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INTRODUCTION

During more than 40 years the impressive growth of semiconductor industry was based on the scaling of the transistor, which represents the elementary brick of integrated circuits. However, since the 90 nm node, the device scaling in itself is no more capable to maintain this continuous technological development. Additional technological boosters (e.g, high-κ dielectric and mechanical strain) were first incorporated to improve the electrical characteristics of transistors [START_REF] Kuhn | Considerations for ultimate CMOS[END_REF]. Multiple gate Metal Oxide Semiconductor Field-Effect-Transistors (MOSFETs) have also been developped to counteract the short channel effects when reaching the nanometer scale [START_REF] Colinge | Multiple-gate SOI MOSFETs[END_REF][START_REF] Autran | A simulation analysis of FIBL in decananometer double-gate MOSFETs with high-κ gate dielectrics[END_REF].

Another important option is to consider alternative channel materials with better electrical properties than Si [START_REF] Kim | Effects of surface orientation on the performance of idealized III -V thin-body ballistic n -MOSFETs[END_REF][START_REF] Xu | GaSb inversion-mode PMOSFETs with atomic-layer-deposited Al2O3 as gate dielectric[END_REF][START_REF] Fang | Ultrathinbody high-mobility InAsSb-on-insulator field-effect transistors[END_REF]. Due to their very high electron mobility, III-V materials have been recognized to be good channel material candidates [START_REF] Alamo | Nanometre-scale electronics with III -V compound semiconductor[END_REF][START_REF] Tomioka | A III -V nanowire channel on silicon for high-performance vertical transistors[END_REF]. While several technological [START_REF] Kim | 30 nm InAs pseudomorphic HEMTs on an InP substrate with a current-gain cutoff frequency of 628 GHz[END_REF] and physical [START_REF] Fischetti | Simulation of electron transport in high-mobility MOSFETs: Density of states bottleneck and source starvation[END_REF] challenges must be overcome to incorporate III-V devices in future CMOSFETs, they are considered as a promising solution to meet the power constraints arising in several applications. The recent International Roadmap for Devices and Systems (IRDS) pointed out the achievement of high performances p-type strained III-V MOSFETs as key near-term challenges to address for the device scaling [START_REF]IRDS home page[END_REF].

A drawback of using III-V materials for a monolithic integration is the large imbalance between electron and hole mobilities (e.g., in bulk InAs, the electron mobility is µ e = 40 × 10 3 cm 2 • V -1 • s -1 while the hole mobility is µ h = 500 cm 2 • V -1 • s -1 ) [START_REF] Heyns | Ultimate scaling of CMOS logic devices with Ge and III-V materials[END_REF]. Since CMOS circuits require both n-and p-channels with reasonably matched performances, the future III-V CMOS technology is required to narrow the gap between n-and p-type MOS-FETs.

The use of mechanical strain represents a relevant technique to reach this aim [START_REF] Suthram | Strain additivity in III-V channels for CMOSFETs beyond 22nm technology node[END_REF][START_REF] Kim | Electronic band structure calculations for biaxially strained Si, Ge, and III-V semiconductors[END_REF][START_REF] Park | Performance comparisons of III-V and strained-Si in planar FETs and nonplanar FinFETs at ultrashort gate length (12 nm)[END_REF][START_REF] Bedell | Strain scaling for CMOS[END_REF]. Therefore, comprehensive investigations on III-V pMOSFETs are urgently needed in order to better predict and optimize their performances with respect to the choice of the material, mechanical strain and crystallographic orientation.

Quantum transport modeling can play a central role to determine the best device configuration. Most theoretical studies have so far explored the n-type III-V MOS-FETs [START_REF] Yokoyama | III-V-semiconductor-on-insulator nchannel metal-insulator-semiconductor field-effect transistors with buried Al2O3 layers and sulfur passivation: Reduction in carrier scattering at the bottom interface[END_REF][START_REF] Pethe | 2006 16th Biennial University/Government/Industry Microelectronics Symposium[END_REF][START_REF] Doornbos | Benchmarking of III-V n-MOSFET maturity and feasibility for future CMOS[END_REF][START_REF] Kim | CMOS performance benchmarking of Si, InAs, GaAs, and Ge nanowire n-and pMOSFETs with Lg= 13 nm based on atomistic quantum transport simulation including strain effects[END_REF] while few investigations focused on their p-type counterparts. Indeed, modeling hole transport in semiconductor nanostructures is typically a more complex task, as it requires to take into account the coupling between several bands [START_REF] Shin | Full-quantum simulation of hole transport and band-to-band tunneling in nanowires using the k.p method[END_REF][START_REF] Cavassilas | Multiband quantum transport simulations of ultimate p-type double-gate transistors: Influence of the channel orientation[END_REF]. The situation is even more complicated when strain and phonon scattering are included [START_REF] Cavassilas | Multiband quantum transport simulations of ultimate p-type double-gate transistors: Effects of hole-phonon scattering[END_REF][START_REF] Nguyen | Quantum modeling of the carrier mobility in FDSOI devices[END_REF][START_REF] Lee | Quantum treatment of phonon scattering for modeling of three-dimensional atomistic transport[END_REF].

Non-Equilibrium Green's Function (NEGF) formalism is one of the most established approach to treat quantum transport in nano-devices [START_REF] Datta | Electronic Transport in Mesoscopic Systems[END_REF][START_REF] Ferry | Transport in Nanostructures[END_REF][START_REF] Haug | Quantum Kinetics in Transport and Optics of Semiconductors[END_REF]. It is able to describe inelastic scattering, like electron-phonon interactions, through the concept of self-energy [START_REF] Mahan | Many-Particle Physics[END_REF]. For numerical convenience the electron-phonon scattering is usually treated within a local approximation, since most of the NEGF codes are based on a recursive algorithm [START_REF] Luisier | Atomistic full-band simulations of silicon nanowire transistors: Effects of electronphonon scattering[END_REF][START_REF] Lopez Sancho | Highly convergent schemes for the calculation of bulk and surface Green functions[END_REF], which requires a diagonal (i.e. local) description of the self-energy. This assumption was demonstrated to be physically sound for interactions with acoustic and nonpolar optical phonons [START_REF] Svizhenko | Role of scattering in nanotransistors[END_REF][START_REF] Jin | A three-dimensional simulation of quantum transport in silicon nanowire tran-sistor in the presence of electron-phonon interactions[END_REF][START_REF] Bescond | Size and temperature dependence of the electronphonon scattering by donors in nanowire transistors[END_REF][START_REF] Cavassilas | On the local approximation of the electronphoton interaction selfenergy[END_REF].

However, III-V compound semiconductors are subject to strong polar optical (PO) interactions of the Fröhlich type [START_REF] Fröhlich | Theory of electrical breakdown in fonic crystals[END_REF][START_REF] Appel | Polarons[END_REF][START_REF] Ehrenreich | Electron scattering in InSb[END_REF], which intrinsically have a non-local character. Indeed, this type of electron-phonon interaction decays very slowly in space like a Coulomb potential [START_REF] Fröhlich | Theory of electrical breakdown in fonic crystals[END_REF]. This non-locality increases the numerical complexity of the quantum transport computations in a prohibitive manner. Previous NEGF studies have proposed to model PO phonon scattering through diagonal self-energies multiplied by a scaling factor [START_REF] Klimeck | Numerical approximations for polar optical phonon scattering in resonant tunneling diodes[END_REF], but without providing general prescriptions.

In this paper, by directly starting from the Fröhlich theory of bulk polar optical phonons, we derive an analytical expression of the scaling factor in confined systems, which can be used to mimic the effects of polar optical phonons within a local approximation. We then use our model to calibrate the electron-PO phonon coupling strength in self-consistent NEGF simulations, in order to assess the performances of p-type double-gate (DG) MOSFETs as a function of the channel material, of the crystallographic orientation and of the strain. For all the considered devices, TSC =2.4 nm, TOX =1 nm, and the source and drain doping is 8×10 19 cm -3 . Two gate lengths, LG=15 nm and 7 nm, are considered. VDS=-0.6 V.

We use a two-dimensional (2D) NEGF code selfconsistently coupled with the Poisson equation [START_REF] Dib | Theoretical comparison of Si, Ge, and GaAs ultrathin p-type double-gate metal oxide semiconductor transistors[END_REF][START_REF] Moussavou | Influence of uniaxial strain in Si and Ge p-type doublegate metal-oxide-semiconductor field effect transistors[END_REF]. The valence bandstructure of III-V direct gap materials is described by a 8-band k.p Hamiltonian [START_REF] Nainani | Enhancing hole mobility in III-V semiconductors[END_REF].

The paper is organized as follows: Section presents the NEGF framework. In Section , an expression of the PO phonon self-energy is derived, first in the bulk case and then for a thin film DG MOSFET. In Section , the diagonal approximation is introduced, and an analytic expression of the scaling factor is derived. In Section , we present and discuss the results of our numerical simulations of III-V DG MOSFETs. Section IV summarizes the key findings.

METHOD

Quantum kinetic equation within the eight-band k • p framework

We consider a 8-band k • p Hamiltonian including the spin-orbit coupling to model the valence bandstructure of the 2D DG pMOSFET shown in Fig. 1. The DG pMOS-FET geometry is sketched in Fig. 1. We model the valence band structure through a 8-band k • p Hamiltonian, which is able to take into account the coupling between the light, heavy and split-off hole bands, and the coupling between them and the conduction band [START_REF] Nainani | Enhancing hole mobility in III-V semiconductors[END_REF][START_REF] Bahder | Eight-band k.p model of strained zincblende crystals[END_REF]. The device is assumed translationally invariant in the transverse y direction. Accordingly, the Hamiltonian can be parametrized in terms of the wave vector component k y . In order to obtain accurate results, in numerical computations, a large enough number of suitably spaced values of k y has to be considered. We chose k y of the form 2πn/L y , with n an integer and L y =10 nm.

Mechanical strain is modeled through the Bir-Pikus Hamiltonian, and by assuming bulk values of deformation potentials [START_REF] Bir | Symmetry and Strain Induced Effects in Semiconductors[END_REF]. The bandstructure material parameters are extracted from reference 45 and reported in Table I. To solve the transport problem in the presence of inelastic interactions, the Keldysh retarded and lesser/greater-than Green's functions are calculated for each transverse mode k y by solving the following equations (in matrix notation):

[G R (k y , )] = [I] -[H 2D (k y )] -[U ] -[Σ R L (k y , )] -[Σ R scat (k y , )] -1 (1) 
[G ≶ (k y , )] =[G R (k y , )] [Σ ≶ L (k y , )] +[Σ ≶ scat (k y , )] [G R † (k y , )], (2) 
where is the hole energy, I is the identity matrix, [H 2D (k y )] the 2D Hamiltonian for a given transverse mode and [U ] the 2D potential (in terms of hole energy). To ensure accurate calculations, 10 discrete values of k y are considered in the simulations. In Eqs.( 1) and ( 2), [Σ R,≶ L ] are the retarded and lesser/greater-than selfenergies of the leads, respectively. Moreover, [Σ

R,≶ scatt ] = [Σ R,≶ ac ] + [Σ R,≶ op ] + [Σ R,≶ pop ], where [Σ R,≶ ac ], [Σ R,≶ op ], [Σ R,≶
pop ] are the acoustic, optical and PO phonon self-energies, respectively. The self-energies of the leads are calculated exactly [START_REF] Svizhenko | Effect of scattering and contacts on current and electrostatics in carbon nanotubes[END_REF], while the scattering ones are treated within a perturbative approach, through the self-consistent Born approximation (SCBA) [START_REF] Lee | Efficient quantum modeling of inelastic interactions in nanodevices[END_REF]. Within the SCBA and by considering the elastic approximation, the hole-acoustic phonon self-energies are expressed as

[Σ R,≶ ac (k y , )] =iIm{ ky ξ∈{x,y,z} [M ac,ξ ] [G R,≶ (k y , )][M † ac,ξ ]}, (3) 
where [M ac,ξ ] describes the hole-acoustic-phonon coupling. The optical phonon lesser/greater-than and retarded self-energies read [START_REF] Aeberhard | Microscopic nonequilibrium theory of quantum well solar cells[END_REF] [Σ ≶ op (k y , )] = iIm{ ξ∈{x,y,z}

[M op,ξ ] × N op [G ≶ (k y , -ω op )] +(N op + 1)[G ≶ (k y , + ω op )] × [M † op,ξ ]} (4) [Σ R op (k y , )] = iIm{ ξ∈{x,y,z} [M op,ξ ](N op [G R (k y , -ω op )] + (N op + 1)[G R (k y , + ω op )] + 1 2 ([G > (k y , -ω op )] -[G > (k y , + ω op )]))[M † op,ξ ]}, (5) 
where ω op is the optical-phonon energy, N op = 1/(exp( ω op /k B T ) -1) is the corresponding phonon distribution, [M op,ξ ] represents the hole-optical-phonon coupling and a dispersionless approximation has been considered. We solve Eqs. ( 1) and ( 2) through the recursive algorithm described in Refs. 49 and 50. This approach allows one to efficiently compute the diagonal and first off-diagonal blocks of the Green's functions, from which the charge and current densities are obtained. This considerably lightens the computational burden with respect to a direct numerical implementation of Eq. ( 1), but requires to resort a local approximation for the scattering self-energies. If this approximation is applied to PO phonons, the electron-phonon coupling needs to be renormalized, in order to avoid an underestimation of the scattering rates. In the next Section, we will define a diagonal approximation that locally conserves the electron-PO phonon scattering rates, and derive easy-to-handle analytical expressions for the corresponding scaling factor.

Polar optical phonon self-energy

We start from the second order expression of the lesser/greater self-energy of the electron-phonon interaction [START_REF] Haug | Quantum Kinetics in Transport and Optics of Semiconductors[END_REF]:

[Σ ≶ ( )] = q 2µω ∂H ep ∂u q × (N pop + 1)G ≶ ( ± ω) + N pop G ≶ ( ∓ ω) × ∂H † ep ∂u q (6) 
In Eq. ( 6), H ep is the electron-phonon interaction Hamiltonian, q denotes the phonon wave vector, and u q and µ are the amplitude of the normal mode relative displacement with respect to the equilibrium position and the reduced mass of the atoms in the unit cell, respectively.

We evaluate Eq. ( 6) by calculating H ep = eφ, where e represents the elementary charge and φ the energy due to polar optical phonons. We first consider the bulk situation (Subsection ), and then we derive the case of a quantum well (Section ).

Bulk formulation

In this Subsection, we outline the calculation of the bulk electron-PO phonon interaction, by following the Fröhlich approach [START_REF] Fröhlich | Theory of electrical breakdown in fonic crystals[END_REF]. We consider ionic crystals with two atoms per unit cell. In the long wavelength limit, u q (R) expresses the relative displacement of the two atoms in the unit cell at R. The associated ionic polarization P i (R), defined as the average dipole moment per unit volume, can be written to the first order in the displacement as

P i (R) = e * Ω u q (R), (7) 
where e * is the effective charge and Ω the volume of the unit cell. We assume that only longitudinal PO phonons couple with electrons. In this hypothesis,

u q (R) = u q q q e iq•R √ V (8)
where, in the long wavelength limit q → 0, the displacement can be considered as a continuous function of R normalized over the volume V of the system. As div(εE) = div(E + 4πP i ) = iq(E q + 4πP iq ) = 0, u q induces an electrostatic potential φ q corresponding to an electric field E q = -4πP iq = -iqφ q (in the electrostatic esu-cgs unit system):

φ q = - i q 4πe * Ω u q . ( 9 
)
One still has to determine e * . For this, we first notice that a finite static u q can be induced by an external field E b . For longitudinal displacements this gives

µω 2 L u q = e * E b ( 10 
)
where µ is the reduced mass and ω L is the longitudinal phonon frequency. According to Eq.( 7) this is equivalent to

P i = (e * ) 2 µω 2 L Ω E b . (11) 
On the other hand,

E + 4πP = E b and E = E b /ε. Thus P = 1 4π 1 - 1 ε E b . ( 12 
)
where P = P e + P i , and P e is the electronic polarizability. Eq. ( 12) is in general valid for fields with a harmonic time dependence e iωt . In static conditions (ω=0, ε = ε(0)), both P e and P i contribute to P, while, when ω → ∞ (ε = ε(∞)), the contribution of P i is negligible. Therefore, we can calculate P i as

P i = - 1 4π 1 ε(0) - 1 ε(∞) E b . (13) 
The comparison between Eqs.( 11) and [START_REF] Suthram | Strain additivity in III-V channels for CMOSFETs beyond 22nm technology node[END_REF] gives

(e * ) 2 = µω 2 L 1 ε(∞) - 1 ε(0) Ω 4π . (14) 
Eqs. ( 9) and ( 14) provide an expression of φ q in terms of u q , which, however, does not take into account the screening by the carriers. The latter can be easily included via linearized theories such as the Debye or Thomas-Fermi approximations.

In both cases, we have to replace 1 q in equation ( 9) by q q 2 +q 2 s where q 2 s is given either by Debye formula

q 2 D = 4πe 2 ε(∞)k B T n 0 , (15) 
valid at low carrier concentration n 0 , or by the Thomas-Fermi expression

q 2 T F = q 2 D 3 2 k B T F (16) 
valid at high carrier concentrations, i.e when the Fermi level F is located inside the band and its distance from the band edge is > k B T , where k B is the Boltzmann constant and T is the absolute temperature. The electronphonon coupling is thus given by -eφ q e iq.R √ V which, with equation ( 9) modified for screening gives

H ep = i eq q 2 + q 2 s 4πe * Ω u q e iq•R √ V . (17) 
In fact, there are two sources of electron screening, one by the valence electrons, the other one by the excess carriers. For the first one the plasmon frequency is around 15 eV, much higher than the typical optical phonon energies of order 50 meV. One can thus safely use static dielectric screening in this case which amounts to divide the phonon induced potential by the dielectric constant. The situation is not the same for the excess carriers since the squared plasma frequency scales as n/εm * where n is the excess electron concentration, ε the dielectric constant and m * the effective mass. For the weak concentrations considered here this can bring the corresponding plasma frequency in the same range as the phonon frequency. Qualitatively this would reduce q s (which represents the strength of the screening) with respect to its static value.

In practice, we consider cases for which the static q s is negligible so that this effect can be discarded. By combining Eqs. ( 6) and ( 14), we obtain

[Σ ≶ P OP,bulk ( , r 1 , r 2 )] = M 2 V {(N pop + 1)G ≶ ( ± ω L , r 1 , r 2 ) + N pop G ≶ ( ∓ ω L , r 1 , r 2 )} × q e iq(r1-r2) q 2 (q 2 + q 2 s ) 2 , ( 18 
)
where Σ ≶ is expressed in real space with coordinates r 1 and r 2 and

M 2 = 2π ω L e 2 1 ε(∞) -1 ε(0) .

Extension to the case of a quantum well

We consider first the case of a system in which phonons are confined only in the z direction, between z = 0 and z = L z . In this work we have followed the general approach of Mori and Ando on electron-optical phonon interaction in heterostructures [START_REF] Mori | Electron-optical-phonon interaction in single and double heterostructures[END_REF]. For a double heterostructure they show that one can separate the eigenmodes into confided LO modes with vanishing polarization field at the interface and interface modes decaying exponentially away from the interface. We concentrate here on the first category. A second point is related to the confinement effect on the phonon modes. This was shown to be important for acoustic modes due to their important dispersion curve [START_REF] Ramayya | Electron transport in silicon nanowires: The role of acoustic phonon confinement and surface roughness scattering[END_REF]. However optical phonons exhibit almost no dispersion so that it is equivalent to treat them as Einstein oscillators, the confinement effect being negligible. As discussed previously we consider longitudinal PO displacements confined to the region extending between z = 0 and z = L z which are solutions of ε(ω) = 0. We express the potential φ in terms of a complete set of bulk basis functions satisfying the correct boundary conditions at z = 0 and L z , i.e no polarization at the two interfaces:

φ(R) = q φ q 2 L z A sin(q z z)exp(iq • r ) ( 19 
)
where R = (r , z), q = (q , q z ), and A is the transverse cross section and q z = nzπ Lz . As before, longitudinal modes correspond to E = -4πP i = -∇φ. As P i is still given by ( 7) each phonon mode u q (R) is related to φ q by 4πe * Ω u q (R) = φ q 2 L z A q n cos(q z z) + iq sin(q z z) e iq •r .

(

) 20 
From Eq.( 20) it is straightforward to see that the eigenmodes u q (R) are orthogonal (i.e. u q (R) • u q (R) = δ qq ) and

u 2 q = 1 V |u q (R)| 2 d 3 R = q Ω 4πe * φ q 2 (21)
with q = q 2 z + q 2 . This means that

∂φ(R) ∂u q = 4πe * Ωq 2 V sin(q z z)exp(iq • r ) (22) 
which leads exactly to the same expression for ∂Hep ∂uq as Eq.( 17) for the bulk, except for the replacement of

1 V e iqzz by 2 
V sin(q z z). This result can be extended to the case of a system where phonons are confined in two directions x and z, by further replacing e iqxx with √ 2sin(q x x). In the following, we will mainly focus on this case, as it models the phonon confinement between the source and drain contacts and the top and bottom gate oxide in the DG MOSFET geometry presented in Section . Below, we report the corresponding expression of the lesser/greater than Green's function

[Σ ≶ P OP ( , r 1 , r 2 )] = M 2 G ≶ ( , r 1 , r 2 )I(r 1 , r 2 )
with :

G ≶ ( , r 1 , r 2 ) = (N pop + 1)G ≶ ( ± ω L , r 1 , r 2 ) + N pop G ≶ ( ∓ ω L , r 1 , r 2 ),
and :

I(r 1 r 2 ) = 4
V q sin(q x x 1 )sin(q x x 2 )sin(q z z 1 )sin(q z z 2 )

× q 2 (q 2 + q 2 s ) 2 e iqy(y1-y2) , q x = n x π L x , q z = n z π L z , q y = 2n y π L y . (23) 
Scaling factor for 2D double-gate geometry

In this Section, we will introduce the diagonal approximation for the PO phonon self-energies mapped on the discretized simulation domain of DG MOSFETs (Subsection 1 ). Then, we will derive an analytical expression for the scaling factor and we will provide simplified formulas allowing for a rapid numerical computation (Subsection and , respectively). We also report an analytical expression of the scaling factor for the case of a one-dimensional confinement and benchmark it value against previous numerical studies (Subsection ). For the sake of simplicity, the derivation is carried out for electrons, but the final results fully apply also to holes.

The discretized diagonal approximation

Let us denote by ρ=(x, z) the position vector in the x-z plane. We define a discretized version of Σ ≶ P OP (y 1 , ρ 1 ; y 2 , ρ 2 ) on a square lattice of parameter a as

Σ ≶ P OP,i,j (y 1 , y 2 ) = χ i (ρ 1 )Σ ≶ P OP (y 1 , ρ 1 ; y 2 , ρ 2 )χ j (ρ 2 ) =a 2 Σ ≶ P OP (y 1 , a i ; y 2 , a j ). ( 24 
)
where χ i (ρ)=1/a is a normalized averaging function in the unit cell around the lattice site a i . Since our system is uniform along the y direction we first Fourier transform Eq.( 23) and apply Eq.( 24) with a i = a j = (x i , z i ). The diagonal elements of Σ ≶ P OP then read as:

[Σ ≶ pop,ii ( , k y )] = 4 V M 2 a 2 q G ≶ i,i ( , k y -q y ) sin 2 (q x x i )sin 2 (q z z i ) q 2 (q 2 + q 2 s ) 2 (25) 
We average the squared sine functions in Eq. ( 25) to 1/2 and transform the discrete summation over q x and q z into an integral. Care must however be taken that, due to the confinement, q x and q z are discrete quantities (see Eq. ( 23)). We have found that an approximation procedure is

1 L x L z qx= nπ Lx >0 qz= mπ Ly >0 q 2 (q 2 + q 2 s ) 2 1 π 2 q M 0 dq x q M 0 dq z q 2 + q 2 0 (q 2 + q 2 0 + q 2 s ) 2 q 2 0 = π 2L x 2 + π 2L z 2 ( 26 
)
q M is the size of the Brillouin zone. After integration in polar coordinates, we finally obtain

[Σ ≶ pop,ii ( , k y )] = M 2 a 2 4πL y qy G ≶ i,i ( , k y -q y ) × ln q 2 M + q 2 y + q 2 0 + q 2 s (q 2 y + q 2 0 + q 2 s ) -q 2 s ( 1 q 2 y + q 2 0 + q 2 s - 1 q 2 M + q 2 y + q 2 0 + q 2 s ) . (27) 
Based on this formula, in the next Subsection we will proceed to the calculation of the scaling factor.

The scaling factor

We define the scaling factor S by requiring that the diagonal approximation conserves the total scattering rates. Its Fourier transform is thus exact in the small k limit. It has thus all the physical ingredients of the full second order expansion of the electron Greens function which considers that the phonons remain in thermal equilibrium. Here the numerical accuracy is checked by comparison with a previous 1D full calculation. A more detailed study of the validity of the local approximation is out of the scope of the present paper and will be the subject of a forthcoming work. We quantify the total scattering rate on a lattice site a i and at energy as j Γij ( ), where Γ = lim ky→0 [Σ < pop ( , k y ) -Σ > pop ( , k y )] is the broadening function integrated over the y direction. This expression takes into account all the phononassisted intersite hoppings. We therefore set

S i ( ) = j Γ i,j ( ) Γ i,i ( ) (28) 
and we notice that S is, in principle, site-and energydependent.

To proceed further we need to consider this broadening function in more detail.

According to Eq. ( 23),

Σ < P OP ( ) -Σ > P OP ( ) = M 2 [G < ( ) -G > ( )]I (29) 
In the spirit of the Boltzmann transport equation we will evaluate S in equilibrium conditions. Therefore, we assume

G < ( ) =iA( )f ( ) G > ( ) = -iA( )[1 -f ( )], ( 30 
)
where f is the Fermi function and A( ) is the spectral function. By injecting Eq. ( 30) into Eq. ( 29) and by using Eq. ( 23), we obtain

G < ( ) -G > ( ) = i [N pop + f ( + ω L )] A( + ω L ) + [N pop + 1 -f ( -ω L )] A( -ω L ) = iA( ) (31) 
The continuous expression of Γ thus reads

Γ( , ρ 1 , ρ 2 ) = M 2 A( , y 1 , ρ 1 , y 2 , ρ 2 )I(y 1 , ρ 1 , y 2 , ρ 2 ) = M 2 qy A( , q y , ρ 1 , ρ 2 )I(q y , ρ 1 , ρ 2 ), (32) 
where the second equality follows by a Fourier transformation with respect to (y 1 -y 2 ) and by taking the limit k y → 0, and

A( , q y , ρ 1 , ρ 2 ) = 2π 2 L x L z k δ( -qy -k ) × sin(k z z 1 )sin(k z z 2 )e ikx(x1-x2) . (33) 
In order to simplify the notation, in the following we will refer to Γ, Γ( , ρ 1 , ρ 2 ) = M 2 qy A( , q y , ρ 1 , ρ 2 )I(q y , ρ 1 , ρ 2 ), [START_REF] Bescond | Size and temperature dependence of the electronphonon scattering by donors in nanowire transistors[END_REF] instead than to Γ. In terms of Γ ij , S reads

S i = j [N pop + f ( + ω L )]Γ ij ( + ω L ) + [N pop + 1 -f ( -ω L )]Γ ij ( -ω L ) [N pop + f ( + ω L )]Γ ii ( + ω L ) + [N pop + 1 -f ( -ω L )]Γ ii ( -ω L ) . ( 35 
)
Derivation of Γ ii .

From Eqs. ( 33) and ( 34) with ρ 1 =ρ 2 , after averaging over z, we obtain

Γ ii ( ) = M 2 a 2 4πL y 2π L x L z qy,kx,kz δ( -qy -kx -kz ) × ln q 2 M + q 2 y + q 2 0 + q 2 s (q 2 y + q 2 0 + q 2 s ) -q 2 s 1 q 2 y + q 2 0 + q 2 s - 1 q 2 M + q 2 y + q 2 0 + q 2 s . (36) 
We notice that performing the average over z actually removes the dependence of the diagonal elements of Γ on the site index i. In Eq. ( 36) the energies kz are quantized with k z = nπ Lz > 0 while qy and kx are continuous quantities. We can thus replace the sum 2π LxLz qy,kx by an integral 1 2π dk x dq y . We use polar coordinates to transform it to 1 2π ρdρdθ with ρ 2 = k 2

x + q 2 y and q 2 y = ρ 2 cos 2 θ. With the further change of variable ρ = 2 2m * ρ 2 , ρdρ = m * 2 d ρ , we see that the delta function gives 1 ifkz > 0. Finally, by averaging the functions cos 2 θ to 1/2, we obtain:

Γ ii ( ) = M 2 a 2 m * 4πL z 2 kz<k ln q 2 M + q 2 0z ( ) q 2 0z ( ) -q 2 s 1 q 2 0z ( ) - 1 q 2 M + q 2 0z ( ) (37) 
with

q 2 0z ( ) = q 2 0 + q 2 s + k 2 -k 2 z 2
, q 2 0 defined by Eq.( 26), and k 2 -k 2 z > 0 . The strong confinement along z in a DG MOSFET geometry implies widely separated subbands. Therefore, only the lowest subband, corresponding to k z = π/L z , contributes to the sum in Eq. ( 37), and we can set

(k 2 - k 2 z )/2 = m * / 2 ( -1 )
, where 1 is the energy of the bottom of the lowest subband.

It is interesting to cast this result under a more usual form, in terms of parameter α which mesures the strength of the Fröhlich interaction

α = e 2 m * 2 ω L 1/2 1 ε ∞ - 1 ε 0 ( 38 
)
From Eq.( 18) we can write:

M 2 π m * 2 k L = 2α ω L with k L = 2m * 2 ω L 1/2 .
(39) By using Eq.( 39) and by setting

k z = k 1 = π/L z , we obtain Γ ii ( ) = α ω L 2π (k 1 k L a 2 ) ln q 2 M + q 2 0z q 2 0z -q 2 s 1 q 2 0z - 1 q 2 M + q 2 0z (40) with q 2 0z ( ) = q 2 0 + q 2 s + k 2 -k 2 1 2 . Derivation of j Γ ij ( ) .
Here it is useful to map the sum over j into an integral:

j Γ ij = a 2 j Γ(a i , a j ) = Γ(a i , r)dr. ( 41 
)
From Eqs. ( 32), ( 33) and ( 41) we obtain

j Γ ij = M 2 2 L z +∞ -∞ dk x kz dxdz kz,qy δ( -qy -k ) × 4 V sin(k z z i )sin(k z z)e ikx(xi-x)
× qxqz sin(q z z i )sin(q z z)sin(q x x i )sin(q x x) q 2 (q 2 + q 2 s ) 2 [START_REF] Nainani | Enhancing hole mobility in III-V semiconductors[END_REF] In this expression, the integrals over z and x lead to δ kz,qz and δ kx,-qx -δ kx,qx , respectively. We obtain:

j Γ ij = M 2 4π V q δ( -q )sin 2 (q z z i )sin 2 (q x x i ) q 2 (q 2 + q 2 s ) 2 , ( 43 
)
where q x = nxπ Lx > 0, q z = nzπ Lz > 0, q y = 2πny Ly ≶ 0. After averaging the squared sine functions in Eq. ( 43) to 1/2 and transforming the sum over q x and q y into an integral, by following steps analogous to the derivation of Eq. ( 37), we arrive at

j Γ ij = M 2 π m * 2 π L z kz k 2 k 2 + q 2 s . (44) 
As for Γ ii , by averaging over x and z, we have obtained an expression independent of the lattice site index i. In terms of α, k 1 and k L defined before, and by restricting the sum over k z to the first subband, we finally obtain:

j Γ ij = 2α ω L k 1 k L k 2 (k 2 + q 2 s ) 2 . ( 45 
)
Numerical value of the scaling factor in the case of a quantum well

The numerical evaluation of the scaling factor in Eq. ( 35) can be simplified by taking into account that the transport occurs only through the lowest subband. We first consider two different limits:

1. High charge-densities: the transport occurs at energies close to the Fermi level F , which lies within the lowest confined subband: F > 1 . As 1 ω L 30 meV, we can write

S = j Γ ij ( F ) Γ ii ( F ) (46) 
By using Eqs. ( 40) and [START_REF] Vurgaftman | Band parameters for III-V compound semiconductors and their alloys[END_REF], and taking into account that q M q 0z , we find

S = 2π (k F a) 2 1 1 + q 2 s k 2 F 2 ln q M q 0z -1 2 q 2 s q 2 0z , (47) 
where k F = (2m * F )/ is the Fermi wave vector. 2. Low charge densities: F is below the bottom of the lowest confined subband, and the transport energies are within few k B T from 1 . Therefore, also in this case we can use Eq. ( 47), provided k F is replaced with k 1 = (2m * 1 )/ = π/L z .

For both high and low charge densities, it can be shown that q 0 z k 1 and q s k 1 , which allows Eq. ( 47) to be further simplified. In the case of low charge density we find

S = 2π (k 1 a) 2 1 ln 2q M k 1 . ( 48 
)
In the considered systems, where the confinement energy contribution dominates over those associated to the unconfined directions, k F k 1 , and Eq. ( 48) is also valid in the high charge density case. Moreover, it is easy to argue that this result also applies to charge density values intermediate between the considered limits. Eq. ( 48) predicts that S is essentially independent of the effective mass, and dominated by k 1 , or, equivalently, by L z . To exemplify, Table II reports the numerical values of S corresponding to several different values of L z .

Based on interaction self-energies (Eqs.(3-5) ( 27) and ( 48)), physical quantities like carrier density and electronic current can be calculated [START_REF] Cavassilas | Multiband quantum transport simulations of ultimate p-type double-gate transistors: Effects of hole-phonon scattering[END_REF]. NEGF equations are then self-consistently with Poisson equation to determine the actual electrostatic potential in the active region.

The scaling factor for the 1D case It is obviously of strong interest to test our method against the results of numerical computations able to take into account the full electron-PO phonon scattering selfenergy.

In Ref. [START_REF] Klimeck | Numerical approximations for polar optical phonon scattering in resonant tunneling diodes[END_REF], full self-energy computations were performed in the case of GaAs-AlAs resonant tunneling diodes and compared to a 1D diagonal approximation along the direction of the current. In this study, it was unambiguously shown that the full self-energy results could be recovered within a diagonal approach by using a scaling factor S = 12. By following an analogous approach to that previously described in the case of 2D confinement, we find that the equivalent of Eq.(48) for a system confined along a single direction is with k L defined by equation [START_REF] Klimeck | Numerical approximations for polar optical phonon scattering in resonant tunneling diodes[END_REF]. In the case of GaAs at low temperature, for small electron concentration (k F k L ), with ω L = 33 meV and a discretization parameter of a = 4 Å, this gives S = 12.7, in excellent agreement with the results of Ref. [START_REF] Klimeck | Numerical approximations for polar optical phonon scattering in resonant tunneling diodes[END_REF].

S = 4 πa k 2 F + k 2 L , (49) 

SIMULATIONS OF DG P-TYPE TRANSISTORS

Based on the model developed in Section , we now investigate the performance of III-V DG p-MOSFETs through self-consistent NEGF simulations, which couple the kinetic equations introduced in Section with the twodimensional Poisson equation in the device cross-section.

The thickness of the III-V film is assumed to be T SC =2.4 nm and the source and drain extensions (see Fig. 1) are p-doped with a concentration of 8×10 19 cm -3 . We consider as channel materials InAs, InSb and GaSb, as they provide the highest hole bulk mobilities. Performances are investigated as a function of two different crystallographic orientations, < 100 > and < 110 >, and strain constraints (uniaxial tensile and compressive strain), and benchmarked against analogous Si and Ge devices. All the simulations were carried out with a source to drain voltage V DS = -0.6 V. Acoustic-and optical phonon-electron interactions were described through the self-energies defined in Eqs. [START_REF] Autran | A simulation analysis of FIBL in decananometer double-gate MOSFETs with high-κ gate dielectrics[END_REF][START_REF] Kim | Effects of surface orientation on the performance of idealized III -V thin-body ballistic n -MOSFETs[END_REF][START_REF] Xu | GaSb inversion-mode PMOSFETs with atomic-layer-deposited Al2O3 as gate dielectric[END_REF], by using the deformation potential values in Ref. [START_REF] Adachi | Properties of Group-IV, III-V and II-VI Semiconductors[END_REF].

The electron-PO phonon scattering has been included through the diagonal self-energy [START_REF] Ferry | Transport in Nanostructures[END_REF], rescaled by a factor S=111.1 (see Table II).

Figure 2 shows how a uniaxial compressive and tensile strain along either the < 100 > or < 110 > direction, modifies the valence band structure of a 2.4 nm thick InAs film. The main impact on the transport is expected to derive from the modifications undergone by first subband, which is widely separated from the others due to the strong confinement, and therefore dominates the transport. Both in the < 100 > and < 110 > directions, a compressive strain induces a reduction of the effective mass value at k x =0, while a tensile strain leads to an increase of it. We found the same behavior in the case of InSb and GaSb. The values of the effective mass extracted for the three materials as function of the crystallographic orientation and strain are reported in Table III.

In order to assess the impact of strain on the I ON /I OFF ratio, we computed, for each strain constraint, transport direction and material, the OFF-state current I OFF as a function of the ON-state current I ON . To isolate the effect of the strain from those due to the modulation of the electron-phonon interaction, a ballistic transport regime was assumed.

The case of the InAs MOSFET in the < 110 > orientation with L G =15 nm is shown in Figure 3. The shift of the curves reflects the value of the first subband effective mass: devices with a lower effective mass tend to have better I ON /I OFF ratios, and therefore I OFF -I ON characteristics shifted toward higher I ON values. This trend remains unchanged for all the considered materials and transport directions (not shown).

According to these results, in the following we restrict the focus to compressively strained devices. Fig. 4 illustrates the I OFF -I ON characteristics of the InAs, InSb and GeSb MOSFETs. The results for a < 110 >-oriented, compressively strained MOSFET with the channel in Ge, which has been shown to represent a better option than Si for DG devices at L G =15 nm [START_REF] Moussavou | Influence of uniaxial strain in Si and Ge p-type doublegate metal-oxide-semiconductor field effect transistors[END_REF], are also included. Our results indicate that Ge-based devices can outperform the others with respect to low operating power (LOP) requirements. Among the considered III-V devices, the < 100 >-oriented InAs and InSb MOSFETs appear to provide the best performance for LOP and low standby power (LSTP) applications, respectively.

In Figure 5, we plot the I OFF -I ON characteristics in the presence of electron-phonon scattering for the InAs, InSb and Ge MOSFETs. The corresponding ballistic curves are also plotted for comparison. As expected, for all the materials, the impact of the electron-phonon scattering is stronger for high I ON values. However, in the case of Ge, the effect is significantly weaker. More precisely, for a I OFF current of 10 -4 A/m, the electron-phonon interaction induces a reduction of the ON-current of about 65% and 58% in InAs and InSb, respectively, while this value amounts to 24% in Ge. The relative importance of the electron-PO phonon scattering in determining this difference can be quantified by evaluating the I ON reduction in the III-V devices due only to acoustic and non-polar optical phonons. In these conditions, for the InAs devices we found a I ON reduction of around 25%. Similar values are expected for the InSb device. Thus, our results indicate that electron-PO phonon interactions can strongly disadvantage III-V MOSFETs with respect to analogous non-polar material devices. In Fig. 5, this directly translates in a widening of the performance gap between the III-V and Ge devices with respect to ballistic transport conditions. It turns out that the Ge MOSFET can largely outperform the III-V counterparts for LOP applications. InAs and InSb devices are competitive only for LSTP applications, as the impact of the electron-phonon scattering reduces due to the smaller current.

A substantially different scenario arises when shorter gate lengths are considered. The results obtained by repeating all the previous simulations for L G =7 nm indicate that the < 110 >-oriented GaSb MOSFET exhibits in this case the best I ON /I OFF performance (not shown). Fig. 6 illustrates the I ON -I OFF characteristics of this device with and without strain, in the ballistic regime and in the presence of electron-phonon scattering. These results are compared with those obtained for a < 100 >oriented, tensile-strained Si MOSFET, which, at this gate length scale, exhibits better performance with respect to the corresponding Ge-based device [START_REF] Moussavou | Influence of uniaxial strain in Si and Ge p-type doublegate metal-oxide-semiconductor field effect transistors[END_REF]. In the ballistic regime, we see that the Si device clearly outperforms all the III-V devices, for both LOP and LSTP applications. Indeed, the larger effective mass (m*=0. becomes a significant advantage at this channel length, since it mitigates the OFF-current degradation due to the source-to-drain tunneling. [START_REF] Dib | Theoretical comparison of Si, Ge, and GaAs ultrathin p-type double-gate metal oxide semiconductor transistors[END_REF][START_REF] Moussavou | Influence of uniaxial strain in Si and Ge p-type doublegate metal-oxide-semiconductor field effect transistors[END_REF] For the same reason, the < 110 >-oriented, tensile-strained GaSb MOSFET, in which the first subband effective mass (m*=0.107×m 0 ) is larger than for the other GaSb devices, exhibits the second best performance. As in the longer channel case, the inclusion of electronphonon scattering leads to a larger current degradation in III-V devices. This results in a significant improvement of the Si MOSFET performance with respect to the GaSb device, which exhibits, at the same I ON , an I ON /I OFF ratio smaller of at least one order of magnitude.

CONCLUSION

In this work, we proposed a physically sound and numerically efficient NEGF quantum transport methodology to treat non-local polar optical phonon scattering. The methodology is based on a diagonal (i.e. local) selfenergy approximation, in which long range effects are incorporated through the introduction of a scaling factor. We derived a simple analytical expression of this factor for a 2D phonon quantum well. An analytical expression for a 1D well was also provided and checked against previous numerical studies. Based on a 8-band k • p Hamiltonian we used this approach to assess the performance of p-type III-V DG transistors for different channel materials, crystallographic orientations and applied strains. Our simulation results indicate that III-V transistors are hardly expected to outperform their Ge and Si counterparts and that the strong impact of polar optical phonon scattering in such materials is one the main reasons. Ac-cordingly, our results also highlights the need, even in the case of transistors with very scaled gate lengths, to accurately model the electron-PO phonon interaction in order to obtain reliable predictions of the device operation.
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 1 FIG.1. Sketch of the considered Double-Gate MOSFETs. For all the considered devices, TSC =2.4 nm, TOX =1 nm, and the source and drain doping is 8×10 19 cm -3 . Two gate lengths, LG=15 nm and 7 nm, are considered. VDS=-0.6 V.

6 FIG. 2 .

 62 FIG. 2. Impact of uniaxial compressive and tensile strain, corresponding to a deformation | |=3%, on the valence band structure of a 2.4 nm-thick InAs film. Both the strain and the band structure are along the direction < 100 > (top), and < 110 > (bottom).
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 33 FIG. 3. Impact of strain | |=3% on the ballistic IOFF vs ION characteristics of a < 110 >-oriented InAs DG MOSFET with LG=15 nm.

3 FIG. 5 .

 35 FIG. 5. IOFF vs ION characteristics of < 110 >-oriented InAs, InSb and Ge DG MOSFETs under compressive strain (| |=3%), and in the presence of electron-phonon scattering. In all the cases LG=15 nm.

TABLE I .

 I Principal k • p parameters used in this work [45]. Eg Ep ∆so a0 InAs 20.0 8.5 9.2 0.417 21.5 0.39 6.06 InSb 34.8 15.5 16.5 0.23 23.3 0.81 6.48

	γ L 1	γ L 2	γ L 3
	GaSb 13.4 4.7 6.0 0.81 27 0.76 6.09
	Units		eV eV eV	Å

TABLE II .

 II Numerical values of S as a function of Lz. S 81.7 95.9 111.1 127.3 144.5 162.6 181.7 201.8

	Lz 2.0 2.2	2.4	2.6	2.8	3.0	3.2	3.4

TABLE III

 III 

	. Effective mass values (×m0) extracted from the
	first valence subband.	
		InAs	InSb GaSb
	< 110 > direction	
	Unstrained	0.041 0.067 0.061
	Comp.	0.032 0.0469 0.044
	Tens.	0.0548 0.184 0.107
	< 100 > direction	
	Unstrained	0.412 0.059 0.061
	Comp.	0.030 0.042 0.047
	Tens.	0.059 0.140 0.094

  FIG.6. IOFF vs ION characteristics for < 110 >-oriented, compressively strained, tensile strained and unstrained GaSb MOSFETs, compared with the corresponding < 100 >oriented, tensile strained Si device. LG=7 nm.
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