green’s functions are calculated for
each transverse mode ky by solving the following equa-
tions (in matrix notation):

[GR (ky, ε)] =
{
ε[I]− [H2D (ky)]− [U ]

−[ΣRL(ky, ε)]− [ΣRscat(ky, ε)]
}−1 (1)

[G≶ (ky, ε)] =[GR (ky, ε)]
(

[Σ
≶
L (ky, ε)]

+[Σ
≶
scat(ky, ε)]

)
[GR† (ky, ε)],

(2)

where ε is the hole energy, I is the identity matrix,
[H2D(ky)] the 2D Hamiltonian for a given transverse
mode and [U ] the 2D potential (in terms of hole en-
ergy). To ensure accurate calculations, 10 discrete values
of ky are considered in the simulations. In Eqs.(1) and

(2), [Σ
R,≶
L ] are the retarded and lesser/greater-than self-

energies of the leads, respectively. Moreover, [Σ
R,≶
scatt] =

[Σ
R,≶
ac ] + [Σ

R,≶
op ] + [Σ

R,≶
pop ], where [Σ

R,≶
ac ], [Σ

R,≶
op ], [Σ

R,≶
pop ]

are the acoustic, optical and PO phonon self-energies,
respectively. The self-energies of the leads are calculated
exactly [46], while the scattering ones are treated within a
perturbative approach, through the self-consistent Born
approximation (SCBA) [47]. Within the SCBA and by
considering the elastic approximation, the hole-acoustic
phonon self-energies are expressed as

[ΣR,≶ac (ky, ε)] =iIm{
∑
ky

∑
ξ∈{x,y,z}

[Mac,ξ]

[GR,≶(ky, ε)][M
†
ac,ξ]},

(3)
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where [Mac,ξ] describes the hole-acoustic-phonon cou-
pling. The optical phonon lesser/greater-than and re-
tarded self-energies read [48]

[Σ≶
op(ky, ε)] = iIm{

∑
ξ∈{x,y,z}

[Mop,ξ]

×
(
Nop[G≶(ky, ε− ~ωop)]

+(Nop + 1)[G≶(ky, ε+ ~ωop)]
)

× [M†op,ξ]}

(4)

[ΣRop(ky, ε)] = iIm{
∑

ξ∈{x,y,z}

[Mop,ξ](Nop[GR(ky, ε− ~ωop)]

+ (Nop + 1)[GR(ky, ε+ ~ωop)]

+
1

2
([G>(ky, ε− ~ωop)]

− [G>(ky, ε+ ~ωop)]))[M†op,ξ]},
(5)

where ~ωop is the optical-phonon energy, Nop =
1/(exp(~ωop/kBT )− 1) is the corresponding phonon dis-
tribution, [Mop,ξ] represents the hole-optical-phonon cou-
pling and a dispersionless approximation has been con-
sidered.

We solve Eqs. (1) and (2) through the recursive al-
gorithm described in Refs. 49 and 50. This approach
allows one to efficiently compute the diagonal and first
off-diagonal blocks of the Green’s functions, from which
the charge and current densities are obtained. This con-
siderably lightens the computational burden with respect
to a direct numerical implementation of Eq. (1), but
requires to resort a local approximation for the scatter-
ing self-energies. If this approximation is applied to PO
phonons, the electron-phonon coupling needs to be renor-
malized, in order to avoid an underestimation of the scat-
tering rates. In the next Section, we will define a diago-
nal approximation that locally conserves the electron-PO
phonon scattering rates, and derive easy-to-handle ana-
lytical expressions for the corresponding scaling factor.

Polar optical phonon self-energy

We start from the second order expression of the
lesser/greater self-energy of the electron-phonon interac-
tion [28]:

[Σ≶(ε)] =
∑
q

~
2µω

∂Hep

∂uq

×
{

(Npop + 1)G≶(ε± ~ω) +NpopG
≶(ε∓ ~ω)

}
×
∂H†ep
∂uq

(6)

In Eq. (6), Hep is the electron-phonon interaction
Hamiltonian, q denotes the phonon wave vector, and uq
and µ are the amplitude of the normal mode relative dis-
placement with respect to the equilibrium position and
the reduced mass of the atoms in the unit cell, respec-
tively.

We evaluate Eq. (6) by calculating Hep = eφ, where
e represents the elementary charge and φ the energy due
to polar optical phonons. We first consider the bulk sit-
uation (Subsection ), and then we derive the case of a
quantum well (Section ).

Bulk formulation

In this Subsection, we outline the calculation of the
bulk electron-PO phonon interaction, by following the
Fröhlich approach [36]. We consider ionic crystals with
two atoms per unit cell. In the long wavelength limit,
uq(R) expresses the relative displacement of the two
atoms in the unit cell at R. The associated ionic po-
larization Pi(R), defined as the average dipole moment
per unit volume, can be written to the first order in the
displacement as

Pi(R) =
e∗

Ω
uq(R), (7)

where e∗ is the effective charge and Ω the volume of the
unit cell. We assume that only longitudinal PO phonons
couple with electrons. In this hypothesis,

uq(R) = uq
q

q

eiq·R√
V

(8)

where, in the long wavelength limit q → 0, the dis-
placement can be considered as a continuous function
of R normalized over the volume V of the system. As
div(εE) = div(E + 4πPi) = iq(Eq + 4πPiq) = 0, uq in-
duces an electrostatic potential φq corresponding to an
electric field Eq = −4πPiq = −iqφq (in the electrostatic
esu-cgs unit system):

φq = − i
q

4πe∗

Ω
uq. (9)

One still has to determine e∗. For this, we first notice
that a finite static uq can be induced by an external field
Eb. For longitudinal displacements this gives

µω2
Luq = e∗Eb (10)

where µ is the reduced mass and ωL is the longitudinal
phonon frequency. According to Eq.(7) this is equivalent
to

Pi =
(e∗)2

µω2
LΩ

Eb. (11)
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On the other hand, E + 4πP = Eb and E = Eb/ε.
Thus

P =
1

4π

(
1− 1

ε

)
Eb. (12)

where P = Pe + Pi, and Pe is the electronic polariz-
ability. Eq. (12) is in general valid for fields with a har-
monic time dependence eiωt. In static conditions (ω=0,
ε = ε(0)), both Pe and Pi contribute to P, while, when
ω → ∞ (ε = ε(∞)), the contribution of Pi is negligible.
Therefore, we can calculate Pi as

Pi = − 1

4π

(
1

ε(0)
− 1

ε(∞)

)
Eb. (13)

The comparison between Eqs.(11) and (13) gives

(e∗)2 = µω2
L

(
1

ε(∞)
− 1

ε(0)

)
Ω

4π
. (14)

Eqs. (9) and (14) provide an expression of φq in
terms of uq, which, however, does not take into account
the screening by the carriers. The latter can be eas-
ily included via linearized theories such as the Debye or
Thomas-Fermi approximations.

In both cases, we have to replace 1
q in equation (9) by

q
q2+q2s

where q2s is given either by Debye formula

q2D =
4πe2

ε(∞)kBT
n0, (15)

valid at low carrier concentration n0, or by the Thomas-
Fermi expression

q2TF = q2D
3

2

kBT

εF
(16)

valid at high carrier concentrations, i.e when the Fermi
level εF is located inside the band and its distance from
the band edge is > kBT , where kB is the Boltzmann con-
stant and T is the absolute temperature. The electron-

phonon coupling is thus given by −eφq e
iq.R
√
V

which, with

equation (9) modified for screening gives

Hep = i
eq

q2 + q2s

4πe∗

Ω
uq
eiq·R√
V
. (17)

In fact, there are two sources of electron screening, one by
the valence electrons, the other one by the excess carri-
ers. For the first one the plasmon frequency is around 15
eV, much higher than the typical optical phonon energies
of order 50 meV. One can thus safely use static dielec-
tric screening in this case which amounts to divide the
phonon induced potential by the dielectric constant. The
situation is not the same for the excess carriers since the
squared plasma frequency scales as n/εm∗ where n is the
excess electron concentration, ε the dielectric constant

and m∗ the effective mass. For the weak concentrations
considered here this can bring the corresponding plasma
frequency in the same range as the phonon frequency.
Qualitatively this would reduce qs (which represents the
strength of the screening) with respect to its static value.
In practice, we consider cases for which the static qs is
negligible so that this effect can be discarded.

By combining Eqs. (6) and (14), we obtain

[Σ
≶
POP,bulk(ε, r1, r2)] =

M2

V
{(Npop + 1)G≶(ε± ~ωL, r1, r2)

+NpopG
≶(ε∓ ~ωL, r1, r2)}

×
∑
q

eiq(r1−r2)q2

(q2 + q2s)2
,

(18)

where Σ≶ is expressed in real space with coordinates r1

and r2 and M2 = 2π~ωLe2
(

1
ε(∞) −

1
ε(0)

)
.

Extension to the case of a quantum well

We consider first the case of a system in which phonons
are confined only in the z direction, between z = 0 and
z = Lz. In this work we have followed the general ap-
proach of Mori and Ando on electron-optical phonon
interaction in heterostructures [51]. For a double het-
erostructure they show that one can separate the eigen-
modes into confided LO modes with vanishing polariza-
tion field at the interface and interface modes decaying
exponentially away from the interface. We concentrate
here on the first category. A second point is related to the
confinement effect on the phonon modes. This was shown
to be important for acoustic modes due to their impor-
tant dispersion curve [52]. However optical phonons ex-
hibit almost no dispersion so that it is equivalent to treat
them as Einstein oscillators, the confinement effect being
negligible. As discussed previously we consider longitu-
dinal PO displacements confined to the region extend-
ing between z = 0 and z = Lz which are solutions of
ε(ω) = 0. We express the potential φ in terms of a com-
plete set of bulk basis functions satisfying the correct
boundary conditions at z = 0 and Lz, i.e no polarization
at the two interfaces:

φ(R) =
∑
q

φq

√
2

LzA
sin(qzz)exp(iq‖ · r‖) (19)

where R = (r‖, z), q = (q‖, qz), and A is the trans-
verse cross section and qz = nzπ

Lz
. As before, longitudinal

modes correspond to E = −4πPi = −∇φ. As Pi is still
given by (7) each phonon mode uq(R) is related to φq
by

4πe∗

Ω
uq(R) = φq

√
2

LzA

(
qncos(qzz) + iq‖sin(qzz)

)
eiq‖·r‖ .

(20)



5

From Eq.(20) it is straightforward to see that the eigen-
modes uq(R) are orthogonal (i.e. uq(R) · u′q(R) = δqq′)
and

u2q =
1

V

∫
|uq(R)|2d3R =

(
q

Ω

4πe∗
φq

)2

(21)

with q =
√
q2z + q2‖. This means that

∂φ(R)

∂uq
=

4πe∗

Ωq

√
2

V
sin(qzz)exp(iq‖ · r‖) (22)

which leads exactly to the same expression for
∂Hep
∂uq

as Eq.(17) for the bulk, except for the replacement of√
1
V e

iqzz by
√

2
V sin(qzz).

This result can be extended to the case of a system
where phonons are confined in two directions x and z,
by further replacing eiqxx with

√
2sin(qxx). In the fol-

lowing, we will mainly focus on this case, as it models
the phonon confinement between the source and drain
contacts and the top and bottom gate oxide in the DG
MOSFET geometry presented in Section . Below, we re-
port the corresponding expression of the lesser/greater
than Green’s function

[Σ
≶
POP (ε, r1, r2)] = M2G

≶
(ε, r1, r2)I(r1, r2)

with :

G
≶

(ε, r1, r2) = (Npop + 1)G≶(ε± ~ωL, r1, r2)

+ NpopG
≶(ε∓ ~ωL, r1, r2),

and :

I(r1r2) =
4

V

∑
q

sin(qxx1)sin(qxx2)sin(qzz1)sin(qzz2)

× q2

(q2 + q2s)2
eiqy(y1−y2),

qx = nx
π

Lx
, qz = nz

π

Lz
, qy = 2ny

π

Ly
.

(23)

Scaling factor for 2D double-gate geometry

In this Section, we will introduce the diagonal approx-
imation for the PO phonon self-energies mapped on the
discretized simulation domain of DG MOSFETs (Subsec-
tion 1 ). Then, we will derive an analytical expression for
the scaling factor and we will provide simplified formulas
allowing for a rapid numerical computation (Subsection
and , respectively). We also report an analytical expres-
sion of the scaling factor for the case of a one-dimensional
confinement and benchmark it value against previous nu-
merical studies (Subsection ). For the sake of simplicity,
the derivation is carried out for electrons, but the final
results fully apply also to holes.

The discretized diagonal approximation

Let us denote by ρ=(x, z) the position vector in
the x-z plane. We define a discretized version of

Σ
≶
POP (y1, ρ1; y2, ρ2) on a square lattice of parameter a

as

Σ
≶
POP,i,j(y1, y2) =

∫
χi(ρ1)Σ

≶
POP (y1,ρ1; y2,ρ2)χj(ρ2)

=a2Σ
≶
POP (y1,ai; y2,aj).

(24)

where χi(ρ)=1/a is a normalized averaging function in
the unit cell around the lattice site ai.

Since our system is uniform along the y direction we
first Fourier transform Eq.(23) and apply Eq.(24) with

ai = aj = (xi, zi). The diagonal elements of Σ
≶
POP then

read as:

[Σ
≶
pop,ii(ε, ky)] =

4

V
M2a2

∑
q

G
≶
i,i(ε, ky − qy)

sin2(qxxi)sin
2(qzzi)

q2

(q2 + q2s)2

(25)

We average the squared sine functions in Eq. (25) to
1/2 and transform the discrete summation over qx and
qz into an integral. Care must however be taken that,
due to the confinement, qx and qz are discrete quantities
(see Eq. (23)). We have found that an approximation
procedure is

1

LxLz

∑
qx=

nπ
Lx
>0

qz=
mπ
Ly

>0

q2

(q2 + q2s)2
' 1

π2

qM∫
0

dqx

qM∫
0

dqz
q2 + q20

(q2 + q20 + q2s)2

q20 =

(
π

2Lx

)2

+

(
π

2Lz

)2

(26)

qM is the size of the Brillouin zone. After integration in
polar coordinates, we finally obtain

[Σ
≶
pop,ii(ε, ky)] =

M2a2

4πLy

∑
qy

G
≶
i,i(ε, ky − qy)

×

{
ln
q2M + q2y + q20 + q2s

(q2y + q20 + q2s)
− q2s(

1

q2y + q20 + q2s

− 1

q2M + q2y + q20 + q2s
)

}
.

(27)

Based on this formula, in the next Subsection we will
proceed to the calculation of the scaling factor.
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The scaling factor

We define the scaling factor S by requiring that the
diagonal approximation conserves the total scattering
rates. Its Fourier transform is thus exact in the small
k limit. It has thus all the physical ingredients of the
full second order expansion of the electron Greens func-
tion which considers that the phonons remain in thermal
equilibrium. Here the numerical accuracy is checked by
comparison with a previous 1D full calculation. A more
detailed study of the validity of the local approximation
is out of the scope of the present paper and will be the
subject of a forthcoming work. We quantify the total
scattering rate on a lattice site ai and at energy ε as∑
j

Γ̄ij(ε), where Γ̄ = limky→0[Σ<pop(ε, ky) − Σ>pop(ε, ky)]

is the broadening function integrated over the y direc-
tion. This expression takes into account all the phonon-
assisted intersite hoppings. We therefore set

Si(ε) =

∑
j

Γi,j(ε)

Γi,i(ε)
(28)

and we notice that S is, in principle, site- and energy-
dependent.

To proceed further we need to consider this broadening
function in more detail.

According to Eq. (23),

Σ<POP (ε)− Σ>POP (ε) = M2[G
<

(ε)−G>(ε)]I (29)

In the spirit of the Boltzmann transport equation we
will evaluate S in equilibrium conditions. Therefore, we
assume

G<(ε) =iA(ε)f(ε)

G>(ε) =− iA(ε)[1− f(ε)],
(30)

where f is the Fermi function and A(ε) is the spectral
function. By injecting Eq. (30) into Eq. (29) and by
using Eq. (23), we obtain

G
<

(ε)−G>(ε) = i [Npop + f(ε+ ~ωL)]A(ε+ ~ωL)

+ [Npop + 1− f(ε− ~ωL)]A(ε− ~ωL)

= iA(ε)

(31)

The continuous expression of Γ thus reads

Γ(ε,ρ1,ρ2) = M2A(ε, y1,ρ1, y2,ρ2)I(y1,ρ1, y2,ρ2)

= M2
∑
qy

A(ε, qy,ρ1,ρ2)I(qy,ρ1,ρ2),

(32)

where the second equality follows by a Fourier transfor-
mation with respect to (y1-y2) and by taking the limit
ky → 0, and

A(ε, qy,ρ1,ρ2) = 2π
2

LxLz

∑
k

δ(ε− εqy − εk)

× sin(kzz1)sin(kzz2)eikx(x1−x2).

(33)

In order to simplify the notation, in the following we will
refer to Γ,

Γ(ε,ρ1,ρ2) = M2
∑
qy

A(ε, qy,ρ1,ρ2)I(qy,ρ1,ρ2), (34)

instead than to Γ. In terms of Γij , S reads

Si =
∑
j

[Npop + f(ε+ ~ωL)]Γij(ε+ ~ωL) + [Npop + 1− f(ε− ~ωL)]Γij(ε− ~ωL)

[Npop + f(ε+ ~ωL)]Γii(ε+ ~ωL) + [Npop + 1− f(ε− ~ωL)]Γii(ε− ~ωL)
. (35)

Derivation of Γii .

From Eqs. (33) and (34) with ρ1=ρ2, after averaging
over z, we obtain

Γii(ε) =
M2a2

4πLy

2π

LxLz

∑
qy,kx,kz

δ(ε− εqy − εkx − εkz )

×

{
ln

(
q2M + q2y + q20 + q2s

(q2y + q20 + q2s)

)

− q2s
(

1

q2y + q20 + q2s
− 1

q2M + q2y + q20 + q2s

)}
.

(36)
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We notice that performing the average over z actu-
ally removes the dependence of the diagonal elements
of Γ on the site index i. In Eq. (36) the energies εkz
are quantized with kz = nπ

Lz
> 0 while εqy and εkx

are continuous quantities. We can thus replace the sum
2π

LxLz

∑
qy,kx

by an integral 1
2π

∫
dkxdqy. We use polar co-

ordinates to transform it to 1
2π

∫
ρdρdθ with ρ2 = k2x+q2y

and q2y = ρ2cos2θ. With the further change of variable

ερ = ~2

2m∗ ρ
2, ρdρ = m∗

~2 dερ, we see that the delta function
gives 1 if ε− εkz > 0. Finally, by averaging the functions
cos2θ to 1/2, we obtain:

Γii(ε) =
M2a2m∗

4πLz~2
∑
kz<kε

{
ln

(
q2M + q20z(ε)

q20z(ε)

)
− q2s

(
1

q20z(ε)
− 1

q2M + q20z(ε)

)} (37)

with q20z(ε) = q20 + q2s +
k2ε−k

2
z

2 , q20 defined by Eq.(26), and
k2ε − k2z > 0 .

The strong confinement along z in a DG MOSFET
geometry implies widely separated subbands. Therefore,
only the lowest subband, corresponding to kz = π/Lz,
contributes to the sum in Eq. (37), and we can set (k2ε −
k2z)/2 = m∗/~2(ε − ε1), where ε1 is the energy of the
bottom of the lowest subband.

It is interesting to cast this result under a more usual
form, in terms of parameter α which mesures the strength
of the Fröhlich interaction

α =
e2

~

(
m∗

2~ωL

)1/2(
1

ε∞
− 1

ε0

)
(38)

From Eq.(18) we can write:

M2

π

m∗

~2kL
= 2α~ωL with kL =

(
2m∗

~2
~ωL

)1/2

.

(39)
By using Eq.(39) and by setting kz = k1 = π/Lz, we

obtain

Γii(ε) =
α~ωL

2π
(k1kLa

2)

{
ln

(
q2M + q20z
q20z

)
− q2s

(
1

q20z
− 1

q2M + q20z

)} (40)

with q20z(ε) = q20 + q2s +
k2ε−k

2
1

2 .

Derivation of
∑
j

Γij(ε) .

Here it is useful to map the sum over j into an integral:∑
j

Γij = a2
∑
j

Γ(ai,aj) =

∫
Γ(ai, r)dr. (41)

From Eqs. (32), (33) and (41) we obtain

∑
j

Γij = M2 2

Lz

+∞∫
−∞

dkx
∑
kz

∫
dxdz

∑
kz,qy

δ(ε− εqy − εk)

× 4

V
sin(kzzi)sin(kzz)e

ikx(xi−x)

×
∑
qxqz

sin(qzzi)sin(qzz)sin(qxxi)sin(qxx)
q2

(q2 + q2s)2

(42)

In this expression, the integrals over z and x lead to δkz,qz
and δkx,−qx − δkx,qx , respectively. We obtain:∑
j

Γij = M2 4π

V

∑
q

δ(ε−εq)sin2(qzzi)sin
2(qxxi)

q2

(q2 + q2s)2
,

(43)

where qx = nxπ
Lx

> 0, qz = nzπ
Lz

> 0, qy =
2πny
Ly

≶ 0.

After averaging the squared sine functions in Eq. (43)
to 1/2 and transforming the sum over qx and qy into an
integral, by following steps analogous to the derivation
of Eq. (37), we arrive at∑

j

Γij =
M2

π

m∗

~2
π

Lz

∑
kz

k2ε
k2ε + q2s

. (44)

As for Γii, by averaging over x and z, we have obtained
an expression independent of the lattice site index i. In
terms of α, k1 and kL defined before, and by restricting
the sum over kz to the first subband, we finally obtain:∑

j

Γij = 2α~ωL
k1kLk

2
ε

(k2ε + q2s)2
. (45)

Numerical value of the scaling factor in the case of a
quantum well

The numerical evaluation of the scaling factor in Eq.
(35) can be simplified by taking into account that the
transport occurs only through the lowest subband. We
first consider two different limits:

1. High charge-densities: the transport occurs at en-
ergies close to the Fermi level ε

F
, which lies within

the lowest confined subband: ε
F
> ε

1
. As ε

1
�

~ωL ' 30 meV, we can write

S =
∑
j

Γij(εF )

Γii(εF )
(46)

By using Eqs. (40) and (45), and taking into ac-
count that qM � q0z, we find

S =
2π

(k
F
a)2

1(
1 +

q2s
k2
F

)2 [
ln
(
qM
q0z

)
− 1

2
q2s
q2
0z

] , (47)

where k
F

=
√

(2m∗ε
F

)/~ is the Fermi wave vector.
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TABLE II. Numerical values of S as a function of Lz.

Lz 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4
S 81.7 95.9 111.1 127.3 144.5 162.6 181.7 201.8

2. Low charge densities: ε
F

is below the bottom of
the lowest confined subband, and the transport en-
ergies are within few kBT from ε1 . Therefore, also
in this case we can use Eq. (47), provided k

F
is

replaced with k
1

=
√

(2m∗ε
1
)/~ = π/Lz.

For both high and low charge densities, it can be shown
that q0z ' k1 and qs � k1 , which allows Eq. (47) to be
further simplified. In the case of low charge density we
find

S =
2π

(k
1
a)2

1

ln
(

2q
M

k1

) . (48)

In the considered systems, where the confinement en-
ergy contribution dominates over those associated to the
unconfined directions, k

F
' k1 , and Eq. (48) is also valid

in the high charge density case. Moreover, it is easy to
argue that this result also applies to charge density val-
ues intermediate between the considered limits. Eq. (48)
predicts that S is essentially independent of the effec-
tive mass, and dominated by k

1
, or, equivalently, by Lz.

To exemplify, Table II reports the numerical values of S
corresponding to several different values of Lz.

Based on interaction self-energies (Eqs.(3-5) (27) and
(48)), physical quantities like carrier density and elec-
tronic current can be calculated [23]. NEGF equations
are then self-consistently with Poisson equation to de-
termine the actual electrostatic potential in the active
region.

The scaling factor for the 1D case

It is obviously of strong interest to test our method
against the results of numerical computations able to take
into account the full electron-PO phonon scattering self-
energy.

In Ref. 39, full self-energy computations were per-
formed in the case of GaAs-AlAs resonant tunneling
diodes and compared to a 1D diagonal approximation
along the direction of the current. In this study, it was
unambiguously shown that the full self-energy results
could be recovered within a diagonal approach by us-
ing a scaling factor S = 12. By following an analogous
approach to that previously described in the case of 2D
confinement, we find that the equivalent of Eq.(48) for a
system confined along a single direction is

S =
4

πa
√
k2F + k2L

, (49)

InSb GaSbInAs
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FIG. 2. Impact of uniaxial compressive and tensile strain,
corresponding to a deformation |ε|=3%, on the valence band
structure of a 2.4 nm-thick InAs film. Both the strain and
the band structure are along the direction < 100 > (top),
and < 110 > (bottom).

with kL defined by equation (39). In the case of GaAs at
low temperature, for small electron concentration (kF �
kL), with ~ωL = 33 meV and a discretization parameter
of a = 4Å, this gives S = 12.7, in excellent agreement
with the results of Ref.39.

SIMULATIONS OF DG P-TYPE TRANSISTORS

Based on the model developed in Section , we now
investigate the performance of III-V DG p-MOSFETs
through self-consistent NEGF simulations, which couple
the kinetic equations introduced in Section with the two-
dimensional Poisson equation in the device cross-section.

The thickness of the III-V film is assumed to be
TSC=2.4 nm and the source and drain extensions (see
Fig. 1) are p-doped with a concentration of 8×1019

cm−3. We consider as channel materials InAs, InSb
and GaSb, as they provide the highest hole bulk mo-
bilities. Performances are investigated as a function
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FIG. 3. Impact of strain |ε|=3% on the ballistic IOFF vs ION

characteristics of a < 110 >-oriented InAs DG MOSFET with
LG=15 nm.
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FIG. 4. Ballistic IOFF vs ION characteristics of InAs, InSb,
GaSb and Ge DG MOSFETs with different orientations, un-
der compressive strain (|ε|=3%). In all the cases LG=15 nm.

of two different crystallographic orientations, < 100 >
and < 110 >, and strain constraints (uniaxial tensile
and compressive strain), and benchmarked against anal-
ogous Si and Ge devices. All the simulations were car-
ried out with a source to drain voltage VDS = −0.6 V.
Acoustic- and optical phonon-electron interactions were
described through the self-energies defined in Eqs.(3-5),
by using the deformation potential values in Ref. 53.
The electron-PO phonon scattering has been included
through the diagonal self-energy (27), rescaled by a fac-
tor S=111.1 (see Table II).

Figure 2 shows how a uniaxial compressive and ten-
sile strain along either the < 100 > or < 110 > direc-
tion, modifies the valence band structure of a 2.4 nm
thick InAs film. The main impact on the transport is
expected to derive from the modifications undergone by
first subband, which is widely separated from the others
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FIG. 5. IOFF vs ION characteristics of < 110 >-oriented
InAs, InSb and Ge DG MOSFETs under compressive strain
(|ε|=3%), and in the presence of electron-phonon scattering.
In all the cases LG=15 nm.

TABLE III. Effective mass values (×m0) extracted from the
first valence subband.

InAs InSb GaSb
< 110 > direction
Unstrained 0.041 0.067 0.061
Comp. 0.032 0.0469 0.044
Tens. 0.0548 0.184 0.107
< 100 > direction
Unstrained 0.412 0.059 0.061
Comp. 0.030 0.042 0.047
Tens. 0.059 0.140 0.094

due to the strong confinement, and therefore dominates
the transport. Both in the < 100 > and < 110 > di-
rections, a compressive strain induces a reduction of the
effective mass value at kx=0, while a tensile strain leads
to an increase of it. We found the same behavior in the
case of InSb and GaSb. The values of the effective mass
extracted for the three materials as function of the crys-
tallographic orientation and strain are reported in Table
III.

In order to assess the impact of strain on the ION/IOFF

ratio, we computed, for each strain constraint, transport
direction and material, the OFF-state current IOFF as
a function of the ON-state current ION. To isolate the
effect of the strain from those due to the modulation
of the electron-phonon interaction, a ballistic transport
regime was assumed.

The case of the InAs MOSFET in the < 110 > orien-
tation with LG=15 nm is shown in Figure 3. The shift of
the curves reflects the value of the first subband effective
mass: devices with a lower effective mass tend to have
better ION/IOFF ratios, and therefore IOFF-ION charac-
teristics shifted toward higher ION values. This trend
remains unchanged for all the considered materials and
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transport directions (not shown).

According to these results, in the following we restrict
the focus to compressively strained devices. Fig.4 illus-
trates the IOFF-ION characteristics of the InAs, InSb and
GeSb MOSFETs. The results for a < 110 >-oriented,
compressively strained MOSFET with the channel in Ge,
which has been shown to represent a better option than Si
for DG devices at LG=15 nm [41], are also included. Our
results indicate that Ge-based devices can outperform
the others with respect to low operating power (LOP)
requirements. Among the considered III-V devices, the
< 100 >-oriented InAs and InSb MOSFETs appear to
provide the best performance for LOP and low standby
power (LSTP) applications, respectively.

In Figure 5, we plot the IOFF-ION characteristics in the
presence of electron-phonon scattering for the InAs, InSb
and Ge MOSFETs. The corresponding ballistic curves
are also plotted for comparison. As expected, for all the
materials, the impact of the electron-phonon scattering is
stronger for high ION values. However, in the case of Ge,
the effect is significantly weaker. More precisely, for a
IOFF current of 10−4 A/m, the electron-phonon interac-
tion induces a reduction of the ON-current of about 65%
and 58% in InAs and InSb, respectively, while this value
amounts to 24% in Ge. The relative importance of the
electron-PO phonon scattering in determining this differ-
ence can be quantified by evaluating the ION reduction
in the III-V devices due only to acoustic and non-polar
optical phonons. In these conditions, for the InAs devices
we found a ION reduction of around 25%. Similar values
are expected for the InSb device. Thus, our results indi-
cate that electron-PO phonon interactions can strongly
disadvantage III-V MOSFETs with respect to analogous
non-polar material devices. In Fig. 5, this directly trans-
lates in a widening of the performance gap between the
III-V and Ge devices with respect to ballistic transport
conditions. It turns out that the Ge MOSFET can largely
outperform the III-V counterparts for LOP applications.
InAs and InSb devices are competitive only for LSTP
applications, as the impact of the electron-phonon scat-
tering reduces due to the smaller current.

A substantially different scenario arises when shorter
gate lengths are considered. The results we obtained by
repeating all the previous simulations for LG=7 nm indi-
cate that the < 110 >-oriented GaSb MOSFET exhibits
in this case the best ION/IOFF performance (not shown).
Fig. 6 illustrates the ION-IOFF characteristics of this de-
vice with and without strain, in the ballistic regime and
in the presence of electron-phonon scattering. These re-
sults are compared with those obtained for a < 100 >-
oriented, tensile-strained Si MOSFET, which, at this gate
length scale, exhibits better performance with respect to
the corresponding Ge-based device [41]. In the ballis-
tic regime, we see that the Si device clearly outperforms
all the III-V devices, for both LOP and LSTP applica-
tions. Indeed, the larger effective mass (m*=0.3×m0)
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FIG. 6. IOFF vs ION characteristics for < 110 >-oriented,
compressively strained, tensile strained and unstrained GaSb
MOSFETs, compared with the corresponding < 100 >-
oriented, tensile strained Si device. LG=7 nm.

becomes a significant advantage at this channel length,
since it mitigates the OFF-current degradation due to the
source-to-drain tunneling. [40, 41] For the same reason,
the < 110 >-oriented, tensile-strained GaSb MOSFET,
in which the first subband effective mass (m*=0.107×m0)
is larger than for the other GaSb devices, exhibits the
second best performance.

As in the longer channel case, the inclusion of electron-
phonon scattering leads to a larger current degradation in
III-V devices. This results in a significant improvement of
the Si MOSFET performance with respect to the GaSb
device, which exhibits, at the same ION, an ION/IOFF

ratio smaller of at least one order of magnitude.

CONCLUSION

In this work, we proposed a physically sound and nu-
merically efficient NEGF quantum transport methodol-
ogy to treat non-local polar optical phonon scattering.
The methodology is based on a diagonal (i.e. local) self-
energy approximation, in which long range effects are in-
corporated through the introduction of a scaling factor.
We derived a simple analytical expression of this factor
for a 2D phonon quantum well. An analytical expression
for a 1D well was also provided and checked against pre-
vious numerical studies. Based on a 8-band k · p Hamil-
tonian we used this approach to assess the performance
of p-type III-V DG transistors for different channel ma-
terials, crystallographic orientations and applied strains.
Our simulation results indicate that III-V transistors are
hardly expected to outperform their Ge and Si counter-
parts and that the strong impact of polar optical phonon
scattering in such materials is one the main reasons. Ac-
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cordingly, our results also highlights the need, even in the
case of transistors with very scaled gate lengths, to accu-
rately model the electron-PO phonon interaction in order
to obtain reliable predictions of the device operation.
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