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Abstract 

Constitutional mismatch repair deficiency (CMMRD) is a rare, autosomal recessively inherited cancer 

predisposition syndrome caused by biallelic germline mutations in one of four mismatch repair 

genes (MLH1, MSH2, MSH6, and PMS2). In addition to a very high tumour risk, the CMMRD 

phenotype is often characterized by the presence of signs reminiscent of neurofibromatosis type 1 

(NF1), mainly in the form of multiple café-au-lait macules (CALMs). These, as well as other non-

malignant features, are important diagnostic signs of CMMRD in a cancer patient. Conversely, 

CMMRD is also a potential differential diagnosis in an otherwise healthy child with signs reminiscent 

of NF1/Legius syndrome without a detectable underlying NF1/SPRED1 germline mutation, as 

exemplified by a recently described case of a six-year-old girl with multiple CALMs, the offspring of 

consanguineous parents without signs of NF1, who was diagnosed with CMMRD. The European 

consortium Care for CMMRD (C4CMMRD) has now reviewed the expected benefits as well as the 

potential harm of CMMRD counselling and testing in this setting, for both the index patient and 

his/her at-risk relatives. Assuming that, in the absence of additional indicative features, CMMRD is 

rare in these patients, existing CMMRD diagnostic criteria for cancer patients were adapted to 

provide a consensus guideline on CMMRD testing in a child without a malignancy. Counselling and 

testing strategies that serve to minimize the potential harm of testing are discussed. Evaluation of 

this guideline by careful monitoring of children and by data sharing among physicians is 

recommended. 

Keywords Genetic screening/counselling, Clinical genetics, Paediatric oncology 
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INTRODUCTION 

Constitutional mismatch repair deficiency (CMMRD, MIM #276300) is a rare, autosomal-recessively 

inherited cancer predisposition syndrome caused by biallelic germline mutations in one of four 

mismatch repair (MMR) genes (MLH1, MIM *120436; MSH2, MIM *609309; MSH6, MIM *600678; 

PMS2, MIM *600259). CMMRD was first described in 1999 in children of consanguineous parents in 

Lynch syndrome families.1 2 These children, carrying homozygous MLH1 mutations, developed early 

onset tumours and presented with a phenotype reminiscent of neurofibromatosis type 1 (NF1) 

mainly in the form of multiple café-au-lait macules (CALMs). Since these first reports, well over 200 

cancer patients with CMMRD have been described. Through these reports and establishment of 

initiatives, such as the European consortium ‘Care for CMMRD’ (C4CMMRD), the international 

biallelic mismatch repair deficiency (BMMRD) consortium and the European Reference Network for 

rare genetic tumour risk syndromes (ERN-GENTURIS), awareness of CMMRD and our understanding 

of the phenotype, the pathophysiological mechanisms of tumour development and potential 

management options have increased substantially.3-8 

Individuals with CMMRD are prone to develop a broad spectrum of tumours. The most common are 

T-cell non-Hodgkin lymphomas, high-grade gliomas, and colorectal cancers or (advanced) colorectal 

adenomas, but also a number of other malignancies are associated with CMMRD.7 9-12 Although 

ascertainment bias cannot be excluded, cancer risks appear to be extremely high, as almost all 

reported patients are diagnosed with a malignancy and approximately 80% of patients develop their 

first malignancy before the age of 18 years (median age of onset 10 years).7 10 11 13-16 However, 

attenuated forms of CMMRD with a higher age of tumour onset have also been reported, which are 

presumably caused by hypomorphic mutations (with reduced penetrance) in at least one allele.17-19 

 

Already from the first reports, it became clear that the CMMRD phenotype overlaps with that of NF1 

and prior to the onset of CMMRD-associated malignancies, it may be indistinguishable from this 

condition. Multiple (>5) CALM (> 0.5cm in diameter) are usually the first diagnostic sign of NF1.20 In 

NF1, CALMs generally already appear in the first year of life, followed by skinfold freckling which is 

present in most children by school age. Neurofibromas usually develop after puberty and in early 

adulthood.20 In the past, the majority of NF1 diagnoses were based on clinical criteria from the 

National Institutes of Health (NIH).21 However, in young children who have a de novo NF1 mutation 

(accounting for almost 50% of NF1 index cases) the NIH criteria are often not fulfilled. Therefore, 

many NF1 clinics and paediatricians aim for early diagnosis in children through genetic testing, made 

possible by the improved sensitivity of NF1 mutation analysis protocols.22 23  

The most important differential diagnoses of NF1 in children with multiple CALMs are mosaic NF1 
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and Legius syndrome.24 25 From the mutation detection rates in familial and sporadic individuals 

fulfilling NF1 diagnostic criteria (95% vs. 85%26) it can be deduced that at least 10% of sporadic NF1 

cases have mosaic NF1 caused by post-zygotic NF1 mutations that are undetectable in blood 

lymphocytes. Mosaic NF1 may present as segmental NF1, with NF1 features confined to one part of 

the body or as a more generalized form that may be indistinguishable from (mild forms) of NF1 due 

to a germline mutation.25 Legius syndrome (MIM #611431), characterized by CALMs and freckling 

but absence of other diagnostic NF1 features, is caused by germline mutations in SPRED1 (MIM 

*609291).24 About 2.4% of sporadic patients with multiple (>5) CALMs with or without freckling, and 

in whom no NF1 mutation can be identified, have Legius syndrome.26 Other potential differential 

diagnoses of NF1 include Noonan syndrome, Noonan syndrome with multiple lentigines (previously 

referred to as LEOPARD syndrome), neurofibromatosis type 2 (NF2), Piebald trait and McCune-

Albright syndrome.27 However, the latter syndromes are often accompanied by other clinical 

features that can help in differentiating between syndromes.   

Since CMMRD patients with >5 CALMs and other NF1 signs have been described, it is unsurprising 

that CMMRD patients occasionally receive an initial clinical diagnosis of NF1 before receiving the 

correct diagnosis.1 2 28 29 Although not all CMMRD patients have sufficient CALMs to meet the NF1 

diagnostic criterion of >5 CALMs and some reports emphasize that CALMs in CMMRD patients often 

differ from the typical uniformly pigmented and smooth-bordered CALMs associated with NF1,30-33 

the majority of CMMRD patients have some hyperpigmented macules reminiscent of NF1-associated 

CALMs.34 Indeed, Durno and colleagues reported CALMs/hyperpigmented macules in 33 of 34 (97%) 

CMMRD patients described by the international BMMRD consortium,10 and CALMs are present in at 

least 57 of 76 (75%) patients registered in the C4CMMRD consortium database. The number of 

CALMs (diameter >1 cm) is known for 35 cases in the latter database, and more than five CALMs >1 

cm were found in 26 of 35 (75%) patients (at ages ranging from 0.9-21 years) suggesting that about 

half of all CMMRD patients fulfil at least one NIH criterion of NF1 (i.e. >5 CALMs). 

Awareness that CALMs and occasionally other NF1 signs may be present in a child with CMMRD prior 

to tumour onset leads to the conclusion that CMMRD is a legitimate differential diagnosis in healthy 

children with CALMs (with or without other clinical signs of NF1/Legius syndrome) when no 

causative NF1 or SPRED1 mutation is identified, and no signs of NF1 are found in the parents. 

Although we can reasonably assume that CMMRD is rare in these patients if the parents are 

unrelated (see below Estimated frequency of CMMRD as a differential diagnosis to NF1), a six-year-

old child of consanguineous parents with >5 CALMs and no cancer was recently diagnosed with 

CMMRD.28 In this situation, a diagnosis of CMMRD may provide an opportunity for cancer 
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surveillance of a highly penetrant childhood cancer syndrome prior to onset of the first malignancy. 

It will also allow predictive genetic testing and surveillance in relatives at risk for both CMMRD and 

Lynch syndrome and may impact family planning. However, it is also important to consider the 

potential harm associated with CMMRD counselling and testing in this setting, and any harm should 

be outweighed by expected benefits for both the index patient and his/her at-risk relatives. 

Therefore, physicians and geneticists have begun to discuss if and when to counsel and test for 

CMMRD in suspected NF1 patients.35  

The C4CMMRD consortium, an interdisciplinary team of international experts in the field, has 

formulated and published diagnostic criteria for the clinical suspicion of CMMRD in cancer patients,7 

in addition to surveillance guidelines.6 At the most recent workshop in Brussels (26th of September 

2017), the issue of when to test children without malignancy for CMMRD was addressed. The 

outcome of that discussion will be presented here. We propose the adaptation of existing diagnostic 

criteria to serve as a guideline as to when to consider CMMRD counselling and testing as differential 

diagnosis to NF1 in healthy individuals.  

ESTIMATED FREQUENCY OF CMMRD AS A DIFFERENTIAL DIAGNOSIS OF NF1  

The frequency of CMMRD in children suspected to have NF1 or Legius syndrome, but without a 

causative NF1 or SPRED1 mutation and no overt malignancy, is currently unknown. Since knowledge 

of disease frequency would help in weighing the possible benefits and harm associated with 

counselling and genetic testing, in the following section we attempt to roughly estimate the 

frequency. 

The incidence of CMMRD in the general population depends on the carrier frequency of MMR 

mutations. The most recent empiric estimation, based on a large North American/Australian registry, 

calculated carrier frequencies of 1 in 1,946 for MLH1, 1 in 2,841 for MSH2, 1 in 758 for MSH6, and 1 

in 714 for PMS2 mutations.36 Based on these frequencies, CMMRD incidence was calculated to be 

about 1:1,000,000 children of unrelated parents (Figure 1). The incidence will be substantially higher 

in populations with founder MMR mutations and in children of consanguineous parents.15 37 38  

NF1 is much more common, with an estimated incidence of around 1:2,000-1:3,000.39-41 Almost half 

of patients with NF1 are de novo cases.39 To estimate the frequency of suspected NF1 or Legius 

syndrome patients without an NF1 or SPRED1 mutation who are actually affected by CMMRD, we 

took a number of factors into account. In a study using highly sensitive and comprehensive mutation 

analysis protocols, with mutation detection rates of 96% in familial NF1 patients, NF1/SPRED1 

mutations were identified in 56.4% (764/1354; 751 NF1 and 13 SPRED1 mutations) of suspected 
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sporadic NF1 patients with >5 CALMs.26 Therefore, based on the incidence of de novo NF1 of 1:6,000 

new-borns and an NF1/SPRED1 mutation detection rate of 56.4% in patients with >5 CALMs with or 

without other signs of NF1, we assume that there are 129 patients with >5 CALMs and no 

NF1/SPRED1 mutation in a population of 1 million individuals (Figure 1). Combining this estimate 

with the estimated frequency of CMMRD, and assuming that half of all CMMRD patients present as 

suspected NF1 patients prior to cancer development, we obtain a figure of one CMMRD patient 

among 258 suspected NF1 children without an NF1/SPRED1 mutation (i.e. ~0.4%) (Figure 1). Given 

this low estimated frequency, a priori chances of diagnosing CMMRD in this group are low.  

POTENTIAL BENEFITS AND HARM OF CMMRD COUNSELLING AND TESTING IN A ‘HEALTHY’ CHILD 

Several factors need to be taken into account when considering CMMRD diagnostics in a child 

without a (personal history of) malignancy (Table 1).  

Table 1 Overview of the potential benefits and harms of CMMRD counselling and testing in a 

suspected sporadic NF1/Legius syndrome child without malignancy and negative outcome of NF1/ 

SPRED1 germline mutation analysis. 

Potential benefits Potential harms 

 Opportunity to begin surveillance before 
cancer development  

 Parents can be informed of the 
recurrence risk in a sibling/future child 

 Lynch syndrome can be diagnosed in  
family members and surveillance 
initiated 

 Risk of diagnosing Lynch syndrome in a 
minor  

 Risks associated with intensive 
surveillance while efficacy has not yet 
been evaluated in a large cohort and 
attenuated forms of CMMRD exist 

 Risk of identifying a VUS, resulting in 
management dilemmas and potentially 
inducing anxiety 

Abbreviations: CMMRD, constitutional mismatch repair deficiency. VUS, variant of unknown 

significance. 

Benefits and their limitations 

i) One of the most important benefits of an early CMMRD diagnosis is the possibility to begin 

surveillance before cancer development and, consequently, potentially detect cancer at an early 

stage with better treatment options. With regards to colorectal cancer risk, there is even the 

opportunity to prevent cancer by removal of intestinal polyps prior to malignant transformation, and 

existing recommendations for CMMRD surveillance provide clinicians with guidance regarding 

screening programs.3 5 6 All available guidelines recommend brain MRI, colonoscopies and video 

capsule endoscopy (VCE) from a young age, as well as gynaecological and urinary tract analysis from 

age 10 to 20 years. In addition, whole body MRI5 and preventive measures such as aspirin intake 

and/or vaccination with neoantigens42 43 are possible modalities that may have a role in CMMRD 
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management. Preliminary analyses in a small series of patients showed promising results for 

surveillance measures.44 Nevertheless, all recommended programs are intensive and burdensome 

and evaluation of the outcome of surveillance protocols in larger studies is yet to be published. 

Furthermore, when CMMRD is diagnosed in a predictive setting with regard to cancer development, 

it should be kept in mind that attenuated forms of CMMRD show tumour onset only by the end of 

the second or in the third decade of life, 17-19 45 and that no evaluated models are available to 

accurately estimate penetrance of novel MMR mutations or new combinations of mutations. Hence, 

it is currently unclear whether a less stringent surveillance program might be sufficient for a 

subgroup of patients. Despite these reservations, as sufficient evidence points to an overall high 

cancer risk, the application of intensive, carefully considered screening recommendations to 

individuals proven to have CMMRD is justified. 

ii) Another advantage of early diagnosis is the possibility to counsel parents regarding the 25% 

probability that siblings and subsequent children will also be affected, and to discuss the option of 

prenatal or preimplantation genetic diagnostics while parents are still in the process of family 

planning. Once again however, informed decision making is complicated by the fact that current 

estimates of cancer risk are subject to ascertainment bias and individual cancer risks are difficult to 

predict. 

Potential harms 

i) Following genetic counselling for CMMRD as a differential diagnosis, parents and children 

may experience anxiety during genetic testing until the diagnosis is largely excluded. Depending on 

the diagnostic strategy and performance of the laboratory, this may take several weeks or even 

months. Moreover, the testing strategy chosen by the laboratory will impact the predictive value of 

a negative test result (i.e. the residual risk in the case of a negative test, see Testing strategy). This 

may impact on any remaining anxiety after receiving a negative result. The level of anxiety may also 

differ depending on the personality and the available coping strategies of the patients/parents and 

the attitudes of the physicians involved.  

ii) Test results definitely confirming or refuting CMMRD will be helpful in the management of 

the patient and his/her family. However, inconclusive test results will pose a challenge for all parties 

involved. The most important source of inconclusive results will be variants of unknown significance 

(VUS) in the MMR genes. Although identification of a VUS is an inherent risk of genetic diagnostics, it 

is important to minimize the number of VUS and the dilemma with regard to diagnosis and 

appropriate management of the patient that comes along with it. Therefore, laboratories performing 

CMMRD analysis in a predictive setting should be prepared to take any measure necessary to reach a 
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less ambiguous classification of a VUS (C3) as either a (likely) pathogenic (C4/C5) mutation or a 

(likely) benign (C1/C2) variant.46 Tests assessing hallmarks of MMR deficiency in vivo or the effect of 

the mutation(s) on mismatch repair protein function in vitro will become important in these 

situations (see Testing strategy). 

iii) According to Win et al.,36 in the general population one in 279 children tested will be 

heterozygous for an MMR gene mutation. Particularly in the case of a clearly pathogenic MLH1 or 

MSH2 mutation, this results is the unintentional diagnosis of Lynch syndrome in a minor. Lynch 

syndrome mainly predisposes to adult-onset colorectal cancer and/or endometrial cancer and 

surveillance only begins around age 20-25.47 48 Thus the lack of clinical consequences in children, 

combined with their right not-to-know, and potential harm due to anxiety and other issues (e.g., 

potential difficulty in acquiring insurance) highlight that a diagnosis of Lynch syndrome is 

undesirable in a minor.49 Further considerations on this topic can be found in Bruwer et al. who 

offered predictive CMMRD testing to children of parents both carrying familial MLH1 mutations.50 

The situation is more complex for MSH6 and even more so for PMS2. Heterozygous mutations in 

these genes have a 2-4 times higher prevalence,36 but  a substantially lower penetrance than MLH1 

and MSH2 mutations.19 51 52 Hence, in an individual lacking a personal or family history of Lynch 

syndrome-associated cancer, it is uncertain whether the mutation-associated cancer risk is sufficient 

to diagnose an individual with a cancer predisposition syndrome that warrants intensive cancer 

surveillance. This concern also raises the question of whether identifying a mutation in an individual 

without family history for Lynch syndrome justifies predictive genetic testing in parents and other 

adult at-risk relatives.  

LIMITING POTENTIAL HARM ASSOCIATED WITH CMMRD COUNSELLING AND TESTING IN A CHILD 

WITHOUT A MALIGNANCY 

Assuming that only a small minority (~0.4%) of all NF1/SPRED1 mutation-negative children from non-

related parents will actually have CMMRD syndrome, it would be desirable to reduce the number of 

individuals/families with whom the possibility of CMMRD needs to be discussed. Therefore, 

strategies to pre-select children with a high probability of having CMMRD are discussed in the 

following section. 

Testing prerequisites 

Three prerequisites for considering testing for CMMRD as a differential diagnosis of NF1/Legius 

syndrome are defined in Table 2: (i) the presence of at least one NF1 diagnostic criterion including 

multiple hyperpigmented skin patches reminiscent of CALMs. The most prevalent NF1 sign present 
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in a CMMRD patient is hyperpigmented skin patches reminiscent of NF1-associated CALMs and 

freckling. Other diagnostic NF1 features such as neurofibromas, Lisch nodules, tibial pseudarthrosis 

or optic pathway glioma have so far only been seen in CMMRD patients who also show CALMs.1 2 15 53 

54 This suggests that CMMRD syndrome is a highly unlikely diagnosis in individuals with only isolated 

non-pigmentary NF1 features. (ii) NF1/SPRED1 testing was performed using highly sensitive, 

comprehensive mutation analysis protocols. The likelihood of identifying CMMRD is of course 

correlated with the sensitivity of NF1/SPRED1 mutation analysis performed (further discussed in 

Testing strategies). (iii) the absence of any signs of NF1 in either parent. If a parent shows any NF1 

signs, even very subtle, an undetected NF1/SPRED1 mutation, which might even be present in a 

mosaic status in the mildly affected parent, is probably more likely. It is strongly recommended that 

both parents undergo a full clinical exam for presence of any (mild) features of NF1, and for this 

purpose a consultation with an ophthalmologist and dermatologist can be considered. 

It was decided not to include an age limit in the prerequisites for testing, as in CMMRD a wide 

variability has been observed in the age of cancer diagnosis.11 45 52 However, when evaluating a 

patient who meets the prerequisites it should be kept in mind that the vast majority (around 80%)10 

11 13-16 of CMMRD patients will have developed a malignancy or intestinal adenomas by the age of 

eighteen. Hence, absence of a (pre-)malignancy in an older individual decreases the probability of 

CMMRD substantially.  

Pre-selection strategies 

The presence in a child of one or more additional features suggestive of CMMRD substantially 

increases the likelihood of this differential diagnosis. The European C4CMMRD consortium has 

previously defined diagnostic criteria based on features that raise suspicion of CMMRD in a cancer 

patient.7 By and large, these features could also be used to select children without cancer who have 

an increased probability of having CMMRD. Therefore, the list of additional features provided in 

table 2 largely overlaps with the previously defined diagnostic criteria for CMMRD in a cancer 

patient (for further details see 7).  
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Table 2 Selection strategy for CMMRD counselling and testing in a suspected NF1/Legius 

syndrome child without malignancy and negative outcome of NF1/ SPRED1 germline 

mutation analysis.  

  

Prerequisites  

 Suspicion of NF1 due to the presence of at least one diagnostic NF1 feature1, 
including at least two hyperpigmented skin patches reminiscent of CALMs 

 No NF1 and SPRED1 germline mutations detected using comprehensive and highly 
sensitive mutation analysis protocols2 

 Absence of NF1 signs in both parents  
Additional features, at least one is required 

In the family 

 Consanguineous parents 

 Genetic diagnosis of Lynch syndrome in one or both of the parental families 

 Sibling with signs of NF1 

 A (deceased) sibling3 with any type of childhood malignancy 

 One of the following carcinomas from the Lynch syndrome spectrum4: colorectal 
cancer, endometrial cancer, ovarian cancer, gastric cancer, small bowel cancer, 
cancer of the bile duct or gall bladder, pancreatic cancer or urothelial cancer before 
the age of 60 in first-degree or second-degree relative  

In the patient 

 Atypical CALMs (irregular borders and/or pigmentation) 

 Hypopigmented skin patches 

 One or more pilomatricoma(s) in the patient 

 Agenesis of the corpus callosum  

 Non-therapy-induced cavernoma 

 Multiple developmental vascular abnormalities (DVA; also known as cerebral venous 
angiomas) in separate regions of the brain 

Abbreviations: NF1, neurofibromatosis type 1. CALMs, café-au-lait macules.  

1Neurofibromatosis conference statement.(21)  2See testing strategy. 3This can be expanded to 2nd 

and 3rd degree relatives in populations with a high prevalence of founder mutations. 4Møller et al. 

2017 (47)  

A feature listed in the original table in 7 was ‘deficiency/reduced levels of IgG2/4 and/or IgA’. As a 

recent study on a cohort of 15 consecutive, unrelated patients was unable to show uniform or 

specific patterns of laboratory immunological abnormalities,55 we did not include this rather 

unspecific feature in table 2. 

Two features increasing the likelihood of having CMMRD and not listed in the original table by 

Wimmer et al.7  were added to the current table. The first one is a sibling with signs of NF1, in the 

absence of any NF1 signs in both parents when gonadal NF1/SPRED1 mosaicism in a parent has 
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largely been excluded by mutation analysis in the children. The second is the presence of multiple 

developmental vascular abnormalities (DVA; also known as cerebral venous angiomas) in separate 

regions of the brain, which were present in 10/10 patients described by Shiran et al.,56 who 

suggested this feature as additional non-neoplastic sign indicating CMMRD in a cancer patient.  

Furthermore, a number of CMMRD patients have been reported to have atypical CALMs with 

irregular borders and different degrees of pigmentation.30-34 Therefore, atypical macules that might 

be differentiated from typical NF1-associated macules by an experienced clinician/geneticist (see 

also Counselling strategy and setting), are suggestive of a differential diagnosis such as CMMRD.30-34 

Hence, presence of atypical CALMs is also included as an additional feature in Table 2. 

Some CMMRD-associated features included in Table 2 (e.g. brain anomalies) will not be detected by 

routine clinical examination of a suspected NF1 patient. Since the prevalence and specificity of these 

features in CMMRD patients is not well studied, we do not advocate testing for these features unless 

clinically indicated.  

A thorough family history will help in uncovering family members with Lynch syndrome-associated 

cancers (Table 2).  When a Lynch syndrome-associated cancer is present it may be worthwhile, 

where possible, to analyse the tumour for signs of mismatch repair deficiency.  

A thorough assessment of the family history should include also questions regarding consanguinity 

of the parents. The risk of having CMMRD based on the allele frequencies of MMR gene mutations36 

in for example a child of first cousins is ~1/8,849 (using the equation [pifI+pi
2(1-fI)]+[pjfI +pj

2(1-

fI)]+[pkfI +pk
2(1-fI)]+[plfI+pl

2(1-fI)] where pi, pj, pk and pl are the allele frequencies of MLH1, MSH2, 

MSH6 and PMS2 mutations, respectively, and the consanguinity coefficient fI for first cousins = 

1/16)57 which is about 110-times higher than for a child with unrelated parents.  

Counselling strategy and setting 

Since NF1 is a relatively common and often easily recognizable syndrome for which clear 

management guidelines exist, many paediatricians order molecular analysis of the NF1 gene directly 

without involving a clinical genetics specialist. Counselling and management are more challenging 

for the much rarer and highly penetrant cancer predisposition syndrome CMMRD. We therefore 

advocate that predictive (with respect to malignancy) CMMRD testing should be ordered by a 

physician trained in clinical cancer genetics in a centre with specific expertise in NF1 and related 

disorders in a multi-disciplinary setting.  
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As mentioned above, we suggest that CMMRD does not need to be discussed in all suspected NF1 

cases without an identified NF1/SPRED1 mutation. Following an interdisciplinary discussion and the 

decision that counselling for CMMRD is indicated in a child without a malignancy, parents and their 

affected child, depending on his/her age, should be counselled by an experienced geneticist. To be 

able to make an informed decision on whether they want their child to be tested, parents should be 

made aware of the potential benefits, with their limitations, and of the various possible outcomes of 

genetic testing. Nevertheless, considering the low probability of a CMMRD diagnosis, this 

information should be provided in a way that minimizes risk of inducing a disproportionately high 

level of anxiety. If parents express the need for psychological support or more information on 

surveillance protocols or cancer treatment options, consultation with a psycho-oncologist or 

paediatric oncologist should be offered.  

Specifically trained clinical geneticists/clinicians may be able to differentiate between typical NF1-

associated CALMs and the atypical pigmentations sometimes seen in CMMRD patients.30-34 

Furthermore, he/she can decide whether another syndrome (e.g., Noonan syndrome, Noonan 

syndrome with multiple lentigines, NF2, Piebald trait and McCune-Albright syndrome) within the 

differential diagnosis of children with CALMs is more likely and should be addressed by genetic 

testing prior to CMMRD testing. Lastly, we advise that any centre ordering CMMRD diagnostics is 

able to facilitate the surveillance program, either in-house or in cooperating centres within 

reasonable travelling distance.  

Testing strategy 

A prerequisite for considering CMMRD counselling and testing as a differential diagnosis in patients 

suspect for NF1/Legius syndrome is the exclusion of the latter diagnoses with high certainty by 

absence of germline NF1/SPRED1 mutations using highly sensitive mutation analyses. The NF1 gene 

is large and has a highly diverse mutational spectrum, with private mutations (i.e. not reported in 

any other patient) identified in a significant percentage of patients (~25%; LM, personal 

communication). Furthermore, the NF1 mutation spectrum also includes a large proportion of 

unusual splice mutations that either completely elude genomic DNA (gDNA)-based mutation analysis 

protocols (e.g. deep intronic mutations are found in 2.5-3% of all NF1 patients) or defy ready 

classification as (likely) pathogenic mutations without additional transcript analysis (approximately 

20% of patients have a splice mutation NOT affecting the AG/GT dinucleotides, but affect coding 

nucleotides, nucleotides flanking the exons but further up/downstream of the AG/GT dinucleotides 

or reside very deep into the introns).22 58 59 This complicates the classification of novel mutations, 

especially in the case of silent, missense, and intronic variants.60 Currently, only comprehensive 
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mutation analysis protocols that include NF1 transcript analysis as a primary or complementary 

assay, such as direct cDNA sequencing,23 will achieve sufficient sensitivity to exclude a germline 

mutation with a 96% certainty. 26 Genomic DNA-based mutation analysis methods can achieve high 

SPRED1 mutation detection rates (RNA-based mutation analysis performed in >900 patients has not 

yet identified a SPRED1 splice mutation that escaped detection in gDNA; LM, unpublished data).  

Segmental or mosaic NF1 due to a post-zygotic NF1 mutation is the most likely differential diagnosis 

in a child with CALMs, with or without other NF1 signs, and a negative germline NF1/SPRED1 

mutation analysis. Confirming mosaic NF1 however requires identification of the same post-zygotic 

mutation in multiple melanocyte or Schwann cell cultures from biopsied CALMs and neurofibromas 

respectively.61 These labour intensive analyses require specific expertise and therefore are offered 

only by very few specialized laboratories worldwide. Furthermore, they require invasive procedures. 

Taken together, this can justify omitting these analyses in children to evaluate mosaic/segmental 

NF1 prior to CMMRD testing. 

In principle, two CMMRD testing strategies can be pursued. The first strategy is direct mutational 

testing of the MMR genes. The second strategy involves a pre-assay which tests for hallmarks of 

CMMRD, followed by mutational testing if positive. When opting for direct mutational testing it 

should be kept in mind that mutation analysis of PMS2, the most commonly mutated gene in 

CMMRD, is challenging due to the presence of pseudogenes.62-65 Therefore, appropriate methods 

should be applied to circumvent potential pitfalls of PMS2 mutation analysis.66-72 

An argument in favour of direct mutation analysis using gDNA-based gene panel diagnostics would 

be that other genes that may mimic the NF1 phenotype (see Introduction) can be analysed 

simultaneously. However, testing a larger number of genes inevitably increases the likelihood of 

identifying VUSes. Therefore, we advocate a stepwise approach, ruling out other possible differential 

diagnoses prior to CMMRD testing.  

If a VUS is identified in one of the MMR genes, additional analyses should be performed to assist 

with the interpretation of the variant, such as ex vivo functional assays of the mutated gene73-79 

and/or assays that determine the presence of MMRD in non-neoplastic tissue of the patient. The 

latter assays could also be used as pre-assays before or in parallel with mutation analysis. This 

second strategy reduces the risk of VUS identification by providing functional evidence for or against 

CMMRD, and at the same time increases diagnostic sensitivity by applying two complementary 

methods.  

Microsatellite instability (MSI), defined as a change in the number of mononucleotide or 

dinucleotide repeats and detectable by alterations in microsatellite fragment length,80 is a well-
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established hallmark of somatic MMRD and is frequently assessed in cancer tissues during testing for 

Lynch syndrome. MSI is not restricted to neoplastic cells in patients with CMMRD and assays have 

been developed to detect low levels of MSI in leucocyte DNA of these patients.81 Although highly 

sensitive and specific in patients with biallelic PMS2, MLH1 and MSH2 mutations, in patients with 

biallelic MSH6 mutations, the currently available germline microsatellite instability (gMSI) assays 

regularly yield normal results. This limitation renders this gMSI assay unsuitable for pre-test 

selection. However this simple, fast and inexpensive assay can increase diagnostic sensitivity and 

accuracy by confirming the pathogenicity of PMS2, MLH1 and MSH2 VUS.28 In the near future more 

sensitive, simple and reliable gMSI assays may become available, which could potentially be used for 

pre-test selection. Recently, a highly sensitive and reliable method for the detection of low levels of 

MSI was developed, with potential applications in the analysis of MSI in non-neoplastic tissue of 

CMMRD patients.82 Another assay, which tests for MSI in EBV-immortalised lymphocytes and in 

parallel for cell tolerance to methylating agents (another functional consequence of CMMRD), has 

recently been specifically developed for CMMRD diagnosis.83 As this assay is both highly sensitive 

and specific it may allow a diagnosis of CMMRD to be definitively confirmed or refuted in cases 

where mutation analysis and other assays are inconclusive (e.g. when only one MMR gene mutation 

or a homozygous MMR gene VUS has been identified).83 84 However, the assay is lengthy, labour 

intensive and requires expertise, making it ill-suited as a pre-test. Immunohistochemistry (IHC) to 

detect loss of expression of one or more MMR protein(s) in non-neoplastic tissue, such as small skin 

biopsies, has also been proposed as a diagnostic assay for CMMRD.10 13 However, as taking a skin 

biopsy is an invasive procedure that can be unpleasant for a young child, IHC should be avoided as a 

pre-test. Furthermore, IHC may also be insensitive if antigenic but non-functional mutations are 

present.84-86 

Taken together, reliable diagnostics of CMMRD may at times be challenging. Choosing an 

appropriate testing strategy may depend on the facilities that are most readily available in the 

centre. Hopefully, more assays will become available that may facilitate simple and reliable selective 

pre-testing for CMMRD.  

 

CONCLUDING REMARKS 

We discussed here the potential benefits and harm (Table 1) associated with CMMRD counselling 

and testing in children suspected to have sporadic NF1 but without a malignancy and lacking an NF1 

or SPRED1 germline mutation. After carefully considering all available literature and our own 

experiences, we arrived at recommendations as to when to counsel and offer CMMRD testing, which 

are summarized in Table 2. We also note that uncertainties exist regarding the incidence of CMMRD 
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and the prevalence of CMMRD-associated features both in the general population and in unselected 

CMMRD patients. Clearly, more data are needed to further support our recommendations, 

particularly since published CMMRD cases may be biased towards a more severe phenotype. We 

strongly recommend that the clinical course of all CMMRD patients who are identified before cancer 

development is meticulously recorded and submitted to a database. Overall, we believe that with 

the application of the suggested counselling and testing prerequisites an acceptable balance can be 

achieved between adequate testing of patients at risk of CMMRD, while avoiding exposing an 

unnecessarily large number of children and families to any harm that might ensue from counselling 

and genetic testing for CMMRD. 
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