Constitutional mismatch repair deficiency as a differential diagnosis of neurofibromatosis type 1: consensus suggestions for testing a child without malignancy

Manon Suerink, Tim Ripperger, Ludwine Messiaen, Fred Menko, Franck Bourdeaut, Chrystelle Colas, Marjolijn Jongmans, Yael Goldberg, Maartje Nielsen, Martine Muleris, et al.

To cite this version:

Manon Suerink, Tim Ripperger, Ludwine Messiaen, Fred Menko, Franck Bourdeaut, et al.. Constitutional mismatch repair deficiency as a differential diagnosis of neurofibromatosis type 1: consensus suggestions for testing a child without malignancy. Journal of Medical Genetics, 2019, 56 (2), pp.53-62. 10.1136/jmedgenet-2018-105664 . hal-02331880

HAL Id: hal-02331880

https://hal.science/hal-02331880

Submitted on 24 Oct 2019
Constitutional mismatch repair deficiency as a differential diagnosis of neurofibromatosis type 1: consensus suggestions for testing a child without malignancy

Manon Suerink¹, Tim Ripperger², Ludwine Messiaen³, Fred Menko⁴, Franck Bourdeaut⁵, Chrystelle Colas⁶,⁷, Marjolijn Jongmans⁸,⁹, Yael Goldberg¹⁰, Maartje Nielen¹, Martine Muleris⁷, Mariëtte van Kouwen¹¹, Irene Slavc¹², Christian Kratz¹³, Hans Vasen¹⁴, Laurence Brugières¹⁵, Eric Legius¹⁶, Katharina Wimmer¹⁷*

1. Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
2. Department of Human Genetics, Hannover Medical School, Hannover, Germany
3. Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
4. Family Cancer Clinic, Antoni van Leeuwenhoek Hospital and The Netherlands Cancer Institute, Amsterdam, The Netherlands
5. Département d’Oncologie Pédiatrique et d’Adolescents Jeunes Adultes, Institut Curie, Paris, France
6. Department of Genetics, Institut Curie, Paris Sciences Lettres Research University, Paris, France
7. Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre de Recherche Saint-Antoine (CRSA), F75012, Paris, France
8. Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
9. Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
10. Recanati Genetics Institute, Beilinson Hospital, Rabin Medical Center, Petach Tikva, Israel
11. Department of Gastroenterology and Hepatology, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
12. Department of Pediatrics, Medical University of Vienna, Vienna, Austria.
13. Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
14. Department of Gastroenterology and Hepatology, Leiden University Medical Centre, Leiden, The Netherlands
15. Children and Adolescent Oncology Department, Gustave Roussy Cancer Campus, Villejuif, France
16. Department of Human Genetics, University Hospital Leuven and KU Leuven, Leuven, Belgium
17. Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria

*corresponding author: Katharina Wimmer, PhD, Division of Human Genetics, Medical University Innsbruck, Peter-Mayr-Straße 1, 6020 Innsbruck, Austria. Tel.: +43512 9003 70513; fax: +43512 9003 73510; e-mail: katharina.wimmer@i-med.ac.at

Word count: 4790
Abstract

Constitutional mismatch repair deficiency (CMMRD) is a rare, autosomal recessively inherited cancer predisposition syndrome caused by biallelic germline mutations in one of four mismatch repair genes (MLH1, MSH2, MSH6, and PMS2). In addition to a very high tumour risk, the CMMRD phenotype is often characterized by the presence of signs reminiscent of neurofibromatosis type 1 (NF1), mainly in the form of multiple café-au-lait macules (CALMs). These, as well as other non-malignant features, are important diagnostic signs of CMMRD in a cancer patient. Conversely, CMMRD is also a potential differential diagnosis in an otherwise healthy child with signs reminiscent of NF1/Legius syndrome without a detectable underlying NF1/SPRED1 germline mutation, as exemplified by a recently described case of a six-year-old girl with multiple CALMs, the offspring of consanguineous parents without signs of NF1, who was diagnosed with CMMRD. The European consortium Care for CMMRD (C4CMMRD) has now reviewed the expected benefits as well as the potential harm of CMMRD counselling and testing in this setting, for both the index patient and his/her at-risk relatives. Assuming that, in the absence of additional indicative features, CMMRD is rare in these patients, existing CMMRD diagnostic criteria for cancer patients were adapted to provide a consensus guideline on CMMRD testing in a child without a malignancy. Counselling and testing strategies that serve to minimize the potential harm of testing are discussed. Evaluation of this guideline by careful monitoring of children and by data sharing among physicians is recommended.

Keywords Genetic screening/counselling, Clinical genetics, Paediatric oncology
INTRODUCTION

Constitutional mismatch repair deficiency (CMMRD, MIM #276300) is a rare, autosomal-recessively inherited cancer predisposition syndrome caused by biallelic germline mutations in one of four mismatch repair (MMR) genes (MLH1, MIM *120436; MSH2, MIM *609309; MSH6, MIM *600678; PMS2, MIM *600259). CMMRD was first described in 1999 in children of consanguineous parents in Lynch syndrome families. These children, carrying homozygous MLH1 mutations, developed early onset tumours and presented with a phenotype reminiscent of neurofibromatosis type 1 (NF1) mainly in the form of multiple café-au-lait macules (CALMs). Since these first reports, well over 200 cancer patients with CMMRD have been described. Through these reports and establishment of initiatives, such as the European consortium ‘Care for CMMRD’ (C4CMMRD), the international biallelic mismatch repair deficiency (BMMRD) consortium and the European Reference Network for rare genetic tumour risk syndromes (ERN-GENTURIS), awareness of CMMRD and our understanding of the phenotype, the pathophysiological mechanisms of tumour development and potential management options have increased substantially.

Individuals with CMMRD are prone to develop a broad spectrum of tumours. The most common are T-cell non-Hodgkin lymphomas, high-grade gliomas, and colorectal cancers or (advanced) colorectal adenomas, but also a number of other malignancies are associated with CMMRD. Although ascertainment bias cannot be excluded, cancer risks appear to be extremely high, as almost all reported patients are diagnosed with a malignancy and approximately 80% of patients develop their first malignancy before the age of 18 years (median age of onset 10 years). However, attenuated forms of CMMRD with a higher age of tumour onset have also been reported, which are presumably caused by hypomorphic mutations (with reduced penetrance) in at least one allele.

Already from the first reports, it became clear that the CMMRD phenotype overlaps with that of NF1 and prior to the onset of CMMRD-associated malignancies, it may be indistinguishable from this condition. Multiple (>5) CALM (> 0.5cm in diameter) are usually the first diagnostic sign of NF1. In NF1, CALMs generally already appear in the first year of life, followed by skinfold freckling which is present in most children by school age. Neurofibromas usually develop after puberty and in early adulthood. In the past, the majority of NF1 diagnoses were based on clinical criteria from the National Institutes of Health (NIH). However, in young children who have a de novo NF1 mutation (accounting for almost 50% of NF1 index cases) the NIH criteria are often not fulfilled. Therefore, many NF1 clinics and paediatricians aim for early diagnosis in children through genetic testing, made possible by the improved sensitivity of NF1 mutation analysis protocols.

The most important differential diagnoses of NF1 in children with multiple CALMs are mosaic NF1
and Legius syndrome.24 25 From the mutation detection rates in familial and sporadic individuals fulfilling NF1 diagnostic criteria (95% vs. 85%26) it can be deduced that at least 10% of sporadic NF1 cases have mosaic NF1 caused by post-zygotic \textit{NF1} mutations that are undetectable in blood lymphocytes. Mosaic NF1 may present as segmental NF1, with NF1 features confined to one part of the body or as a more generalized form that may be indistinguishable from (mild forms) of NF1 due to a germline mutation.25 Legius syndrome (MIM #611431), characterized by CALMs and freckling but absence of other diagnostic NF1 features, is caused by germline mutations in \textit{SPRED1} (MIM *609291).24 About 2.4% of sporadic patients with multiple (>5) CALMs with or without freckling, and in whom no \textit{NF1} mutation can be identified, have Legius syndrome.26 Other potential differential diagnoses of NF1 include Noonan syndrome, Noonan syndrome with multiple lentigines (previously referred to as LEOPARD syndrome), neurofibromatosis type 2 (NF2), Piebald trait and McCune-Albright syndrome.27 However, the latter syndromes are often accompanied by other clinical features that can help in differentiating between syndromes.

Since CMMRD patients with >5 CALMs and other NF1 signs have been described, it is unsurprising that CMMRD patients occasionally receive an initial clinical diagnosis of NF1 before receiving the correct diagnosis.12 28 29 Although not all CMMRD patients have sufficient CALMs to meet the NF1 diagnostic criterion of >5 CALMs and some reports emphasize that CALMs in CMMRD patients often differ from the typical uniformly pigmented and smooth-bordered CALMs associated with NF1,30-33 the majority of CMMRD patients have some hyperpigmented macules reminiscent of NF1-associated CALMs.34 Indeed, Durno and colleagues reported CALMs/hyperpigmented macules in 33 of 34 (97%) CMMRD patients described by the international BMMRD consortium,10 and CALMs are present in at least 57 of 76 (75%) patients registered in the C4CMMRD consortium database. The number of CALMs (diameter >1 cm) is known for 35 cases in the latter database, and more than five CALMs >1 cm were found in 26 of 35 (75%) patients (at ages ranging from 0.9-21 years) suggesting that about half of all CMMRD patients fulfil at least one NIH criterion of NF1 (i.e. >5 CALMs).

Awareness that CALMs and occasionally other NF1 signs may be present in a child with CMMRD prior to tumour onset leads to the conclusion that CMMRD is a legitimate differential diagnosis in healthy children with CALMs (with or without other clinical signs of NF1/Legius syndrome) when no causative \textit{NF1} or \textit{SPRED1} mutation is identified, and no signs of NF1 are found in the parents. Although we can reasonably assume that CMMRD is rare in these patients if the parents are unrelated (see below \textit{Estimated frequency of CMMRD as a differential diagnosis to NF1}), a six-year-old child of consanguineous parents with >5 CALMs and no cancer was recently diagnosed with CMMRD.28 In this situation, a diagnosis of CMMRD may provide an opportunity for cancer
surveillance of a highly penetrant childhood cancer syndrome prior to onset of the first malignancy. It will also allow predictive genetic testing and surveillance in relatives at risk for both CMMRD and Lynch syndrome and may impact family planning. However, it is also important to consider the potential harm associated with CMMRD counselling and testing in this setting, and any harm should be outweighed by expected benefits for both the index patient and his/her at-risk relatives. Therefore, physicians and geneticists have begun to discuss if and when to counsel and test for CMMRD in suspected NF1 patients.35

The C4CMMRD consortium, an interdisciplinary team of international experts in the field, has formulated and published diagnostic criteria for the clinical suspicion of CMMRD in cancer patients,7 in addition to surveillance guidelines.6 At the most recent workshop in Brussels (26th of September 2017), the issue of when to test children without malignancy for CMMRD was addressed. The outcome of that discussion will be presented here. We propose the adaptation of existing diagnostic criteria to serve as a guideline as to when to consider CMMRD counselling and testing as differential diagnosis to NF1 in healthy individuals.

ESTIMATED FREQUENCY OF CMMRD AS A DIFFERENTIAL DIAGNOSIS OF NF1

The frequency of CMMRD in children suspected to have NF1 or Legius syndrome, but without a causative NF1 or SPRED1 mutation and no overt malignancy, is currently unknown. Since knowledge of disease frequency would help in weighing the possible benefits and harm associated with counselling and genetic testing, in the following section we attempt to roughly estimate the frequency.

The incidence of CMMRD in the general population depends on the carrier frequency of MMR mutations. The most recent empiric estimation, based on a large North American/Australian registry, calculated carrier frequencies of 1 in 1,946 for MLH1, 1 in 2,841 for MSH2, 1 in 758 for MSH6, and 1 in 714 for PMS2 mutations.36 Based on these frequencies, CMMRD incidence was calculated to be about 1:1,000,000 children of unrelated parents (Figure 1). The incidence will be substantially higher in populations with founder MMR mutations and in children of consanguineous parents.15 37 38

NF1 is much more common, with an estimated incidence of around 1:2,000-1:3,000.39-41 Almost half of patients with NF1 are de novo cases.39 To estimate the frequency of suspected NF1 or Legius syndrome patients without an NF1 or SPRED1 mutation who are actually affected by CMMRD, we took a number of factors into account. In a study using highly sensitive and comprehensive mutation analysis protocols, with mutation detection rates of 96% in familial NF1 patients, NF1/SPRED1 mutations were identified in 56.4% (764/1354; 751 NF1 and 13 SPRED1 mutations) of suspected
sporadic NF1 patients with >5 CALMs. Therefore, based on the incidence of de novo NF1 of 1:6,000 new-borns and an NF1/SPRED1 mutation detection rate of 56.4% in patients with >5 CALMs with or without other signs of NF1, we assume that there are 129 patients with >5 CALMs and no NF1/SPRED1 mutation in a population of 1 million individuals (Figure 1). Combining this estimate with the estimated frequency of CMMRD, and assuming that half of all CMMRD patients present as suspected NF1 patients prior to cancer development, we obtain a figure of one CMMRD patient among 258 suspected NF1 children without an NF1/SPRED1 mutation (i.e. ~0.4%) (Figure 1). Given this low estimated frequency, a priori chances of diagnosing CMMRD in this group are low.

POTENTIAL BENEFITS AND HARM OF CMMRD COUNSELLING AND TESTING IN A ‘HEALTHY’ CHILD

Several factors need to be taken into account when considering CMMRD diagnostics in a child without a (personal history of) malignancy (Table 1).

Table 1 Overview of the potential benefits and harms of CMMRD counselling and testing in a suspected sporadic NF1/Legius syndrome child without malignancy and negative outcome of NF1/SPRED1 germline mutation analysis.

<table>
<thead>
<tr>
<th>Potential benefits</th>
<th>Potential harms</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Opportunity to begin surveillance before cancer development</td>
<td>• Risk of diagnosing Lynch syndrome in a minor</td>
</tr>
<tr>
<td>• Parents can be informed of the recurrence risk in a sibling/future child</td>
<td>• Risks associated with intensive surveillance while efficacy has not yet been evaluated in a large cohort and attenuated forms of CMMRD exist</td>
</tr>
<tr>
<td>• Lynch syndrome can be diagnosed in family members and surveillance initiated</td>
<td>• Risk of identifying a VUS, resulting in management dilemmas and potentially inducing anxiety</td>
</tr>
</tbody>
</table>

Abbreviations: CMMRD, constitutional mismatch repair deficiency. VUS, variant of unknown significance.

Benefits and their limitations

i) One of the most important benefits of an early CMMRD diagnosis is the possibility to begin surveillance before cancer development and, consequently, potentially detect cancer at an early stage with better treatment options. With regards to colorectal cancer risk, there is even the opportunity to prevent cancer by removal of intestinal polyps prior to malignant transformation, and existing recommendations for CMMRD surveillance provide clinicians with guidance regarding screening programs. All available guidelines recommend brain MRI, colonoscopies and video capsule endoscopy (VCE) from a young age, as well as gynaecological and urinary tract analysis from age 10 to 20 years. In addition, whole body MRI and/or vaccination with neoantigens are possible modalities that may have a role in CMMRD.
management. Preliminary analyses in a small series of patients showed promising results for surveillance measures. Nevertheless, all recommended programs are intensive and burdensome and evaluation of the outcome of surveillance protocols in larger studies is yet to be published. Furthermore, when CMMRD is diagnosed in a predictive setting with regard to cancer development, it should be kept in mind that attenuated forms of CMMRD show tumour onset only by the end of the second or in the third decade of life, and that no evaluated models are available to accurately estimate penetrance of novel MMR mutations or new combinations of mutations. Hence, it is currently unclear whether a less stringent surveillance program might be sufficient for a subgroup of patients. Despite these reservations, as sufficient evidence points to an overall high cancer risk, the application of intensive, carefully considered screening recommendations to individuals proven to have CMMRD is justified.

ii) Another advantage of early diagnosis is the possibility to counsel parents regarding the 25% probability that siblings and subsequent children will also be affected, and to discuss the option of prenatal or preimplantation genetic diagnostics while parents are still in the process of family planning. Once again however, informed decision making is complicated by the fact that current estimates of cancer risk are subject to ascertainment bias and individual cancer risks are difficult to predict.

Potential harms

i) Following genetic counselling for CMMRD as a differential diagnosis, parents and children may experience anxiety during genetic testing until the diagnosis is largely excluded. Depending on the diagnostic strategy and performance of the laboratory, this may take several weeks or even months. Moreover, the testing strategy chosen by the laboratory will impact the predictive value of a negative test result (i.e. the residual risk in the case of a negative test, see Testing strategy). This may impact on any remaining anxiety after receiving a negative result. The level of anxiety may also differ depending on the personality and the available coping strategies of the patients/parents and the attitudes of the physicians involved.

ii) Test results definitely confirming or refuting CMMRD will be helpful in the management of the patient and his/her family. However, inconclusive test results will pose a challenge for all parties involved. The most important source of inconclusive results will be variants of unknown significance (VUS) in the MMR genes. Although identification of a VUS is an inherent risk of genetic diagnostics, it is important to minimize the number of VUS and the dilemma with regard to diagnosis and appropriate management of the patient that comes along with it. Therefore, laboratories performing CMMRD analysis in a predictive setting should be prepared to take any measure necessary to reach a
less ambiguous classification of a VUS (C3) as either a (likely) pathogenic (C4/C5) mutation or a (likely) benign (C1/C2) variant.46 Tests assessing hallmarks of MMR deficiency \textit{in vivo} or the effect of the mutation(s) on mismatch repair protein function \textit{in vitro} will become important in these situations (see \textit{Testing strategy}).

iii) According to Win \textit{et al.},36 in the general population one in 279 children tested will be heterozygous for an MMR gene mutation. Particularly in the case of a clearly pathogenic \textit{MLH1} or \textit{MSH2} mutation, this results is the unintentional diagnosis of Lynch syndrome in a minor. Lynch syndrome mainly predisposes to adult-onset colorectal cancer and/or endometrial cancer and surveillance only begins around age 20-25.47 48 Thus the lack of clinical consequences in children, combined with their right not-to-know, and potential harm due to anxiety and other issues (e.g., potential difficulty in acquiring insurance) highlight that a diagnosis of Lynch syndrome is undesirable in a minor.49 Further considerations on this topic can be found in Bruwer \textit{et al.} who offered predictive CMMRD testing to children of parents both carrying familial \textit{MLH1} mutations.50 The situation is more complex for \textit{MSH6} and even more so for \textit{PMS2}. Heterozygous mutations in these genes have a 2-4 times higher prevalence,36 but a substantially lower penetrance than \textit{MLH1} and \textit{MSH2} mutations.19 51 52 Hence, in an individual lacking a personal or family history of Lynch syndrome-associated cancer, it is uncertain whether the mutation-associated cancer risk is sufficient to diagnose an individual with a cancer predisposition syndrome that warrants intensive cancer surveillance. This concern also raises the question of whether identifying a mutation in an individual without family history for Lynch syndrome justifies predictive genetic testing in parents and other adult at-risk relatives.

\textbf{LIMITING POTENTIAL HARM ASSOCIATED WITH CMMRD COUNSELLING AND TESTING IN A CHILD WITHOUT A MALIGNANCY}

Assuming that only a small minority (~0.4\%) of all \textit{NF1}/\textit{SPRED1} mutation-negative children from non-related parents will actually have CMMRD syndrome, it would be desirable to reduce the number of individuals/families with whom the possibility of CMMRD needs to be discussed. Therefore, strategies to pre-select children with a high probability of having CMMRD are discussed in the following section.

\textbf{Testing prerequisites}

Three prerequisites for considering testing for CMMRD as a differential diagnosis of NF1/Legius syndrome are defined in Table 2: (i) the presence of at least one NF1 diagnostic criterion including multiple hyperpigmented skin patches reminiscent of CALMs. The most prevalent NF1 sign present
in a CMMRD patient is hyperpigmented skin patches reminiscent of NF1-associated CALMs and freckling. Other diagnostic NF1 features such as neurofibromas, Lisch nodules, tibial pseudarthrosis or optic pathway glioma have so far only been seen in CMMRD patients who also show CALMs.1,2,15,53,54 This suggests that CMMRD syndrome is a highly unlikely diagnosis in individuals with only isolated non-pigmentary NF1 features. (ii) \textit{NF1/SPRED1} testing was performed using highly sensitive, comprehensive mutation analysis protocols. The likelihood of identifying CMMRD is of course correlated with the sensitivity of \textit{NF1/SPRED1} mutation analysis performed (further discussed in \textit{Testing strategies}). (iii) the absence of any signs of NF1 in either parent. If a parent shows any NF1 signs, even very subtle, an undetected \textit{NF1/SPRED1} mutation, which might even be present in a mosaic status in the mildly affected parent, is probably more likely. It is strongly recommended that both parents undergo a full clinical exam for presence of any (mild) features of NF1, and for this purpose a consultation with an ophthalmologist and dermatologist can be considered.

It was decided not to include an age limit in the prerequisites for testing, as in CMMRD a wide variability has been observed in the age of cancer diagnosis.11,45,52 However, when evaluating a patient who meets the prerequisites it should be kept in mind that the vast majority (around 80\%)10,11,13-16 of CMMRD patients will have developed a malignancy or intestinal adenomas by the age of eighteen. Hence, absence of a (pre-)malignancy in an older individual decreases the probability of CMMRD substantially.

\textbf{Pre-selection strategies}

The presence in a child of one or more additional features suggestive of CMMRD substantially increases the likelihood of this differential diagnosis. The European C4CMMRD consortium has previously defined diagnostic criteria based on features that raise suspicion of CMMRD in a cancer patient.7 By and large, these features could also be used to select children without cancer who have an increased probability of having CMMRD. Therefore, the list of additional features provided in table 2 largely overlaps with the previously defined diagnostic criteria for CMMRD in a cancer patient (for further details see 7).
Table 2 Selection strategy for CMMRD counselling and testing in a suspected NF1/Legius syndrome child without malignancy and negative outcome of NF1/SPRED1 germline mutation analysis.

Prerequisites

- Suspicion of NF1 due to the presence of at least one diagnostic NF1 feature\(^1\), including at least two hyperpigmented skin patches reminiscent of CALMs
- No NF1 and SPRED1 germline mutations detected using comprehensive and highly sensitive mutation analysis protocols\(^2\)
- Absence of NF1 signs in both parents

Additional features, at least one is required

In the family

- Consanguineous parents
- Genetic diagnosis of Lynch syndrome in one or both of the parental families
- Sibling with signs of NF1
- A (deceased) sibling\(^3\) with any type of childhood malignancy
- One of the following carcinomas from the Lynch syndrome spectrum\(^4\): colorectal cancer, endometrial cancer, ovarian cancer, gastric cancer, small bowel cancer, cancer of the bile duct or gall bladder, pancreatic cancer or urothelial cancer before the age of 60 in first-degree or second-degree relative

In the patient

- Atypical CALMs (irregular borders and/or pigmentation)
- Hypopigmented skin patches
- One or more pilomatricoma(s) in the patient
- Agenesis of the corpus callosum
- Non-therapy-induced cavernoma
- Multiple developmental vascular abnormalities (DVA; also known as cerebral venous angiomias) in separate regions of the brain

Abbreviations: NF1, neurofibromatosis type 1. CALMs, café-au-lait macules.

\(^1\)Neurofibromatosis conference statement.(21) \(^2\)See testing strategy. \(^3\)This can be expanded to 2\(^{nd}\) and 3\(^{rd}\) degree relatives in populations with a high prevalence of founder mutations. \(^4\)Møller et al. 2017 (47)

A feature listed in the original table in \(^7\) was ‘deficiency/reduced levels of IgG2/4 and/or IgA’. As a recent study on a cohort of 15 consecutive, unrelated patients was unable to show uniform or specific patterns of laboratory immunological abnormalities,\(^55\) we did not include this rather unspecific feature in table 2.

Two features increasing the likelihood of having CMMRD and not listed in the original table by Wimmer et al.\(^7\) were added to the current table. The first one is a sibling with signs of NF1, in the absence of any NF1 signs in both parents when gonadal NF1/SPRED1 mosaicism in a parent has
largely been excluded by mutation analysis in the children. The second is the presence of multiple developmental vascular abnormalities (DVA; also known as cerebral venous angiomas) in separate regions of the brain, which were present in 10/10 patients described by Shiran et al., who suggested this feature as additional non-neoplastic sign indicating CMMRD in a cancer patient.

Furthermore, a number of CMMRD patients have been reported to have atypical CALMs with irregular borders and different degrees of pigmentation. Therefore, atypical macules that might be differentiated from typical NF1-associated macules by an experienced clinician/geneticist (see also Counselling strategy and setting), are suggestive of a differential diagnosis such as CMMRD.

Hence, presence of atypical CALMs is also included as an additional feature in Table 2.

Some CMMRD-associated features included in Table 2 (e.g. brain anomalies) will not be detected by routine clinical examination of a suspected NF1 patient. Since the prevalence and specificity of these features in CMMRD patients is not well studied, we do not advocate testing for these features unless clinically indicated.

A thorough family history will help in uncovering family members with Lynch syndrome-associated cancers (Table 2). When a Lynch syndrome-associated cancer is present it may be worthwhile, where possible, to analyse the tumour for signs of mismatch repair deficiency.

A thorough assessment of the family history should include also questions regarding consanguinity of the parents. The risk of having CMMRD based on the allele frequencies of MMR gene mutations in for example a child of first cousins is \(\sim 1/8,849\) (using the equation \([p_i f_i + p_i^2 (1-f_i)] + [p_j f_j + p_j^2 (1-f_j)] + [p_k f_k + p_k^2 (1-f_k)] + [p_l f_l + p_l^2 (1-f_l)]\) where \(p_i, p_j, p_k\) and \(p_l\) are the allele frequencies of MLH1, MSH2, MSH6 and PMS2 mutations, respectively, and the consanguinity coefficient \(f_i\) for first cousins = \(1/16\) which is about 110-times higher than for a child with unrelated parents.

Counselling strategy and setting

Since NF1 is a relatively common and often easily recognizable syndrome for which clear management guidelines exist, many paediatricians order molecular analysis of the NF1 gene directly without involving a clinical genetics specialist. Counselling and management are more challenging for the much rarer and highly penetrant cancer predisposition syndrome CMMRD. We therefore advocate that predictive (with respect to malignancy) CMMRD testing should be ordered by a physician trained in clinical cancer genetics in a centre with specific expertise in NF1 and related disorders in a multi-disciplinary setting.
As mentioned above, we suggest that CMMRD does not need to be discussed in all suspected NF1 cases without an identified \textit{NF1/SPRED1} mutation. Following an interdisciplinary discussion and the decision that counselling for CMMRD is indicated in a child without a malignancy, parents and their affected child, depending on his/her age, should be counselled by an experienced geneticist. To be able to make an informed decision on whether they want their child to be tested, parents should be made aware of the potential benefits, with their limitations, and of the various possible outcomes of genetic testing. Nevertheless, considering the low probability of a CMMRD diagnosis, this information should be provided in a way that minimizes risk of inducing a disproportionately high level of anxiety. If parents express the need for psychological support or more information on surveillance protocols or cancer treatment options, consultation with a psycho-oncologist or paediatric oncologist should be offered.

Specifically trained clinical geneticists/clinicians may be able to differentiate between typical NF1-associated CALMs and the atypical pigmentation sometimes seen in CMMRD patients.30-34 Furthermore, he/she can decide whether another syndrome (e.g., Noonan syndrome, Noonan syndrome with multiple lentigines, NF2, Piebald trait and McCune-Albright syndrome) within the differential diagnosis of children with CALMs is more likely and should be addressed by genetic testing prior to CMMRD testing. Lastly, we advise that any centre ordering CMMRD diagnostics is able to facilitate the surveillance program, either in-house or in cooperating centres within reasonable travelling distance.

\textbf{Testing strategy}

A prerequisite for considering CMMRD counselling and testing as a differential diagnosis in patients suspect for NF1/Legius syndrome is the exclusion of the latter diagnoses with high certainty by absence of germline \textit{NF1/SPRED1} mutations using highly sensitive mutation analyses. The \textit{NF1} gene is large and has a highly diverse mutational spectrum, with private mutations (i.e. not reported in any other patient) identified in a significant percentage of patients (~25%; LM, personal communication). Furthermore, the \textit{NF1} mutation spectrum also includes a large proportion of unusual splice mutations that either completely elude genomic DNA (gDNA)-based mutation analysis protocols (e.g. deep intronic mutations are found in 2.5-3\% of all NF1 patients) or defy ready classification as (likely) pathogenic mutations without additional transcript analysis (approximately 20\% of patients have a splice mutation NOT affecting the AG/GT dinucleotides, but affect coding nucleotides, nucleotides flanking the exons but further up/downstream of the AG/GT dinucleotides or reside very deep into the introns).22, 58, 59 This complicates the classification of novel mutations, especially in the case of silent, missense, and intronic variants.60 Currently, only comprehensive
mutation analysis protocols that include NF1 transcript analysis as a primary or complementary assay, such as direct cDNA sequencing, will achieve sufficient sensitivity to exclude a germline mutation with a 96% certainty. Genomic DNA-based mutation analysis methods can achieve high SPRED1 mutation detection rates (RNA-based mutation analysis performed in >900 patients has not yet identified a SPRED1 splice mutation that escaped detection in gDNA; LM, unpublished data).

Segmental or mosaic NF1 due to a post-zygotic NF1 mutation is the most likely differential diagnosis in a child with CALMs, with or without other NF1 signs, and a negative germline NF1/SPRED1 mutation analysis. Confirming mosaic NF1 however requires identification of the same post-zygotic mutation in multiple melanocyte or Schwann cell cultures from biopsied CALMs and neurofibromas respectively. These labour intensive analyses require specific expertise and therefore are offered only by very few specialized laboratories worldwide. Furthermore, they require invasive procedures. Taken together, this can justify omitting these analyses in children to evaluate mosaic/segmental NF1 prior to CMMRD testing.

In principle, two CMMRD testing strategies can be pursued. The first strategy is direct mutational testing of the MMR genes. The second strategy involves a pre-assay which tests for hallmarks of CMMRD, followed by mutational testing if positive. When opting for direct mutational testing it should be kept in mind that mutation analysis of PMS2, the most commonly mutated gene in CMMRD, is challenging due to the presence of pseudogenes. Therefore, appropriate methods should be applied to circumvent potential pitfalls of PMS2 mutation analysis.

An argument in favour of direct mutation analysis using gDNA-based gene panel diagnostics would be that other genes that may mimic the NF1 phenotype (see Introduction) can be analysed simultaneously. However, testing a larger number of genes inevitably increases the likelihood of identifying VUSes. Therefore, we advocate a stepwise approach, ruling out other possible differential diagnoses prior to CMMRD testing.

If a VUS is identified in one of the MMR genes, additional analyses should be performed to assist with the interpretation of the variant, such as ex vivo functional assays of the mutated gene and/or assays that determine the presence of MMRD in non-neoplastic tissue of the patient. The latter assays could also be used as pre-assays before or in parallel with mutation analysis. This second strategy reduces the risk of VUS identification by providing functional evidence for or against CMMRD, and at the same time increases diagnostic sensitivity by applying two complementary methods.

Microsatellite instability (MSI), defined as a change in the number of mononucleotide or dinucleotide repeats and detectable by alterations in microsatellite fragment length, is a well-
established hallmark of somatic MMRD and is frequently assessed in cancer tissues during testing for Lynch syndrome. MSI is not restricted to neoplastic cells in patients with CMMRD and assays have been developed to detect low levels of MSI in leucocyte DNA of these patients. Although highly sensitive and specific in patients with biallelic PMS2, MLH1 and MSH2 mutations, in patients with biallelic MSH6 mutations, the currently available germline microsatellite instability (gMSI) assays regularly yield normal results. This limitation renders this gMSI assay unsuitable for pre-test selection. However this simple, fast and inexpensive assay can increase diagnostic sensitivity and accuracy by confirming the pathogenicity of PMS2, MLH1 and MSH2 VUS. In the near future more sensitive, simple and reliable gMSI assays may become available, which could potentially be used for pre-test selection. Recently, a highly sensitive and reliable method for the detection of low levels of MSI was developed, with potential applications in the analysis of MSI in non-neoplastic tissue of CMMRD patients. Another assay, which tests for MSI in EBV-immortalised lymphocytes and in parallel for cell tolerance to methylating agents (another functional consequence of CMMRD), has recently been specifically developed for CMMRD diagnosis. As this assay is both highly sensitive and specific it may allow a diagnosis of CMMRD to be definitively confirmed or refuted in cases where mutation analysis and other assays are inconclusive (e.g. when only one MMR gene mutation or a homozygous MMR gene VUS has been identified). However, the assay is lengthy, labour intensive and requires expertise, making it ill-suited as a pre-test. Immunohistochemistry (IHC) to detect loss of expression of one or more MMR protein(s) in non-neoplastic tissue, such as small skin biopsies, has also been proposed as a diagnostic assay for CMMRD. However, as taking a skin biopsy is an invasive procedure that can be unpleasant for a young child, IHC should be avoided as a pre-test. Furthermore, IHC may also be insensitive if antigenic but non-functional mutations are present. Taken together, reliable diagnostics of CMMRD may at times be challenging. Choosing an appropriate testing strategy may depend on the facilities that are most readily available in the centre. Hopefully, more assays will become available that may facilitate simple and reliable selective pre-testing for CMMRD.

CONCLUDING REMARKS
We discussed here the potential benefits and harm (Table 1) associated with CMMRD counselling and testing in children suspected to have sporadic NF1 but without a malignancy and lacking an NF1 or SPRED1 germline mutation. After carefully considering all available literature and our own experiences, we arrived at recommendations as to when to counsel and offer CMMRD testing, which are summarized in Table 2. We also note that uncertainties exist regarding the incidence of CMMRD
and the prevalence of CMMRD-associated features both in the general population and in unselected CMMRD patients. Clearly, more data are needed to further support our recommendations, particularly since published CMMRD cases may be biased towards a more severe phenotype. We strongly recommend that the clinical course of all CMMRD patients who are identified before cancer development is meticulously recorded and submitted to a database. Overall, we believe that with the application of the suggested counselling and testing prerequisites an acceptable balance can be achieved between adequate testing of patients at risk of CMMRD, while avoiding exposing an unnecessarily large number of children and families to any harm that might ensue from counselling and genetic testing for CMMRD.

Acknowledgements: The authors thank Medactie.com for help with editing of this paper.

Competing interests: The authors have no conflict of interests to report.

Funding: Not applicable.

Contributors: The guidelines have been discussed during a C4CMMRD workshop in Brussels on Sept. 26, 2017. All authors were involved in this discussion during the meeting and/or thereafter. The manuscript was drafted by MS and KW. All authors read and revised the manuscript with major contributions of TR, LM, FM, LB and EL. Being a member of GENTURIS, EL represented also the interests of this European Reference Network.

REFERENCES

63. Andersen SD, Liberti SE, Lutzen A, Bernstein I,登陆 M, Nystrom M, Hansen TV, Christoffersen JW, Jager AC, de Wind N, Nielsen FC, Torring PM, Rasmussen LJ.
Functional characterization of MLH1 missense variants identified in Lynch syndrome patients. *Hum mutat* 2012;33(12):1647-55.

